
Sergei Kuksin

On the Zakharov-L’vov stochastic model for wave turbulence

based on a joint work with Andrey Dymov (Moscow)

(L’X, 18 December 2018 )

1



§1. The setting

Consider the modified NLS equation

∂

∂t
u+ i∆u− iν

(
|u|2 − ‖u‖2

)
u = 0 ,

∆ = (2π)−2
d∑
j=1

(∂2/∂x2
j ) , x ∈ TdL = Rd/(LZd) ,

where d ≥ 2, L ≥ 1 and ν ∈ (0, 1]. This is a hamiltonian PDE, obtained by modifying

the standard NLS equation by another hamiltonian equation ∂
∂tu = −iν‖u‖2u, whose

flow commutes with that of NLS. This is a rather innocent modification.

Denote by H the space L2(TdL;C), given the normalised L2–norm

‖u‖2 = L−d<
∫
|u|2 dx ; so ‖1‖ = 1.
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We write solutions u as u(t, x) or as u(t) ∈ H . Pass to the slow time τ = νt:

u̇+ iν−1∆u− i
(
|u|2 − ‖u‖2

)
u = 0 , u̇ = (∂/∂τ)u(τ, x), x ∈ TdL .

From now on I will use the time τ .

The objective is to study solutions when ν → 0 and L→∞.

We write the Fourier series for u(x) as

u(x) = L−d/2
∑

s∈Zd
L

vse
2πis·x, ZdL = L−1Zd ,

where vs = L−d/2
∫
Td
L
u(x)e−2πis·x dx .
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When studying the equation, people talk about “pumping the energy to low modes and

dissipating it in high modes”. To make this rigorous, Zakharov-L’vov in 1975 suggested to

consider the NLS equation, dumped by a (hyper)viscosity and driven by a random force:

u̇+ iν−1∆u− iρ (|u|2 − ‖u‖2)u = −(−∆ + 1)r∗u+ η̇ω(τ, x),

ηω(τ, x) = L−d/2
∑

s
bsβ

ω
s (τ)e2πis·x.

(1)

Here r∗ > 0, ρ ≥ 1 is an additional constant, needed later, {βs(τ), s ∈ ZdL} are

standard independent complex Wiener processes, the constants bs > 0 are defined for all

s ∈ Rd and fast decay when |s| → ∞.
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Denoting B = L−d
∑
sb

2
s we obtain the balance of energy for solutions of (1):

E‖u(τ)‖2 + 2E
∫ τ

0

‖(−∆ + 1)r∗u(s)‖2 ds = E‖u(0)‖2 + 2Bτ .

So the quantity E‖u(τ)‖2 – the averaged “energy per volume” of a solution u – is order

one, uniformly in L, how this should be.

Passing to the Fourier presentation, we write eq. (1) as

v̇s − iν−1|s|2vs + γsvs = iρL−d
∑

1,2
δ′12
3s v1v2v̄3 + bsβ̇s , s ∈ ZdL,

where γs = (1 + |s|2)r∗ and

δ′12
3s =

 1, if s1 + s2 = s3 + s and {s1, s2} 6= {s3, s},
0, otherwise.
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Using interaction representation vs = exp(iν−1τ |s|2) as we write equations for vs as

ȧs + γsas = iρYs(a; ν−1τ) + bsβ̇s , s ∈ ZdL ,

Ys(a; t) = L−d
∑

1,2
δ′12
3s a1a2ā3e

itω12
3s ,

ω12
3s = |s1|2 + |s2|2 − |s3|2 − |s|2 = −2(s1 − s) · (s2 − s).

(2)

The energy spectrum of a solution u(τ) is the function

ZdL 3 s 7→ ns(τ) = nL,νs (τ) = E|vs(τ)|2 = E|as(τ)|2.

Traditionally the function ns is in the center of attention. We wish to study the solutions of

(1) and their energy spectra ns when

ν → 0, L→∞.

Exact meaning of this assumption is not clear. Below we specify it as follows:

ν → 0 and L ≥ ν−2−ε for some ε > 0,

or first L→∞ and next ν → 0.
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§2. Solutions as formal series in ρ.

Consider the equations with the initial condition

u(−T ) = 0, 0 < T ≤ +∞,

and write the solution as as formal series in ρ:

as = a(0)
s + ρa(1)

s + . . . .

Substituting this decomposition in the a–equation (2), we see that

ȧ(0)
s (τ) + γsa

(0)
s (τ) = bsβs(τ), s ∈ ZdL.

So the processes a
(0)
s are independent Ornstein–Uhlenbeck processes:

a(0)
s (τ) = bs

∫ τ

−T
e−γs(τ−l)dβs(l),
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while a(1) satisfies

ȧ(1)
s (τ) + γsa

(1)
s (τ) = iYs(a(0)(τ); ν−1τ), τ > −T ,

so

a(1)
s (τ) = i

∫ τ

−T
e−γs(τ−l)Ys(a0(l); ν−1l) dl.

That is, a
(1)
s (τ) is a Wiener chaos of third order. Similar, for n ≥ 2,

a(n)
s (τ) = i

∫ τ

−T

∑
n1+n2+n3=n−1

e−γs(τ−l)Ys(a(n1)
1 (l), a

(n2)
2 (l), a3

(n3)(l); ν−1l
)
dl ,

is a Wiener chaos of order 2n+ 1.
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QUASISOLUTIONS. The NLS equation is a model which is used to describe various

small–amplitude nonlinear processes, neglecting the terms, cubic in the amplitude. So

what has real physical meaning rather is not itself a solution as(τ) of the a–equation (2),

but its quadratic in ρ part. In the notation above this is :

As(τ) = a0
s(τ) + ρa1

s(τ) + ρ2a2
s(τ).

We call the the process A = {As(τ)} the QUASISOLUTION.

Consider the energy spectrum of A,

Ns(τ) = E|As(τ)|2.

QUESTION: How Ns behaves when ν → 0 and L→∞, L� ν−2 ?
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Let us write Ns as series in ρ:

Ns(τ) = n0
s(τ) + ρn1

s(τ) + ρ2n2
s(τ) + ρ3n3

s(τ) + ρ4n4
s(τ).

Here n0
s = E|a0

s|2 is a quantity of order 1,

n1
s = 2<Ea0

sā
1
s = 0, n2

s = E|a1
s|2 + 2<Ea0

sā
2
s, etc.

CALCULATION: if ν � 1 and L� ν−2, then

n2
s ∼ ν, n3

s, n
4
s . ν2.

So the right scaling for ρ is ρ ∼ ν−1/2. Accordingly let us take ρ in the form

ρ =
√
ε ν−1/2, ε ∈ (0, 1].

10



§3. Wave kinetic equation

For a real function s 7→ xs on Rd let us consider the Cubic Wave Kinetic Integral

Ks(x·) = 2πγs

∫
Σs

ds1 ds2 |Σs
x1x2x3xs√

|s1 − s|2 + |s2 − s|2

(
1

γsxs
+

1

γ3x3
− 1

γ1x1
− 1

γ2x2

)
.

Here xj = xsj , j = 1, 2, 3, we substitute s3 = s1 + s2 − s,

Σs = {(s1, s2) : (s1 − s) · (s2 − s) = 0},

and ds1 ds2 |Σs is the microcanonical measure on Σ (the volume in R2d, restricted to Σ).

FACT: the Wave Kinetic operator xs → Ks(x·) is well defined and “good”.

Consider the Wave Kinetic Equation:

(WKE) ṁs(τ) = −2γsms(τ)+2b2s+εKs(m·(τ)), s ∈ Rd.

For small ε this is a good equation. It has a unique solution, equal 0 at−T . Let us denote

it {n∗s(τ)}.

11



Theorem. Let ρ =
√
ε ν−1/2, where ε is a small constant. Then the energy spectrum

Ns(τ) is close to the solution n∗s(τ) of (WKE):

‖n∗s(τ)−Ns(τ)‖ ≤ Cε2 ∀ τ ≥ −T.

The solution n∗s(τ) can be written as

n∗s(τ) = n∗0s (τ) + εn∗1s (τ) +O(ε2),

where n∗0s (τ) ∼ 1 solves the linear equation (WKE)ε=0, and εn∗1s (τ) is the

nonlinear part of the solution.

Note that Cε2 � |εn∗1s (τ)| for small ε.
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Remark. If ρ =
√
ε ν−1/2, then in the original fast time t the equation reeds:

∂

∂t
u+i∆u−i

√
ν
√
ε
(
|u|2−‖u‖2

)
u = −ν(−∆+1)r∗u+

√
ν η̇ω(τ, x), ‖u(t)‖ ∼ 1.

That is,

1) the time-scale which we use to pass to the kinetic limit is τ = νt, so the time needed to

arrive at the limiting kinetic regime is t ∼ ν−1;

2) the coefficient in front of the nonlinearity is

ν1/2.
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§4. Higher order in ρ decompositions

Write the solution in a–presentation as formal series in ρ:

a = a(0) + ρa(1) + . . . ,

and accordingly write its energy spectrum as

(3) ns(τ) = n0
s(τ) + ρn1

s(τ) + ρ2n2
s(τ) + . . . .

Since

n2
s ∼ ν, n3

s, n
4
s . ν2,

it is natural to assume that

nks . νk/2 for all ν and all k.

If so, then scaling as before ρ =
√
ε ν−1/2, we would make (3) a nice asymptotical series

in ε.

But this is WRONG:
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Theorem. 1) For each k we have

nks ≤ C#
s (k) max(νdk/2e, νd),

where dk/2e – the smallest integer which is≥ k/2.

2) Moreover, if k > 2d, then the sum of the integrals which makes the term nks contains

integrals of order ∼νd � νdk/2e.

The integrals of order νd do not cancel each other. So for big k

nks ∼ νd, NOT nks ∼ νdk/2e.

Then the series

ns(τ) = n0
s(τ) + ρn1

s(τ) + ρ2n2
s(τ) + . . . .

with the right scaling ρ =
√
ε ν−1/2 IS NOT an asymptotical series since

ρknks(τ) > εk/2νd−k/2,

which is very big for k > 2d and ν � 1.
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