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The weakly nonlinear one-dimensional chain model

N equal masses connected by a weakly nonlinear spring

F ' ��q + ↵�q2 + ��q3 + . . .

The system is Hamiltonian

H =
NX

j=1


1

2m
p2j +



2
(qj � qj+1)

2

�
+
↵

3

NX

j=1

(qj�qj+1)
3+

�

4

NX

j=1

(qj�qj+1)
4

Enrico Fermi (1901-1954) John Pasta (1909-1984) Stanislaw Ulam
(1918-1984)

Mary Tsingou-Menzel
(1928- )

MANIAC I
(1952-1957)



Premise

Ergodic problem and foundation of statistical mechanics

Poincaré Theorem (1895): the non existence of first integrals of motion

(except for energy), in generic Hamiltonian systems

Fermi Theorem (1923): In a generic Hamiltonian system with N > 2
degrees of freedom, no smooth surface can divide the phase space into two

regions containing open invariant sets.

Fermi argued that non-integrable Hamiltonian systems are generically

ergodic, which would solve the ergodic problem.
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The result expected by Fermi and collaborators

Equipartition of linear energy in Fourier space for large times

Microcanonical ensemble values:

Qk =
1

N

N�1X

j=0

qje
�i

2⇡kj
N , Pk =

1

N

N�1X

j=0

pje
�i

2⇡kj
N ,

then

Ek = |Pk|2 + !2
k
|Qk|2 = const

with

!k = 2

����sin
✓
⇡k

N

◆����

Remark: However for ✏ = 0 normal modes are independent and the system

is not ergodic. The statistical mechanics treatment can be well founded

only in the non-integrable case.



The Los Alamos report: an influential unpublished paper

Among the first computer experiments and, perhaps, the first showing how

simulations can be used as a powerful instrument able to provide new

physical insights and ideas.



First explanations: solitons and integrability in physics

In the limit of long waves (continuum limit) the ↵-FPU system reduces to

the Korteweg-de Vries (KdV) equation:
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First explanations: solitons and integrability in physics

ZK showed, besides recurrence, the formation of train of solitons

Numerical simulation of the KdV

equation*



First explanations: Hamiltonian Chaos

KAM (1954) and Nekhoroshev (1977) theorems

H(I, ✓, ") = H0(I) + "H1(I, ✓),

if " ⌧ 1, then invariant tori (KAM tori) survive on the surface of

constant energy; Chaos can invade phase-space for large N
Physically: non- ergodic behaviors of non-integrable Hamiltonian

systems are actually typical. Good properties are expected if N � 1.
The emerging picture for FPU system:

if " < "c the KAM tori are dominant and the system does not reach

equipartition

if " � "c the system reaches equipartition according to statistical

mechanics

Chirikov Criterium (Izraielev and Chirikov, 1966): stochasticity due to

frequency overlap

R =
�k

!k+1 � !k

> 1

R is resonance overlap parameter, �k is the nonlinear frequency

broadening



Physical Questions

(i) the regular behavior for small nonlinearities, and irregular for large

ones, is peculiar of FPU Hamiltonian?

(ii) Does the system thermalize for arbitrary small nonlinearity for finite

number of particles?

(iii) What are the characteristic times of the equipartition process as

function of N and ✏? What are the physical mechanisms ?

(iv) If there is a threshold, what is the dependence of ✏c on N (at fixed

E)?

(v) for a given N, how small is the part of the phase space with regular

behavior.

Among Huge literature:

Gallavotti ed. 2007 Lectures Notes in Physics Springer

Benettin & Ponno J. Stat. Phys. 2011



The models

↵-FPU
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Discrete Nonlinear Klein Gordon (DNKG)

q̈j = (qj+1 + qj�1 � 2qj)� qj � gq3j ,

Hamiltonian formalism:
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Normal modes

Assuming periodic boundary conditions, we introduce the wave action

variable

ak =
1p
2!k

(!kQk + iPk),

with Pk = Q̇k and !k = 2| sin(⇡k/N)|
Linear regime
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s
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(m = 0 for the FPUT models).

Weakly nonlinear regime: perturbative approach

� ⇠ g ⇠ ↵2 ⇠ ✏



Normal form of Hamiltonian for all 4 models
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�1±2±3±4 = �(k1 ± k2 ± k3 ± k4), ai = a(ki, t), A,B = T (k)

Starting point for statistical theory!



Wave Turbulence in a nutshell

WT is the general statistical theory of weakly nonlinear dispersive waves.

Look for an evolution equation for the correlator

ha(i, t)a(j , t)⇤i = n(i, t)�(i � j)
BBGKY hierarchy: need of a closure

Random-phase assumption and initial random apmlitudes

Thermodynamic limit N ! 1 L ! 1
The main concept: the existence of conservation laws associated to

the wave scattering processes. Exact Resonances.

k1 = k2 + k3,

!1 = !2 + !3.

Typical 3-waves scattering process (Ex. Capillary waves).
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The Wave Kinetic Equation

Energy Conservation:

E =

Z
!()n(, t)d, N =

Z
n(, t)d, scattering

Existence of an H-theorem:

H =

Z
ln(n(, t))d, with

dH

dt
 0

The Rayleigh-Jeans distribution

dH/dt = 0 ! n(k, t) =
T

!() + µ

Thermalization time scale: nonlinear collision time



The thermodynamic limit in anharmonic chains

N ! 1, L ! 1 with
L

N
= �x = const

Momentum space is continuous but space remains discrete.

Then the dispersion relations become:

!k =
p
m+ 4 sin(k/2)2

It is shown that 3-waves processes are not resonant

but the following 4-wave resonant interactions are satisfied in all chains:

k1 + k2 � k3 � k4 = 0

!1 + !2 � !3 � !4 = 0

Standard Wave Turbulence can be developed



The thermodynamic limit: Resonances

The continuous resonant manifold for 2 ! 2
resonances with m = 0, that is

!1 + !2 = !1 + !1+2�3.

Canonical transformation to remove non resonant terms:
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The thermodynamic limit: Time-scales

All three models are dynamically described by the Zakharov equation:

i
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Coe�cients W1,2,3,4 depend on the particular system under consideration.

The Kinetic equation reads:
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The thermalization timescales Teq:

Teq / ↵�4 / ✏�2
↵

for the ↵-FPUT model and

Teq / ��2 / ✏�2
�,KG

for the DNKG and �-FPUT models. Universal behaviour.



Outside the Thermodynamic limit: small N régime

For N even, the above system has solutions for integer values of k:

Trivial solutions: all wave numbers are equal or

k1 = k3, k2 = k4, or k1 = k4, k2 = k3

Nontrivial solutions:

{k1, k2; k3, k4} =

⇢
k1,

N

2
� k1;N � k1,

N

2
+ k1

�

with k1 = 1, 2, . . . , bN/4c
However....

Four-waves resonant interactions are isolated

No e�cient mixing (and thermalization) can be achieved via a

four-wave resonant process (for weak nonlinearity)



Six-wave interactions

check for exact resonances at higher order

i
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Resonant conditions:

k1 + k2 + k3 � k4 � k5 � k6 = 0 (mod N)

!1 + !2 + !3 � !4 � !5 � !6 = 0

Non-isolated solutions exist for integer values of k with arbitrary N .



Removing non resonant interactions

Eliminate the non-resonant terms from the Hamiltonian using a

near-identity (canonical) transformation from {ib, b⇤} to {ic, c⇤}

H
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where c.c. denotes complex conjugate.



Estimation of the equipartition time scale for incoherent
waves

Look for the evolution equation of hc(ki, t)c(kj , t)⇤i = n(ki, t)�i�j
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and the time of equipartition scales as

teq ⇠ 1/✏4



Numerical simulations

Symplectic integrator (H. Yoshida, 1990 Phys. Lett. A)

Numerical simulations with di↵erent values of N

Generic Initial conditions

✏ is then selected

4096 realisations are made, each with a di↵erent set of �k
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ek The initial distribution of ek for the DNKG

model with m = 1, N = 64 (circles), with

E = 0.2 and N ' 0.129. The thermalized

final state is shown with the squares, and it

approximately corresponds to a

Rayleigh-Jeans distribution with µ = 0.



The Entropy: the example of DNKG

s(t) =
X

k

fk log fk with fk =
N � 1

Etot

!kh|ak|2i, Etot =
X

k

!kh|ak|2i
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Scaling in time: Thermodynamic limit
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Scaling in time: small N
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DNKG simulations: frequency broadening
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✏ ' 0.0026 (•), 0.0052 (⌅), 0.0144 (⌥), 0.023 (N).



DNKG equation: the Large Box Limit
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Conclusions and Perspectives

The FPU/DNKG systems thermalize for arbitrary small nonlinearity

Fermi intuition was right...

The thermalization time scale is 1/✏2 in the thermodynamic limit

The thermalization time scale is 1/✏4 in the weakly nonlinear regime

for a finite number of particles

After a (possibly long) transient, WT provides the universal

mechanisms underlying anharmonic chains dynamics

! Possible specific bizarre cases in small systems ?

! What does it happen when some noise is added ? Localisation ?

! Is it possible to develop a discrete kinetic equation ?



E. Fermi with E. Amaldi in Varenna, 1954



The End
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