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The weakly nonlinear one-dimensional chain model

N equal masses connected by a weakly nonlinear spring
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The system is Hamiltonian
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Premise

Ergodic problem and foundation of statistical mechanics

Poincaré Theorem (1895): the non existence of first integrals of motion
(except for energy), in generic Hamiltonian systems

Fermi Theorem (1923): In a generic Hamiltonian system with N > 2
degrees of freedom, no smooth surface can divide the phase space into two
regions containing open invariant sets.

Fermi argued that non-integrable Hamiltonian systems are generically
ergodic, which would solve the ergodic problem.

Henri Poincaré
(1854-1912)



The result expected by Fermi and collaborators

Equipartition of linear energy in Fourier space for large times
Microcanonical ensemble values:
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Remark: However for ¢ = 0 normal modes are independent and the system
is not ergodic. The statistical mechanics treatment can be well founded
only in the non-integrable case.



The Los Alamos report: an influential unpublished paper

STUDIES OF NON LINEAR PROBLEMS

E, FEryMi, ]. PASTA, and S. Urau
Document LA~1940 (May 1935).

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonlinear terms has been studied on the Los Alamos computer MANIAC L. The
nonlinear terms considered are quadratic, cubic, and broken linear types. The results are
analyzed inte Fourier components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom,
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Among the first computer experiments and, perhaps, the first showing how

simulations can be used as a powerful instrument able to provide new
physical insights and ideas.



First explanations: solitons and integrability in physics

In the limit of long waves (continuum limit) the a-FPU system reduces to
the Korteweg-de Vries (KdV) equation:
on on  0°n
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VOLUME 15, NUMBER 6 PHYSICAL REVIEW LETTERS 9 August 1965

INTERACTION OF “SOLITONS” IN A COLLISIONLESS PLASMA
AND THE RECURRENCE OF INITIAL STATES

N. J. Zabusky
Bell Telephone Laboratories, Whippany, New Jersey

and

M. D. Kruskal

VoOLUME 19, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1967

METHOD FOR SOLVING THE KORTEWEG-deVRIES EQUATION*

Clifford S. Gardner, John M. Greene, Martin D. Kruskal, and Robert M. Miura
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
(Received 15 September 1967)



First explanations: solitons and integrability in physics

/K showed, besides recurrence, the formation of train of solitons
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FIG. 1. The temporal development of the wave form
u(x).

Numerical simulation of the KdV
equation®



First explanations: Hamiltonian Chaos

o KAM (1954) and Nekhoroshev (1977) theorems
H(I1,0,e) = Ho(I)+eH1(1,0),

if ¢ < 1, then invariant tori (KAM tori) survive on the surface of
constant energy; Chaos can invade phase-space for large N
Physically: non- ergodic behaviors of non-integrable Hamiltonian

systems are actually typical. Good properties are expected if NV > 1.

The emerging picture for FPU system:
o if ¢ < e, the KAM tori are dominant and the system does not reach

equipartition
e if € > . the system reaches equipartition according to statistical
mechanics
@ Chirikov Criterium (lzraielev and Chirikov, 1966): stochasticity due to
frequency overlap
L'
W41 — Wk
R is resonance overlap parameter, I'; is the nonlinear frequency
broadening

R = > 1



Physical Questions

(i) the regular behavior for small nonlinearities, and irregular for large
ones, is peculiar of FPU Hamiltonian?

(i) Does the system thermalize for arbitrary small nonlinearity for finite
number of particles?

(iii) What are the characteristic times of the equipartition process as
function of NV and €? What are the physical mechanisms ?

(iv) If there is a threshold, what is the dependence of €. on N (at fixed
E)?

(v) for a given N, how small is the part of the phase space with regular
behavior.

Among Huge literature:
Gallavotti ed. 2007 Lectures Notes in Physics Springer
Benettin & Ponno J. Stat. Phys. 2011



The models

e o-FPU

Gj = (@41 + g1 — 205) + o [(@51 — 43)” = (gj-1 — @)
e 5-FPU

i = (gj+1 + gj—1 — 2q5) + B [(gj+1 — ¢;)° — (gj—1 — ;)°]
@ Discrete Nonlinear Klein Gordon (DNKG)

G; = (¢j+1 + @j—1 — 2¢;) — ¢; — 94,

Hamiltonian formalism:
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Normal modes

Assuming periodic boundary conditions, we introduce the wave action

variable
1

\/2wk

with P, = Qj, and wy, = 2| sin(rk/N)|
Linear regime

ap —

k
wp = \/m + 4sin? (Wﬁ) (m = 0 for the FPUT models).

Weakly nonlinear regime: perturbative approach
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Normal form of Hamiltonian for all 4 models
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with
01494344 = 5(]{71 + ko £ k3 k4), a; = a(ki, t), A B = T(k)

Starting point for statistical theory!



Wave Turbulence in a nutshell

WT is the general statistical theory of weakly nonlinear dispersive waves.
@ Look for an evolution equation for the correlator

(alri, Dals;,t)*) = n(ri, )3(i — r;)

BBGKY hierarchy: need of a closure

Random-phase assumption and initial random apmlitudes

Thermodynamic limit N = oo L. — o©

The main concept: the existence of conservation laws associated to

the wave scattering processes. Exact Resonances.

kl — k2 +k37

Wi = wy -+ ws.

Typical 3-waves scattering process (Ex. Capillary waves).
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The Wave Kinetic Equation

Energy Conservation:
E = /W(lﬁ})n(lﬁl,t)dli, N = /n(/ﬁ?,t)d/ﬁl, scattering

Existence of an H-theorem:

dH
H = /ln(n(/ﬁz,t))dﬁ;, with — <0

The Rayleigh-Jeans distribution

dH/dt = 0 — n(k,t) = MR

Thermalization time scale: nonlinear collision time



The thermodynamic limit in anharmonic chains

L
N — 00, L— o0 with N:A:L':const

Momentum space is continuous but space remains discrete.
Then the dispersion relations become:

wp = \/m + 4sin(k/2)2

It is shown that 3-waves processes are not resonant

but the following 4-wave resonant interactions are satisfied in all chains:

ki+ ko — ks — ks =0

w1 +wy —w3 —wyg =0

Standard Wave Turbulence can be developed



The thermodynamic limit: Resonances

o £k The continuous resonant manifold for
| resonances with m = 0, that is
w1 + W2 = W1 + W14+2-3-

Canonical transformation to remove non resonant terms:
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The thermodynamic limit: Time-scales

All three models are dynamically described by the Zakharov equation:

Za—tl — w1by + W1,2,3,452b3b4(5ﬁ_2)_3_4dk2dk'3dk4,
0

Coefficients Wy 23 4 depend on the particular system under consideration.
The Kinetic equation reads:
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0

for the a-FPUT model and
Teq o 572 x EE,2KG

for the DNKG and S-FPUT models. Universal behaviour.




Outside the Thermodynamic limit: small NV régime

For N even, the above system has solutions for integer values of k:

@ [rivial solutions: all wave numbers are equal or
k1= k3, ko = kg, or ki =ky, ko = kg3

@ Nontrivial solutions:

N N
{k1,kos k3, ka} = {7@1, 5 ki3 N — ki, 0} + k’l}

with k1 =1,2,..., [ N/4]
However....
@ Four-waves resonant interactions are isolated

e No efficient mixing (and thermalization) can be achieved via a
four-wave resonant process (for weak nonlinearity)



Six-wave interactions

@ check for exact resonances at higher order

.dcy
i = wiby + € g T1,2,3,4b5b3b401 4034+
ko iz g

2 %k
+ € g W12.34,56C5C3C4C5C60142+3—4—5—6

Resonant conditions:

ki +ko+ ks — ks — ks —kg=0 (modN)

w1 +wy+w3 —ws —wy —wg =0

Non-isolated solutions exist for integer values of k with arbitrary N.



Removing non resonant interactions

Eliminate the non-resonant terms from the Hamiltonian using a
near-identity (canonical) transformation from {ib, b*} to {ic,c*}

H  Hinte

grable x x & (N
—_ = — 4 E Z1,2,3,4,5,601020304056651+2+3—4—5—6’ (2)
N N 1,2,3,4,5,6

where dp is the Kroneker modulo N.

mtegrable Zwk‘bk’ + — ZWkkkk ‘bk‘)

Z Wkl,kQ,kl,k2|bk1| |bk2‘ +

k1#ko (3)
[N/4]

£ AW (BB borb_yy Fec)
k=1

where c.c. denotes complex conjugate.



Estimation of the equipartition time scale for incoherent

WaVves

Look for the evolution equation of (c(k;,t)c(kj,t)*) = n(ki, t)di—;

8n1
2/ % *x x

5 ~ €“(c]chc5eqc5C6)
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ot

2/ % % x %
~ €“(c]CaCacycsceCres)

therefore
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and the time of equipartition scales as

toq ~ 1/¢*




Numerical simulations

Symplectic integrator (H. Yoshida, 1990 Phys. Lett. A)

Numerical simulations with different values of N

°
°
@ Generic Initial conditions
@ c is then selected

°

4096 realisations are made, each with a different set of ¢

e The initial distribution of e;, for the DNKG
o model with m = 1, N = 64 (circles), with
) ' E =0.2 and N~ 0.129. The thermalized
.. 0004 L final state is shown with the squares, and it
....................................... approximately corresponds to a
o00% * - C Rayleigh-Jeans distribution with u = 0.
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The Entropy: the example of DNKG
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Scaling in time: Thermodynamic limit
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Scaling in time: small N
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DNKG simulations: frequency broadening

Aw

0.05 0.10

Figure: The dispersion of the frequency mismatch Aw, renormalized as a
probability, for a 2 — 2 resonance with N = 32 and k& = {1, —15, —11, —3}, with
e ~ 0.0026 (), 0.0052 (), 0.0144 (¢), 0.023 (A).



DNKG equation: the Large Box Limit
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Figure: The scaling of T, on € for multiple values of IV, with m =1 and
E = 0.1N/32. Scaling laws €2 and ¢~ in red dotted and black dash-dotted
lines for reference.



Conclusions and Perspectives

USEAN

The FPU/DNKG systems thermalize for arbitrary small nonlinearity
Fermi intuition was right...

The thermalization time scale is 1/€? in the thermodynamic limit

The thermalization time scale is 1/€* in the weakly nonlinear regime
for a finite number of particles

After a (possibly long) transient, WT provides the universal
mechanisms underlying anharmonic chains dynamics

Possible specific bizarre cases in small systems 7
What does it happen when some noise is added ? Localisation ?

Is it possible to develop a discrete kinetic equation ?



E. Fermi with E. Amaldi in Varenna, 1954
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The End
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