High Reynolds statistical modelling of wave-vortex interactions, from gravity waves to acoustic ones

Claude Cambon, (with F. S. Godeferd, Julian Scott, Antoine Briard ...)

Laboratoire de Mécanique des Fluides et d'Acoustique, ECL, France

Waveturb 2018, December 17-19

- A General context in **3D turbulence in fluids** with waves. Non-propagating modes coexisting with dispersive wave modes.
- General strategy using a QNM (Quasi-Normal Markovian) ingredient for 'weak' and 'strong' turbulence.
- The toroidal cascade vs. gravity waves turbulence in stably-stratified turbulence
- Role of N/f in rotating stably-stratified turbulence
- Weakly compressible homogeneous isotropic turbulence. Solenoidal mode vs. acoustic waves and pseudo-sound
- Conclusions and perspectives about the use of multimodal, possibly anisotropic, holistic triadic spectral closure, EDQNM and beyond

Basic formalism before statistical approach

LMFA / ECL ()

э

Identifying non-propagating modes and wave-modes

- Linear basic eigenmodes decomposition prior to Wave turbulence theory $\hat{\mathbf{v}} = a_0(\mathbf{k})\mathbf{N}^{(0)} + a_1(\mathbf{k})\mathbf{N}^{(1)}e^{+\imath\sigma_k t} + a_{-1}(\mathbf{k})\mathbf{N}^{(-1)}e^{-\imath\sigma_k t}$, with σ_k the dispersion law (continuous 3D wave-space)
- Replace the constants by time-dependent amplitudes $a_0(k, t)$, $a_{\pm 1}(k, t)$ to be substituted to \hat{u} variables

Slow amplitudes $a_s(k, \epsilon t)$

vs. *rapid* phases $e^{\pm \imath \sigma_k t}$

Caveat on the nature of the non-propagating, 'vortex', mode

• Two kinds of modes with zero wave-frequency, a fully 3D one, a_0 and the zero-limit of the wave modes, $(a_{\pm}, \sigma_k = 0)$, with lower dimension

$$\mathbf{v} = \left(\mathbf{a}_0 + \mathbf{a}_+ e^{+\imath\sigma_k t} + \mathbf{a}_- e^{-\imath\sigma_k t}\right) e^{\imath \mathbf{k} \cdot \mathbf{x}}$$

 The so-called *wave-vortex* decomposition is often not intrinsic to the physics of fluids, with examples

-) 2D mode in purely rotating turbulence? $\sigma_k = 2\Omega \frac{k_{\parallel}}{k}$, integrable singularity ($k_{\parallel} = 0$, with $a_0 = 0$), in the unbounded case; no longer in the *bounded case* (Scott, JFM, 2014).

-) The quasi-geostrophic mode in stably-stratified turbulence with (and without) rotation? Unbounded case, *f*-plane approx., a_0 is a 3D toroidal mode, $k_{\perp} = 0$, $\sigma_k = N \frac{k_{\perp}}{k}$, is the VSHF (1D) mode (without rotation); it is a propagating mode (Rossby waves!) in *the* β -plane approx.

 Linear combination from a toroidal - poloidal - dilatational decomposition of velocity (see Sagaut & CC, Springer 2018, and 'bibles' on geophysics, e.g. Pedlovsky)

$$\hat{\boldsymbol{u}} = \underbrace{\boldsymbol{u}^{(1)}\boldsymbol{e}^{(1)}}_{\text{toroidal}} + \underbrace{\boldsymbol{u}^{(2)}\boldsymbol{e}^{(2)}}_{\text{poloidal}} + \underbrace{\boldsymbol{u}^{(3)}\boldsymbol{e}^{(3)}}_{\text{dilatational}}$$

 Anisotropic dispersion laws, possibly a low-dimension zero wave-mode if σ(k) = 0.

LMFA / ECL ()

Figure: Craya-Herring frame $(e^{(1)}, e^{(2)}, e^{(3)})$ in Fourier space.

LMFA / ECL ()

Waveturb 2018 7 / 31

Phase of the *k*-mode: $\exp(i(\mathbf{k}\cdot\mathbf{x} + s_k\sigma_k t))$, $s_k = 0, \pm 1$

Inject $\hat{v} = \sum_{s=0,\pm 1} a_s(k, t) N^s e^{i s \sigma_k t}$ into Navier-Stokes-Bousinesq-type equations for v:

$$\dot{a}_{s}(\boldsymbol{k},t) = \sum_{s',s''=\boldsymbol{0},\pm 1} \int G_{kpq}^{ss's''} e^{i(s\sigma_{k}+s'\sigma_{p}+s''\sigma_{q})t} a_{s'}(\boldsymbol{p},t) a_{s''}(\boldsymbol{q},t) d^{3}\boldsymbol{p},$$

with $s, s', s'' = 0, \pm 1, \qquad k + p + q = 0.$

LMFA / ECL ()

Statistical approach for multipoint correlations

LMFA / ECL ()

General closure strategy

Transferring the machinery of EDQNM from $\hat{\pmb{u}}$ to slow amplitudes.

• The typical equation for three-point third-order correlations to be closed:

$$\begin{pmatrix} \frac{\partial}{\partial t} + \nu(k^2 + p^2 + q^2) + \imath(s\sigma(k) + s'\sigma(p) + s''\sigma(q)) \end{pmatrix} S_{ss's''}(k, p, t) =$$
$$= T_{ss's''}^{(QN)} + C_{ss's''}^{(IV)}, \quad s, s', s'' = 0, \pm 1, \quad k + p + q = 0$$

- Classical approach to wave turbulence, QN (C^{IV} = 0, ⟨vvvv⟩ = ∑⟨vv⟩⟨vv⟩) (e.g. Benney and Newell, 1969) ↔ Random Phase Approximation Markovianisation ↔ two time-scales t and εt, final equations in terms of slow variables only.
- Including an additional Eddy Damping ingredient as in EDQNM for HIT, for the zero mode (s = s' = s'' = 0).

$$C^{(IV)} = -(\eta(k) + \eta(p) + \eta(q))S_{000}.$$

Hierarchies for statistical closures, third-order correlations at three points!

Anisotropy, disentangling directional one and polarization one, ring-to-ring vs. shell-to-shell

(Favier et al., JFM, 2011, Sagaut & CC, 2018, Chap. 12)

(from CC & Jacquin, JFM, 1989 to Bellet *et al.*, JFM, 2006, Scott, JFM 2014, S & CC, 2018, Chap 7)

(Burlot et al., JFM, PoF, 2015, S & CC, 2018, Chap 10)

(From Godeferd & CC, PoF, 1994, S & CC, 2018, Chap 10)

Rotating and stratified flows, anisotropic structure

STRATIFIED $2\Omega = f = N$ ROTATING

 512^3 DNS from Liechtenstein *et al.* 2005. Beyond snapshots: anisotropic cascades!

Purely stably-stratified turbulence. f = 0, no forcing

LMFA / ECL ()

Image: A matrix

æ

Angle-dependent toroidal (left) and poloidal (right) modes (Liechtenstein, 2006)

イロト イポト イヨト イヨト

æ

• The toroidal mode partly decouples from gravity waves. This questions a priori global scalings in terms of Froude number(s): Hanazaki & Hunt (RDT), Lindborg, Chomaz, Billand, Brethouwer, and coworkers. Coming back to Riley *et al.* (1981), with possibly *small vertical* Froude number \pause

- The toroidal mode partly decouples from gravity waves. This questions a priori global scalings in terms of Froude number(s): Hanazaki & Hunt (RDT), Lindborg, Chomaz, Billand, Brethouwer, and coworkers. Coming back to Riley *et al.* (1981), with possibly *small vertical* Froude number \pause
- The toroidal cascade is a 'strong' cascade, vs. a 'weak' gravity-wave turbulence cascade \pause

- The toroidal mode partly decouples from gravity waves. This questions a priori global scalings in terms of Froude number(s): Hanazaki & Hunt (RDT), Lindborg, Chomaz, Billand, Brethouwer, and coworkers. Coming back to Riley *et al.* (1981), with possibly *small vertical* Froude number \pause
- The toroidal cascade is a 'strong' cascade, vs. a 'weak' gravity-wave turbulence cascade \pause
- It explains the layering (lasagna) even from an initially unstructured state, without need for artificial 2D horizontal forcing, or pre-existing 2D large-scale eddies (flap)

Forcing, both *N&f*. Evaluations of inverse cascades

From Marino et al. 2013, 2014.

э

No wave resonces

Marino et al. EPL, vol. 102, 44006 (2013).

< 4 → <

э

э

- A rather old study, at least in my lab. from 1988 to 1997, three successive Ph D students, J.D. Marion, F. Bataille, G. Fauchet, with J. P. Bertoglio.
- New insight for writing our books with P. Sagaut, 2008, 2018.
- Serious restart in 2017, with A. Briard, CC and P. Sagaut.

A simplified model of (quasi-isentropic) equations

$$\frac{\partial u'_{i}}{\partial t} + \frac{1}{\bar{\rho}} \frac{\partial p'}{\partial x_{i}} - \nu \frac{\partial u'_{i}}{\partial x_{k} \partial x_{k}} - \frac{\nu}{3} \frac{\partial}{\partial x_{i}} \left(\frac{\partial u'_{k}}{\partial x_{k}} \right) = -u'_{j} \frac{\partial u'_{i}}{\partial x_{j}}$$
(1)
$$\frac{\partial}{\partial t} \left(\frac{p'}{\gamma P} \right) + \frac{\partial u'_{i}}{\partial x_{i}} = -u'_{j} \frac{\partial}{\partial x_{j}} \left(\frac{p'}{\gamma P} \right)$$
(2)

- Quasi-isentropic because dissipative terms are kept for mathematical and numerical convenience
- Nonlinearity limited to second order only, fluctuation of density and pressure are implicitely small with respect to mean reference values. Mach number implicitely small too. $c_0^2 = \gamma \frac{P}{\bar{\rho}}$

Use of the fully spectral decomposition

 $u^{(4)}=\imath\frac{\hat{p}}{\bar{\rho}c_0}$, + the three-component toro-polo (solenoidal) - dilatational (Craya-Herring)

$$\frac{d}{dt} \begin{pmatrix} u^{(1)} \\ u^{(2)} \\ u^{(3)} \\ u^{(4)} \end{pmatrix} + \begin{pmatrix} \nu k^2 & 0 & 0 & 0 \\ 0 & \nu k^2 & 0 & 0 \\ 0 & 0 & \frac{4}{3}\nu k^2 & -c_0 k \\ 0 & 0 & c_0 k & 0 \end{pmatrix} \begin{pmatrix} u^{(1)} \\ u^{(2)} \\ u^{(3)} \\ u^{(4)} \end{pmatrix} = \begin{pmatrix} T^{(1)}_{NL} \\ T^{(2)}_{NL} \\ T^{(3)}_{NL} \\ T^{(4)}_{NL} \end{pmatrix}$$
(3)

where all nonlinear terms (right-hand-sides) as follows:

$$\begin{pmatrix} T_{NL}^{(1)} \\ T_{NL}^{(2)} \\ T_{NL}^{(3)} \\ T_{NL}^{(4)} \end{pmatrix} = \begin{pmatrix} -e^{(1)} \cdot \left(\widehat{\omega \times u'}\right) \\ -e^{(2)} \cdot \left(\widehat{\omega' \times u'}\right) \\ -e^{(3)} \cdot \widehat{\omega' \times u'} - \frac{1}{2} \imath k \widehat{u'_{j} u'_{j}} \\ \imath u_{j} \frac{\widehat{\partial(p'/(\bar{\rho}a_{0}))}}{\partial x_{j}} \end{pmatrix}$$
(4)

LMFA / ECL ()

Main results about spectra of the nonlinear quasi-isentropic model, Fauchet etal. 1997

EDQNM/DIA/DNS.

- Acoustic equilibrium only at very small k.
- Classical (as in solenoidal) pressure spectrum (Batchelor) for other k's.

Table: Two-point closure prediction dealing with inertial range in the low-Mach number régime ($M_t < 0.1$).

Decorrelation function	$\sim \exp[-\eta(k)(t-t')]$	$\sim \exp[-\eta^2(k)(t-t')^2]$
$E_{dd}(k)$	$\propto M_t^2 Re_L^1 k^{-11/3}$	$\propto M_t^4 R e_L^0 k^{-3}$
$E_{pp}(k)$	$\propto M_t^2 Re_L^1 k^{-11/3}$	$\propto M_t^2 R e_L^0 k^{-7/3}$
$E_{p'p'}^{acous}(k)$	$\sim E_{dd}(k)$	$\propto M_t^6 Re_L^0 k^{-11/3}$
$\lim_{M_t \to 0} E_{pp}(k)$	$\neq E_{pp}^{inc}(k)$	$=E_{pp}^{inc}(k)$
k_d/k_s	$\propto \dot{M}_t^2 Re_L^1$	$\propto \dot{M}_t^4 Re_L^0$
$\bar{\varepsilon}_d/\bar{\varepsilon}_s$	$\propto M_t^2 Re_L^0$	$\propto M_t^4 Re_L^{-1} \ln(Re_L)$

э

- Strategy EDQNM2 applied with all details using the acoustic dispersion frequency $\sigma_k = c_0 k$ and resonance operator $\exp(ic_0(sk + s'p + s''q)(t t'))$ coupled with a ED factor, especially needed for s = 0. Derivation much clearer than in previous studies, advocating DIA, but problems remain
- Recovering the strict incompressible limit, with correct M_t law?
- Need for a Gaussian rather than an exponential decorrelation function?
- A possible new interpretation of η in the Gaussian kernel: a standard variation for c_0k (partly random, as in the kraichnan's random oscillator) but without renormalize the laminar viscosity, nor the mean value of the sonic speed.
- Taking into account mass-averaged energy? $\rho_0 uu \rightarrow \rho uu$

Generalized EDQNM and beyond?

- A general strategy, not a new theory, equations not carved in the marble. To be matched with Wave-Turbulence theory.
- Possibility to take into account detailed anisotropy, including directional one connected to dimensionality, from 3D to 2D, 1D.
 Effects of mean gradients, body forces: not a perturbative approach, without formal expansion around isotropy as in (Kraichnan's legacy, DIA, LHDIA, TFM, LRA ... etc)
- Fully numerical solution, with quantitative comparison with DNS at highest resolution (CC et al., JFM 1997, Burlot et al., JFM 2015) Integration over the orientation of triads: fully numerical (from CC & Jacquin 1989, Bellet *et al.* 2006) to semi-analytical (but with truncated anisotropy) with Mons *et al.* 2016.
- An unprecedented investigation of the finite Reynolds number effect, initial data, parametric study in general.

 Is conventional pseudo-spectral DNS in tri-periodic box the best tool? Discretization of smallest scales (e.g. k* = 1, 10), capture of slow manifolds, especially in that range (e.g. k_{||} =0, 2D) \pause

- Is conventional pseudo-spectral DNS in tri-periodic box the best tool? Discretization of smallest scales (e.g. k* = 1, 10), capture of slow manifolds, especially in that range (e.g. k_{||} =0, 2D) \pause
- If not, what is the possible added value of theory and models, from linear to nonlinear, RDT, wave-turbulence, triadic closures, beyond ?
 e.g.: Explicit effects of confinment \pause

- Is conventional pseudo-spectral DNS in tri-periodic box the best tool? Discretization of smallest scales (e.g. k = 1, 10), capture of slow manifolds, especially in that range (e.g. k_{||} =0, 2D) \pause
- If not, what is the possible added value of theory and models, from linear to nonlinear, RDT, wave-turbulence, triadic closures, beyond ?
 e.g.: Explicit effects of confinment \pause in rotating turbulence, wave-turbulence and DNS in shearless rotating channel
- Some pictures and non-conventional proposals, EDQNM for a supergrid model? \pause

- Is conventional pseudo-spectral DNS in tri-periodic box the best tool? Discretization of smallest scales (e.g. k* = 1, 10), capture of slow manifolds, especially in that range (e.g. k_{||} =0, 2D) \pause
- If not, what is the possible added value of theory and models, from linear to nonlinear, RDT, wave-turbulence, triadic closures, beyond ?
 e.g.: Explicit effects of confinment \pause in rotating turbulence, wave-turbulence and DNS in shearless rotating channel
- Some pictures and non-conventional proposals, EDQNM for a supergrid model? \pause
- Better numerical resolution, for anisotropy, infrared range, what about *internal intermittency*. Is it really an objective syndrom (or symptom)?