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Outline

A General context in 3D turbulence in fluids with waves.
Non-propagating modes coexisting with dispersive wave modes.
General strategy using a QNM (Quasi-Normal Markovian) ingredient
for ‘weak’ and ‘strong’ turbulence.
The toroidal cascade vs. gravity waves turbulence in stably-stratified
turbulence
Role of N/f in rotating stably-stratified turbulence
Weakly compressible homogeneous isotropic turbulence. Solenoidal
mode vs. acoustic waves and pseudo-sound
Conclusions and perspectives about the use of multimodal, possibly
anisotropic, holistic triadic spectral closure, EDQNM and beyond
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Basic formalism before statistical approach
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Identifying non-propagating modes and wave-modes

Linear basic eigenmodes decomposition prior to Wave turbulence
theory v̂ = a0(k)N(0) + a1(k)N(1)e+ıσk t + a−1(k)N(−1)e−ıσk t , with
σk the dispersion law (continuous 3D wave-space)
Replace the constants by time-dependent amplitudes a0(k , t),
a±1(k , t) to be substituted to û variables

Slow amplitudes as(k , εt)

vs. rapid phases e±ıσk t
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Caveat on the nature of the non-propagating, ‘vortex’, mode

Two kinds of modes with zero wave-frequency, a fully 3D one, a0 and
the zero-limit of the wave modes, (a±, σk = 0), with lower dimension

v =
(
a0 + a+e+ıσk t + a−e−ıσk t) eık·x

The so-called wave-vortex decomposition is often not intrinsic to the
physics of fluids, with examples
-) 2D mode in purely rotating turbulence? σk = 2Ω

k‖
k , integrable

singularity (k‖ = 0, with a0 = 0), in the unbounded case; no longer in
the bounded case (Scott, JFM, 2014).
-) The quasi-geostrophic mode in stably-stratified turbulence with
(and without) rotation? Unbounded case, f -plane approx., a0 is a 3D
toroidal mode, k⊥ = 0, σk = N k⊥

k , is the VSHF (1D) mode (without
rotation); it is a propagating mode (Rossby waves!) in the β-plane
approx.
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Linear combination from a toroidal - poloidal - dilatational
decomposition of velocity (see Sagaut & CC, Springer 2018, and
‘bibles’ on geophysics, e.g. Pedlovsky)

û = u(1)e(1)︸ ︷︷ ︸
toroidal

+ u(2)e(2)︸ ︷︷ ︸
poloidal

+ u(3)e(3)︸ ︷︷ ︸
dilatational

Anisotropic dispersion laws, possibly a low-dimension zero wave-mode
if σ(k) = 0.
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û

Figure: Craya-Herring frame (e(1), e(2), e(3)) in Fourier space.
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Exact equations for ‘slow’ amplitudes

Phase of the k-mode: exp (ı(k·x + skσkt)), sk = 0,±1

Inject v̂ =
∑

s=0,±1 as(k , t)Nseısσk t into Navier-Stokes-Bousinesq-type
equations for v :

ȧs(k , t) =
∑

s′,s′′=0,±1

∫
G ss′s′′

kpq eı(sσk+s′σp+s′′σq)tas′(p, t)as′′(q, t)d3p,

with s, s ′, s” = 0,±1, k + p + q = 0.
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Statistical approach for multipoint correlations
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General closure strategy

Transferring the machinery of EDQNM from û to slow amplitudes.
The typical equation for three-point third-order correlations to be
closed:(
∂

∂t
+ ν(k2 + p2 + q2) + ı(sσ(k) + s ′σ(p) + s ′′σ(q))

)
Sss′s′′(k ,p, t) =

= T (QN)
ss′s′′ + C (IV )

ss′s′′ , s, s ′, s ′′ = 0,±1, k + p + q = 0

Classical approach to wave turbulence,
QN (C IV = 0, 〈vvvv〉 =

∑〈vv〉〈vv〉) (e.g. Benney and Newell, 1969)
↔ Random Phase Approximation
Markovianisation ↔ two time-scales t and εt, final equations in terms
of slow variables only.
Including an additional Eddy Damping ingredient as in EDQNM for
HIT, for the zero mode (s = s ′ = s ′′ = 0).

C (IV ) = −(η(k) + η(p) + η(q))S000.
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Hierarchies for statistical closures, third-order correlations at
three points!
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Anisotropy, disentangling directional one and polarization
one, ring-to-ring vs. shell-to-shell
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(from CC & Jacquin, JFM, 1989 to Bellet et al., JFM, 2006, Scott, JFM
2014, S & CC, 2018, Chap 7)
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Rotating and stratified flows, anisotropic structure

STRATIFIED 2Ω = f = N ROTATING

5123 DNS from Liechtenstein et al. 2005. Beyond snapshots: anisotropic
cascades!
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Purely stably-stratified turbulence. f = 0, no forcing

LMFA / ECL () Waveturb Waveturb 2018 18 / 31



 1e−10

 1e−09

 1e−08

 1e−07

 1e−06

 1e−05

 1e−04

 0.001

 0.01

 1  10  100

k

E
(k

n
,θ

m
)

cos θ ≈ 1

cos θ ≈ 0

(a)
 1e−10

 1e−09

 1e−08

 1e−07

 1e−06

 1e−05

 1e−04

 0.001

 0.01

 1  10  100

k

cos θ ≈ 1

cos θ ≈ 0

(b)

Angle-dependent toroidal (left) and poloidal (right) modes (Liechtenstein,
2006)
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The toroidal cascade and beyond

The toroidal mode partly decouples from gravity waves. This
questions a priori global scalings in terms of Froude number(s):
Hanazaki & Hunt (RDT), Lindborg, Chomaz, Billand, Brethouwer,
and coworkers. Coming back to Riley et al. (1981), with possibly
small vertical Froude number \pause

The toroidal cascade is a ‘strong’ cascade, vs. a ‘weak’ gravity-wave
turbulence cascade \pause
It explains the layering (lasagna) even from an initially unstructured
state, without need for artificial 2D horizontal forcing, or pre-existing
2D large-scale eddies (flap)
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Forcing, both N&f .
Evaluations of inverse cascades

From Marino et al. 2013, 2014.
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Weakly compressible homogeneous isotropic turbulence

A rather old study, at least in my lab. from 1988 to 1997, three
successive Ph D students, J.D. Marion, F. Bataille, G. Fauchet, with
J. P. Bertoglio.
New insight for writing our books with P. Sagaut, 2008, 2018.
Serious restart in 2017, with A. Briard, CC and P. Sagaut.
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A simplified model of (quasi-isentropic) equations

∂u′i
∂t

+
1
ρ̄

∂p′

∂xi
− ν ∂u′i

∂xk∂xk
− ν

3
∂

∂xi

(
∂u′k
∂xk

)
= −u′j

∂u′i
∂xj

(1)

∂

∂t

(
p′

γP

)
+
∂u′i
∂xi

= −u′j
∂

∂xj

(
p′

γP

)
(2)

Quasi-isentropic because dissipative terms are kept for mathematical
and numerical convenience
Nonlinearity limited to second order only, fluctuation of density and
pressure are implicitely small with respect to mean reference values.
Mach number implicitely small too. c2

0 = γ P
ρ̄
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Use of the fully spectral decomposition

u(4) = ı p̂
ρ̄c0

, + the three-component toro-polo (solenoidal) - dilatational
(Craya-Herring)

d
dt


u(1)

u(2)

u(3)

u(4)

+


νk2 0 0 0
0 νk2 0 0
0 0 4

3νk
2 −c0k

0 0 c0k 0




u(1)

u(2)

u(3)

u(4)

 =


T (1)

NL
T (2)

NL
T (3)

NL
T (4)

NL


(3)

where all nonlinear terms (right-hand-sides) as follows:


T (1)

NL
T (2)

NL
T (3)

NL
T (4)

NL

 =


−e(1)·

(
ω̂ × u′

)
−e(2)·

(
ω̂′ × u′

)
−e(3)·ω̂′ × u′ − 1

2 ıkû′ju
′
j

ı
̂uj
∂(p′/(ρ̄a0))

∂xj

 (4)
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Main results about spectra of the nonlinear quasi-isentropic
model, Fauchet etal. 1997

Fauchet et al. (1997), using
EDQNM/DIA/DNS.

Acoustic equilibrium only at very small k .
Classical (as in solenoidal) pressure spectrum (Batchelor) for other k’s.
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Table: Two-point closure prediction dealing with inertial range in the low-Mach
number régime (Mt < 0.1).

Decorrelation function ∼ exp[−η(k)(t − t ′)] ∼ exp[−η2(k)(t − t ′)2]

Edd (k) ∝ M2
t Re1

Lk−11/3 ∝ M4
t Re0

Lk−3

Epp(k) ∝ M2
t Re1

Lk−11/3 ∝ M2
t Re0

Lk−7/3

E acous
p′p′ (k) ∼ Edd (k) ∝ M6

t Re0
Lk−11/3

limMt→0 Epp(k) 6= E inc
pp (k) = E inc

pp (k)
kd/ks ∝ M2

t Re1
L ∝ M4

t Re0
L

ε̄d/ε̄s ∝ M2
t Re0

L ∝ M4
t Re−1

L ln(ReL)
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Achievements and remaining challenges

Strategy EDQNM2 applied with all details using the acoustic
dispersion frequency σk = c0k and resonance operator
exp(ıc0(sk + s ′p + s”q)(t − t ′)) coupled with a ED factor, especially
needed for s = 0. Derivation much clearer than in previous studies,
advocating DIA, but problems remain
Recovering the strict incompressible limit, with correct Mt law?
Need for a Gaussian rather than an exponential decorrelation function?
A possible new interpretation of η in the Gaussian kernel: a standard
variation for c0k (partly random, as in the kraichnan’s random
oscillator) but without renormalize the laminar viscosity, nor the mean
value of the sonic speed.
Taking into account mass-averaged energy? ρ0uu → ρuu
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Generalized EDQNM and beyond?

A general strategy, not a new theory, equations not carved in the
marble. To be matched with Wave-Turbulence theory.
Possibility to take into account detailed anisotropy, including
directional one connected to dimensionality , from 3D to 2D, 1D.
Effects of mean gradients, body forces: not a perturbative approach,
without formal expansion around isotropy as in (Kraichnan’s legacy,
DIA, LHDIA, TFM, LRA ... etc)
Fully numerical solution, with quantitative comparison with DNS at
highest resolution (CC et al., JFM 1997, Burlot et al., JFM 2015)
Integration over the orientation of triads: fully numerical (from CC &
Jacquin 1989, Bellet et al. 2006) to semi-analytical (but with
truncated anisotropy) with Mons et al. 2016.
An unprecedented investigation of the finite Reynolds number effect,
initial data, parametric study in general.
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Observations, tools

Is conventional pseudo-spectral DNS in tri-periodic box the best tool?
Discretization of smallest scales (e.g. k∗ = 1, 10), capture of slow
manifolds, especially in that range (e.g. k‖ =0, 2D) \pause

If not, what is the possible added value of theory and models, from
linear to nonlinear, RDT, wave-turbulence, triadic closures, beyond ?
e.g.: Explicit effects of confinment \pause in rotating turbulence,
wave-turbulence and DNS in shearless rotating channel
Some pictures and non-conventional proposals, EDQNM for a
supergrid model? \pause
Better numerical resolution, for anisotropy, infrared range, what about
internal intermittency. Is it really an objective syndrom (or symptom)?
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