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2

1 Institut D’Alembert, UMR 7190 CNRS-UPMC - 4 place Jussieu, 75005 Paris, France, EU
2 Unité de Mécanique (UME), ENSTA ParisTech - 828 Bd des Maréchaux, 91762 Palaiseau Cedex, France, EU
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Abstract – The effect of damping in the wave turbulence regime for thin vibrating plates is
studied. An experimental method, allowing measurements of dissipation in the system at all
scales, is first introduced. Practical experimental devices for increasing the dissipation are used.
The main observable consequence of increasing the damping is a significant modification in the
slope of the power spectral density, so that the observed power laws are not in a pure inertial
regime. However, the system still displays a turbulent behavior with a cut-off frequency that is
determined by the injected power which does not depend on damping. By using the measured
damping power-law in numerical simulations, similar conclusions are drawn out.

Copyright c© EPLA, 2013

Introduction. – Wave (or weak) turbulence theory
(WTT) aims at describing the long-time behavior of
weakly nonlinear systems with energy exchanges between
scales. It predicts long-time broadband Kolmogorov-
Zakharov spectra, by analogy with hydrodynamic tur-
bulence [1–3]. A large number of situations have been
studied over the years starting from the initial context of
water waves [4–7], to nonlinear optics [8] or Alfvén waves
in plasmas [9] for instance.

Wave turbulence for elastic vibrating plates has been
investigated theoretically in 2006 [10], rapidly followed by
two experimental works [11,12]. The theoretical analysis
considers the dynamics in the framework of the von
Kármán equations. For a thin plate of thickness h, Poisson
ratio ν, density ρ and Young’s modulus E, it yields [13]

ρh
∂2ζ

∂t2
= − Eh3

12(1 − ν2)
Δ2ζ + L(χ, ζ), (1)

Δ2χ = −Eh

2
L(ζ, ζ), (2)

where ζ is the transverse displacement and χ the Airy
stress function. The operator L is bilinear symmetric,

(a)On leave from: Institut Non Linéaire de Nice, UMR 6618 CNRS-
UNSA - 1361 Route des Lucioles, 06560 Valbonne, France, EU.

and reads in Cartesian coordinates: L(f, g) = fxxgyy +
fyygxx − 2fxygxy. Such dynamics exhibits dispersive
waves, following the dispersion relation

ωk = hc|k|2 (3)

involving the bulk sound velocity

c =

√
E

12(1 − ν2)ρ
. (4)

Then, developing the usual wave turbulence analysis,
nonequilibrium solutions of the kinetic equation have been
found in [10], the so-called Kolmogorov-Zakharov spectra
characterized by the relation between the power spectral
density Pv of the velocity v and the frequency f = ω/(2π):

Pv ∝ P
1
3 log

1
3

(
fc

f

)
, (5)

where P is the energy flux which is transferred along
the cascade until it is dissipated near fc, the cut-off
frequency of the spectrum. Such spectra were also
observed in numerical simulations [10] by injecting energy
at small frequencies (large scales) and dissipating it at high
frequencies (small scales with fc constant).
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Surprisingly, two independent experiments, performed
soon after on thin elastic plates [11,12], did not replicate
these theoretical (and numerical) predicted spectra. Both
experiments have measured similar turbulent spectra,
following

Pv ∝ ε
1
2
I

(
f

fc

)− 1
2

with fc ∝ ε
1/3
I , (6)

where εI is the mean injected power, a quantity related
to the energy flux, but slightly different. Indeed, some of
the injected energy can be dissipated at large scale by the
plate modes without entering the cascade process. Beside
a different power-like behavior of the spectra (f0 compared
to f−0.5), the dependence on εI is puzzling since it may
indicate that the expected four-waves resonance is failing.
In fact, since the critical frequency fc varies with the
injecting power, it leads to an overall dependence of the
spectra with the injected power Pv ∝ ε

2
3
I .

Usually, four main mechanisms are invoked to explain
the discrepancies between theoretical and experimental
spectra: 1) the finite size of the experimental sys-
tem [14,15]; 2) an incorrect separation of the linear
and nonlinear time scales [16]; 3) the influence of the
strongly nonlinear regime [17]; 4) the dissipation that can
invade the transparency window where the cascade dy-
namics holds. Concerning the latter phenomenum, weak-
turbulence theory requires dissipative scales to be widely
separated from forcing scales to allow the conservation of
the energy flux through the cascade. In solid plates, the
dissipation has different origins and is in fact present at
every scales [18], so that this property is highly question-
able. The goal of this paper is therefore to quantify both
experimentally and numerically the influence of the real
dissipation on the turbulent spectra.

Experiments. – The plate is made of steel with
ρ = 7800 kg · m−3, E = 210GPa and ν = 0.3, giving
c = 1570m · s−1. The lateral dimensions are 2 × 1m2,
and the thickness of the plate is h = 0.5mm, so that
the lowest fundamental vibrating frequency of the plate is
of the order of 1Hz. It is hanged under its own weight
and clamped on the top side as described in fig. 1. A
LDS shaker V455MS is placed at mid-width of the plate
and 62 cm away from the bottom side. A force transducer
of Bruel & Kjaer Type 8230-002 is mounted between the
shaker and the plate to measure the force applied from
the shaker to the plate F (t). An accelerometer of Bruel &
Kjaer Type 4517 mounted on the shaker gives the injection
speed V (t). Both V (t) and F (t) are used to deduce the
mean injected power

εI =
〈F (t) · V (t)〉

ρS
, (7)

where the brackets denote a temporal mean and S the
surface of the plate. The plate is set into a turbulent
regime with a sinusoidal forcing at frequency f0 = 30Hz

Fig. 1: (Colour on-line) (a) Experimental set-up: the steel
plate is clamped at its top and the vibrations are enforced by
a shaker. A force transducer and an accelerometer measure
force and velocity at the injection; a laser vibrometer records
the transverse velocity at a given position on the plate. (b)
Amplitude of the impulse response as a function of time for
the plate in configuration 2SP (see text). (c) Spectrogram (in
dB) of the impulse response (b) as a function of time t and
frequency f .

which corresponds to a low-frequency mode of the plate. A
Polytec laser vibrometer OFV 056 measures the transverse
velocity v(t) at a point located 1m from the bottom of the
plate and 40 cm from the left edge (see fig. 1). The data
are sampled at 22 kHz. The velocity power spectra are
time-averaged on windows of 1 s over 180 s, so that the
spectral resolution is 1Hz.

The natural damping of the plate (configuration N)
is increased using two different techniques. The first
one generates a homogeneous damping by painting one
(configuration 1SP ) or the two (2SP ) sides of the plate.
The second method consists in adding dampers on all
free edges of the natural plate in order to attenuate
the reflected waves (configuration ED). These dampers
have cylindrical shape with diameters of 1.7 cm and are
commercially used for thermic isolation of hyd–raulic
pipes.

Each configuration is characterized by the measure-
ments of the attenuation coefficient in the linear regime.
Due to the very high modal density of the experimental
plate, a measurement based on the impulse response is the
most appropriate. However, due to the large size of the
system, the classical technique using an impact hammer
leads to a poor signal-to-noise ratio.

The impulse response yI(t) is constructed here from the
velocity response y(t) to a broadband excitation signal
x(t), recorded in one point and using the inverse filter
x(T − t)E(t),

yI = y(t) ⊗ x(T − t)E(t). (8)

E(t) has to fulfill the relation x(t) ⊗ x(T − t)E(t) = δ,
where T is the signal length, δ the Dirac delta function
and ⊗ the convolution product. The method, developed
in [19] for room acoustics and adapted to reverberated
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Fig. 2: (Colour on-line) Evolution of the damping factor γ as a
function of the frequency. Empty red circles: configuration N ;
filled black circles: 1SP ; empty magenta triangles: 2SP ; filled
blue triangles: ED. Dashed lines + equations: fitted power
laws for numerical simulations.

plates in [20], uses a logarithmic sine sweep

x(t) = sin
[

2πf1T

ln(f2/f1)
(e

t
T ln(f2/f1) − 1)

]
, (9)

where f1 and f2 are, respectively, the smallest and largest
frequencies. In that case

E(t) = e
t
T ln(f2/f1)(

−6
log10(2) ). (10)

The logarithmic sine sweep is particularly interesting for
nonlinear systems because it allows for a clear distinction
between the linear and the nonlinear components. In the
resulting signal yI(t), the linear response starts at t = T ,
whereas the contributions of each harmonic coming from
the nonlinear distortion appears before t = T [19,20]. In
our case, even for the lowest amplitude of x(t), distortions
are always observable. We have checked that the linear
impulse response does not depend on the amplitude of the
exciting signal, confirming the accuracy of the technique.
Practically, we take f1 = 20Hz and f2 = 3kHz and the
signal is produced at the analog output of the acquisition
board with a sample rate of 22 kHz. The velocity measured
by the vibrometer is simultaneously recorded at the same
sample rate. Figure 1(b) displays the impulse response of
the configuration 2SP . As can be seen in the spectrogram
(fig. 1(c)), the energy decreases with time, faster for the
high than for the low frequencies. This energy decrease
can fitted for each frequency by an exponential law exp−γt

defining the damping factor γ. Finally, we have checked
that the technique proposed in [14] reproduces satisfacto-
rily the damping factor measured with our method which
exhibits however a greater accuracy since it discriminates
directly the linear damping from nonlinear effects.

Figure 2 displays the evolution of the damping
factors γ(f) for the four experimental configurations.
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Fig. 3: (Colour on-line) Power spectral density of the transverse
velocity for the four configurations. Red dashed line +
equation: smallest slope. Blue dashed line + equation: largest
slope. (a) Experiments: for γ∗ = 1 (red), εI = 0.56 ×
10−3 m3 · s−3; for γ∗ = 1.6 (black), εI = 0.54 × 10−3 m3 · s−3;
for γ∗ = 3.1 (magenta), εI = 0.52×10−3 m3 · s−3; and for γ∗ =
4.9 (blue), εI = 0.48× 10−3 m3 · s−3. (b) Numerics: for γ∗ = 0
(green), εI = 0.057 m3 · s−3, for other cases εI = 0.024 m3 · s−3.

Interestingly, despite the different attenuation sources,
the damping factors exhibit always the same qualitative
behavior which can be characterized by a power law
dependence of the attenuation on the frequency with an
exponent close to 0.6 ± 0.05. The damping is due to very
different physical origins: thermoelasticity, acoustic radi-
ation and dissipation at the boundaries in particular. In
our case the coincidence frequency for acoustic radiation
can be estimated in the vicinity of 20 kHz [18,20] and
is thus not relevant for our frequency range. Thermal
effects can be described by the Zener model [21] which
leads to a frequency-independent [13,18,20] small value
for the damping factor, roughly estimated at 0.8 s−1 for
our plate. A part of the energy is also dissipated at the
clamped boundary where two pieces of rubber are inserted
in order to avoid a metallic contact between the plate and
the clamp. A physical model for the dissipation should
also account for the viscoelastic behavior of the rubber
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Table 1: γ∗.

Configuration N 1SP 2SP ED

γ∗ 1 1.6 3.1 4.9

that has to be measured independently and is beyond
the scope of the present study. In the remainder and for
further analysis, we will use the robust relation found in
the experiments:

γ(f) = αf0.6, (11)

where α will be fitted for each experimental configuration.
The four different plates will be characterized by their
relative coefficient γ∗, ratio of the damping coefficient with
that of the natural case αN ,

γ∗ =
α

αN
. (12)

The damping coefficients γ∗ vary between 1 and 5 (see
table 1). Note that the fitted law (11) is particularly good
for high frequencies while it shows important discrepancies
with the real dissipation at small frequencies correspond-
ing to the plate eigen-modes (frequencies corresponding to
wave numbers of the order of the plate dimensions).

From these damping measurements it is possible to
estimate the power dissipated by the plate fluctuations at
the location of the velocity measurements. Actually, this
dissipated power is simply obtained from the experimental
power spectra Pv(f):

εD = h

∫ ∞

0

γ(f)Pv(f)df, (13)

using the fitted law (11) for γ(f). In the experiments,
εD and εI are found to be proportional with εD =
0.44εI , showing that a fraction of the injected power does
not go into the cascade. This misfit can be ascribed
to the nonhomogeneity of the experimental turbulence,
but also to the fitted law (11) that underestimates the
amount of energy dissipated by the very first modes of
the plate. Even if εD represents better what is dissipated
by the cascade, εI will be used as a control parameter
in the following for the sake of coherence with previous
studies [11,12].

Numerics. – Numerical simulations of the von
Kármán plate equations are performed using the same
pseudo-spectral method than in [10]. Within this frame-
work, it is straightforward to inject energy at controlled
scales and to mimic the measured experimental dissipa-
tion. Formally, we write the following set of dynamical
equations in the Fourier space:

ρh
∂2ζk

∂t2
= − Eh3k4

12(1 − ν2)
ζk + L(χ, ζ)

k
+ f i

k − ρhγd
k

∂ζk

∂t
,

(14)

k4χk = −Eh

2
L(ζ, ζ)k, (15)

where the Fourier transform is indexed by its wave vector
k subscript. f i

k stands for the injection term in the Fourier
space, while the dissipation is provided by the damping
term ρhγd

k
∂ζ
∂t . Finally L(χ, ζ)k and L(ζ, ζ)k denote the

Fourier transform of the nonlinear terms. To describe
qualitatively the experimental injection at low frequency,
the term f i

k is taken as a random field in a range of wave
numbers kmin ≤ |k| ≤ kmax, which corresponds to random
excitation of the plate in the pulsation range ωmin =
hck2

min ≤ ω ≤ ωmax = hck2
max using the relationship (3).

γd
k is directly deduced from the experimental fitted law

(11), giving

γd
k = α

(
hck2

2π

)0.6

= α

(
hc

2π

)0.6

k1.2. (16)

We simulate in the numerics a 1m × 1m plate with
the same mechanical properties as the experimental plate,
using periodic boundary conditions. 128 × 128 spatial
modes are solved, in good quantitative agreement with the
range of frequency spanned in the experiments. The same
attenuation coefficients as for the experiments are taken
and the injection is made in the frequency range [5, 35]Hz.
Finally, we consider also the ideal case for wave turbulence
γ0 = 0 where the dissipation is present at small scale only
as in [10] (formally only above a critical frequency fc which
corresponds to the cut-off length scale λc ∼ 1 cm).

Results. – Experimental and numerical results are pre-
sented simultaneously for the four different configurations.
The case γ∗ = 0 is shown numerically as a guideline of the
WTT predictions.

Figure 3(a) displays the experimental power spectral
densities of the normal velocity for similar injected powers.
All these spectra exhibit turbulent-like behavior since a
large range of frequencies is filled, showing a cascade
process from the large to the small scales. They all
behave roughly as power laws in the cascade regime with
frequency exponents that become clearly smaller as γ∗
increases. For the natural plate the exponent (−0.5) is
consistent with the previous results [11,12], while for the
most damped plate, the exponent is almost twice this
value. Figure 3(b) shows the power spectral density of the
normal velocity obtained by numerical simulations for sim-
ilar injected power. The same behavior is observed. The
ideal case γ∗ = 0, showing the almost flat spectrum (5), is
drawn for comparison.

Discussion. – These first results clearly highlight that
the slope of the turbulent power spectra in vibrating
plates depends strongly on the damping, indicating that
it must be retained as a pertinent feature to explain the
difference between theory and experiments. Moreover, one
can argue that no inertial range (or transparency window)
exists in these turbulent regimes. This can be seen in the
dissipation spectrum, defined as

γ(f)Pv(f) = αf0.6Pv(f) (17)
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Fig. 4: (Colour on-line) Scaling law test for the energy budget
of the cascade given in eq. (21) (see text). Large markers:
experiments. Small markers: numerics.

which spreads over all the frequencies in the cascade
region, since Pv(f) ∝ f−β with β varying between 0.5
and 1.1. For the highest attenuation studied here (β =
1.1), the dissipation spectrum is even higher at large
scale than at short scale, in total contradiction with the
wave turbulence framework. It is therefore difficult to
draw conclusions from the experimental observation using
the general properties of wave turbulence, obtained in a
conservative framework.

In particular, it has been shown in previous studies
[11,12], that the experimental spectra can be rescaled
on a single curve as the injected power varies, by using
the relation Pv( f

fc
)/
√

εI , where fc is the cut-off frequency
defined by

fc =

∫ ∞
f0

Pv(f)fdf∫ ∞
f0

Pv(f)df
. (18)

This result is in apparent contradiction with the WTT
prediction (5) based on four wave resonances since the
power law dependence (regardless on the variation of fc

with εI) in the injected power suggests that three waves
resonances are dominant. Alternatively, we propose here
to extract the self-similar properties of the spectra directly
from the cut-off frequency.

Indeed, the physical interpretation of the cut-off fre-
quency can be clarified [11,12], assuming that the cascade
stops because the injected power has been completely
dissipated by all the excited modes, yielding

εD = h

∫ ∞

0

γ(f)Pv(f)df 	 h

∫ fc

0

γ(f)Pv(f)df. (19)

Using the expected self-similar scaling Pv(f) ∝
ελ
I (f/fc)−β with λ unknown, the energy budget of the

cascade becomes
εD ∝ γ∗f

1.6
c ελ

I . (20)
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Fig. 5: (Colour on-line) Power spectral density of the transverse
velocity as a function of the rescaled frequency f/fc for several
injected powers. Amplitude scaled by the power λ of the
injected power. Green: γ∗ = 0; red: γ∗ = 1; black: γ∗ = 1.6;
magenta: γ∗ = 3.1; blue: γ∗ = 4.9. The curves for the different
γ∗ are switched for readability. (a) Experiments. (b) Numerics.

Note that this relation does not depend on the slope of
the spectra β. Finally, since εI is proportional to εD, we
obtain the following expression for the cut-off frequency:

γ
1/1.6
∗ fc ∝ ε

1−λ
1.6

I . (21)

Figure 4 shows the cut-off frequency as a function of the
injected power for the different damping configurations
both in the experiments and the numerics. The vertical
shift between the numerics and the experiments can be
simply explained by the ratio in the experiments between
εI and εD, which generate a systematic translation of
the experimental data (logarithmic scale). λ can thus
be computed for each different configuration: it varies
from 0.36 to 0.57 in experiments and from 0.33 to 0.39
in the numerics, depending on the damping coefficient.
Note that λ evolves between 1/3 and 1/2, the two
relevant values in the WTT for four-waves and three-waves
resonances, respectively.
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Using these measured values of λ, one can test the self-
similar scaling for Pv(f) as shown in fig. 5. Both in the
experimental and numerical cases and for the different
damping coefficients, the collapses of the curves are very
good, suggesting that the injected power dependence
is also dependent on the damping, rather than on the
underlying wave resonance process.

Finally, this analysis definitely shows that a cascade
process of constant energy flux is not at hand in turbulent
plate vibrations. On the contrary, the energy flux de-
creases all along the energy transfer towards small scales,
defining both the slope and the cut-off frequency as a
function of the amount of damping. Note, however, that
the system is truly turbulent, with cascades displaying
power laws that end when all the excited modes have
dissipated the feeding energy. The turbulent dynamics
is also testified by the relation between the injected
power and the injected velocity (fig. 6), characterized
experimentally by the RMS value of the velocity at the
injection point and in the numerics by the square root of
the integral over the injection scales of Pv. The figure
shows that the injected velocity depends only on the
injected power for the different damping configurations
yielding

εI ∝ V 3
RMS . (22)

Thus, the mechanism of power injection is inertial as it
is observed in hydrodynamic turbulence when varying the
viscosity [22].

Conclusion. – The effect of damping on the turbulent
behavior of vibrating plates has been investigated both ex-
perimentally and numerically. The energy spectra exhibit
power-law–like behaviors with exponents that decrease
with increasing damping. Even though, the presence of

a turbulent regime in which a cascade process is involved,
is not questionable. However, our analysis underlines the
fact that a direct comparison of the slope of the turbulence
spectra with theoretical ones is not appropriate. In
particular, we have shown that the flux of energy is
not constant over the cascade, because the dissipation
is relevant at each scale. Such mechanism is not yet
taken into account in the WTT and further theoretical
developments in that direction would be useful for our
understanding of realistic wave turbulence dynamics.

∗ ∗ ∗
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