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Abstract

This article presents the complete study of the long-time evolution of random waves of a vibrating thin elastic plate in the limit
of small plate deformation so that modes of oscillations interact weakly. According to the wave turbulence theory a nonlinear
wave system evolves in longtime creating a slow redistribution of the spectral energy from one mode to another. We derive
step by step, following the method of cumulants expansion and multiscale asymptotic perturbations, the kinetic equation for
the second order cumulants as well as the second and fourth order renormalization of the dispersion relation of the waves. We
characterize the non-equilibrium evolution to an equilibrium wave spectrum, which happens to be the well known Rayleigh-
Jeans distribution. Moreover we show the existence of an energy cascade, often called the Kolmogorov-Zakharov spectrum,
which happens to be not simply a power law, but a logarithmic correction to the Rayleigh-Jeans distribution. We perform
numerical simulations confirming these scenarii, namely the equilibrium relaxation for closed systems and the existence of an
energy cascade wave spectrum. Both show a good agreement between theoretical predictions and numerics. We show also
some other relevant features of vibrating elastic plates, such as the existence of a self-similar wave action inverse cascade which
happens to blow-up in finite time. We discuss the mechanism of the wave breakdown phenomena in elastic plates as well as the
limit of strong turbulence which arises as the thickness of the plate vanishes. Finally, we discuss the role of dissipation and the
connection with experiments, and the generalization of the wave turbulence theory to elastic shells.

1. Introduction

Since more than fifty years it was established that long-time statistical properties of randomly fluctuating wavy systems
possess a natural asymptotic closure because of the dispersive nature of the waves and the weakly nonlinear wave interaction
[1, 2]. This so-called wave (or weak) turbulence theory (noted WTT later on) has proven to be a powerful method to study
the evolution of nonlinear dispersive wave systems [3, 4, 5, 6]. As a main result, WTT predicts that the longtime dynamics is
driven by a kinetic equation for the distribution of spectral densities. This method was first developed for surface gravity waves
[1, 7], then for plasma waves [8], surface capillary waves [9] and nonlinear optics [10, 11, 12] among others.

The resulting kinetic equation has non-equilibrium properties similar to the usual Boltzmann equation for dilute gases,
conserving the energy and the momentum. Moreover, it exhibits a H-theorem driving an isolated system towards equilibrium,
characterized by the so-called Rayleigh-Jeans distribution. Most importantly, besides the elementary equilibrium (or thermo-
dynamic) solution, Zakharov has shown [8] that non-equilibrium stationary solutions also arise which describe a constant flux
transfer (or cascade) of a conserved quantities (e.g. energy) between large and small length scales. In the particular cases where
these cascade solutions are power laws, they are named Kolmogorov–Zakharov (KZ) spectra.

Experimental evidences of KZ spectra have been found for ocean surface waves [13] and for capillary surfaces waves [14, 15, 16].
On the other hand, numerical simulations of surface waves have exhibited KZ spectrum for weak turbulent capillary waves [17]
and, more recently, for gravity waves [18].

Ten years ago, we have shown using WTT that weak wave turbulence was also possible for elastic plates since they exhibit
dispersive linear waves [19]. Indeed, adding inertia to the well known (static) theory of thin plates, one finds ballistic dispersive
waves [20], which interact via cubic nonlinear terms that are weak if the plate deformations are small. Because of this cubic
nonlinearity, the wave interaction mechanism involves four wave resonances and the kinetic equation has been deduced using
the classical WTT framework. As a consequence, in addition to the Rayleigh-Jeans equilibrium distribution, the existence of
spectra of direct energy cascade was proven theoretically and observed numerically.
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Soon after our original work, elastic plate wave turbulence was observed experimentally, showing slightly different spectrum
power laws [21, 22]. Following these discoveries, numerous works have investigated the dynamics of oscillating elastic plates to
explain this discrepancy between numerics-theory and experiments in the turbulent spectra [23, 24, 25, 26, 27, 28, 29], showing
eventually that it could be mainly attributed to the particular dissipation of real plates.Vibrating elastic plates have been shown
to provide an excellent prototype system to investigate and test different wave turbulence regimes, such as inverse cascade [30],
transitory dynamics [29, 31, 32, 33] high forcing [34, 35], the breakdown of the WTT or the onset of intermittency [36, 37, 38]
for instance.

The goal of the present paper is to present a full and consistent derivation of the wave turbulence theory for elastic plates in
different configurations, from the planar plates to the cylindrical or spherical shells. First, we develop the general wave turbulence
theory for the surface deflection of an elastic plate, we study the stationary solutions and its properties. More precisely, we
derive step by step the kinetic equation of Ref. [19] using the WTT technique, solving the BBGKY hierarchy of differential
equations for the cumulants of the Fourier amplitude of the waves via a multi-scale analysis. This general framework provides
a natural asymptotic (long time) closure, that allows us to express high order cumulants in terms of the second order one. This
kinetic equation results at the fourth order in the perturbative expansion of the wave amplitudes. Prior, we derive consistently
the second order renormalization of the oscillation frequency for bending waves [39], experimentally observed in [26]. In addition
we calculate the energy flux spectrum and explicitly verified the locality of the interaction. Then, we show numerically the
relaxation to equilibrium and the existence of an energy cascade with a Kolmogorov spectra for the plate dynamics. Finally,
we discuss several related topics, such as the posible existence of an inverse cascade and the effect of damping in experimental
observations.

1.1. The Föppl–von Kármán equations for a planar elastic plate.

To model the vibration of an elastic plate, the starting point is the dynamical version of the Föppl–von Kármán (FvK
hereafter) equations [40, 41, 42] for the vertical amplitude of the deformation ζ(x, y, t) and for the Airy stress function χ(x, y, t):

ρ
∂2ζ

∂t2
= − Eh2

12(1− σ2)
∆2ζ + {ζ, χ}; (1)

1

E
∆2χ = −1

2
{ζ, ζ}. (2)

Here, h is the thickness of the elastic sheet, the material has a mass density ρ, a Young modulus E and its Poisson ratio is σ.
∆ = ∂xx + ∂yy is the usual Laplacian and the bracket {·, ·} is defined by {f, g} ≡ fxxgyy + fyygxx − 2fxygxy, which is an exact
divergence, so that equation (1) preserves the momentum of the center of mass, namely ∂tt

(
hρ
∫
ζ(x, y, t) dxdy

)
= 0. Equation

(2) for the Airy stress function χ(x, y, t) may be seen as the compatibility equation for the in–plane stress tensor which follows
the dynamics at the lowest order in the dynamics. In the derivation we have omitted the inertia of the in-plane modes of
oscillations, or in other words we assume that the in-plane displacements are negligible and the quasi-static force balance holds,
so that, as said, equation (2) follows the dynamics.

Small plane waves perturbations (ζ ∝ ei(k·x−ωt) with x = (x, y)) of a plane plate are dispersive with the usual ballistic
behavior of bending waves [20, 42]:

ωk =

√
Eh2

12(1− σ2)ρ
|k|2. (3)

The nonlinearities modify this picture resulting in a nonlinear wave equation: deducing the “formal” solution of χ from equation
(2) and inverting the bi-laplacian, one gets formally

χ = −E
2

∆−2{ζ, ζ}. (4)

When introduced into (1), it yields:

ρ
∂2ζ

∂t2
= − Eh2

12(1− σ2)
∆2ζ − E

2
{ζ,∆−2{ζ, ζ}}, (5)

that can be interpeted as a cubic nonlinear wave equation for the amplitude of deformation.
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The total mechanical energy of the elastic plate is conserved by the dynamics of equation (1) and (2). This energy includes
the kinetic part, the bending part, and the contribution for the stretching coming from the in-plane stresses induced by the
amplitude deformations [42] :

H[ζ, χ] = h

∫ (
ρ

2
ζ̇2 +

Eh2

24(1− σ2)
(∆ζ)2 − 1

2E
(∆χ)2 − 1

2
χ{ζ, ζ}

)
dr.

As before, using (4) and integrating by parts, it simplifies to:

H[ζ, χ] = h

∫ (
ρ

2
ζ̇2 +

Eh2

24(1− σ2)
(∆ζ)2 +

E

8

[
∆−1{ζ, ζ}

]2)
dr. (6)

A first consequence of this type of writing is that the energy contains two quadratic contributions: the kinetic and the bending
energy, and a quartic one corresponding to the nonlinear term: the stretching energy. More importantly, each term is positive
bounding the total energy from below, witnessing a “defocusing behavior” of the wave dynamics. By “defocusing behavior” we
mean that the energy contributions of bending and stretching are both positive, therefore the system cannot increase bending
and stretching simultaneously because of energy conservation. Even more, since the energy is bounded from below and because
of the energy conservation, none of these energies can diverge.

1.2. Wave Turbulence

The Föppl–von Kármán equations (1,2) are conservative equations which may be derived from a variational argument.
However, in nature the energy is strongly dissipated through different damping mechanisms and equilibrium solutions are
possible to achieve only in numerical simulations a priori. More interesting is to look for out-of-equilibrium stationary solutions
under a constant energy injection and dissipation which can be modeled by adding an injection and a dissipation term in
equation (1). Usually the energy injection takes place at large scales while the dissipation is concentrated at small scales. If the
injection scale is well separated from the dissipation scale, an inertial range exists in which the conservative FvK equations (1,2)
hold and are responsible for the energy transport from the large scales toward the dissipation scale. Such solutions are called
turbulent in analogy with hydrodynamic turbulence and represent the main interest and motivation of the present work. A
fundamental and common assumption in the search for turbulent solutions is the non-dependence of the dissipation and injection
mechanism on the spectrum in the inertial range. Therefore in the following analytical work, we will not consider the details
of the energy injection and dissipation that will be simply modeled as a net energy flux between scales. However, dissipation
in elastic plates have various origins and may eventually play an influence on the experimentally observed spectra: dissipation
at the boundaries, air entrainment, sound emission, viscoelastic flows or heat transfer, etc. Among all these mechanisms, sound
radiation, air entrainment and heat losses are weak effect and can be in general neglected, while bulk viscoeslatic dissipation and
bending waves radiation at the boundaries seem to be the dominant mechanisms, as shown in Ref. [27]. Then, the theoretical
energy cascade is difficult to observe experimentally because the injection scale and the dissipation one are not well separated
in the spectral available domain, as it will be discussed in section 8.1.

1.3. Dimensional derivation of turbulent spectra

Turbulent spectra can be discussed firstly on dimensional grounds, following the seminal work of Kolmogorov [43]. However,
additional parameters are present in the case of wave turbulence due to the dispersion relation of the linear waves and the
thickness of the plate. In principle, the energy spectrum does depend on the physical characteristics of the plate as the Young
modulus E, the mass density ρ, the thickness h. Moreover, the Kolmogorov assumption tells us that the spectrum is also a
function on the energy flux P and the wave number k or the typical length scale `.

More precisely, considering the energy per unit of mass E = H/(ρhS) (here S is the total surface of the plate) that has the
dimension of the square of a velocity L2/T 2, we obtain that the spectral density of this energy Ek, defined as

E =

∫
Ekdk,

has dimension L3/T 2. Here the integral is one dimensional since it is over the wavenumber amplitude k = |k|. The flux of
energy per unit mass P in the Fourier space is defined through :

∂

∂t
Ek = − ∂

∂k
P,
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so that the dimension of P is L2/T 3.
Following the Kolmogorov’s assumption, the turbulent spectra corresponds to a constant flux of energy per unit mass P ,

and the spectrum depends only on E/ρ (which is proportional to the sound speed of elastic waves in the material), the effective
thickness

` =
h√

3(1− σ2)
, (7)

P and k. In the general case one gets

Ek =
E`

ρ
Φ

(
P`

(E/ρ)3/2
, k`

)
, (8)

where Φ(·) is an unknown function of the dimensionless parameters. Obviously, this is not the only possible representation
because the arbitrary choice of the independent dimensionless parameters. However, it is interesting to emphasize that, at this
stage, the dimensional analysis does not provide a simple power law prediction for the energy spectrum, by contrast with the
classical Kolmogorov theory for fluid turbulence. In fact, two additional parameters are playing a role here, leading to the
two variables of the function Φ. One parameter is usual for wave turbulence and comes from the dispersion relation, which is
not present in classical fluid turbulence. However, the nonlinear interaction prescribes the number of waves interacting at the
first nonlinear order, leading to an additional constraint on the power law exponent for P in the turbulent spectra, so that a
priori a simple dimensional prediction for the wave turbulence spectra can be obtained [6]. More precisely, since the nonlinear
interaction term in the FvK equation is cubic, the waves interact nonlinearly through 4-waves resonances (as it can be seen in
the energy density), so that the following power-law relation holds between Ek and P :

Ek ∝ P 1/3.

Therefore, using eq. (8), the following prediction for the turbulent spectra is obtained:

Ek = P 1/3

√
E

ρ
k−4/3Φ1(k`), (9)

here Φ1 is a function of the dimensionless parameter k`. In the present case of elastic plates, because of the existence of an
additional parameter linked to the effective thickness `, the energy spectrum depends on a family of solution still involving one
dimensionless parameter.This additional parameter makes a specificity of the elastic plate wave turbulence for which the wave
turbulence spectra cannot be deduced by dimensional analysis alone. In fact, the derivation of this function will be done by
solving exactly the kinetic equation for the wave spectrum in Section 6.

Different or other assumptions could be made for the energy spectrum, starting from eq. (9), depending on the relevant
physical mechanisms. They would lead to theoretical predictions that are worth to compare with the expected wave turbulent
spectra:

• Consider first the limit where the spectrum does not depend on the effective thickness `. This case corresponds to the
situation of very thin elastic bodies where the bending is negligible respecting to the stretching. In this case ridges and
folds are expected [34]. In that case, if the spectrum does not depend on `, we obtain:

Ek =
E

ρk
Φ2

(
P

(E/ρ)3/2k

)
. (10)

If we still impose the 4-waves resonances, it gives:

Ek ∝ P 1/3

√
E

ρ
k−4/3.

This later prediction is somehow non compatible with the other assumption that the bending waves are negligible, which
explains why this spectrum is not the one that will be obtained by the WTT.
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• We could also consider a limit where the spectrum does not depend on E/ρ, which would indicate that the elastic property
of the plate does not influence the spectrum, yielding:

Ek = P 2/3`5/3Φ3 (k`) .

or similarly
Ek = P 2/3k−5/3Φ̃3 (k`) .

These spectra are not compatible with the 4-waves resonances, which is consistent with the limit considered.

• Finally, in the limit where the spectrum depends neither on E/ρ nor on ` one gets the well known Kolmogorov spectrum
of fluid turbulence:

Ek = CP 2/3k−5/3. (11)

This last limit induces that the oscillation time scales do not depend on the material properties (Young modulus and mass
density) and involve instead the energy flux itself, explaining why the power law dependence in P is different than that of
the weak turbulence. It can be formally considered as a strong turbulence regime for plates.

1.4. Föppl–von Kármán equations in dimensionless form
For the following, we shall use dimensionless variables, following ζ = `ζ ′, the in-plane position vector x = `x′, the time

t = τt′, with τ =
√

ρ
E `, and the Airy function χ = E`2χ′.Therefore the Föppl-von Kármán equations read in dimensionless

form:

∂2ζ ′

∂t′2
= −1

4
∆2ζ ′ + {ζ ′, χ′}; (12)

∆2χ′ = −1

2
{ζ ′, ζ ′}, (13)

and the dispersion relation becomes

ωk =
1

2
k2. (14)

For the following we will drop the primes everywhere for the sake of simplicity. It is important to notice that the resulting
equations exhibit no parameters, as if all the plates were equivalent! In fact, one dimensionless parameter is hidden, so that
the plate dynamics depends eventually on its dimensionless size Λ =

Lplate
` =

√
3(1− σ2)

Lplate
h . Moreover, when injection and

dissipation are added, additional dimensional parameters can be introduced.

1.5. Plan of the paper.
In the Section 2 we recapitulate the main results of this paper, that will be demonstrated in details in the other sections:

Section 3 describes the Hamiltonian structure of the dynamics and deduces the canonical variables that diagonalize the Hamil-
tonian. Then section 4 presents the detailed derivation of the kinetic equation using a statistical description of the dynamics.
The general properties of the kinetic equation are described in section 5, followed by the deduction of the KZ spectra (section
6). Section 7 shows the numerical validation of the theoretical predictions of the WTT for elastic plates. Finally, a physical
discussion of the results is provided on section 8, comparing the theoretical predictions with the experiments and investigating
the limits of the WTT and the generalization of the results to other configurations. A large appendix section is then provided
at the end where the more complex and heavier calculations are written in order to make the main document more easy to read.

2. Main results

The main problem concerns the evolution of the wave amplitudes for different normal modes of oscillation. We will use often
the variables in Fourier space, defined as

ζ(r, t) =
1

2π

∫
ζk(t)eik·rdk, (15)

χ(r, t) =
1

2π

∫
χk(t)eik·rdk. (16)

Notice that because ζ(r, t) and χ(r, t) are real fields one has ζk = ζ∗−k and χk = χ∗−k.
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2.1. Hamiltonian formulation

It can be shown that the Föppl-von Kármán equations derives from a Hamiltonian formulation, with the general Hamiltonian
of the problem yielding in dimensionless form

H[ζk, pk] =
1

2

∫ [
pk1p−k1 + ω2

kζk1ζ−k1

]
d2k1 +

1

(2π)2

∫
Tk1k2;k3k4ζk1ζk2ζk3ζk4δ(k1 + k2 + k3 + k4) d2k1234 , (17)

where the momentum pk is defined by the relation pk = ζ̇k, ωk = k2/2 and the explicit form of the tensor Tk1k2;k3k4 will be
given in eq. (26). The Hamiltonian dynamics gives the Föppl-von Kármán equations using the classical relations:

ζ̇k =
δH

δpk
and ṗk = − δH

δζk
.

The dynamics will be then studied using the canonical variables Ak corresponding to the normal modes of the linear waves,
defined by:

ζk =
Xk√

2
(Ak +A∗−k) , pk = −i

X−1
k√
2

(Ak −A∗−k) and Xk =
1
√
ωk
. (18)

Using these normal variables, the linear term in the Hamiltonian simplifies into ωk|Ak|2 which emphasizes the vibration
mode at linear order.

2.2. Kinetic equation

Considering the different cumulants of the canonical variables, a hierarchy of equations is obtained for which an asymptotic
closure can be deduced, leading to a kinetic equation that describes the slow evolution of the second order cumulant through
three or four waves resonance processes depending on the geometry. Written in term of the wave number density defined as

〈AkA∗k′〉 = n(k)δ(k − k′), (19)

and assuming moreover the isotropy of the cumulants, n(k) = n(|k|) = n(k), the kinetic equation simplifies for the elastic plates:

d

dt
n(p) = 12πε4

∑
s1s2s3

∫
|J−pk1k2k3 |

2
n(k1)n(k2)n(k3)n(p)

(
1

n(p)
− s1

n(k1)
− s2

n(k2)
− s3

n(k3)

)
×

×δ(k1 + k2 + k3 − p)δ(ω(p)− s1ω(k1)− s2ω(k2)− s3ω(k3))dk123. (20)

In these formula, ε quantifies the small wave amplitude and J−p2k1k2k3 is the scattering amplitude of the waves resonances
(see eq. (31)). In addition, the nonlinearity induces a frequency shift of the linear modes which reads

ωRenp =
1

2
|p|2 + ε2

3π

2

[∫ p

0

k2

p2
n(k) kdk +

∫ ∞
p

p2

k2
n(k) kdk

]
. (21)

2.3. Kolmogorov-Zakharov spectrum

Beside the Rayleigh-Jeans distribution corresponding to the equipartition of the energy among the modes, additional sta-
tionary solutions of the kinetic equations can be found, corresponding to a direct cascade of energy from the large to the small
scales. These so-called Kolmogorv-Zakharov spectra have a constant energy flux P and exhibit different scalings depending on
the plate geometry.

For elastic plate, the WTT predicts firstly KZ spectra with the same scalings than the Rayleigh-Jeans one, n(k) ∼ P 1/3k−2.
It indicates a degeneracy of this solution leading to an undefined flux P , so that a perturbative approach has to be performed,
leading to the following KZ spectra:

n(k) = 24/3CP 1/3 ln1/3(κ∗/k)

k2
, (22)
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where C and κ∗ are real numbers while P is the energy flux of the cascade. In the present paper we show that the interaction are
local for the spectrum (22) and we obtain an upper and a lower bound for the numerical value of C which reads: 0.22 ≤ C ≤ 0.33.
The displacement and energy spectrum can be straightforwardly deduced giving:

〈
|ζk|2

〉
= 27/3CP 1/3 ln1/3(κ∗/k)

k4
and Ek = 27/3πCP 1/3k ln1/3(κ∗/k).

Similarly, the spectrum can be expressed in the frequency space using the relation ω = k2/2, yielding:

n(ω) = CP 1/3 ln1/3(ω∗/ω)

ω
and Eω = πCP 1/3 ln1/3(ω∗/ω). (23)

Here ω∗ = κ∗2/2. Finally, it is interesting to write these spectra back in the physical units:

n(k) = Cρ`4/3P 1/3 ln1/3(k∗/k)

k2
and Ek = πC

√
E

ρ
`7/3P 1/3 k ln1/3(k∗/k),

which is obviously consistent with the previous dimensional analysis (9), in particular, one readily gets that the cut-off k∗ = κ∗/`.

3. Hamiltonian formalism.

3.1. Hamiltonian formalism in Fourier space.

Despite their complexity due to highly nonlinear terms and high order derivatives, the Föppl-von Kármán equations exhibit
a Hamiltonian structure. In fact, equations (1) and (2) can be deduced from a Hamilton principle in which the action S defined
by:

S =

∫ (
1

2
ζ̇2 −

[
1

8
(∆ζ)2 − 1

2
(∆χ)2 − 1

2
χ{ζ, ζ}

])
dr dt (24)

is an extreme. Here dr = dx dy.
The Föppl-von Kármán (1) and (2) equations are thus the Euler-Lagrange equations deduced from the action (24), naturally

the Hamiltonian (6) follows directly from this variational principle.
Because the problem concerns the evolution of the wave amplitudes for different normal modes of oscillation, we will use now

on variables in Fourier space. Introducing (15) and (16) into the action (24) one gets, after some algebra, the full Lagrangian

density (as usual the action is S =
∫ t2
t1
Ldt):

L[ζk, ζ̇k] =

∫ [
1

2
ζ̇kζ̇−k −

1

8
|k|4ζkζ−k

]
d2k − 1

(2π)2

∫
Tk1k2;k3k4

ζk1
ζk2

ζk3
ζk4

δ(k1 + k2 + k3 + k4) d2k1234 (25)

with

Tk1k2;k3k4
=

1

8

(
1

2|k1 + k2|4
+

1

2|k3 + k4|4

)
(k1 × k2)2(k3 × k4)2. (26)

In (25), we have used the condensed notation dk123 = dk1dk2dk3. The tensor T12;34 exhibits permutation symmetries T12;34 =
T21;34 = T12;43 = T34;12 and it is a homogenous function of degree 4 in k, namely:

Tλk1λk2;λk3λk4 = λ4Tk1k2;k3k4 . (27)

Finally, we emphasize that T12;34 ≥ 0. From the Lagrangian (25) the canonical momentum is pk = ζ̇k and the Hamiltonian (17)
can be deduced straightforwardly, with the followong Hamilton equations for the variables in Fourier space:

ζ̇k = pk ,

ṗk = −1

4
k4ζk −

4

(2π)2

∫
T−kk2;k3k4

ζk2
ζk3

ζk4
δ(k − k2 − k3 − k4)d2k234 ,

where the cubic nonlinearity of the interaction is clearly apparent in the second equation.
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3.2. Dynamics equations in normal variables

Introducing the transformations (18) into the general Hamiltonian (17) one finds that H becomes the usual Hamiltonian of
weakly interacting oscillators with associated frequency ωk (obeying the dispersion relation eq. 14):

H =

∫
ωkAkA

∗
kdk +

1

4(2π)2

∫
Xk1

Xk2
Xk3

Xk4
Tk1k2;k3k4

∑
s1s2s3s4

As1k1
As2k2

As3k3
As4k4

δ(k1 + k2 + k3 + k4)dk1234. (28)

We shall use along the paper the notation introduced by Newell et al. [4] : Ask with s = +,−, witnessing the two directions
of propagation for each mode. It means that A+

k = Ak and A−k = A∗−k then A−s−k = Ask
∗ and the sum is over the values si = −1

and +1.
Weak turbulence is valid for small amplitudes, that is the local slope of the deformation is the small parameter ε. The order

of magnitude of the deformation is also ε, following ζk ' O(ε). Rescaling ζk −→ εζk so that Ak −→ εAk, one concludes that
the rescaled Hamiltonian is of the form

H = ε2H2 + ε4H4.

Up to the lowest order (order ε2) the Hamiltonian is simply H ≈ ε2H2 = ε2
∫
ωkAkA

∗
k dk, the sum of the normal modes of

oscillation. The wave interactions appear at the fourth order, with the term ε4H4.
From the Hamiltonian we obtain the following equations of the dynamics for the normal variables:

dAsk
dt

+ isωskA
s
k = ε2

∑
s1s2s3

∫
Lss1s2s3kk1k2k3

As1k1
As2k2

As3k3
δ(k1 + k2 + k3 − k)dk123, (29)

where we have used the symmetries of the tensor Tk1k2;k3k4
and the nonlinear interaction coefficient reads1

Lss1s2s3kk1k2k3
= − is

(2π)2
J−kk1k2k3 . (30)

Here, we have defined for convenience

Jk1k2k3k4 =
1

3
Xk1Xk2Xk3Xk4(Tk1k2;k3k4 + Tk1k3;k2k4 + Tk1k4;k3k2), (31)

which is the relevant scattering amplitude coefficient that will appear in the final kinetic equation.
In the weak turbulence theory the L functions satisfy usually a number of general properties [4]. In our particular case it is

easy to see that the following properties are satisfied :

1. Lss1s2s3kk1k2k3
= −(Lss1s2s3kk1k2k3

)∗ = −L−s−s1−s2−s3−k−k1−k2−k3

2. Lss1s2s3kk1k2k3
is symmetric in (1, 2, 3) ,

3. Lss1s2s30k1k2k3
= 0 when k1 + k2 + k3 = 0 ,

4. Lss1−s2−s3kk1−k2−k3
= (s1/s)L

ss1s2s3
kk1k2k3

when k1 + k2 + k3 = k . (32)

4. Kinetic equation and statistical descripition

4.1. Moments and Cumulants

Up to now the infinite set of dynamical equations (29) describe the motion of the plate, in the frame of the Föppl-von
Kármán equations, without any approximation. Nevertheless, from now on, because of the random aspects of the fluctuations
due to the high numbers of oscillating modes, we shall treat the system statistically. To perform this analysis, we consider the
behavior of the moments and cumulants in both the physical (or real) and the Fourier spaces.

Although the physical variables in the problem are the canonical fields ζ(r, t) and p(r, t), for the following it will be more
adequate to define the “normal” field us(r, t), which is the Fourier transform of the normal mode of oscillation Ask, namely:

us(r, t) ≡ 1

2π

∫
Aske

ik·rdk. (33)

1It is convenient to keep the indices si only for the sake of generality.
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Because of the linear relationship between Ask and, ζk and pk, one expects that us(r, t) is a linear (but non local) functional
of the fields ζ(r, t) and p(r, t). If the statistic of the fields ζ(r, t) and p(r, t) are homogeneous, then the statistic of the two fields
us(r, t) is also homogeneous.

The statistical properties of these fields depend on a joint probability distribution function (PDF) at all points P[u(·)], whose
existence is assumed, even though we cannot compute it. Over the last 50 years, two different approaches have been developed,
leading in practice to the same final results. The first one is based on the random phase approximation (RPA) for the Fourier
modes[1, 3], while the second one is based on the cumulant expansion of the statistical properties of the spatial homogeneous
fields [2].

The method of random phase approximation (RPA) which has been extensibly used [1, 3] in the theory of wave turbulence,
is based on the hypothesis that all n-modes PDF in Fourier space (directly related to the n-point PDF Pn in real space) are
a product of 1-mode PDFs, and that the phases take values uniformly distributed on [0, 2π]. However, this approximation has
been proven to be right only recently by Choi et al. [44]. Indeed, if we assume that the initial data satisfies the random phase
approximation properties described above, then, this property holds over the nonlinear time. Choi et al. derived an evolution
equation for the full PDF and have shown that under weak wave interaction the RPA formulation is sufficient for the wave
turbulence closure. Despite the fact that the RPA approach to the problem of weakly interacting waves may drive to better
developments for future theories on non-Gaussianity of wave turbulence and intermittency (due to the knowledge of the full
PDF), we develop in the present paper the second method, introduced by Benney and Saffman 50 years ago [2], that gives, in
our opinion, a more elegant asymptotic closure.

This method, known as the cumulant expansion, has the advantage to not impose any condition to the PDF, with the
exception that the statistics of the system for infinitely separated points are uncorrelated at some initial time. We consider thus
an infinite system and make the assumption of spatial homogeneity. It means that the moments defined above are invariant
under spatial translation, so that they depend only on the relative geometry. This allows us to have a better physical intuition
about what we are averaging over. More precisely, because of the spatial homogeneity we can define the moment of order n as

〈us(x)us1(x+ r1) . . . usn−1(x+ rn−1)〉 =
1

V

∫
us(x)us1(x+ r1) . . . usn−1(x+ rn−1)dx

where the integral is over all the volume V of the system.
Unfortunately, for the following the moments are not adequate, because when the distances |r1|, |r2|, . . . , |rn−1| tend inde-

pendently to infinity, the moments do not decay to zero in the physical space. Therefore, the Fourier transforms of the moments
are not ordinary functions, but generalized functions that contains Dirac δ-functions, and as we shall see later, it is necessarily
to have a good tracking of the Dirac-δ singularities. Therefore, the use of moments would complicate in excess this procedure.
For this reason we shall use cumulants, which are directly related to the moments by a one to one relation. The cumulants
Fourier transforms are ordinary functions if the statistics of the system, for infinitely separated points, is uncorrelated (See the
Appendix 10.1 for details on the Moment-Cumulant relationship).

For the first two order cumulants, their relations with the moments read

R(1)s(t) = {us(x)} = 〈us(x)〉,
R(2)ss1(t) = {us(x)us1(x+ r1)} = 〈us(x)us1(x+ r1)〉 − 〈us(x)〉〈us(x)〉, (34)

and highest order cumulants can be similarly deduced (see Appendix 10.1).
Let be R(n)ss1···sn−1(r1, . . . , rn−1), the n-th order cumulant, then, we write the Fourier transform of Q(n) of the n-th order

cumulant as

Q(n)ss1···sn−1(k1, . . . ,k(n−1)) =
1

(2π)n−1

∫
R(n)ss1···sn−1(r1, . . . , rn−1)e−ik1·r1···−ikn−1·rn−1 dr1 . . . drn−1. (35)

The n-th order cumulant, Q(n), is a smooth function in the Fourier space, while the cumulant in the real space goes to zero for
two infinitely separated points. This assumption is in fact only necessary for the initial state (See Section 4.3). Obviously, we
can easily recover the moments knowing the cumulants in Fourier space. From the definition (33) one has

〈AskA
s1
k1
. . . A

sn−1

kn−1
〉 =

1

(2π)n

∫
〈us(x)us1(x+ r1) . . . usn−1(x+ rn−1)〉e−ik·xe−ik1·(x+r1) . . . e−ikn−1·(x+rn−1)dxdr1 . . . drn−1

(36)
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Then replacing the relations obtained in (34), and using (35), the first order moment and cumulant are related by:

〈Al1p1
〉 =

∫
R(1)l1e−ip1·xdx = (2π)Q(1)l1δ(p1). (37)

As already said, the plate preserves the center of mass momentum, and we shall assume it is at rest in the reference frame.
Then, it is natural to assume that the mean values of the displacement and the momentum and consequently the mean value of
the field us(x) are null. Therefore, it is expected that Q(1)l1 = 0. This condition may not be true in some situations as in the
case of wave condensation of classical nonlinear waves [45]. However, in the present case, it is always zero, so that from now on
we take Q(1)l1 = 0. Under this assumption, a larger number of simplifications are obtained. Firstly, the second order moment
of the Fourier amplitudes is simply related to the second order cumulant by

〈Al1p1
Al2p2
〉 =

∫
R(2)l1l2(r)e−ip2·rdrδ(p1 + p2) = (2π)Q(2)l1l2(p2)δ(p1 + p2). (38)

Notice that Q(2)l1l2(p2) = Q(2)l2l1(−p2) and that the wave number density satisfies:

n(l p) = 2πQ(2)−ll(p).

Similarly, a one to one relation between the higher order moments and cumulants can be derived in the Fourier space (see
Appendix 10.1).

4.2. The moments and cumulant hierarchy

From (29) a hierarchy of equations for the evolution of the moments 〈Al1p1
Al2p2

. . . Alnpn〉 in Fourier space can be written :

d

dt
〈Al1p1

Al2p2
. . . Alnpn〉 = P1′...n′

〈
dAl1p1

dt
Al2p2

. . . Alnpn

〉
=

= P1′...n′
(
−il1ω(p1)〈Al1p1

Al2p2
. . . Alnpn〉

)
+

ε2P1′...n′

∑
s1s2s3

∫
Llns1s2s3pnk1k2k3

〈Al1p1
. . . Aln−1

pn−1
As1k1

As2k2
As3k3
〉δ(k1 + k2 + k3 − pn)dk123 . (39)

The resulting dynamics of the n-th order moments depends explicitly upon the (n + 2)-th order ones. This hierarchy is linear
in the moments 〈Al1p1

Al2p2
. . . Alnpn〉 like the BBGKY hierarchy for the kinetic theory of gases. From now on, we shall use the

notation where Pi′ represents the permutation over the indices li and the wave numbers pi. Later on, we shall also use the
permutation Pi that runs over the indices si and wave numbers ki.

In particular from the equation (39) we can build a non linear cumulant hierarchy using the relations (38) and (120) derived
in Appendix 10.1. After some algebra one gets for n = 2

d

dt
Q(2)l1l2(p2) = (−il1ω(p1)− il2ω(p2))Q(2)l1l2(p2) +

+ ε2P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

Q(4)l1s1s2s3(k1,k2,k3)δ(p1 + k1 + k2 + k3)dk123 +

+ ε2 (2π)P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

P123Q
(2)l1s1(k1)Q(2)s2s3(k3)δ(p1 + k1)δ(k2 + k3)dk123, (40)

where p1 + p2 = 0. Other cumulant equations are explicitly given in the Appendix 10.2.
Up to now we have an exact, but infinite, hierarchy of equations for the cumulants Q(n). The next step consists in finding a

closure that allows us to obtain a consistent and closed set of equations. This is possible because of the dispersive nature of the
waves that creates a fast decorrelation between the different modes, and because of the existence of a scale separation between
the linear time ω(p)−1 and the nonlinear interaction time scales characterized by the small nonlinear coupling term leading to
a resonant interaction process. This latter process regenerates the higher-order cumulants in a special way by producing long
time cumulative effects.
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More precisely, if ε2 is the small parameter, defined by the ratio between the linear and the nonlinear terms, then the
nonlinear time scale is of order ε−4 compared to the linear time scale of order one. This property will be exploited from a
mathematical point of view, using a multiple time scale perturbation scheme, as exposed for the three waves kinetic equation
by Newell et al. [4]. The general 4-waves interaction, that is also operating here, has been originally derived, using a slightly
different method, by Newell in 1968 [46], but in a different context.

4.3. Asymptotic perturbation expansion for the cumulants hierarchy

The closure of this infinite hierarchy of equations for the cumulants is thus obtained by a perturbative method. That is by
looking to the solutions of the cumulant hierarchy as asymptotic expansions2 in power of the small parameter ε and by solving
this hierarchy order by order. Let us consider the formal expansion3

Q(n)l1...ln(p2, . . . ,pn) = Q
(n)l1...ln
0 (p2, . . . ,pn) + ε2Q

(n)l1...ln
2 (p2, . . . ,pn) + ε4Q

(n)l1...ln
4 (p2, . . . ,pn) + · · ·

Up to order ε0 one gets that any n-th order cumulants Q(n) satisfy the following ordinary differential equations:

d

dt
Q

(n)l1...ln
0 (p2, . . . ,pn) = −(il1ω(p1) + · · ·+ ilnω(pn))Q

(n)l1...ln
0 (p2, . . . ,pn) (41)

with p1 + · · ·+ pn = 0. After an integration of this linear oscillator in time one retrieves a pure linear oscillation in time,

Q
(n)l1...ln
0 (p2, . . . ,pn) = q

(n)l1...ln
0 (p2, . . . ,pn)e−i(l1ω(p1)+···+lnω(pn))t

with the functions q
(n)l1...ln
0 (p2, . . . ,pn) being constant at this order of the expansion. In fact, as we will demonstrate below,

this solution is valid only for times scales such that t � ε−2 since the next order solution in the regular expansion exhibits a
secular term that grows linearly with t, becoming dominant in the long time limit. To remove these secular terms, which are
responsible for the slow spectral energy transfer between modes, we develop a multi-scale perturbation expansion in time. In

this scheme, one assumes a slow dynamic evolution for q
(n)l1...ln
0 (p2, . . . ,pn, t), that can be expressed as a formal asymptotic

series for its time derivative, yielding :

d

dt
q

(n)l1...ln
0 (p2, . . . ,pn) = ε2F

(n)l1...ln
2 (p2, . . . ,pn) + ε4F

(n)l1...ln
4 (p2, . . . ,pn) + . . . (42)

The oscillatory nature of the system suggests the following change of variable for all cumulants and for all orders in the
cumulant expansion :

Q(n)l1...ln
s (p2, . . . ,pn) = q(n)l1...ln

s (p2, . . . ,pn, t)e
−i(l1ω(p1)+···+lnω(pn))t (43)

where the higher order perturbation terms q
(n)l1...ln
s (p2, . . . ,pn, t) might depend on the fast time scale only for s > 0. Writing

equation (40) for the new variables (43) up to order ε2 one gets

d

dt
q

(2)l1l2
2 (p2) = −F (2)l1l2

2 (p2) +

+ P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

q
(4)l1s1s2s3
0 (k1,k2,k3)e−itΩ

−l2s1s2s3
p2k1k2k3 δ(p1 + k1 + k2 + k3)dk123 +

+ (2π)P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

P123 q
(2)l1s1
0 (k1)q

(2)s2s3
0 (k3)e−itΩ

−l2s1s2s3
p2k1k2k3 δ(p1 + k1)δ(k2 + k3)dk123, (44)

where p1 +p2 = 0 and we have used the short notation Ωl2s1s2s3p2k1k2k3
= l2ω(p2)+s1ω(k1)+s2ω(k2)+s3ω(k3). The time dependance

on (44) is only given by e−itΩ
−l2s1s2s3
p2k1k2k3 , hence can be easily integrated in time to obtain q

(2)l1l2
2 (p2, t). Expanding the sums and

2Although, it is not necessarily a convergent series, we do ask here that the sequence is well ordered.
3As we shall see later, higher order cumulants (n > 2) will develop, in general, non-smooth terms at long time. Therefore it will be convenient to have

in mind that the formal asymptotic expansion is done in the physical space, where the formal series expansion reads R(n) = R
(n)
0 +ε2R

(n)
2 +ε4R

(n)
4 +· · ·
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permutations on the right hand side term of (44) one observes that for some terms Ω−l2s1s2s3p2k1k2k3
vanish identically leading to

resonant terms which grows linearly in time. Therefore, we can rewrite equation (44) as

q
(2)l1l2
2 (p2, t) = α(2)l1l2(p2)− t

(
F

(2)l1l2
2 (p2)− 3P1′2′

[∑
s

2π

∫
Ll2l2−ssp2p2−kkq

(2)−ss
0 (k) dk

]
q

(2)l1l2
0 (p2)

)
+ “non resonant terms”,

where α(2)l1l2(p2) is the integration constant (see Appendix 10.3 for the full expression (123) and more details on the multiscale

perturbation). Since we are interested in solutions of q
(2)l1l2
2 (p2, t) that remains bounded for times of order O(ε−2) we remove

the resonant term setting the slow dynamic evolution of q
(2)l1l2
0 (p2) at times scales O(ε−2) by

F
(2)l1l2
2 (p2) = 3P1′2′

[∑
s

2π

∫
Ll2l2−ssp2p2−kkq

(2)−ss
0 (k) dk

]
q

(2)l1l2
0 (p2). (45)

This corresponds to a nonlinear shift to the natural dispersion relation for the frequency known as a frequency renormalization
which is reduced up to the end to the simplified expression (21). Similarly, it is possible to show that for all cumulant the
resonant terms at order ε2 provides the same frequency shift (see Appendix 10.3 for more details).

F
(n)l1...ln
2 (p2, . . . ,pn) = 3P1′...n′

[∑
s

∫
Llnln−sspnpn−kk(2π)q

(2)−ss
0 (k)dk

]
q

(n)l1...ln
0 (p2, . . . ,pn). (46)

Remarkably, at this order ε2 in the expansion, the off-diagonal second order cumulant q
(2)−ll
0 (p) does not evolve since

d
dtq

(2)−ll
0 (p) = ε2F

(2)−ll
2 (p) + O(ε4) with F

(2)−ll
2 (p) = 0 and one needs in fact to go up to the next order in the expansion to

capture the slow dynamics of this cumulant4 A straightforward, but cumbersome, calculation at order ε4 following the same
multiscale perturbation scheme leads to a close equation for the second order cumulant (see Appendix 10.4). The final result
gives different informations depending on the cases l1 = l2 or l1 = −l2. For l1 = l2, one has that the slow dynamical evolution
of the diagonal element of the second order cumulant at order ε4 is

F
(2)l2l2
4 (p2) = iε4

(
ωl24 (p2) + ωl24 (−p2)

)
q

(2)l2l2
0 (p2)− ε4

(
Γl2(p2) + Γl2(−p2)

)
q

(2)l2l2
0 (p2) (47)

where

ωl24 (p2) = 6(2π)2
∑
s1s2s3

P

∫ ∣∣∣Ll2s1s2s3p2k1k2k3

∣∣∣2
Ω−l2s1s2s3p2k1k2k3

P123

(
s3

l2

)
q

(2)−s1s1
0 (k1)q

(2)−s2s2
0 (k2)δ(k1 + k2 + k3 − p2)dk123 ,

is thus a fourth order correction of the frequency of oscillation, and

Γl2(p2) = 18π(2π)2
∑
s1s2

∫ ∣∣∣Ll2s1s2l2p2k1k2k3

∣∣∣2 q(2)−s1s1
0 (k1)q

(2)−s2s2
0 (k2)δ(k1 + k2 + k3 − p2)δ(Ω−l2s1s2l2p2k1k2k3

)dk123

−18π(2π)2
∑
s1s2

∫ ∣∣∣Ll2s1s2−l2p2k1k2k3

∣∣∣2 q(2)−s1s1
0 (k1)q

(2)−s2s2
0 (k2)δ(k1 + k2 + k3 − p2)δ(Ω−l2s1s2−l2p2k1k2k3

)dk123 , (48)

is a damping term, which is also present in the slow dynamics of higher order cumulant. It turns out that Γl2p2
becomes positive,

which means that q
(2)l2l2
0 (p2) decays towards zero in time as well as the higher order cumulants.

4The general second order cumulant, q
(2)l1l2
2 (p2, t), corresponds to a 2 × 2 matrix, l1&l2 being the indices of the matrix. By analogy we call

q
(2)ll
2 (p, t) the diagonal second order cumulant and q

(2)−ll
2 (p, t) the off-diagonal second order cumulant.
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Finally, for the case l1 = −l2 the resonant terms give

F
(2)−l2l2
4 (p2) = ε412π(2π)2

{ ∑
s1s2s3

∫ ∣∣∣Ll2s1s2s3p2k1k2k3

∣∣∣2 q(2)−s1s1
0 (k1)q

(2)−s2s2
0 (k2)q

(2)−s3s3
0 (k3)

×δ(k1 + k2 + k3 − p2)δ(Ω−l2s1s2s3p2k1k2k3
)dk123

}
− ε412π(2π)2

{ ∑
s1s2s3

∫ ∣∣∣Ll2s1s2s3p2k1k2k3

∣∣∣2 P123

(
s3

l2

)
q

(2)−l2l2
0 (p2)q

(2)−s1s1
0 (k1)q

(2)−s2s2
0 (k2)

×δ(k1 + k2 + k3 − p2)δ(Ω−l2s1s2s3p2k1k2k3
)dk123

}
. (49)

Since F
(2)−l2l2
4 (p2) = d

dtq
(2)l1l2
0 (p2) one obtains a closed equation for the second order cumulants. This four-wave kinetic equation

is the final equation responsible for the slow evolution of the system, where the energy transfer between modes is carried out
through a resonant four-waves interaction process. Nevertheless, it is important to notice that, in general, non-uniformities will
arise in R(n) at small or large scales (k→∞ or k→ 0 respectively) that will break down the well ordered expansion. This can
lead to intermittent behavior dominated by fully nonlinear solutions [4, 48]. We shall comeback to this point later in section
8.2. From this equation (49), together with the definition of the second order cumulant Q(2)−ss(k) = (2π)n(sk) one can deduce
the general kinetic equation:

d

dt
n(l2p2) = 12πl2 ε

4
∑
s1s2s3

∫ ∣∣∣J−l2s1s2s3−p2k1k2k3

∣∣∣2 n(s1k1)n(s2k2)n(s3k3)n(l2p2)

(
l2

n(l2p2)
− s1

n(s1k1)
− s2

n(s2k2)
− s3

n(s3k3)

)
×

×δ(k1 + k2 + k3 − p2)δ(l2ω(p2)− s1ω(k1)− s2ω(k2)− s3ω(k3))dk123, (50)

which becomes (20) if one assumes isotropy in the wave number distributions.

5. Properties of the kinetic equation

5.1. The resonant manifold for the four waves interactions

From the kinetic equation (20) one may see that the collisional term has two δ-functions, which implies the conservation
of the energy and the momentum respectively for every four waves interaction. The conservations of energy and momentum
constrain the domain of integration to a manifold, named the resonant manifold (RM). In general, if the dimension of the system
is d the integration of the four wave collisional term is over a volume of dimension 3d. However the δ-functions decreasing by
d+ 1 the dimension of the total volume of integration, the resonant manifold of integration is of 2d− 1 dimensions. In our case
d = 2 so that the resonant manifold of integration is of dimension 3.

We need to analyze three different kinds of 4-wave interactions, which are characterized in terms of the signs of s1, s2 and
s3 of the resonant condition : l1ω(p1) + s1ω(k1) + s2ω(k2) + s3ω(k3). Without any loss of generality we can take l1 = 1 and
the three different cases are: firstly, when all signs s1, s2, s3 are +1, we denote this case as a process 4 ↔ 0. Then, when two
terms have a negative sign, which represents two waves decaying into other two, labeled as a 2↔ 2 process. Finally, when one
sign only is -1, which represents a process of three waves decaying into a single one, labeled as 3↔ 1. It should be noticed that
p1 is not an integration variable, so that the 2d− 1 resonant manifold should exist for an arbitrary value of p1.

Next we study these three processes in detail:
i) Case 4↔ 0. In this case all terms in the energy conservation δ-funtion have the same sign:

ω(p1) + ω(k1) + ω(k2) + ω(k3) = 0,

because in general ω(k) ≥ 0, one concludes that the only solution is given by ω(ki) = ω(p1) = 0, so that there is in fact no
manifold. This kind of interaction is not allowed at any dimension and one may eliminate it from the kinetic equation (20).

ii) Case 2↔ 2 In this case the resonant manifold is defined by the following restrictions :

ω(p1) + ω(k1)− ω(k2)− ω(k3) = 0

p1 + k1 − k2 − k3 = 0 (51)
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One can realize that such a restriction is always satisfied over a 2d−1 manifold for any dispersion relation at any space dimension
d ≥ 2.

iii) Case 3↔ 1.- One may consider without loss of generality

ω(p1) + ω(k1) + ω(k2)− ω(k3) = 0

p1 + k1 + k2 − k3 = 0. (52)

This case is particularly interesting, because, depending on the dispersion relation this resonant manifold could be empty and
the total wave action of the system conserved. However, we will show that for an elastic plate this is not the case and the total
wave number is not conserved.

Figure 1: The plot represents the intersection of the surfaces for a parabolic dispersion relation ω(k) = 1
2
|k|2. This is the case of a decaying situation

in the 3↔ 1.

To visualize the existence of the resonant manifold it is convenient to do geometrically. The dispersion relation is isotropic
depending only on the modulus of |k|, therefore the function ω(k) determines a paraboloid of revolution in the three space
dimensions (kx, ky, ω). Take now a point A on the surface with coordinates (p1x, p1y, ω(p1)) and build a new surface ω(k) with A
as its origin. In the same way, take now another point B over the new surface with coordinates (p1x+k1x, p1y+k1y, ω(p1)+ω(k1))
and we build again a surface ω(k) but with an origin at B. Fig. 1 shows this geometric construction and we can see that for
any wavenumber p1 and k1, an intersection exists between the revolution paraboloid of origin O with the one that has B for
origin, satisfying therefore precisely the conditions imposed in (52). As expected, this problem has 5 degrees of freedom, but
one of this variable p1 is not integrated, and so, the domain of integration becomes a three dimensional manifold.

5.2. Conserved quantities

As the usual Boltzmann equation for diluted gases, (20) conserves formally the momentum and the energy density5, and the
dynamics exhibits irreversibility because of the existence of a H-Theorem. Here we develop in details these three statements.

5.2.1. Energy conservation

Firstly, we can show that the kinetic energy per unit area

E =
1

2

∑
l1

∫
ω(l1p1)n(l1p1, t)dp1 (53)

is conserved.

5Here we stands by energy for the lowest order in ε2 of the full energy (28). The full energy is not preserved by the kinetics, as in diluted gases the
conserved energy by Boltzmann equation preserves the kinetic energy of the gas only.
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Proof.– The proof is the same as for the usual Boltzmann equation, computing first the time derivative

dE
dt

=
1

2

∑
l1

∫
ω(l1p1)

d

dt
n(l1p1, t) dp1 =

1

2

∑
l1s1s2s3

∫
l1ω(l1p1)Cl1s1s2s3p1k1k2k3

dp1dk123 (54)

where in the third equality the full kinetic equation (50) has been used. We have introduced here the collisional operator, which
is completely symmetric in the index {l1, s1, s2, s3} and {p1, k1, k2, k3}, following:

Cl1s1s2s3p1k1k2k3
= 12π|J l1s1s2s3p1k1k2k3

|2 n(s1k1)n(s2k2)n(s3k3)n(l1p1)

(
l1

1

n(l1p1)
+ s1

1

n(s1k1)
+ s2

1

n(s2k2)
+ s3

1

n(s3k3)

)
×δ(l1ω(l1p1) + s1ω(s1k1) + s2ω(s2k2) + s3ω(s3k3))δ(k1 + k2 + k3 + p1). (55)

Repeating four times each term, then exchanging integrals and re-labeling the index leads to:

dE
dt

=
1

8

∑
l1s1s2s3

∫
(l1ω(l1p1) + s1ω(s1k1) + s2ω(s2k2) + s3ω(s3k3))Cl1s1s2s3p1k1k2k3

dp1dk123 = 0. (56)

which is exactly zero because of the δ(l1ω(l1p1) + s1ω(s1k1) + s2ω(s2k2) + s3ω(s3k3)) of the kinetic equation.
Remark 1.- Notice that isotropy: ω(l1p1) = ω(−l1p1) and n(l1p1, t) = n(−l1p1, t) is not required in the formal proof.
Remark 2.- This proof needs exchange of integrals, therefore it requires convergence of any simple integral before any

exchange can be done [4] (Fubini’s theorem).

5.2.2. Momentum conservation

Similarly, the total momentum per unit area

J =
1

2

∑
l1

∫
l1p1 n(l1p1, t) dp1 (57)

is conserved. The proof is in the same vein than for the conservation of energy (not detailed here).
Remark 1.- Because of the existence of the 3↔ 1 processes the total wave action

N =
1

2

∑
l1

∫
n(l1p1, t)dp1 (58)

is not conserved. If one derives this quantity

dN
dt

=
1

8

∑
l1s1s2s3

(l1 + s1 + s2 + s3)Cl1s1s2s3p1k1k2k3
dp1dk123

the only terms that survive in the sum are those corresponding to the 3↔ 1 processes, hence

dN
dt

= 24π

∫
|Jk1k2k3k4 |2 n(k1)n(k2)n(k3)n(k4)

(
1

n(k1)
+

1

n(k2)
+

1

n(k3)
− 1

n(k4)

)
×δ(ω(k1) + ω(k2) + ω(k3)− ω(k4)) δ(k1 + k2 + k3 + k4) dk1234. (59)

We notice then that because of the existence of the 3↔ 1 processes the wave action is not conserved formally. However, the
wave action reaches a steady state for the equilibrium distribution (Rayleigh-Jeans) as well as for the energy cascade spectrum,
because in these cases the right hand side of eq. (59) vanishes.
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5.2.3. H-Theorem

Although the original equations are reversible, the kinetic theory exhibits an irreversible dynamics towards thermodynamical
equilibrium for an isolated system. In practice, in systems with a large number of degrees of freedom, the irreversibility can be
seen as a result of chaotic behavior together with some small but non zero noise (which always exists). A positive Lyapunov
exponent, characteristic of chaotic system, is then able to amplify any extremely small noise. The irreversibility is linked to the
loss of the informations contained in the phases of the Fourier amplitudes, which disappear in the averaging process over the
ensemble. Mathematically, the loss of exact reversibility of the original equations is produced in the multi-scale perturbation
expansion. More specifically, it is the result of taking the long time limit over the linear fast time, keeping the slower nonlinear
time scale constant.

In the context of kinetic theory the irreversibility and the evolution towards equilibrium can be expressed by a H-theorem,
that we state next. Let

S(t) =
1

2

∑
l1

∫
log[n(l1p1, t)]dp1

be the non-equilibrium entropy, then one can show that

dS/dt ≥ 0,

for increasing time.
Proof.– Consider the time derivative of the entropy defined above

dS

dt
=

1

2

∑
l1

∫
1

n(l1p1, t)

dn(l1p1, t)

dt
dp, (60)

proceeding again in the same way as above, one splits the four terms, leading to

dS
dt

=
1

8

∑
l1s1s2s3

∫ (
l1

1

n(l1p1, t)
+ s1

1

n(s1k1, t)
+ s2

1

n(s2k2, t)
+ s3

1

n(s3k3, t)

)
Cl1s1s2s3p1k1k2k3

dp1dk123 ≥ 0. (61)

Using (55), one can see that the integrand is always positive or at least zero, so that the entropy of a closed wave system can
only increase or remain constant.

The thermodynamical equilibrium corresponds to the case of dS
dt ≡ 0 which is satisfied only by the functional relation(

l1
1

n(l1p1)
+ s1

1

n(s1k1)
+ s2

1

n(s2k2)
+ s3

1

n(s3k3)

)
= 0,

for p1, k1, k2 and k3, in the resonant manifold. Because of the resonant conditions, the solution to this functional equation is
a linear combination of ω(k) and k, that is: n(k)−1 = 1

T ω(k) + 1
T u · k with T and u two constant parameters. This solution

corresponds to the thermodynamical equilibrium and it is known as the Rayleigh-Jeans distribution [49, 50]:

n(k) =
T

ω(k) + u · k
. (62)

Similarly, this Rayleigh-Jeans distribution may be deduced by maximizing the entropy with the corresponding constrains of
constant energy and momentum [51]. Using the technique of Lagrange multipliers (below T and u are Lagrange multipliers)
and writing the extremum of the entropy condition yielding

δ

δn(k)

(
S − 1

T
E − 1

T
u · J

)
= 0,

one readily gets (62).
Remark 1.- As we shall see below, the energy flux of this solution is identically zero. The wave system at equilibrium presents

thus no energy, neither momentum flux. This is because the detailed balance condition at equilibrium forbids any net flux of
energy or other quantity.
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Remark 2.- In general in our case the total initial momentum J is zero, the resulting spectrum is isotropic so that u = 0.
The Rayleigh-Jeans equilibrium distribution reads then:

neqk =
T

ωk
. (63)

Where T is called, by analogy with thermodynamics, the temperature which is naturally related to the initial energy by
E0 =

∫
ωkn

eq
k d

2k = T
∫
d2k, the quantity

∫
d2k being the number of degrees of freedom per surface unit. Therefore each

degree of freedom contains the same energy: T . Naturally, for an infinite system this number diverges (as well as the energy).
This classical Rayleigh-Jeans catastrophe is always suppressed due to some physical cut-off, which corresponds to dissipation
processes at small scales. Numerical simulations on regular grids provide also a natural cut-off kc = π/dx, where dx is the mesh
size, which gives E0 = πTk2

c for a large system.

5.3. Kinetic equation for an isotropic spectra

In this section we consider the kinetic equation (20) for the special case of an isotropic distribution n(p) = n(|p|) = np
(where p = |p|), an hypothesis that is often done in wave turbulence. Thus, because of the isotropic dispersion relation
ω(p) = ω(|p|) = ωp, the spectrum np is simply a function of the frequency ωp, something which is more useful for the
comparison with experiments.

Multiplying (20) by p
ω′p
dϕp, where ω′p = dωp/dp, and integrating over the polar variables dϕp dϕk1 dϕk2 dϕk3 in [0, 2π], the

resulting kinetic equation reads:

d

dt

(
2πp

ω′p
np

)
= 12π

∑
s1s2s3

∫
D
Sωpω1ω2ω3n1n2n3np

(
1

np
+ s1

1

n1
+ s2

1

n2
+ s3

1

n3

)
δ(ωp + s1ω1 + s2ω2 + s3ω3)dω123.

The domain of integration, D, is defined in such a way that each frequency is positive, i.e. ω1, ω2, ω3 > 0. For simplicity we use
the notation nki = ni and ωki = ωi, and the scattering matrix, which is completely symmetric, reads

Sωpω1ω2ω3
=

p

ω′p

k1

ω′1

k2

ω′2

k3

ω′3

(∫ 2π

0

|J+s1s2s3
pk1k2k3

|2δ(k1 + k2 + k3 + p) dϕp dϕk1 dϕk2 dϕk3

)
. (64)

Obtain an explicit form of this isotropic scattering matrix it is complicated. However, an explicit expression for an upper and
lower bound to this scattering matrix can be obtained (see section 6.2 or Appendix 10.7).

Remark 1.- It maybe useful to define the frequency spectrum

N(ωp) = 2π
p

ω′p
np (65)

which is naturally normalized since
∫∞

0
N(ω)dω =

∫
n(p) dp.

Remark 2.- Because the dispersion relation has an homogeneity degree 2, ω(λk) = λ2ω(k), and because Jλpλk1λk2λk3
=

Jpk1k2k3
does not scale in k, the S-matrix has an homogeneity

Sλωpλω1λω2λω3
= λ−1Sωpω1ω2ω3

. (66)

Equation (64) contains seven different terms, four of them of the type 3 ↔ 1 and the three other terms of the type 2 ↔ 2.
These terms may be collected in two distinct collision integrals:

d

dt

(
2πp

ω′p
np

)
= Coll3↔1[n] + Coll2↔2[n]. (67)
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Here Coll3↔1[n] collects the wave interaction of the type 3↔ 1. Using the symmetries of S+ s1 s2 s3
ωpω1ω2ω3

, this collision integral reads:

Coll3↔1[n] = 12π ×
[ ∫
D
Sωpω1ω2ω3

n1n2n3np

(
1

np
− 1

n1
− 1

n2
− 1

n3

)
δ(ωp − ω1 − ω2 − ω3)dω123

+

∫
D
Sωpω1ω2ω3

npn1n2n3

(
1

np
− 1

n1
+

1

n2
+

1

n3

)
δ(ω1 − ωp − ω2 − ω3)dω123

+

∫
D
Sωpω1ω2ω3

npn1n2n3

(
1

np
+

1

n1
− 1

n2
+

1

n3

)
δ(ω2 − ωp − ω1 − ω3)dω123

+

∫
D
Sωpω1ω2ω3npn1n2n3

(
1

np
+

1

n1
+

1

n2
− 1

n3

)
δ(ω3 − ωp − ω2 − ω1)dω123

]
. (68)

These four terms could be easily collected into a single one by relabelling the integration variables. However, we keep the more
symmetric form (68), because it will be useful in the calculations. On the other hand the collision integral Coll2↔2[n] gathers
the terms of the 2↔ 2 wave interaction. These term can be re-arranged with an adequate change of variables, yielding

Coll2↔2[n] = 36π

∫
D
Sωpω1ω2ω3

n1n2n3np

(
1

np
+

1

n1
− 1

n2
− 1

n3

)
δ(ωp + ω1 − ω2 − ω3)dω123. (69)

It is important to emphasize that one can deduce from the kinetic equation (67) a conservation equation for the energy
spectrum E(ω, t) = ωN(ω, t) in the form

∂E(ω, t)

∂t
+
∂P (ω, t)

∂ω
= 0, (70)

where P (ω, t) is the energy flux in the frequency space ω given by the relation

∂P (ω, t)

∂ω
= −ω(Coll3↔1[n] + Coll2↔2[n]). (71)

Equation (70) satisfies two types of isotropic stationary solutions:
i) No flux solution.- The case whenever the energy flux is identically null, P = 0, which corresponds to the equilibrium

solution, the so called Rayleigh-Jeans distribution [49, 50].
ii) Constant flux solution.- If P (ω) = P 6= 0 is constant inside an inertial range, a stationary solution satisfying (71) with a

constant energy flux can exist. These kinds of out-of-equilibrium solutions are usually, but not always, power law distributions,
in which case are known as Kolmogorov-Zakharov spectra. To obtain these kinds of turbulent spectra it is formally necessary
to inject energy (mostly) at frequencies below some injection range ωi and to dissipate it (mostly) at frequencies larger than
some dissipation scale ωd.

In principle, the injection can be modeled as a function I independent of the plate deformation ζ which vanishes for ω > ωi
and the dissipation as a function D linear on the deformation velocity of the plate ζ̇ which vanishes for ω < ωd. These functions
can be added to the Föppl-von Kármán equation (1) to describe the injection and dissipation of energy (see section (7) for an
example).

The kinetic equation under injection and dissipation could be derived in principle from the wave dynamical equation consid-
ering that injection and dissipation take place in time scales similar to the nonlinear transfer. The kinetic equation then should
read

d

dt
N(ω) = Coll3↔1[n] + Coll2↔2[n] + Λ(ω) (72)

where Λ(ω) depends on the functions I and D and on the plate deformation. The explicit expression of Λ has not been
determined to the best of our knowledge and will be considered elsewhere. However it is not relevant as long as it vanishes
within the transparency window [ωi, ωd].

The properties on the collisional terms (56) and (61) implies that for a stationary solution d
dtN(ω) = 0 to exist, the Λ

function has to satisfy the following restrictions: ∫ ∞
0

ωΛ(ω) dω = 0, (73)∫ ∞
0

Λ

n(ω)
dω ≤ 0. (74)
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The condition (74) has a simple interpretation: out-equilibrium stationary solutions have less entropy than equilibrium solutions.
Since the spectrum n(ω) is a positive quantity the constrains (74) and (73) implies that Λ must change its sign. The Λ > 0 zone
corresponds then to the injection scale (usually at large scale or small frequency), while the Λ < 0 corresponds to dissipation
usually at small scales or large frequencies. If the interactions between the modes are local and the inertial range is large enough
ωi � ωd, one can take approximately ωi → 0 and ωd → ∞ and look for turbulent stationary solutions to the conservative
kinetic equation (67) (see section 6). Under such simplification, the injection and the dissipation take place at the boundary of
the frequency domain i.e. limωi→0 P (ωi, t) 6= 0 but P (ω = 0, t) = 0. Therefore, the out of equilibrium solutions satisfies

P (ω, t) = −
∫ ω

0

ω(Coll3↔1[n] + Coll2↔2[n])dω = P 6= 0. (75)

These formula indicates that the energy is injected at ω = 0 only.
Moreover, from (72) and (73) one concludes that the energy flux may be defined through:

P = −
∫ ωd

0

ωΛ(ω) dω =

∫ ∞
ωd

ωΛ(ω) dω,

where ωd is a dissipation scale (see eq. (97) below).

6. Kolmogorov Spectra

6.1. Zakharov-type of solutions

In this section we derive precisely the exact stationary non zero flux solutions of the kinetic equation. These types of solutions
were first obtained by V.E. Zakharov in the context of Langumir oscillations in plasma physics [8]. Essentially we consider both
collisional integrals Coll3↔1[n] (68) and Coll2↔2[n] (69) acting on a power law type of solutions of the form np = Kω−xp , where
K is a constant pre-factor which will be determined later in terms of the energy flux P . Although the collisional integral Coll2↔2,
has been considered extensively in the literature for different context [3, 8], the case of Coll3↔1[n] is definitely less known and
to our knowledge, no reference exists prior to our work on plate turbulence [19]. Therefore, we will focus here principally on
the calculations for this latter case.

Let us introduce a spectrum np = Kω−xp into the collisional terms Coll3↔1[n] that is composed by four distinct contributions.
The first term reads

12πK3

∫
O

Sωpω1ω2ω3
(ωpω1ω2ω3)−x

(
ωxp − ωx1 − ωx2 − ωx3

)
δ(ωp − ω1 − ω2 − ω3)dω123, (76)

where the domain of integration O corresponds to ω1 = ωp − ω2 − ω3 ≥ 0, as located specifically in Fig. 2. The three others
terms exhibit the same structure:

12πK3

∫
D
Sωpω1ω2ω3(ω1ω2ω3ωp)

−x (ωxp − ωx1 + ωx2 + ωx3
)
δ(ω1 − ωp − ω2 − ω3)dω123, (77)

obtained then by the permutations of 1 ↔ 2 and 1 ↔ 3. In the equation (77), the domain of integration D is the whole
upper-right quadrant ω2, ω3 ≥ 0, (D = O ∪ I ∪ II ∪ III ∪ IV in Fig. 2).

After the Zakharov’s transformation [3, 8] (see Appendix 10.6 for details) one readily gets:

Coll3↔1[n] = K3ω−3x+1
p I

(1)
3↔1(x), (78)

where I
(1)
3↔1(x) is a pure function of x defined by

I
(1)
3↔1(x) = 12π

∫
O′
S1u1u2u3(u1u2u3)−x(1− ux1 − ux2 − ux3)(1− u3x−2

1 − u3x−2
2 − u3x−2

3 )δ(1− u1 − u2 − u3)du123. (79)

and O′, is the domain O rescaled by ωp. More precisely, it is the triangle defined by u2 = 0, u3 = 0 and u2 + u3 = 1.
A similar calculation can be performed for the collisional integral (69), as presented in the Appendix 10.6, leading to

Coll2↔2[n] = K3ω−3x+1
p I

(1)
2↔2(x), (80)
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O

Figure 2: Relevant domains of integration in the plane (ω2, ω3). The diagonal line represents ω2 + ω3 = ωp.

where I
(1)
2↔2(x) is also a pure function of x, yielding

I
(1)
2↔2(x) = 36π

∫
I′
S1u1u2u3

(u1u2u3)−x(1 + ux1 − ux2 − ux3)(1 + u3x−2
1 − u3x−2

2 − u3x−2
3 )δ(1 + u1 − u2 − u3)du123, (81)

and where, as before, I ′ is the rescaled domain deduced from the domain I of Fig. 2. From now on, we seek for which values
of x these two integrals vanish. From (79) and (81) one sees immediately that the collisional integrals vanish both exactly for
x = 1, because of the first bracket in (79) and in (81). This stationary spectrum corresponds in fact to the Rayleigh-Jeans
spectrum (62) already described above. Furthermore, vanishing the second bracket in the integrals selects usually the KZ spectra

solutions. However, the second brackets in both integrals I
(1)
2↔2(x) and I

(1)
3↔1(x) vanish also for x = 1. Therefore, both I

(1)
3↔1(x)

and I
(1)
2↔2(x) have a double zero at x = 1, indicating that these functions behave as ∼ (x− 1)2 close to x = 1. More physically,

this mathematical analysis tells us that the Rayleigh-Jeans and the Kolmogorov-Zakharov spectra coincides. Therefore the
energy flux is necessarily null, because x = 1 vanishes exactly the r.h.s of the entropy production equation (61). Thus x = 1
can only represent the equilibrium solution that exhibits zero flux. This degeneracy requires an extra effort in the computation
of the Kolmogorov-Zakharov spectrum as we shall see in Section 6.3.

We end this section with the following remarks. The collisional integral I
(1)
2↔2(x) alone vanishes also exactly for x = 0 and

x = 2/3. The first one (x = 0) corresponds to an uniform spectrum that describes the equipartition of wave action and the
second one (x = 2/3) has the significance of a wave action cascade, by analogy with the cases of gravity surface waves [7, 18]
and nonlinear optics [10, 11, 12]. This latter solution would correspond to an inverse cascade of wave action with a constant

flux but recall that it cannot exist because of the I
(1)
3↔1(x) that does not vanish for x = 2/3.

6.2. Locality of the interactions.

The only physically consistent Kolmogorov spectra are the ones that provide convergent results for the collisional integrals.

If the collisional integrals I
(1)
3↔1 (79) and I

(1)
2↔2 (81) are convergent for a given x, it is said that the solution nk ∼ k−2x is a local

spectrum. However, if the integrals diverge, then the spectrum nk ∼ k−2x is not a suitable solution.

In the following, we check the convergence criteria for the collision integrals I
(1)
3↔1(x) and I

(1)
2↔2(x) from equations (79) and

(81) respectively as a function of x. First, notice that it is possible to bound the S-matrix (64) by

1

3
Ŝωpω1ω2ω3ω ≤ Sωpω1ω2ω3 ≤ Ŝωpω1ω2ω3 , (82)

where the modified S-matrix

Ŝωpω1ω2ω3 =
1

3ωpω1ω2ω3

[
Iωpω1;ω2ω3

+ Iωpω2;ω1ω3
+ Iωpω3;ω2ω1

]
, (83)

and Iωpω1;ω2ω3
reads

Iωpω1;ω2ω3 =
π

29

∫ umax

umin

1

u4

[
((
√
ωp +

√
ω1)2 − u)(u− (

√
ωp −

√
ω1)2)

]3/2 [
((
√
ω2 +

√
ω3)2 − u)(u− (

√
ω2 −

√
ω3)2)

]3/2
du. (84)
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Figure 3: The bound S-matrix Ŝωpω1ω2ω3 as a function of the dimensionless variables u2 = ω2/ωp, u3 = ω3/ωp, and here it is understood that

u1 = ω1/ωp and u1 = u2 + u3 − 1 if u2 + u3 ≥ 1, u1 = 1− (u2 + u3) if u2 + u3 < 1, and, finally, u1 = 0 if u2 + u3 = 1. Notice that Ŝωpω1ω2ω3 = 0 at
the line ω2 + ω3 = ωp.

The integration limits are given by umin = max{(√ωp−
√
ω1)2, (

√
ω2−

√
ω3)2} and umax = min{(√ωp +

√
ω1)2, (

√
ω2 +

√
ω3)2}

(see Appendix 10.7 for more details). A surface plot of the Ŝ-matrix is shown in Fig. 3. As it can be seen, Ŝ presents nodal
lines at ω2 + ω3 = ωp, ω2 = 0 and ω3 = 0. Further, it presents four singular points at: ω2 = 0 &ω3 = 0, ω2 = 0 &ω3 = ωp,
ω2 = ωp &ω3 = 0, and ω2 = ωp &ω3 = ωp, and two singular lines: ω2 = ωp and ω3 = ωp.

We shall define Î
(1)
2↔2 and Î

(1)
3↔1 as estimated collisional integral using the upper bound Ŝ1u1u2u3

instead of the true S-matrix
in equations (79) and (81) respectively. The upper and lower bound for the S-matrix (82) leads to the inequalities

1

3
|Î(1)

2↔2(x)| ≤ |I(1)
2↔2(x)| ≤ |Î(1)

2↔2(x)| and
1

3
|Î(1)

3↔1(x)| ≤ |I(1)
3↔1(x)| ≤ |Î(1)

3↔1(x)|.

The above bounds guarantees that the convergence criterion for I
(1)
2↔2 and I

(1)
3↔1 are the same as for Î

(1)
2↔2 and Î

(1)
3↔1 respectively.

A rather cumbersome calculation analyzing each singular point and nodal lines of the S-matrix (see Appendix 10.8 for details)

shows that Î
(1)
2↔2 converges for 1

2 < x < 7
4 while Î

(1)
3↔1 converges for 1

4 < x < 7
4 . Therefore the interaction can be considered local

for 1
2 < x < 7

4 .

We have computed numerically both collisional integrals Î
(1)
2↔2(x) and Î

(1)
3↔1(x) for some values of x. The final exact values

of I
(1)
2↔2(x) and I

(1)
3↔1(x) are in between the intervals shown in Fig. 4 for both collisional integrals.

6.3. Log correction of the KZ spectrum for an elastic plate

We shall see here first that energy flux associated to the x = 1 Zakharov exponent is zero. Replacing the collisional terms
(78) and (80) into the equation for the energy flux (75), one gets

P = −
∫ ω

0

K3ω−3x+2
p (I

(1)
3↔1(x) + I

(1)
2↔2(x)) dωp =

K3ω−3(x−1)

3(x− 1)
(I

(1)
3↔1(x) + I

(1)
2↔2(x)).

This energy flux must be independent of ω, so that one takes the limit x→ 1 of this expression, that is:

lim
x→1

P =
K3

3

(
∂I

(1)
3↔1(x)

∂x
|x=1 +

∂I
(1)
2↔2(x)

∂x
|x=1

)
= 0. (85)

Usually, for x 6= 1, the r.h.s. of (85) is a finite non-zero quantity, which allows to express the constant K in terms of the energy

flux P . However in the present case x = 1 and the derivatives with respect to x of I
(1)
3↔1(x) and I

(1)
2↔2(x) (79,81) are both zero.

Therefore, the energy flux vanishes for the stationary power law solution of the form nω ∝ ω−1, in agreement with the fact that
such solution corresponds to the equilibrium Rayleigh-Jeans distribution. In conclusion, a stationary solution with a constant
flux may exist but it cannot be written as a simple power law in ω.
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Figure 4: The bounds of the collisional integrals Î
(1)
2↔2(x) and Î

(1)
3↔1(x) as functions of x. The shadow domains represent the possible values of the

exact collisional integrals I
(1)
2↔2(x) and I

(1)
3↔1(x).

This degeneracy of the Rayleigh-Jean distribution, which has been previously observed in plasma waves and non linear optics,
suggests that the KZ spectrum is close to the thermodynamic equilibrium [3]. In the context of non linear optics (nonlinear
Schördinger equation) the authors of [10] search for a logarithmic correction to the equilibrium solution, however the resulting
constant energy flux solution was non local, hence meaningless. Further progress on the search for a Kolmogorov spectrum in
optical turbulence has been achieved using an appropriate hidden parameter [11, 12]. For elastic plates we will follow a similar
procedure as the one used in [10], we search for solution of the form

nω = Kω−x logz(ω/ωc). (86)

To properly define the coefficient K, and the exponents x and z, a third order perturbation expansion, in terms of the small
parameter ω/ωc � 1, should be carried out. In order to calculate the coefficient K in terms of the energy flux, one needs to
take carefully the limits, because the two limits z → 1/3 and x → 1 have to be taken independently (see details in Appendix
10.9). Cumbersome calculations lead to the constant energy spectrum

nω =

(
18P

I(1)′′(1)

)1/3
1

ω
log1/3(ωc/ω) (87)

which gives a positive wave action for ω < ωc. Here I(1)′′(1) = I(1)
3↔1

′′(1) + I
(1)
2↔2

′′(1) is the second derivative of the total
collision integral where

I(1)
3↔1

′′(1) ≡ ∂2I
(1)
3↔1(x)

∂x2

∣∣∣∣∣
x=1

= 72π

∫
O

S1u1u2u3
(u1u2u3)−1(u1 log u1 + u2 log u2 + u3 log u3)2δ(1− u1 − u2 − u3)du123 > 0

and

I
(1)
2↔2

′′(1) ≡ ∂2I
(1)
2↔2(x)

∂x2

∣∣∣∣∣
x=1

= 216π

∫
I

S1u1u2u3
(u1u2u3)−1(−u1 log u1 + u2 log u2 + u3 log u3)2δ(1 + u1 − u2 − u3)du123 > 0.

The spectrum (87) show two main difference with respect to the result obtained in [10] for optical turbulence. In first place the
pre factor is different since the first three order term in the expansion contribute to the flux while two of them where mistakenly
neglected in [10]. Secondly an more important, the interaction are local for (87), hence is a meaningful turbulent cascade. The

second derivative I(1)′′(1) can be estimated as we have done for the collisional integrals in previous section since

1

3

∣∣∣Î(1)
2↔2

′′(1)
∣∣∣ ≤ ∣∣∣I(1)

2↔2
′′(1)

∣∣∣ ≤ ∣∣∣Î(1)
2↔2

′′(1)
∣∣∣ and

1

3

∣∣∣Î(1)
3↔1

′′(1)
∣∣∣ ≤ ∣∣∣I(1)

3↔1
′′(1)

∣∣∣ ≤ ∣∣∣Î(1)
3↔1

′′(1)
∣∣∣ .
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Numerically we have

Î
(1)
2↔2

′′(1) ≈ 0.29× 216π ≈ 197 & Î
(1)
3↔1

′′(1) ≈ 6.12× 72π ≈ 1384. (88)

Therefore, the coefficient I(1)′′(1) is bounded by 527 ≤ I(1)′′(1) ≤ 1581, hence the final numerical coefficient in the spectrum

(87), namely (18/I(1)′′(1))1/3, is bounded by 0.22 and 0.33.
Remarkably, a similar procedure can be done for the inverse case ω/ωc � 1, where the result is given by

nω =

(
18P

I(1)′′(1)

)1/3

ω−1 log1/3(ω/ωc), (89)

which also gives a positive wave action for ω > ωc. In both cases, this mathematical solution exhibits a cut-off frequency above
(below) which the KZ spectra is null! The physical meaning of this cut-off frequency ωc is not completely clear, for instance,

could be associated to the existence of a warm cascade. Rewriting (87) as nω = 1
ω

(
T − 18P

I(1)′′(1)
logω

)1/3

one can relate a

“temperature” T with the cut-off frequency scale ωc. Anyway, the logarithmic correction remain valid independently of the
cut-off frequency scale.

The log-correction (87) to the KZ spectrum gives a correction to the frequency, estimated by the frequency shift formula
(21):

ω2(p) =
9π(1− σ2)

2ρh4

(
18P

I(1)′′(1)

)1/3 [
ωp
2ωc

∫ log(ωc/ωp)

0

t1/3et dt+
ωc
2ωp

∫ ∞
log(ωc/ωp)

t1/3e−t dt

]
, (90)

which is a function of ωp.
It is now important to investigate whether (and how) such KZ spectrum establishes in practice for elastic pates. In general,

the experimental realization of wave turbulence cascade has always been a challenge due to different experimental limitations:
for instance, the separation of scales between the injection and the dissipation, defining the so-called transparency window,
is often difficult to achieve. Furthermore, realistic dissipation might not be concentrated only at small scale, perturbing the
cascade process and sometime the measurement is not adapted to the quantities involved in the WTT. It can be thus interesting
to investigate first the KZ spectra using numerical simulations of the dynamics, where the injection and the dissipation can be
imposed in order to satisfy the WTT hypothesis.

7. Numerical validations

In this section, we investigate numerically the different regimes studied theoretically above. We address in details the
vibrations of an elastic plate in two idealized situations: firstly, we study the dissipation free (Hamiltonian) dynamics, to
observe the dynamics towards the Rayleigh-Jeans equilibrium. Then, injecting energy at large scales and adding dissipation at
small scales only, we mimic the ideal situation of direct cascade in wave turbulence.

Solving numerically the coupled set of dynamical equations for the plates can be done thanks to a pseudo-spectral method
which take advantage of the linear wave dynamics in the Fourier space. Although spectral methods can allow different boundary
conditions, it is usually written for periodic boundary conditions as it will be the case further on. In fact, periodic boundary
conditions provide the natural framework to investigate wave turbulence. On the other hand, methods using finite difference
scheme would be more appropriate to account for general boundary conditions although it might be less accurate to capture
the wave dynamics [32, 52]. As described below the pseudo-spectral method uses the real space for computing the non-linear
term while the integration is performed in the Fourier space thanks to an Adams-Bashford scheme.

7.1. Numerical Scheme

We present the numerical scheme for the elastic plate equations (1,2) since this general framework can be adapted easily to
other situations. The set of equations (1) and (2) reads in the Fourier space:

ζ̈k = −k
4

4
ζk + NL

(1)
k ; (91)

k4χk = NL
(2)
k . (92)
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The functions NL
(1)
k and NL

(2)
k are the Fourier transform of the nonlinear terms NL(1)(x, t) = {ζ, χ} and NL(2)(x, t) =

− 1
2{ζ, ζ} respectively. The dynamics of the plate, eq. (91), can be rewritten as:

dXk
dt

= Lk ·Xk +Bk (93)

with,

Xk =

[
ζk
ζ̇k

]
, Bk =

[
0

NL
(1)
k

]
and Lk =

[
0 1
−ω2

k 0

]
.

While, the second equation (92) makes a simple relation in the Fourier space for χk:

χk =
1

k4
NL

(2)
k .

Integrating (93) between t and t+ dt leads to:

Xk(t+ dt) = edtLkXk(t) +

∫ dt

0

e(dt−s)LkBk(t+ s)ds. (94)

Notice that the exponential of the Lk matrix is very simple since L2
k = −ω2

k Id, where Id is the 2× 2 identity matrix. Therefore,
the numerical scheme follows the general algorithm:

1. compute in the real space NL(1)(x, t)

2. calculate NL
(1)
k (t) using the Fourier transform

3. in the Fourier space, integrate equation (94) using a polynomial expansion of Bk(t+ s), giving ζk(t+ dt) and ζ̇k(t+ dt).

4. compute ζ(x, t+ dt) and its derivatives by inverse Fourier transform for computing NL(2)(x, t+ dt)

5. use the Fourier transform to calculate NL
(2)
k (t+ dt)

6. compute χk(t+ dt) and make its inverse Fourier transform

The poynomial expansion for Bk(t+ s) is performed using the known values of Bk(t), Bk(t− dt), Bk(t− 2dt)... depending on
the order of the polynomial expansion needed (order one polynomial is used in our numerics).

The plate is discretized in the real space using a constant grid size dx, so that the discrete set of computation points is
(xi, yj) = (i ·∆x, j ·∆x). The computational domain is defined by the number, N , of grid points in each direction, leading to a

square plate of size L× L = (N ·∆x)× (N ·∆x), and taking 0 ≤ i, j < N . The Fourier transform of the discretized field ζ̂k in
(91,92) is defined using the fftw library [53]:

ζ̂k =
1

N2

N∑
i,j=0

ζ(xi, yj)e
−i(km·xi+kn·xj),

for wave-numbers

k = (km, kn) =

(
2πm

L
,

2πm

L

)
for − N

2
< m,n ≤ N

2
.

Notice that a rescaling factor is introduced between the discretized field ζ̂k in the numerics and the continuous one ζk. Using
the discretization of the integral term:

ζk(t) =
1

2π

∫
ζ(r, t)e−ik·rdr =

1

2π

N∑
i,j=0

ζ(xi, yj)e
−i(km·xi+kn·xj)∆x2 =

L2

2π
ζ̂k(t).

Similarly, the δ(2)(k) factor involved in the relation (19) between |ζk|2 and n(k) induces a 1/∆k2 = (L/(2π))2 factor in the
discretized relation: 〈

|ζ̂k|2
〉

=
1

L2

nk
ωk
.

Finally, dealiaising has been tested for the Fourier transform with no significant changes so that we usually do not use it in
order to maximize the Fourier range of our simulations.

Now that we have the general scheme to solve numerically the plate dynamics, wave action and/or energy injection as well
as dissipation can be easily implemented as described below.
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7.2. Decaying turbulence of an isolated system: towards the Thermodynamical Equilibrium

Prior to observe KZ spectra induced by injection/dissipation balance, it is interesting to observe for a free system how the
dynamics converges to the thermodynamical equilibrium. Additionally, it will provide a validation of the numerical method and
an estimation of its accuracy. In the case of the elastic plate, the Rayleigh-Jeans equilibrium spectrum (nk = T/ωk) gives for
the Fourier transform of the deflection: 〈

|ζk|2
〉

=
nk
ωk
∝ T

k4
.

In that purpose, we start with a Gaussian distribution of the Fourier modes as initial condition

ζk(t = 0) = Ae−
σ20k

2

2 +iθk

where σ0 is the width of the distribution and θk is a random phase with θ−k = −θk since ζ is a real field. Starting with such
initial conditions we observe the formation of the Rayleigh-Jeans spectrum as shown on figure 5-a) for a typical case. There the
relaxation towards a Rayleigh-Jeans spectrum is seen although for the latest time reached by the numerics, only intermediate
scales are close to this regime while small and large scale modes are still far from equilibrium.

a) b)

Figure 5: a) The density spectrum
〈
|ζ̂k|2

〉
at different times for the free dynamics (no injection nor dissipation), starting with a Gaussian spectrum at

t = 0 (black curve). The spectra for t = 100 (red curve) and t = 300 (blue curve) unit times are shown while the expected k−4 law is plotted (dashed

line) for comparison. The spectrum is obtained by computing the mean value of |ζ̂k|2 through an angular average. The simulation was performed on
a 128 × 128 plate with dx = 0.5 in dimensionless units (so that the simulation is done with 256 × 256 modes. b) The evolution of the wave action∫
nkdk with time during the relaxation of the dynamics towards the statistical equilibrium.

Ironically, such numerical simulations are the hardest to perform for two main reasons: first, the relaxation is much slower than
when energy is injected at one scale and dissipated at some scales, as we will show below. Moreover, as the predicted spectrum
illustrate it, the equilibrium spectrum would correspond to very high amplitude of low k modes and the numerics becomes there
no more stable, saying nothing about nonlinear effects due to these high amplitudes. For such numerical simulation, the energy
was conserved up to 0.5% while the wave action decreases with time as plotted on figure 5-b).

In fact, one can observe that the wave action seems to slightly increase for the later times reached by the numerics (t > 350).
This could be related to the high amplitudes reached by the low-k modes that increase the wave action for constant energy.
However, at the same time, the numerics becomes unstable, precisely because the low-k modes have high amplitudes and the
energy is no more preserved by the scheme. We have thus not been able to determine whether this increase was corresponding
to a physical effects (the filling of the low-k modes) or whether it was a numerical artifact. Finally, let us notice that for low-k,
because of the high amplitude predicted by the theory, the equipartition spectrum should deviate from the k−4 law which is
obtained in a weak amplitude limit and nonlinear terms should be accounted for determining the spectrum (see for instance [51]
for a different case where a soliton-like solution is valid at low-k).
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Figure 6: Energy (a) and wave action (b) as function of time for a vibrating plate of size L × L = 512 × 512 over 1024 × 1024 Fourier modes. The
injection at large scale and dissipation at small scale is performed using ki = 0.1, Ai = 1.25 · 10−4 and kd = 5.5, η = 0.5.

7.3. Kolmogorov spectra of an Energy cascade

Our numerical scheme provides an ideal tool to investigate the wave turbulence processes: indeed, it is easy in Fourier space
to impose numerically injection and dissipation at prescribed scales, i.e. for limited values in k. Formally, injecting energy (and
wave action since it is coupled) and dissipation can be implemented in the dynamical equation (12) following

∂2ζ

∂t2
= −1

4
∆2ζ + {ζ, χ}+ I +D (95)

where I and D stand for the injection and dissipation processes respectively which will be described in the Fourier space (noted
Ik and Dk). To mimic the configuration potentially leading to a direct cascade, we take for instance

Ik = Ai
k2(4k2

i − k2)

k4
i

ηk for |k| ≤ 2ki , and Ik = 0 otherwise.

Here, the injection amplitude is centered around the typical wave number ki with a random noise delta correlated in time
(following η∗k = η−k). Regardless the physical dissipation mechanisms present in plate dynamics [26, 27], we will first introduce
a phenomenological dissipation at small scale in order to investigate the cascade process itself:

Dk = −η(k2 − k2
d)ζ̇k for |k| ≥ kd , and Dk = 0 otherwise.

The dissipation is thus only present for scales smaller than the cut-off scale defined by the wave-number kd. Starting with a
still plate, a stationary regime is reached after a long transient (few thousands of unit time), as shown on figure (6) where the
time evolution of the energy and the wave action are plotted.

In this statistically steady state, the deformation spectrum
〈
|ζk|2

〉
exhibits a power-like behavior in good agreement with

the predicted spectrum:

〈
|ζk|2

〉
=
n(k)

ωk
∝ P 1/3 log1/3(kdk )

k4
, (96)

as shown on Fig. 7-a. Notice that the cut-off wave-number kc of equation (87) is exactly that of the dissipation scale kd! In
the figure, we observe that the logarithmic correction term is pertinent near the cut-off where it describes very precisely the
spectrum. Nevertheless, let us emphasize that the mathematical cut-off of the KZ solution is not seen numerically: actually for
k > kc the spectrum is not exactly zero indicating that higher order terms (remember that the KZ solution is obtained by an
expansion of the solution) are present. This result is not surprising in fact, since the derivation of the logarithmic correction is
obtained through a perturbative approach to the Rayleigh-Jeans spectrum. Therefore, it cannot be valid near the cutoff where
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Figure 7: a) Numerical power spectrum (solid line) of the displacement field
〈
|ζ̂k|2

〉
as a function the wave number k for the same situation than

figure (6). The dashed line shows the expected relation (96) deduced from the weak turbulence theory with the prefactor 2.5× 10−6 and using exactly
for the cut-off wave-number kc = kd = 5.5. b) Dissipation rate density (97) as a function of time for the vibrating plate described above for varying
injection amplitudes Ai = 1.25× 10−4, 1.5× 10−4, 1.75× 10−4, 2× 10−4 and 2.25× 10−4. Simulations for a half-size smaller plate L×L = 256× 256
with 512× 512 modes are also shown for varying injection amplitudes Ai = 1.25× 10−4, 2.5× 10−4, 4× 10−4, 5× 10−4, 8× 10−4, 0.001, 0.0015 and
0.002. After a short transient depending on the injection rate, the dissipation rate converges towards a stationary value Pst (plus fluctuations) that
we identify with the energy flux of the cascade. The dissipation rates then exhibit small fluctuations around Pst. c) The same dissipation rate curves

(for all the 13 configurations) rescaled by the stationary dissipation rate Pst while the time is rescaled by P
2/3
st t, showing that the time scale of the

transient regime is precisely P
−2/3
st as it can be deduced from the kinetic equation eq. (20). d) The spectra for all the injection amplitudes of figures

b) and c) (thus for different system lengths L = 512 and L = 256) rescaled by the expected energy flux dependence Ĉ(k) defined through (99) vs. the
wavenumber k, showing an almost single universal spectrum curve.

the logarithmic term becomes dominant. Furthermore, near this cut-off, the kinetic equation becomes itself questionable since
the dissipation time scale dominates the nonlinear one involved in the WWT.

The statistically state of the dynamics can also be illustrated with the energy dissipation rate which reaches a stationary
regime for large time, as shown on Fig. 7-b for different injection amplitudes and system sizes (L = 512 and L = 256, for the
same discretization mesh dx = 0.5). This dissipation rate density is in fact easily computed from the plate dynamics (95) and
reads:

P (t) = −η
∫ kc

kd

(k2 − k2
d)
∣∣∣ζ̇k∣∣∣2 dk. (97)
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Fig. 7-b shows that the dissipation rate decreases during a transient dynamics until reaching a stationary state plus
fluctuations, where the energy injected at large scale is statistically balanced by the dissipation. In this stationary regime, we
can easily extract the mean value Pst of the dissipation rate that is identified thus with the energy flux density of the energy
cascade. The dependence of transient dynamics with Pst can be inferred from the kinetic equation (20). Indeed, introducing the

P
1/3
st factor of the KZ spectra in the wave number densities n(k), it leads to a P

−2/3
st time scale for the unsteady dynamics. This

can be observed on Fig. 7-c where the dissipation rate (rescaled by the steady mean value Pst) is plotted as function of P
2/3
st t

for all the injection rates and system sizes investigated here. The different curves collapse into a single one, proving the P
−2/3
st

time scale involved in the transient dynamics. Furthermore, it is tempting to check the P
1/3
st prefactor in the cascade spectrum

itself. In that purpose, we need to compute precisely the prefactor involved for the displacement field Fourier transform by the
numerical discretization, due to the contribution L2/(2π) in the Fourier transform and that (L/(2π))2 of the Dirac function in
the n(k) definition, yielding the following form for the numerical spectrum:〈

|ζ̂k|2
〉

=
nk
ωkL2

=
27/3C

L2
P

1/3
st

ln1/3(κ∗/k)

k4
. (98)

The different spectra are now rescaled according to the formula (98) above, plotting

Ĉ(k) =
L2k4

〈
|ζ̂k|2

〉
27/3P

1/3
st ln1/3(κ∗/k)

(99)

as function of k using the mean value Pst of the dissipation rate measured in the statistically stationary regime. In the cascade
domain, this rescaling should give the constant Ĉ(k) computed using the weak turbulence theory. Indeed, the weak turbulence
cascade manifests here as a plateau regime for the inertial range (typically here for 1 < k < 5.5 between the injection and
dissipative ranges), where all the spectra collapse into a single curve. Notice however that the plateau regime is not perfectly
constant as would suggest the WTT. Furthermore, the spectra in this plateau regime leads to Ĉ(k) ≈ 7± 1, while the constant
C of the WTT is expected to lie between 0.22 and 0.33. We have not been able yet to determine the origin of such difference
that we will be consider elsewhere.

8. Selected Topics

In this last section, we first discuss how experiments compare with the WTT and explain where the differences might most
probably come from. Then recent results on high forcing, breakdown of wave turbulence and potential inverse cascades are also
presented and, finally we draw different perspectives of this work, in particular on curved (cylindrical and spherical shell) shells,
and on the h→ 0 asymptotic limit of strong plate turbulence.

8.1. Experimental observations.

Soon after our prediction of the WTT KZ spectra for elastic plates, two different experimental groups have measured
independently the energy spectrum of a vibrating elastic plate [21, 22]. By vibrating the plate at low frequency, both found
a turbulent regime with a large inertial range but with noticeable differences with the predicted WTT energy spectra (23):
firstly, instead of a flat spectrum (up to the logarithmic correction), they found a slight decrease in agreement with ω−0.5±0.1.
Furthermore, they both observed a dependence of the spectrum amplitude more consistent with a P 1/2 law than the expected
P 1/3. Different explanations have been proposed for these discrepancies: a lack of isotropy of the system due to the rectangular
shape of the plate [23], three waves resonances due to natural curvature of the plate and/or finite size effects [21, 24] and the
specific dissipation valid in plates [26]. In fact, while the two first reasons were not shown to have strong effects on the turbulent
spectra, recent results have proven that the dissipation in elastic plates is the main reason for the differences between the WTT
predictions and the experiments [27, 28]. Indeed, the damping in real plates appears to be present at all scales (although
more important at small scales) perturbing thus the inertial range of the WTT and leading to the steeper spectra observed
experimentally. Finally, the dependence of the spectra on the energy flux P appears also affected by this real damping, although
the P 1/2 was not obtained when simulating the dynamics using the realistic dissipation.
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8.2. Beyond wave turbulence: breaking wave turbulence, D-cones, ridges, high forcing and intermittencies

As already discussed along the paper, it has been stressed that weak turbulence is not a completely satisfactory theory,
because it always exhibits a breakdown at either large or small scales [4, 48, 54]. Because the theory is based on an asymptotic
(ordered) perturbation procedure, its self-consistency requires higher-order terms to be smaller than lower-order terms, a property
that should be verified for every scale, i.e. every wave number k. Naturally, such a self-consistency cannot be verified by the
equilibrium solution (62), neither by the constant energy flux since they are essentially power-law solutions.

As discussed by Newell and collaborators [4, 48, 54], a well-ordered asymptotic expansion procedure is valid as long as the
nonlinear frequency (only using scaling estimate here):

ωNL(k) ∼ ∂tnk(t)

nk(t)
∼ ε4

∫
|Jpk1k2k3

|2 nk2nk3δ(ω(p)) δ(p)dk123 (100)

is much smaller than the linear frequency ω(k). Keeping in mind that for the elastic plate the J-matrix scales as k0 and
ω(k) = k2/2, then one gets the condition

ωNL(k)

ω(k)
∼ ε4n2

k � 1. (101)

The weak turbulence equations are thus valid for ε2nk � 1 defining the crossover wavenumber kNL through ε2n(kNL) ∼ 1. For
instance, for the KZ spectrum (22)

k2
NL

ln1/3(kNL/κ∗)
∼ ε2P 1/3

so that one expects breakdown of the WTT for k < kNL, that is at large scale. The breakdown of the WTT arises therefore
for plates at large scale primarily (something on which we will come back in Sec. 8.3. However, this crossover scale has to
be compared to the other large scales involved in the system, particularly the injection scale ki and the size of the domain L
leading to a minimal wave number k0 = 2π/L (in general, one has however kin > k0.). Thus, for instance, if kNL is outside the
frequency-bandwidth of interest delimited by the infrared, kir = min{ki, k0} and the ultraviolet cut-offs kc, or in other words,
if (kNL /∈ [kir, kc]), the weak turbulence description is safe. For a finite system size, one has always kNL � kir in the WTT
asymptotic limit ε → 0 and the kinetic theory holds for any wavenumber k. Notice however that in that case some problems
may come when the other asymptotic limit, the thermodynamic limit L → ∞, is considered. However this is not the general
situation and one should expect to observe the effect of the breakdown of WTT in the large scale of the KZ spectra.

Finite amplitude effects arise on the wave turbulence spectrum as the injection amplitude (and therefore the flux P ) increases,
as already observed in [35, 34, 38], leading eventually to the breakdown of wave turbulence at large scales. Figure (8) shows how
the spectrum is affected by higher injection amplitude: the theoretical wave turbulence behavior is changed as axpected mostly
at large scale where the amplitudes of the modes become much higher than one. There, for the highest amplitude plotted, the
slope of the deformation for the low-k modes (|∇ζ|2 ∼ k2

〈
|ζk|2

〉
) is of order one, so that the weak amplitude hypothesis is no

more valid. Similarly, one can show in this regime the breakdown of wave turbulence since the nonlinear frequency becomes
bigger than the linear frequency of the waves [38] In fact, in this case, it has been shown [34] that the spectrum follows at large
scale (small k) a scaling compatible with that of d-cones, leading to |ζk|2 ∝ k−6, so that the vibrations of the plates can be
interpreted as oscillations of ridges separating d-cones (see figure 9 for an illustration of the plate deformation). Finally, this
high forcing regime corresponds also to the occurrence of intermittencies in the statistical properties of the turbulent fields [38].

8.3. A possible inverse cascade?

Although an inverse cascade of constant flux of wave action is not possible for vibrating plate because of the 3 − 1 wave
resonances that do not conserve the wave action, one can still question whether injecting deformation at small scale (large k) can
give rise to an inverse transfer of some quantities (a priori wave action) towards large scales. In fact, in the kinetic equation, the
absence of an inverse cascade solution is due to the presence of these collision terms that violate the wave-action conservation.
As explained above, if these collision terms vanish, one would expect an inverse cascade spectrum with the following properties
(see the end of Section 6.1):

n(k) ∝ k−4/3 giving
〈
|ζk|2

〉
∝ k−10/3. (102)

We can thus investigate such processes numerically by injecting at small k following:

Ik = Ai
(k2 − (ki − δi)2)((ki + δi)

2 − k2)

k4
i

eiθk for ki − δi ≤ |k| ≤ ki + δi , and Ik = 0 otherwise.
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Figure 8: Displacement spectra as the injection amplitude increases with Ai = 1× 10−4, 2.5× 10−4 and 5× 10−4 for increasing spectrum respectively.
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Figure 9: Plate deformation for two different injection amplitude a) low injection for which the KZ spectrum is valid; b) much larger injection, for which
the breakdown of WTT is present. Notice the large amplitude of deformation and the presence of ridges. The simulations were done Lx = Ly = 1024,
the mesh size dx = 0.5 and h = 0.5.

with dissipation at small scales only:

Dk = −η(k2 − k2
d)ζ̇k for |k| ≥ kd , and Dk = 0 otherwise.

Notice that this process injects both energy and wave action since one cannot separate them formally. However, although it is
needed to dissipate at small scale the energy to reach a stationary regime, there is a priori no need to pump the wave action at
large scale: it should be automatically done by the dynamics since the wave-action is not conserved. This configuration has been
studied recently in great details in [30], showing a self-similar singular dynamics followed by a relaxation process that converges
at large scale towards the expected inverse cascade spectrum eq. (102).

The existence of this inverse cascade process has a practical consequence on the spectrum for a general injection: one should
observe a direct cascade towards the small scales and an inverse one towards the large scales. Again, this can be easily simulated
within our numerical scheme by taking kd much larger than ki + δi, following the formalism described above. Figure 10 shows
such spectrum for ki = 0.6, δ = 0.2 and kd = 5.5. Two behaviors are identified and compared with the theoretical predictions
with very good agreement. The direct cascade law (96) is observed for ki + δ < k < kd (regardless the logarithmic correction)
and the inverse cascade regime

〈
|ζk|2

〉
∝ k−10/3 is seen for k < ki − δ.
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Figure 10: Displacement spectrum
〈
|ζk|2

〉
as function of the wave number k for an injection in an intermediate range ki = 0.6 with δ = 0.2. Dissipation

is at small range kd = 5.5 and pumping at large scale km = 0.03 so that two inertial ranges are observed. One at small scales between ki and kd so
that a direct cascade can be observed, fitted with the expected k−4 spectrum (dashed line), regardless the logarithmic correction, and one at large
scale, between km and ki, corresponding to an inverse cascade regime, well fitted by a k−10/3 law (dotted line).

8.4. Strong turbulence in a plate, the limit h→ 0.

The limit h → 0 represents an interesting challenge for the WTT. Indeed, since the linear frequency is proportional to h,
(ωk ∝ h in the dispersion relation (3)), the linear time scale of the oscillation diverges which makes the WTT asymptotic limit
not well defined. The dimensionless version of the equation involving length and time scales diverging when h → 0, this limit
can be seen as that of an infinite plate with infinite time scale. Moreover, in this limit, the nonlinear term becomes dominant
over the linear ones, leading to the formal nonlinear plate dynamics:

∂2ζ

∂t2
= − E

2ρ
{ζ,∆−2{ζ, ζ}}.

This dynamical model could be deduced fromthe theory of elasticity after imposing that the out-of-plane deformations are much
larger than the in-plane deformations, and similarly for the speed of deformations, leading to the set of conditions |ux|, |uy| � |ζ|
and |∂tux|, |∂tuy| � |∂tζ|. Hence, the in-plane sound modes are neglected as in the original FvK equations.

Since no linear term are anymore present, turbulent dynamics in this limit can be called “strong” plate turbulence. In fact,
we can consider that the oscillation frequency depends on the amplitude of the waves yielding νk ∼

√
E/ρk2|ζk|.

Following the dimensional analysis, two situations can be considered. Firstly, the general case, for which the spectrum is
independent of h, leads to Eq. (10):

Ek =
E

ρk
Φ2

(
P

(E/ρ)3/2k

)
.

In this formula the Young modulus E is still present due to the relation of the Airy function with the Gaussian curvature (4).
On the other hand, if, for some reasons, the Young modulus is not involved in the spectrum, indicating that the spectrum is
material independent, the usual Kolmogorov spectrum for fluid turbulence is retrieved, Eq. (11):

Ek = CP 2/3k−5/3.

Therefore, further studies should investigate the vibration of a plate in the limit h→ 0 and for h = 0 in order to observe which
solution (and how) is selected by the dynamics. Moreover, since the nonlinearity is here cubic, instead of the quadratic one at
play in fluid turbulence, this limit might help to characterize the role of the nonlinearity in the strong turbulence regime.

8.5. Wave turbulence in cylindrical tubes and spherical shells

The WTT that we have developed for elastic plates can be easily applied to other geometries such as elastic tubes or shells.
If the technical aspect of the WTT can be adapted to these geometries, important differences in the results appear that need a
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specific discussion here. In fact, it introduces a new relevant parameter, namely R the radius of the cylinder or the sphere6, that
adds an extra dimensionless variable, R/`. Obviously, this additional parameter modifies the general dimensional analysis of the
problem, but it affects in fact more profoundly the wave turbulence dynamics. Firstly, the inclusion of this new length modifies
the dispersion relation, changing the power law dependence between the frequency and the wave-number. More precisely, the
dispersion relation exhibits different behaviors in the small and large k limits, questioning the possible expansion of the spectra
into simple power laws. More importantly, the lowest order nonlinearities appears to be quadratic instead of cubic. For quadratic
nonlinearity in general, WTT predicts that the relation between the energy spectrum and the energy flux P should scale as
nk ∼ P 1/2, instead of the P 1/3 found for cubic nonlinearity.

In the following, we present the results of the WTT applied to cylindrical tubes and spherical shells, emphasizing in particular
the differences with the WTT for elastic plates..

8.5.1. The Donnell–von Kármán equations.

The extensions of the Föppl–von Kármán equations for a cylindrical tube with a radius R which is large compared with the
local amplitude of the shell deflection, the so-called Donnell–von Kármán equations, read [55, 56]

ρ
∂2ζ

∂t2
= − Eh2

12(1− σ2)
∆2ζ +

1

R
∂xxχ+ {ζ, χ}; (103)

1

E
∆2χ = − 1

R
∂xxζ −

1

2
{ζ, ζ}. (104)

where the x and y are the curvilinear coordinates running along the axial direction of the cylinder, and along the circumference
respectively. The new term in the dynamics 1

R∂xxχ introduces a quadratic nonlinearity through the relation (104). It should be
emphasized that in the weak turbulence framework, this nonlinearity should dominate the cubic one of elastic plates, changing
thus dramatically the wave interaction process. Moreover, the linear dispersion relation becomes then

ωk =

√
E

ρ

(
h2

12(1− σ2)
k4 +

k4
x

R2k4

)
, (105)

which is a combination of two power law behaviors, ωk ∝ k2 at large k, (such that kR � 1 indicating that at these scales,
the shell behaves as a plate) and ωk ∝ Cte for small k (kR � 1), with in this case a non-isotropic property of the relation.
A cylindrical vibrating tube provides thus a non-isotropic oscillations which is reflected in the dynamical equations and in the
dispersion relation. The isotropy is recovered in the case of a spherical cap, for which the equations of motion can be obtained
in a simple way, yielding

1

R
∂xxχ −→

1

R
∆χ in (103), and

1

R
∂xxζ −→

1

R
∆ζ in (104). (106)

The linear dispersion relation is then:

ωk =

√
E

ρ

(
h2

12(1− σ2)
k4 +

1

R2

)
, (107)

that presents the same two asymptotic behaviors than for the tubes. In particular, notice that this dispersion relation exhibits

a minimum frequency, ω0 =
√

E
ρ

1
R and thus a forbiden frequency range [−ω0, ω0] for the vibrations. Similarly to (12) and (13),

the dimensionless versions of the Donnell–von Kármán equations for cylindrical tubes and elastic spherical shells read

∂2ζ ′

∂t′2
= −1

4
∆2ζ ′ +

1

R′
∂xxχ

′ + {ζ ′, χ′}; (108)

∆2χ′ = − 1

R′
∂′xxζ −

1

2
{ζ ′, ζ ′}. (109)

where R′ = R/` and again the primes will be dropped everywhere in the following.

6One may imagine that locally any shell may be seen as a combination of two distinct radius of curvature.
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8.5.2. Three-waves kinetic equation for the case of shells.

The nonlinear equations for the normal mode amplitudes reads:

dAsk
dt

+ isωskA
s
k = ε

∑
s1s2

∫
Lss1s2kk1k2

As1k1
As2k2

δ(k1 + k2 − k)dk12 + ε2
∑
s1s2s3

∫
Lss1s2s3kk1k2k3

As1k1
As2k2

As3k3
δ(k1 + k2 + k3 − k)dk123, (110)

which generalizes the equation (29). Here ωk is the linear dispersion relation (105) for the cylindrical shell and of (107) for the
spherical shell. The nonlinear interaction terms witness the quadratic nonlinearity and are given by:

Lss1s2kk1k2
= − is

(2π)
W−kk1k2 with Wk1k2k3 =

3

2
√

2
Xk1Xk2Xk3Vk1k2k3 ,

together with Xk = 1/
√
ωk and

Vk1k2k3 =


0 for an elastic plate

1
6R

(
|k2×k3|2 k21x
|k1|4 +

|k1×k2|2 k23x
|k3|4 +

|k3×k1|2 k22x
|k2|4

)
for a cylindrical shell

1
6R

(
|k2×k3|2
|k1|2 + |k1×k2|2

|k3|2 + |k3×k1|2
|k2|2

)
for a spherical shell

(111)

The cubic nonlinear terms are exactly the same as in the case of a plate. Notice that in the limit of R → ∞ one recovers the
equations for plates. Remarkably, both the dispersion relation ωk and the coefficients Vk1k2k3

are not isotropic in the case of a
cylinder shell.

Because of the quadratic nonlinearity that should a priori dominate the cubic one, the first non trivial contribution in the
WTT comes at the second order correction because of the three wave resonance induced by this quadratic interaction. This case
has been largely discussed in the literature [4] and can be easily adapted for the shell dynamics leading to the kinetic equation:

d

dt
n(p) = 4πε2

∫
|Wpk1k2

|2 n(p)n(k1)n(k2)

(
1

n(p)
− 1

n(k1)
− 1

n(k2)

)
δ(ω(p)− ω(k1)− ω(k2))δ(p− k1 − k2)dk12

+ 4πε2
∫
|Wpk1k2 |

2
n(p)n(k1)n(k2)

(
1

n(p)
+

1

n(k1)
− 1

n(k2)

)
δ(ω(p) + ω(k1)− ω(k2))δ(p+ k1 − k2)dk12

+ 4πε2
∫
|Wpk1k2

|2 n(p)n(k1)n(k2)

(
1

n(p)
− 1

n(k1)
+

1

n(k2)

)
δ(ω(p)− ω(k1) + ω(k2))δ(p− k1 + k2)dk12.(112)

The four waves resonant due to the cubic interaction term is also present but appears at order ε4 in the expansion, so that for
small enough ε the three wave interaction process is dominant.

8.5.3. Basic properties.

This three-waves kinetic equation (112) satisfies the same basic properties than the four-waves one obtained for elastic plates
in Sec. 5.2, namely equation (112) conserves energy,

∫
ωknkdk and momentum

∫
knkdk. Furthermore, the kinetic equation is

mandated by a H-theorem leading an isolated dynamics towards an equilibrium.

8.5.4. Kolmogorov-Zakharov spectrum for the case of shells.

Remarkably, equation (112) does not exhibit a pure power law spectrum as a stationary solution. This does not imply that
a wave turbulence spectrum does not exist, it just means that the stationary cascade is not a single power law. This is clearly a
consequence of the fact that the dispersion relation is not a simple power law in k. However, equation (112) maybe simplified in
the case of a spherical shell which corresponds to the case of isotropic spectrum. In this case the collisional term simplifies to:

d

dt
np = 4πε2

∫
Sωpω1ω2

[(n1n2 − npn1 − npn2) δ(ωp − ω1 − ω2) + 2 (n1n2 + npn2 − npn1) δ(ωp + ω1 − ω2)] dω1 dω2, (113)

with

Sωpω1ω2
=

p

ω′p

k1

ω′1

k2

ω′2

(∫ 2π

0

|Wpk1k2
|2δ(k1 + k2 + p) dϕp dϕk1 dϕk2

)
. (114)
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Here ω′p stands for the group velocity of the wave dωp/dp. Kolmogorov power law spectra can then be derived in the large R

limit (R/`� 1). In this case the dispersion relation (107) corresponds to ωk ≈ 1
2k

2 + 1
k2R2 + . . . Keeping the ballistic behavior

only ωk ∼ 1
2k

2, one can deduce from (114) that Sωpω1ω2
∼ 1

ω2R2 . It is thus possible in this limit to seek a power law solution
for the spectra: nωp = Kωp

−x. In this case the collisional term becomes:

Coll2↔1[n] = K2ωp
−2x−1I2↔1(x). (115)

Here I2↔1(x) is a function of x, that scales as 1/R2. The dimensionless function R2 I2↔1(x) may be determined in principle
numerically as in the case of 4-wave interactions (Sec. 6.1), yielding

I2↔1(x) = 4π

∫
D
S1u1u2

(u1u2)−x(1− ux1 − ux2)(1− u2x
1 − u2x

2 )δ(1− u1 − u2) du1 du2.

(116)

The stationary solutions arises from the zeroes of the function I2↔1(x). This last one at least vanishes for x = 1, the
equilibrium Rayleigh-Jeans equipartition, and for x = 1/2 which corresponds to finite energy flux stationary solution with a

constant pre-factor K2 = 2P

(
∂I2↔1(x)

∂x

∣∣∣
x=1/2

)−1

. The finite flux of energy stationary power law Kolmogorov spectrum

nω ∼ P 1/2 R

ω1/2
, (117)

is different than previous KZ spectrum (161) and different from the Rayleigh-Jeans equilibrium solution. However, the stationary

solution with x = 1/2 leads to a negative value for ∂I2↔1(x)
∂x

∣∣∣
x=1/2

, so that K2 < 0. The reader may notice that the function

I2↔1(x) has a positive concavity, therefore necessarily ∂I2↔1(x)
∂x

∣∣∣
x=1

> 0 and ∂I2↔1(x)
∂x

∣∣∣
x=1/2

< 0. Therefore, no stationary power

law solution is expected to exist here aside from the Rayleigh-Jean distribution equilibrium, a prediction that would be worth
to investigate in the future.

9. Conclusions

In this paper, we have presented a full derivation of the WTT for vibrating elastic plates. The analysis for a plate shows
that the cubic nonlinearity and the dispersive property of the waves lead to a four-waves nonlinear interaction processes. In
this case, the KZ turbulent solution is degenerated from the Rayleigh-Jeans distribution, so that the direct cascade of energy
KZ spectrum ends up as a logarithmic correction of the Rayleigh-Jeans distribution. Furthermore, since the dynamics does not
preserve the wave action no stationary inverse cascade solution can exist. Numerical simulations exhibit good agreement with
the WTT. On the other hand, experimental turbulent spectra show important differences with the predictions of the WTT that
can be mainly explained by the typical dissipation in plates that is present at all scales. Generalization of this WTT approach
to shell geometries has been also derived involving a three-waves interaction process instead of the four-waves resonance for
plates. Different perspectives of this work have been finally drawn in particular concerning the breakdown of wave turbulence
theory and the limit h→ 0 of strong turbulence.

Furthermore, plate wave turbulence provides actually a convenient tool for investigating the various aspects and perspectives
of wave turbulence. In fact, even if the four wave resonance exhibits degeneracy with the Rayleigh-Jean distribution, leading to
a logarithmic correction, it represents a prototype of wave turbulence, since both experimental and numerical investigations are
easy to perform, which is not the case for many wave turbulent systems. Recent theoretical and numerical developments have
taken advantages of this situation to investigate the statistical properties of this wave turbulence [37, 34, 38], showing in particular
an interesting connexion between the breakdown of wave turbulence at large scales with the appearance of intermittencies and d-
cones, as explained above. Phenomenological models have also been developed, allowing to study more easily transient dynamics
or realistic dissipation [29]. These models are based on the assumptions of the locality of the interactions in the Fourier space
leading to a nonlinear diffusion equation in the spectral domain, equivalent the Leith equation for turbulence [60]. The nonlinear
diffusion equation is obtained by imposing the Rayleigh-Jeans distribution and the KZ spectra as stationary solution although
a complete derivation of such local equation in the spectral domain is still lacking.
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10. Appendix

10.1. Relations between moments and cumulants

In this Appendix we derive the one to one relation between the moments and cumulants in the real and in the Fourier spaces.
If we denote the cumulants by the curly brackets {· · · }, then the one to one moment-cumulant relations are:

〈us(x)〉 = {us(x)},
〈us(x)us1(x+ r1)〉 = {us(x)us1(x+ r1)}+ {us(x)}{us1(r1)},

〈us(x)us1(x+ r1)us2(x+ r2)〉 = {us(x)us1(x+ r1)us2(x+ r2)}+

{us(x)}{us1(x+ r1)us2(x+ r2)}+ {us1(x+ r1)}{us(x)us2(x+ r2)}+

{us2(x+ r2)}{us(x)us1(x+ r1)}+ {us(x)}{us1(x+ r1)}{us2(x+ r2)},
...

〈us(x)us1(x+ r1) . . . usn−1(x+ rn−1)〉 = {us(x)us1(x+ r1) . . . usn−1(x+ rn−1)}+ one of all possible partitions.

Here by “one of all possible partitions” we stand

{a1a2a3 . . . an} = {a1}{a2a3 . . . an}+ {a2}{a1a3 . . . an}+ · · ·+ {a1a2}{a3 . . . an}+ · · ·+ {a1}{a2} . . . {an}.

Because of the space homogeneity, that is the cumulants and the moments do not depend on the absolute spatial positions
but only on the relative geometry. Hence, it is convenient to write them as follows:

R(n)ss1···sn−1(r1, . . . , rn−1) = {us(x)us1(x+ r1) . . . usn−1(x+ rn−1)}. (118)

Since {usi(x+ ri)u
sj (x+ rj)} = {usi(x)usj (x+ rj − ri)}, the moment-cumulant relation reads

〈us(x)〉 = R(1)s,

〈us(x)us1(x+ r1)〉 = R(2)ss1(r1) +R(1)sR(1)s1 ,

〈us(x)us1(x+ r1)us2(x+ r2)〉 = R(3)ss1s2(r1, r2) +R(1)sR(2)s1s2(r2 − r1) +

R(1)s1R(2)ss2(r2) +R(1)s2R(2)ss1(r1) +R(1)sR(1)s1R(1)s2 ,

〈us(x)us1(x+ r1)us2(x+ r2)us3(x+ r3)〉 = R(4)ss1s2s3(r1, r2, r3) +R(1)sR(3)s1s2s3(r2 − r1, r3 − r1) +

P123R
(1)s1R(3)ss2s3(r2, r3) + P123R

(2)ss1(r1)R(2)s2s3(r3 − r2)

P123R
(1)s1R(1)s2R(2)ss3(r3) + P123R

(1)sR(1)s1R(2)s2s3(r3 − r2) +

R(1)sR(1)s1R(1)s2R(1)s3 ,

〈us(x)us1(x+ r1) . . . usn−1(x+ rn−1)〉 = R(n)ss1···sn−1(r1, . . . , rn−1) + one of all possible partitions.

(119)

Where R(1)s does not depend on the space variable, but only on the temporal ones. The symbol P123 stands for a cyclical
permutation over the indices 1, 2, 3 (i.e. P123B123 = B123 +B312 +B231).

We end this Appendix by adding also the expressions for the higher order moments in the Fourier space. Replacing the
relations obtained in (119), and using (35) one obtains that the n-th order moment in the Fourier space is directly related to
the cumulants up to n-th order by:
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〈Al1p1
〉 = (2π)Q(1)l1δ(p1)

〈Al1p1
Al2p2
〉 = (2π)Q(2)l1l2(p2)δ(p1 + p2)

〈As1k1
As2k2

As3k3
〉 = (2π)Q(3)s1s2s3(k2,k3)δ(k1 + k2 + k3)

〈Al1p1
As1k1

As2k2
As3k3
〉 = (2π)Q(4)l1s1s2s3(k1,k2,k3)δ(p1 + k1 + k2 + k3) +

+ (2π)2 P123Q
(2)l1s1(k1)Q(2)s2s3(k3)δ(p1 + k1)δ(k2 + k3)

〈Al1p1
Al2p2

As1k1
As2k2

As3k3
〉 = (2π)Q(5)l1l2s1s2s3(p2,k1,k2,k3)δ(p1 + p2 + k1 + k2 + k3) +

+ (2π)2 P1′2′P123Q
(2)l1s1(k1)Q(3)l2s2s3(k2,k3)δ(p1 + k1)δ(p2 + k2 + k3) +

+ (2π)2Q(2)l1l2(p2)Q(3)s1s2s3(k2,k3)δ(p1 + p2)δ(k1 + k2 + k3) +

+ (2π)2 P123Q
(2)s1s2(k2)Q(3)l1l2s3(p2,k3)δ(k1 + k2)δ(p1 + p2 + k3)

〈Al1p1
Al2p2

Al3p3
As1k1

As2k2
As3k3
〉 = (2π)Q(6)l1l2l3s1s2s3(p2,p3,k1,k2,k3)δ(p1 + p2 + p3 + k1 + k2 + k3) +

+ (2π)2 P1′2′3′Q
(2)l1l2(p2)Q(4)l3s1s2s3(k1,k2,k3)δ(p1 + p2)δ(p3 + k1 + k2 + k3) +

+ (2π)2 P1′2′3′P123Q
(2)l1s1(k1)Q(4)l2l3s2s3(p3,k2,k3)δ(p1 + k1)δ(p2 + p3 + k2 + k3) +

+ (2π)2 P123Q
(2)s1s2(k2)Q(4)l1l2l3s3(p2,p3,k3)δ(k1 + k2)δ(p1 + p2 + p3 + k3) +

+ (2π)2 P1′2′3′P123Q
(3)l1l2s1(p2,k1)Q(3)l3s2s3(k2,k3)δ(p1 + p2 + k1)δ(p3 + k2 + k3) +

+ (2π)2Q(3)l1l2l3(p2,p3)Q(3)s1s2s3(k2,k3)δ(p1 + p2 + p3)δ(k1 + k2 + k3) +

+ (2π)3 P1′2′3′P123Q
(2)l1l2(p2)Q(2)l3s1(k1)Q(2)s2s3(k3)δ(p1 + p2)δ(p3 + k1)δ(k2 + k3) +

+ (2π)3PT 123Q
(2)l1s1(k1)Q(2)l2s2(k2)Q(2)l3s3(k3)δ(p1 + k1)δ(p2 + k2)δ(p3 + k3). (120)

Where PT 123 stands by the all posible permutations over the indices 1, 2 and 3.

10.2. Computation of the cumulant hierarchy

From the linear moments hierarchy (39) we can construct an equivalent non linear cumulant hierarchy using the relations
(38) and (120) derived previously. After some algebra one gets for n = 2

d

dt
Q(2)l1l2(p2) = −i(l1ω(p1) + l2ω(p2))Q(2)l1l2(p2) +

+ ε2P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

Q(4)l1s1s2s3(k1,k2,k3)δ(p1 + k1 + k2 + k3)dk123 +

+ (2π)ε2P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

P123Q
(2)l1s1(k1)Q(2)s2s3(k3)δ(p1 + k1)δ(k2 + k3)dk123.

Though, the equation for the third order cumulant is not required for the case of planar plates, we write explicitly this
equation because it becomes pertinent in the case of elastic shells [4]:

d

dt
Q(3)l1l2l3(p2,p3) = −i(l1ω(p1) + l2ω(p2) + l3ω(p3))Q(3)l1l2l3(p2,p3)

+ ε2P1′2′3′

∑
s1s2s3

∫
Ll3s1s2s3p3k1k2k3

Q(5)l1l2s1s2s3(p2,k1,k2,k3)δ(p1 + p2 + k1 + k2 + k3)dk123

+ ε2P1′2′3′

∑
s1s2s3

∫
Ll3s1s2s3p3k1k2k3

P1′2′P123(2π)Q(2)l1s1(k1)Q(3)l2s2s3(k2,k3)δ(p1 + k1)δ(p2 + k2 + k3)dk123

+ ε2P1′2′3′

∑
s1s2s3

∫
Ll3s1s2s3p3k1k2k3

P123(2π)Q(2)s1s2(k2)Q(3)l1l2s3(p2,k3)δ(k1 + k2)δ(p1 + p2 + k3)dk123.(121)
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For n = 4 one obtains:

d

dt
Q(4)l1l2l3l4(p2,p3,p4) = −i(l1ω(p1) + l2ω(p2) + l3ω(p3) + l4ω(p4))Q(4)l1l2l3l4(p2,p3,p4) +

+ ε2P1′2′3′4′

∑
s1s2s3

∫
Ll4s1s2s3p4k1k2k3

Q(6)l1l2l3s1s2s3(p2,p3,k1,k2,k3)δ(p1 + p2 + p3 + k1 + k2 + k3)dk123 +

+ (2π)ε2P1′2′3′4′

∑
s1s2s3

∫
Ll4s1s2s3p4k1k2k3

P1′2′3′P123Q
(2)l1s1(k1)Q(4)l2l3s2s3(p3,k2,k3)δ(p1 + k1)δ(p2 + p3 + k2 + k3)dk123 +

+ (2π)ε2P1′2′3′4′

∑
s1s2s3

∫
Ll4s1s2s3p4k1k2k3

P123Q
(2)s1s2(k2)Q(4)l1l2l3s3(p2,p3,k3)δ(k1 + k2)δ(p1 + p2 + p3 + k3)dk123 +

+ (2π)ε2P1′2′3′4′

∑
s1s2s3

∫
Ll4s1s2s3p4k1k2k3

P1′2′3′P123Q
(3)l1l2s1(p2,k1)Q(3)l3s2s3(k2,k3)δ(p1 + p2 + k1)δ(p3 + k2 + k3)dk123 +

+ (2π)2ε2P1′2′3′4′

∑
s1s2s3

∫
Ll4s1s2s3p4k1k2k3

PT 123Q
(2)l1s1(k1)Q(2)l2s2(k2)Q(2)l3s3(k3)δ(p1 + k1)δ(p2 + k2)δ(p3 + k3)dk123 , (122)

keeping in mind that for each equation
∑n
i=1 pi = 0.

10.3. The order ε2 correction for the second order cumulant.

The equation for the second order cumulant (40) up to second order reads, after the change of variables (43) and keeping in
mind the multi-scale assumption (42):

d

dt
q

(2)l1l2
2 (p2) = −F (2)l1l2

2 (p2) +

+ P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

q
(4)l1s1s2s3
0 (k1,k2,k3)ei(l2ω(p2)−s1ω(k1)−s2ω(k2)−s3ω(k3))tδ(p1 + k1 + k2 + k3)dk123 +

+ (2π)P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

P123q
(2)l1s1
0 (k1)q

(2)s2s3
0 (k3)ei(l2ω(p2)−s1ω(k1)−s2ω(k2)−s3ω(k3))tδ(p1 + k1)δ(k2 + k3)dk123.

here p1 + p2 = 0.
Expanding the eight terms of the sum

∑
s1s2s3

, and using the symmetries of the interaction terms, we can deduce, after some

algebra, up to order O(ε2):

F
(2)l1l2
2 (p2) = − d

dt
q

(2)l1l2
2 (p2)

+ P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

q
(4)l1s1s2s3
0 (k1,k2,k3)e−itΩ

s1s2s3−l2
k1k2k3p2 δ(p1 + k1 + k2 + k3)dk123

+ P1′2′P123

∑
s2s3

∫
Ll2−l2s2s3p2p2−k3k3

(2π)q
(2)s2s3
0 (k3)q

(2)l1−l2
0 (p2)e−itΩ

−l2s2s3−l2
p2−k3k3p2 dk3

+ P1′2′P123

∑
s3

∫
Ll2l2s3s3p2p2−k3k3

(2π)q
(2)s3s3
0 (k3)q

(2)l1l2
0 (p2)e−itΩ

l2s3s3−l2
p2−k3k3p2dk3

+ P1′2′P123

∑
s3

∫
Ll2l2−s3s3p2p2−k3k3

(2π)q
(2)−s3s3
0 (k3)q

(2)l1l2
0 (p2)dk3 ,

with the short notation Ωs1s2s3s4k1k2k3k4
= s1ω(k1) + s2ω(k2) + s3ω(k3) + s4ω(k4).

We are interested in a solution of q
(2)l1l2
0 (p2) that remains bounded for times of order O(ε−2). Then to capture the secular

terms we take the limit t→∞ keeping ε2t fixed, which really means that both q
(2)l1l2
0 (p2) and F

(2)l1l2
2 (p2) are constant over the
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integration in time. Such a procedure has an interpretation as an average. To see this, let us integrate over time, then divide
both sides by t, and finally take the limit t→∞, keeping ε2t fixed, yielding

F
(2)l1l2
2 (p2) = lim

t→∞

1

t

{
−q(2)l1l2

2 (p2) + α(2)l1l2(p2)

+ P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

q
(4)l1s1s2s3
0 (k1,k2,k3)∆(−Ωs1s2s3−l2k1k2k3p2

, t)δ(p1 + k1 + k2 + k3)dk123

+ P1′2′P123

∑
s2s3

∫
Ll2−l2s2s3p2p2−k3k3

(2π)q
(2)s2s3
0 (k3)q

(2)l1−l2
0 (p2)∆(−Ω−l2s2s3−l2p2−k3k3p2 , t)dk3

+ P1′2′P123

∑
s3

∫
Ll2l2s3s3p2p2−k3k3

(2π)q
(2)s3s3
0 (k3)q

(2)l1l2
0 (p2)∆(−Ωl2s3s3−l2p2−k3k3p2 , t)dk3

+ t

(
P1′2′P123

∑
s3

∫
Ll2l2−s3s3p2p2−k3k3

(2π)q
(2)−s3s3
0 (k3)q

(2)l1l2
0 (p2)dk3

)}
, (123)

where α(2)l1l2(p2) is an integration constant, that could depend on the slow varying scale time ε2t. In equation (123) we have
defined the function

∆(x, t) ≡
∫ t

0

eixτdτ =
eixt − 1

ix
.

One sees that F
(2)l1l2
2 (p2) represents the time average over a time interval t ∼ ε−2, then the slow dynamics is given by

a long-time cumulative effect of the faster time dynamics. Because of the Riemann Lebesgue lemma7, if a function f(x) is
sufficiently smooth and decays sufficiently fast at |x| → ∞ then [47]

lim
t→∞

∫ ∞
−∞

f(x)∆(x, t)dx = sgn(t)πf(0) + iP

∫ ∞
−∞

f(x)

x
dx ,

where P denotes the Cauchy principal value of the integral and sgn(t) = +1 if t > 0 and sgn(t) = −1 if t < 0. Symbolically, this
result will be written as

lim
t→∞

∆(x, t) = sgn(t)πδ(x) + iP

(
1

x

)
. (124)

As we suppose that q
(n)l1...ln
0 (p2, . . . ,pn) is smooth at the initial time, we can use this last relation when taking the limit at

(123)8. Using also that α(2)l1l2(p2) is constant and that q
(2)l1l2
2 (p2) must remain bounded to preserve a well orderer expansion,

one gets the equation (45)

F
(2)l1l2
2 (p2) = 3P1′2′

∑
s

∫
Ll2l2−ssp2p2−kk(2π) q

(2)−ss
0 (k)dkq

(2)l1l2
0 (p2),

where we have used some symmetries to simplify the right hand side. The remainder terms of (123) give the next order correction
of the second order cumulant:

q
(2)l1l2
2 (p2) = α(2)l1l2(p2) + “non resonant regular terms” . (125)

In this case, the “non resonant regular terms” are precisely the non resonant terms in (123), that is, the terms that vanish as one
take the limit of 1/t times the right hand side of (123). They are regular in the sense of preserving the well ordered expansion
in Fourier space, i.e. they do not have a singular behavior. The long time behavior of these terms, as we will see, can be always
absorbed by the integration constant, thus they play no role in the slow dynamics.

7If the Lebesgue integral of |f(x)| is finite, then limt→±∞
∫∞
−∞ f(x)eitxdx→ 0.

8It is also necessary to consider dispersive wave. If the frequency is proportional to the wave number, the last relation cannot be used in general.
See for example [57, 58].
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10.4. The order ε2 correction for the fourth order cumulant.

Writing the equation for the fourth order cumulant (see equation (122)) of the Appendix 10.3) up to second order, using the
change of variables (43) and the multi-scale expansion for time derivatives (42), the fourth order cumulant reads up to order ε2:

F
(4)l1l2l3l4
2 (p2,p3,p4) = lim

t→∞

1

t

{
−q(4)l1l2l3l4

2 (p2,p3,p4) + α(4)l1l2l3l4(p2,p3,p4) +

+P1′2′3′4′PT 123

∑
s1s2s3

Ll4s1s2s3p4−p1−p2−p3
(2π)2q

(2)s1l1
0 (p1)q

(2)s2l2
0 (p2)q

(2)s3l3
0 (p3)∆(−Ωs1s2s3−l4p1p2p3p4 , t)

+t

(
P1′2′3′4′P123

∑
s2

∫
Ll4−s2s2l4p4−k2k2p4

(2π)q
(2)−s2s2
0 (k2)q

(4)l1l2l3l4
0 (p2,p3,p4)dk2

)}
+ “non resonant regular terms” (126)

and we can use a priori the same kind of arguments as before. However, the third term of (126)

P1′2′3′4′PT 123

∑
s1s2s3

Ll4s1s2s3p4−p1−p2−p3
(2π)2q

(2)s1l1
0 (p1)q

(2)s2l2
0 (p2)q

(2)s3l3
0 (p3)∆(−Ωs1s2s3−l4p1p2p3p4 , t) (127)

deserves some caution because it does not have any integral over the k-space. Therefore, it develop a non-smooth behavior

at long times which is the main responsible of the long-time dynamics for q
(2)l1l2
0 (p2). These kind of terms are usually known

as “live terms” [46, 47]. Although the expansion is no longer regular in the Fourier space, it is regular in the physical space
(which is the pertinent one) since the transform into the real space requires some extra integrals of the cumulants. This extra
integration is enough to ensure well defined functions, and therefore the asymptotic cumulant expansion remains valid. Even
though there is no integral in the term (127), we can follow schematically the formal expression (124). The secular equation
then leads to

F
(4)l1l2l3l4
2 (p2,p3,p4) = 3P1′2′3′4′

(∑
s

∫
Ll4l4−ssp4p4−kk(2π) q

(2)−ss
0 (k)dk

)
q

(4)l1l2l3l4
0 (p2,p3,p4)

(128)

and the first correction to the fourth order cumulant is

q
(4)l1l2l3l4
2 (p2,p3,p4) = α(4)l1l2l3l4(p2,p3,p4) + “non resonant regular terms” +

+P1′2′3′4′PT 123

∑
s1s2s3

Ll4s1s2s3p4−p1−p2−p3
(2π)2q

(2)s1l1
0 (p1)q

(2)s2l2
0 (p2)q

(2)s3l3
0 (p3)∆(−Ωs1s2s3−l4p1p2p3p4 , t).

Note that F
(2)
2 and F

(4)
2 exhibit the same structure. Moreover, it is possible to show that for all order n

F
(n)l1...ln
2 (p2, . . . ,pn) = 3P1′...n′

[∑
s

∫
Llnln−sspnpn−kk(2π)q

(2)−ss
0 (k)dk

]
q

(n)l1...ln
0 (p2, . . . ,pn).

Then, one can integrate q
(n)l1...ln
2 (p2, . . . ,pn) for all n. The constants of integration α

(n)l1...ln
2 (p2, . . . ,pn) play a relevant role in

the expansion. Clearly these constants do depend on the slower time scales ε4t, and we can choose almost any value for α(n) in
such a way that they do not depend on the fast time scale. The only restriction it is that the cumulants q(n) must be smooth
functions at t = 0, that is, this choice cannot contradict the initial assumption. To avoid future complications we take α(n) in
order to have

lim
t→∞

q
(n)l1...ln
2 (p2, . . . ,pn) = lim

t→∞
“live terms” . (129)

Explicitly this choice means that
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lim
t→∞

q
(2)l1l2
2 (p2) = 0 (130)

lim
t→∞

q
(3)l1l2l3
2 (p2,p3) = 0 (131)

lim
t→∞

q
(4)l1l2l3l4
2 (p2,p3,p4) = P1′2′3′4′PT 123

∑
s1s2s3

Ll4s1s2s3p4−p1−p2−p3
(2π)2q

(2)s1l1
0 (p1)q

(2)s2l2
0 (p2)q

(2)s3l3
0 (p3)

×
(

sgn(t)πδ(−Ωs1s2s3−l4p1p2p3p4 ) + iP

(
1

−Ωs1s2s3−l4p1p2p3p4

))
. (132)

As we already mentioned, this choice is equivalent to absorb the long time behavior of the non resonant regular terms, hence:

α
(n)l1...ln
2 (p2, . . . ,pn) = lim

t→∞
“non resonant regular terms”.

At this order O(ε2), the resonant condition (46) gives only a nonlinear correction to the frequency. Moreover, from (45) and
using the properties of the L’s (32) one gets

F
(2)−ll
2 (p) = 0,

then q
(2)−ll
0 (p) does not depend on the slow time scale ε2t. For all the other cumulants one has an oscillatory dynamics

q
(n)l1...ln
0 (p2, . . . ,pn) = q̃

(n)l1...ln
0 (p2, . . . ,pn) exp (iε2t(P1′...n′ω

l1
2 (p1)))

where ωl2(p) comes directly from (45), which is a second order correction to the dispersion relation:

ωl2(p) = −3i
∑
s

∫
Lll−sspp−kk(2π)q

(2)−ss
0 (k)dk. (133)

10.5. The order ε4 correction for the second order cumulant and closure.

As done in the d
dtq

(n)
0 , in general, any higher order correction of the cumulant q

(n)l1...ln
2 (p2, . . . ,pn) could depend on the

slower time scales, so we can expand

d

dt
q

(n)l1...ln
2 (p2, . . . ,pn) = G

(n)l1...ln
0 (p2, . . . ,pn) + ε2G

(n)l1...ln
2 (p2, . . . ,pn) . . .

Doing the usual change of variable Q
(2)l1l2
4 (p2) = q

(2)l1l2
4 (p2) exp(−i(l1ω(p1) + l2ω(p2))t), into the equation for the fourth

order cumulant (see Appendix 10.2, equation (122)) one has the equation at order ε4 for the second order cumulant :

F
(2)l1l2
4 (p2) +G

(2)l1l2
2 (p2) +

d

dt
q

(2)l1l2
4 (p2) =

P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2k1k2k3

q
(4)l1s1s2s3
2 (k1,k2,k3)δ(p1 + k1 + k2 + k3) exp (−itΩ−l2s1s2s3p2k1k2k3

)dk123 +

P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2p2−k3k3

P123(2π)q
(2)l1s1
2 (p2)q

(2)s2s3
0 (k3) exp (−itΩ−l2s1s2s3p2p2k3k3

)dk3 +

P1′2′

∑
s1s2s3

∫
Ll2s1s2s3p2p2−k3k3

P123(2π)q
(2)l1s1
0 (p2)q

(2)s2s3
2 (k3) exp (−itΩ−l2s1s2s3p2p1k3k3

)dk3 .

Replacing the cumulant q
(4)l1s1s2s3
2 (k1,k2,k3) given in (132) and integrating over the fast time scale, keeping ε4t and ε2t constant

and following the same procedure used to solve the equation at order ε2, straightforward calculations give that the only possible
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relevant terms are

F
(2)l1l2
4 (p2) = lim

t→∞

1

t

{
P1′2′PT 456

∑
s1···s6

∫
Ll2s1s2s3p2k1k2k3

Ll1s4s5s6p1−k1−k2−k3
(2π)2q

(2)s4s1
0 (k1)q

(2)s5s2
0 (k2)q

(2)s6s3
0 (k3) ×

× δ(p1 + k1 + k2 + k3)

∫ t

0

∆(−Ωs4s5s6−l1k1k2k3p1
, τ) exp (−iτΩ−l2s1s2s3p2k1k2k3

)dτdk123

}
+ lim
t→∞

1

t

{
P1′2′PT 456

∑
s1···s6

∫
Ll2s1s2s3p2k1k2k3

P123L
s3s4s5s6
k3−p1−k1−k2

(2π)2q
(2)s4l1
0 (p1)q

(2)s5s1
0 (k1)q

(2)s6s2
0 (k2) ×

× δ(p1 + k1 + k2 + k3)

∫ t

0

∆(−Ωs4s5s6−s3p1k1k2k3
, τ) exp (−iτΩ−l2s1s2s3p2k1k2k3

)dτdk123

}
.

which reduce to the equations (47), (48) and (49) depending on the values of the indices l1 and l2.

10.6. Zakharov’s transformation for the collisional integrals.

In this Appendix we precise the Zakharov’s transformations to obtain simplified formulas for both collisional integrals
Coll3↔1[n] (68) and Coll2↔2 (69) of Section 6.1. As we mention in the text the case of the collisional term Coll3↔1[n] will be
realized in detail.

The key idea is to find a change of variables over the second term (77)

12πK3

∫
D
Sωpω1ω2ω3

(ω1ω2ω3ωp)
−x (ωxp − ωx1 + ωx2 + ωx3

)
δ(ω1 − ωp − ω2 − ω3)dω123,

that maps the line ω1 − ωp − ω2 − ω3 = 0 into the line ωp − ω1 − ω2 − ω3 = 0. The transformation reads

ω1 =
ω2
p

ω̃1
, ω2 =

ωpω̃2

ω̃1
, ω3 =

ωpω̃3

ω̃1
, (134)

that has a Jacobian
∣∣∣D(ω1,ω2,ω3)
D(ω̃1,ω̃2,ω̃3)

∣∣∣ =
(
ωp
ω1

)4

. Re-arranging terms one has

12πK3

∫
O

S
ωp

ω2
p
ω̃1

ωpω̃2
ω̃1

ωpω̃3
ω̃1

(ωpω̃1ω̃2ω̃3)−x
(
ω̃x1 − ωxp + ω̃x2 + ω̃x3

)(ωp
ω̃1

)−3x

δ

(
ωp
ω̃1

(ωp − ω̃1 − ω̃2 − ω̃3)

) ∣∣∣∣D(ω1, ω2, ω3)

D(ω̃1, ω̃2, ω̃3)

∣∣∣∣ dω̃123,

where the new domain of integration, after the change of variables, is exactly the region O, in Fig. 2.
Replacing the Jacobian and because of the degree of homogeneity of the S-matrix (66)

S
ωp

ω2
p
ω̃1

ωpω̃2
ω̃1

ωpω̃3
ω̃1

=

(
ω̃1

ωp

)
Sω1ωpω2ω3

=

(
ω̃1

ωp

)
Sω1ωpω2ω3

,

one finally has

−12πK3

∫
O

Sω̃1ωpω̃2ω̃3
(ωpω̃1ω̃2ω̃3)−x

(
ωxp − ω̃x1 − ω̃x2 − ω̃x3

)(ωp
ω̃1

)−3x+2

δ(ωp − ω̃1 − ω̃2 − ω̃3)dω̃123.

The same procedure may be done for the other two terms in (68) exchanging 1 ↔ 2 and 1 ↔ 3, therefore one gets at the end
that

Coll3↔1[Kω−xp ] = 12πK3

∫
O

Sωpω1ω2ω3
(ωpω1ω2ω3)−x

(
ωxp − ωx1 − ωx2 − ωx3

)
×

(
1−

(
ωp
ω1

)−3x+2

−
(
ωp
ω2

)−3x+2

−
(
ωp
ω3

)−3x+2
)
δ(ωp − ω1 − ω2 − ω3)dω123.

Rewriting everything in terms of dimensionless variables of integration ui = ωi
ωp

one gets equation (78) and (79).
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Similarly, the collisional term Coll2↔2, maybe written after an integration of (69) with respect to ω1 yielding

Coll2↔2[n] = 36πK3

∫
D
Sωpω1ω2ω3n1n2n3np

(
1

np
+

1

n1
− 1

n2
− 1

n3

)
dω23,

where ω1 = ω2 + ω3 − ωp. Because ω1 ≥ 0 one has that the domain of integration exclude the region O in Fig. 2, that is
D = I ∪ II ∪ III ∪ IV (ω2 ≥ 0, ω3 ≥ 0 and ω2 + ω3 − ωp ≥ 0). This domain of integration may be divided in the four distinct
domains: I, II, III&IV (see Fig. 2).

As in the previous collisional term Coll3↔1[n], one looks for a power law solution of the form np = Kω−xp , then one splits the
integral in the four different domains I, II, III & IV and finally the domains II, III &IV are mapped into I via the following
transformations :

II → I : ω2 =
ωpω̃3

ω̃1
, ω3 =

ωpω̃2

ω̃1
, ⇒ ω1 =

ω2
p

ω̃1
, (135)

III → I : ω2 =
ωpω̃1

ω̃3
, ω3 =

ω2
p

ω̃3
⇒ ω1 =

ωpω̃2

ω̃3
, (136)

IV → I : ω2 =
ω2
p

ω̃2
ω3 =

ωpω̃1

ω̃2
, ⇒ ω1 =

ωpω̃3

ω̃2
, (137)

where ω̃1 = ω̃2 + ω̃3 − ωp. The final collision integral, which is defined over the domain I of Fig. 2, reads

Coll2↔2[n] = 36πK3

∫
I

Sωpω1ω2ω3
(ωpω1ω2ω3)−x

(
ωxp + ωx1 − ωx2 − ωx3

)
×

(
1 +

(
ωp
ω1

)−3x+2

−
(
ωp
ω2

)−3x+2

−
(
ωp
ω3

)−3x+2
)
δ(ωp + ω1 − ω2 − ω3)dω123, (138)

where the tilde over the ω’s were removed and the δ-function was reintroduced to show explicitly the energy conservation of
the wave interaction. Notice that the integration domain I (defined in Fig. 2) differs from the one in the 3↔ 1 interaction. As
previously one may rewrite (138) using dimensionless variable ui = ωi

ωp
getting equations (80) and (81).

10.7. Bounds of the S-Matrix and the modified Ŝ-Matrix .

The exact calculation of the isotropic scattering matrix (64)

Sωpω1ω2ω3 =
p

ω′p

k1

ω′1

k2

ω′2

k3

ω′3

∫ 2π

0

|Jpk1,k2k3 |2δ(p+ k1 + k2 + k3) dϕp dϕk1 dϕk2 dϕk3 . (139)

with

|Jpk1,k2k3 |2 =
1

9
(XpXk1Xk2Xk3)2

[
|Tpk1;k2k3 |2 + |Tpk2;k1k3 |2 + |Tpk3;k2k1 |2+

2Tpk1;k2k3Tpk2;k1k3 + 2Tpk1;k2k3Tpk3;k2k1 + 2Tpk2;k1k3Tpk3;k2k1 ] . (140)

requires the calculation of two types of integrals. Namely the perfect square: |Tpk1,k2;k3 |2, and the cross term: 2Tpk1;k2k3Tpk2;k1k3 .
The integration of the cross term is a complicate problem, fortunately to study the convergence of the collisional term we do
not need to calculate them. A simple lower and upper bound for the expression (140) can be obtained

1

9

[
|Tpk1,k2;k3

|2 + |Tpk2;k1k3
|2 + |Tpk3;k2k1

|2
]
≤ |Jpk1k2k3 |2

(XpXk1
Xk2

Xk3
)2
≤ 1

3

[
|Tpk1,k2;k3

|2 + |Tpk2;k1k3
|2 + |Tpk3;k2k1

|2
]
.

The l.h.s of the inequality follows directly from (31) and the positiveness of (26), and the r.h.s inequality follows from the
Cauchy-Schwarz inequality. Therefore, the S-matrix (139) can also be bounded as

1

3
Ŝωpω1ω2ω3ω ≤ Sωpω1ω2ω3

≤ Ŝωpω1ω2ω3
, (141)
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where the modified S-matrix

Ŝωpω1ω2ω3
=

1

3

p

ω′p

k1

ω′1

k2

ω′2

k3

ω′3
(XpXk1

Xk2
Xk3

)2 [Ipk1k2k3 + Ipk2k1k3 + Ipk3k2k1 ] , (142)

and

Ipk1k2k3 =

∫ 2π

0

|Tpk1;k2k3
|2δ(p+ k1 + k2 + k3) dϕk dϕk1 dϕk2 dϕk3 , (143)

which correspond to the perfect square term in eq. (140).
We shall add an extra integral δ(p+ k1 + k2 + k3) =

∫
dλδ(p+ k1 + λ)δ(k2 + k3 − λ). The order of the indices p,k1, . . .

are chosen depending on the indices of the corresponding term |Tpk1;k2k3 |2. Therefore, equation (143) becomes

Ipk1k2k3 =

∫
dλ

∫ 2π

0

|Tpk1;k2k3 |2δ(p+ k1 + λ)δ(k2 + k3 − λ) dϕk dϕk1 dϕk2 dϕk3 .

The last integral would be over λ, so that for the integrations with respect to ϕk, ϕ1, ϕ2, ϕ3, ∈ [0, 2π] one assumes that
λ = (λ, 0).

Ikk1k2k3 =

∫
dλ

∫ 2π

0

|Tpk1;k2k3 |2δ(k cosϕk + k1 cosϕ1 + λ)δ(k sinϕk + k1 sinϕ1)×

×δ(k2 cosϕ2 + k3 cosϕ3 + λ)δ(k2 sinϕ2 + k3 sinϕ3) dϕk dϕ1 dϕ2 dϕ3.

The whole expression can be simplified because∫ 2π

0

f(ϕk, ϕ1)δ(k cosϕk + k1 cosϕ1 + λ)δ(k sinϕk + k1 sinϕ1) dϕk dϕ1 =
f(ϕ∗k, ϕ

∗
1)

2Spk1λ

where

Spk1λ =
1

4

√
((k + k1)2 − λ2)(λ2 − (k − k1)2),

is the area of the triangle built with the triad vectors p,k1,λ, and ϕ∗k, ϕ
∗
1 are the roots that vanish the arguments of the

δ-functions. Finally, because the tensor Tpk1;k2k3 of (26) depends explicitly on 1/|p+ k1|4 = 1/λ4 and |p× k1| = 2Spk1λ, one
gets

Ipk1k2k3 = 2π

∫ λmax

λmin

λdλ

λ8
(Spk1λ)

3
(Sk2k3λ)

3
(144)

where
λmin = max{|k − k1|, |k2 − k3|} and λmax = min{k + k1, k2 + k3}.

Rewriting the latter expression in term of the frequencies after the convenient change of variable u = λ2/2 one gets

Iωpω1;ω2ω3
=

π

29

∫ umax

umin

Ψ
(
(
√
ωp +

√
ω1)2, (

√
ωp −

√
ω1)2; (

√
ω2 +

√
ω3)2, (

√
ω2 −

√
ω3)2);u

)
du (145)

where we define

Ψ (a, b; c, d;u) =
1

u4
[(a− u)(u− b)]3/2 [(c− u)(u− d)]

3/2
(146)

and the integration limits reads

umin = max{(√ωp −
√
ω1)2, (

√
ω2 −

√
ω3)2} and umax = min{(√ωp +

√
ω1)2, (

√
ω2 +

√
ω3)2}.
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10.8. Appendix. Sigular behavior of the Ŝ-matrix in the ω2, ω3 plane.

In this appendix we shall study the convergence of the collisional integrals

Î
(1)
2↔2(x) = 36π

∫
I

Ŝ1u1u2u3coll
(+)du23 and Î

(1)
3↔1(x) = 12π

∫
O

Ŝ1u1u2u3coll
(−)du23,

where

coll(s) = (u2u3u1)−x (1 + sux1 − ux2 − ux3)
(
1 + su3x−2

1 − u3x−2
2 − u3x−2

3

)
. (147)

For the 2↔ 2 processes u1 = (u2 + u3 − 1) and for the 3↔ 1 processes u1 = (1− u2 − u3).
As shown in Fig. 3 the Ŝ-matrix presents various singularities in the u2 − u3 plane. These singularities are located near the

lines u2 + u3 = 1, u2 = 1 and u3 = 1, and also near the three points (u2 = 1, u3 = 0, (u2 = 0, u3 = 1), and (u2 = 1, u3 = 1). To
determine the convergence of the integral we need to determine the dominant behavior of the integrand near the critical zones.

Let us first consider the integral Î
(1)
2↔2 over the domain I in Fig. 2. In this domain there are various critical zones which are

located near the lines u2 + u3 = 1, u2 = 1 and u3 = 1, and also near the three corners of the triangles u2 = 1, u3 = 0, u2 = 0,
u3 = 1, and u2 = 1, u3 = 1. We shall consider them separately.

10.8.1. The line u2 + u3 = 1

In this case we take u1 = εδu1 (with ε� 1), and the other two variables may be written in terms of a new one Ω = u2 − u3.
In this way, u2 and u3 take the form:

u2 =
1

2
(1 + εδu1 + Ω) and u3 =

1

2
(1 + εδu1 − Ω) . (148)

We need to evaluate the three integrals of (83). The first contribution reads:

I1,εδu1;u2,u3 =

∫ (1+
√
εδu1)2

(1−
√
εδu1)2

ψ(u) du

where

ψ(u) = Ψ

((
1 +

√
εδu1

)2

,
(

1−
√
εδu1

)2

; (1 + εδu1) +
√

(1 + εδu1)2 − Ω2, (1 + εδu1)−
√

(1 + εδu1)2 − Ω2;u

)
and Ψ(a, b, c, d, u) was defined in Eq. (146). The key point here, is that the integral is concentrated around 1. Therefore it can
be approximated by

I1,εδu1;u2,u3
= 4
√
εδu1ψ(1) ≈ 32ε2δu2

1(1− Ω2)3/2.

The next contribution comes from

I1,u2;εδu1,u3 =

∫ umax

umin

ψ(u) du,

where

ψ(u) ≈ Ψ

((
1 +

√
(1 + Ω)/2

)2

,
(

1−
√

(1 + Ω)/2
)2

; (1 + Ω)/2, (1 + Ω)/2;u

)
.

In the limit ε→ 0, one has that the previous integral is concentrate over a very small region

umin =
(
−
√
εδu1 +

√
(1 + εδu1 − Ω)/2

)2

≈ 1

2
(1− Ω)− ε1/2

√
2(1− Ω)δu1

umax =
(√

εδu1 +
√

(1 + εδu1 − Ω)/2
)2

≈ 1

2
(1− Ω) + ε1/2

√
2(1− Ω)δu1

Therefore,

I1,u2;εδu1,u3
≈
∫ umax

umin

ψ(u) du ≈ 2ε1/2
√

2(1− Ω)δu1ψ ((1− Ω)/2) ≈ 128ε2δu2
1

(1 + Ω)3/2

(1− Ω)1/2
.
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A similar result arises for I1,u3;u2,εδu1
changing Ω→ −Ω. Therefore, the final Ŝ matrix behaves up to a leading order to:

Ŝ1,εδu1;u2,u3
≈ π

12
εδu1

(
9 + 6Ω2 + 8Ω4

)
(1− Ω2)3/2

+O(ε2). (149)

From the singular behavior of (147), one gets that the collisional integrand has two dominant behaviors depending on the value
of x:

coll(+)(δu1,Ω) ∼
{

(εδu1)2x−2f1(Ω, x) x < 2/3
(εδu1)−xf2(Ω, x) x > 2/3

where f1/2(Ω, x) are two functions of Ω, that we omit for simplicity.
Therefore, we can deduce that the collisional integral in the strip u1 ∈ [0, ε] reads,

Î
(1)
2↔2 ∼ ε

∫ ε

0

δu1dδu1

∫ 1−εδu1

−1+εδu1

Ŝ(δu1,Ω)coll(+)(δu1,Ω) dΩ ∼
{

ε2x x < 2/3
ε2−x x > 2/3

.

Therefore, this integral converges, for any small ε, if 1/2 < x < 2.

10.8.2. The line u2 = 1.

We shall approximate de Ŝ-matrix in the line u2 ≈ 1 and u3 ∈ [0, 1]. In this case we take u2 = 1+εδu2, hence u1 = u3 +εδu2.
First, we compute the contribution of

I1,u3+εδu2;1+εδu2,u3
=

π

512

∫ (1+
√
u3+εδu2)

2

(1−
√
u3+εδu2)

2
ψ(u) du ,

where

ψ(u) = Ψ

((
1 +

√
u3 + εδu2

)2

,
(

1−
√
u3 + εδu2

)2

;
(√

u3 +
√

1 + εδu2

)2

,
(√

u3 −
√

1 + εδu2

)2

;u

)
In this case, it is easy to see that the final result would be at order ε0, we approximate the integrand by

ψ(u) =
π

512u4

(
−u2 + 2u(u3 + 1)− (u3 − 1)2

)3
+O(ε),

hence, the final result is

I1,u3+εδu2;1+εδu2,u3
≈ π

384

(
−4
√
u3(15u2

3 + 14u3 + 15) + 6(1 + u3)(5u2
3 − 2u3 + 5) log

(
1 +
√
u3

1−√u3

))
+O(ε).

Next, we consider the integral

I1,1+εδu2;u3+εδu2,u3 =
π

512

∫ (
√
u3+
√
u3+εδu2)2

(
√
u3−
√
u3+εδu2)2

ψ(u) du,

where

ψ(u) = Ψ

((
1 +

√
1 + εδu2

)2

,
(

1−
√

1 + εδu2

)2

;
(√

u3 +
√
u3 + εδu2

)2

,
(√

u3 −
√
u3 + εδu2

)2

;u

)
.

Because the lower limit (
√
u3 −

√
u3 + εδu2)2 ≈ ε2

δu2
2

4u3
the integral diverges as u → 0. Keeping, the singular behavior of ψ(u)

near u ≈ 0, we approximate ψ(u) by:

ψ(u) ≈ Ψ

(
4,
(

1−
√

1 + εδu2

)2

; 4u3,
(√

u3 −
√
u3 + εδu2

)2

;u

)
.
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Keeping the singular behavior of order log ε one gets

I1,1+εδu2;u3+εδu2,u3
≈ −π

8
u3

3/2 log
(
ε2δu2

2

)
+O(1). (150)

The third term, leads also to a regular behavior, therefore the only singular behavior comes from equation (150). The final
Ŝ-matrix diverges logarithmically as

Ŝ1u1u2u3 ≈ −
π

24u
1/2
3

log
(
ε2δu2

2

)
+O(1). (151)

On the other hand the wave interaction term behaves as

coll(+) ≈ ε2x(3x− 2)u
−2(2+x)
3 (u3 − ux3)2(u2

3 + u2x
3 + u1+x

3 )δu2
2 +O(ε3).

The final collisional integral scales as:

Î
(1)
2↔2 =

∫ 1

ε

du3

∫ 0

−1

(εdδu2)Ŝ1u1u2u3coll
(+) du2 ∼

π

18
x(3x− 2)

(
ε7/2−2x

1− 4x
+
ε5/2−x

1 + 2x
+
εx+1/2

5− 2x
+
ε2x−1/2

4x− 7

)
log(ε).

Therefore, the integral Î
(1)
2↔2 is bounded for any 1/4 < x < 7/4 at this singular point.

10.8.3. The point u2 = 1 and u3 = 0.

Next, we investigate the situation around one of the corners of the integration domain u2 ≈ 1 and u3 ≈ 0. More precisely,
we take u2 = 1 + εδu2, u3 = εδu3, hence u1 = εδu1 = ε(δu2 + δu3).

First, we compute the contribution of

I1,εδu1;1+εδu2,εδu3 =

∫ (1+
√
εδu1)

2

(1−
√
εδu1)

2
ψ(u) du

where
ψ(u) = Ψ

(
(1 +

√
εδu1)2, (1−

√
εδu1)2; (

√
1 + εδu2 +

√
εδu3)2, (

√
1 + εδu2 −

√
εδu3)2;u

)
.

In the limit ε→ 0, one gets

I1,εδu1;1+εδu2,εδu3
≈ 4

√
εδu1ψ(1) + h.o.t. ≈ π

2
δu2

1δu
3/2
3 ε7/2 + h.o.t

Next contribution reads

I1,1+εδu2;εδu1,εδu3
=

∫ ε(
√
δu1+

√
δu3)

2

ε(
√
δu1−

√
δu3)

2
ψ(u) du

where

ψ(u) = Ψ

((
1 +

√
1 + εδu2

)2

,
(

1−
√

1 + εδu2

)2

; ε
(√

δu1 +
√
δu3

)2

, ε
(√

δu1 −
√
δu3

)2

;u

)
≈ 8

u5/2

[
(ε
(√

δu1 +
√
δu3

)2

− u)(u− ε
(√

δu1 −
√
δu3

)2

)

]3/2

[4ε(δu1 + δu3)]
3/2

. (152)

In the second approximation we have neglected a ε2δu2
2 factor because the leading order is for u ∼ ε. This readily gives the final

result up to order ε3/2. Moreover, the numerical pre-factors posses a close form:

I1,1+εδu2;εδu1,εδu3 ≈ ε3/2
π

12
(δu1δu3)1/4

(
4(δu1 + δu3)E[ϕ,m]− (2δu1 + 2δu3 −

√
δu1δu3)F [ϕ,m]

)
,
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where F (ϕ|m) and E (ϕ|m) are the elliptic integrals of first kind F and second kind E respectively, and the parameters read

ϕ = arcsin

(
2

(δu1δu3)1/4

√
δu1 +

√
δu3

)
& m =

(√
δu1 +

√
δu3

)2
4
√
δu1δu3

.

Finally, the expression

I1,εδu3;1+εδu2,εδu1 =
π

2
ε7/2δu2

3δu
3/2
1 ,

by symmetry arguments with the first term. Therefore, the final behavior of the Ŝ-matrix is up to its dominant order as ε−1/2:

Ŝ1u1u2u3 ≈
π

36ε1/2
(δu1δu3)−3/4

(
4(δu1 + δu3)E[ϕ,m]− (2δu1 + 2δu3 −

√
δu1δu3)F [ϕ,m]

)
. (153)

The collisional interaction term diverges as:

coll(+) ≈
{
ε2x−2(δu−x3 − δu−x1 )(δu3x−2

1 − δu3x−2
1 ) x < 1

x(3x− 2)ε2−2xδu2
2δu
−x
1 δu−x3 x > 1

.

The convergence of the integral is therefore conditioned by the integral (notice the change of variables
∫ ε

0
du3

∫ 1

1−u3
du2 →

ε2
∫ 1

0
dδu3

∫ 0

−δu3
dδu2)

Î
(1)
2↔2 ≈ ε2

∫ 1

0

dδu3

∫ 0

−δu3

∫ 1

1−u3

Ŝ1u1u2u3coll
(+) dδu2 ∼

{
ε2x−1/2 x < 1
ε7/2−2x x > 1

.

Therefore the collisional integral converges, for all ε > 0, if 1/4 < x < 7/4.

10.8.4. The point u2 = 1 and u3 = 1.

Near this singular point the one has u2 = 1 + εδu2, u3 = 1 + εδu3, hence u1 = 1 + εδu1 with δu1 = (δu2 + δu3). All these
infinitesimal being negative.

First, we compute the contribution of

I1,1+εδu1;1+εδu2,1+εδu3
=

∫ (1+
√

1+εδu1)
2

(1−
√

1+εδu1)
2
ψ(u) du (154)

where

ψ(u) = Ψ

((
1 +

√
1 + εδu1

)2

,
(

1−
√

1 + εδu1

)2

;
(√

1 + εδu2 +
√

1 + εδu3

)2

,
(√

1 + εδu2 −
√

1 + εδu3

)2

;u

)
(155)

≈ Ψ

(
4,
ε2

4
δu2

1; 4,
ε2

4
(δu2 − δu3)

2
;u

)
In the limit ε→ 0, one gets integrating and expanding up to leading order in ε one gets:

I1,1+εδu1;1+εδu2,1+εδu3 ≈ −64

((
δu2

2 + δu2
3

) (
δu4

2 − 4δu2
2δu

2
3 + δu4

3

)
(δu2

2 − δu2
3)

3 log

(
δu2

δu3

)
+ log

(
ε2δu2 δu3

))
+O(ε0).

Similarly, other terms in (83) are obtained by exchanging δu1 by δu2 and δu3 in the general integral (155).
In the first case,

ψ(u) ≈ Ψ

(
4,
ε2

4
δu2

2; 4,
ε2

4
(δu1 − δu3)

2
;u

)
but δu1 − δu3 = δu2 therefore
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I1,1+εδu2;1+εδu1,1+εδu3
≈ −64 log(ε2δu2

2) +O(ε0).

And the same results holds for the remaining integral but changing δu2
2 → δu2

3.
Therefore the final Ŝ-matrix is

Ŝ1u1u2u3
≈ − π

24

((
δu2

2 + δu2
3

) (
δu4

2 − 4δu2
2δu

2
3 + δu4

3

)
(δu2

2 − δu2
3)

3 log

(
δu2

δu3

)
+ 3 log

(
ε2δu2 δu3

))
.

On the other hand the collisional term behaves as

coll = 3x(x− 1)2(3x− 2)ε4δu2
2δu

2
3 +O(ε5)

The convergence of the integral is therefore conditioned by the integral (notice the change of variables
∫ 1

1−ε
∫ 1

1−ε du3du2 →
ε2
∫ 0

−1

∫ 0

−1
dδu3dδu2)

Î
(1)
2↔2 ≈ ε2

∫ 0

−1

∫ 0

−1

dδu3dδu2Ŝ1u1u2u3
coll(+) dδu2 ∼ ε6

Therefore the collisional integral converges, for all ε > 0.

10.8.5. The point u2 = 0 and u3 = 0.

In this section we focus on the 3↔ 1 collisional integral (79). Contrary to the case 2↔ 2, in the present situation there are
four critical regions inside the domain O in Fig. 2. The three already discussed and because Ŝ1u1u2u3

is a continuous function,
the convergence criteria is the same. Therefore, we shall focus in the fourth singular point at the origin u2 = 0 and u3 = 0.

In this last case, we take u2 = εδu2, u3 = εδu3, but u1 = 1− εδu1. (Here δu1 = δu2 + δu3.)

I1,1−εδu1;εδu2,εδu3 =

∫ umax

umin

ψ(u) du (156)

where

ψ(u) = Ψ

((
1 +

√
1− εδu1

)2

,
(

1−
√

1− εδu1

)2

; ε
(√

δu2 +
√
δu3

)2

, ε
(√

δu2 −
√
δu3

)2

;u

)
where the limits are defined after (84). There are two cases, the first domain is defined near the diagonal δu2 ≈ δu3 while the

second domain is defined through ε
(√
δu2 −

√
δu3

)2 ≥ ε2δu2
1/4.

In the later case,

I1,1−εδu1;εδu2,εδu3 =

∫ ε(
√
δu2+

√
δu3)

2

ε(
√
δu2−

√
δu3)

2
ψ(u) du (157)

and keeping in mind that the u ∼ ε we approximate

ψ(u) ≈ 8

u5/2

(
u− ε(

√
δu2 −

√
δu3)2

)3/2 (
ε(
√
δu2 +

√
δu3)2 − u

)3/2

noticing that the final scaling should be ε3/2. The final result becomes:

I1,1−ε(δu2+δu3);εδu2,εδu3
≈ ε3/2

π

12
(δu2δu3)

1/4
[(

2(δu2 + δu3)−
√
δu2δu3

)
F (ϕ|m)− 4(δu2 + δu3)E (ϕ|m)

]
with

ϕ = sin−1

(
2(δu2δu3)1/4

√
δu2 +

√
δu3

)
and m =

(
√
δu2 +

√
δu3)2

4
√
δu2δu3

.
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The final, interaction matrix becomes

Ŝ1,1−ε(δu2+δu3);εδu2,εδu3
≈ ε−1/2 π

36 (δu2δu3)
3/4

[(
2(δu2 + δu3)−

√
δu2δu3

)
F (ϕ|m)− 4(δu2 + δu3)E (ϕ|m)

]
, (158)

if ε
(√
δu2 −

√
δu3

)2 ≥ ε2δu2
1/4.

On the other hand if ε
(√
δu2 −

√
δu3

)2 ≤ ε2δu2
1/4, one needs to re-compute the integrals because the integration domains

change.

I1,1−2εδu2;εδu2,εδu2
≈

∫ 4εδu2

(1−
√

1−2εδu2)
2
ψ(u) du

where

ψ(u) ≈ 8

u5/2
(u− 4εδu2)3/2

((
1−

√
1− 2εδu2

)2

− u
)3/2

.

Because both limits are near the origin, the final result maybe computed using the same kind of elliptic integrals, the final
behavior reads,

I1,1−2εδu2;εδu2,εδu2
≈ −π

8
ε3/2δu

3/2
2 log(εδu2) + h.o.t.

Therefore, in this case, the Ŝ matrix is approximated by

Ŝ1u1u2u2 =
π

24
ε3/2δu

3/2
2 log(εδu2) .

if ε
(√
δu2 −

√
δu3

)2 ≤ ε2δu2
1/4.

On the other hand, the four waves interaction term (147) is approximated there by

coll(−) ≈
{
ε2x−2(δu−x2 + δu−x3 )(δu3x−2

2 + δu3x−2
3 ) x < 1

x(3x− 2)ε2−2xδu2
1δu
−x
2 δu−x3 x > 1

.

The convergence of the integral is therefore conditioned by the integral (notice the change of variables
∫ ε

0

∫ ε
0
du3 du2 →

ε2
∫ 1

0

∫ 1

0
dδu2 dδu3)

Î
(1)
2↔2 ≈ ε2

∫ 1

0

∫ 1

0

Ŝ1u1u2u3
coll(−) dδu2 dδu3 ∼

{
ε2x−1/2 x < 1
ε7/2−2x x > 1

.

Therefore, the collisional integral converges, for all ε > 0, if 1/4 < x < 7/4.

10.9. Logarithmic correction of the Kolmogorov-Zakharov spectrum

When the KZ spectrum coincides with the equilibrium solution, no power law solution seems to exist. However, one may
pursue a perturbative expansion to catch a stationary, non power law constant flux solution. Because of the degeneracy aspect
of the solution one seeks an expansion of the form

nω = Kω−x logz(ω/ωc). (159)

We Introduce this Ansatz into the collisional terms and apply the change of variables ωi = ωui. Because of the locality of
interactions one may expand the collisional integral in the parameter | log(ω/ωc)| � | log ui|. The result is a series of the form

Coll3↔1[n] = K3ω1−3x
(
I

(1)
3↔1(x) log3z(ω/ωc) + zI

(2)
3↔1(x) log3z−1(ω/ωc) + I

(3)
3↔1(x, z) log3z−2(ω/ωc) + . . .

)
,

similarly

Coll2↔2[n] = K3ω1−3x
(
I

(1)
2↔2(x) log3z(ω/ωc) + zI

(2)
2↔2(x) log3z−1(ω/ωc) + I

(3)
2↔2(x, z) log3z−2(ω/ωc) + . . .

)
,
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where we have neglected terms of order O(log3z−3(ω/ωc)) and smaller. The integrals I
(1)
3↔1(x) and I

(1)
2↔2(x) are exactly (79) and

(81) respectively (with γ = −1). Other integrals are cumbersome so that we do not write them here. Because both expansions

have the same form we shall define I(1)(x) ≡ I
(1)
3↔1(x) + I

(1)
2↔2(x) and similarly for others, I(2)(x) and I(3)(x, z). As before,

replacing into the equation for the energy P (75), one gets

P = −
∫ ω

0

K3ω2−3x
(
I(1)(x) log3z(ω/ωc) + zI(2)(x) log3z−1(ω/ωc) + I(3)(x) log3z−2(ω/ωc) + . . .

)
dω

= K3ω3(1−x)
c

[
I(1)(x)

1

33z+1(x− 1)3z+1
Γ(3z + 1, 3(x− 1) log(ω/ωc))

+zI(2)(x)
1

33z(x− 1)3z
Γ(3z, 3(x− 1) log(ω/ωc))

+I(3)(x, z)
1

33z−1(x− 1)3z−1
Γ(3z − 1, 3(x− 1) log(ω/ωc)) + . . .

]
. (160)

Here we have used the integral∫ ω

0

ω2−3x logs(ω/ωc) dω = − ω
3(1−x)
c

31+s(x− 1)1+s
Γ(1 + s, 3(x− 1) log(ω/ωc)),

where Γ(1 + s, z) =
∫∞
z
tse−t dt is the incomplete Γ-function.

Now we study the local behavior of (160) around x ≈ 1. Expanding the required quantities around x = 1, up to the lowest
non-trivial order one gets

I(1)(x) ≈ 1

2
I(1)′′(1)(x− 1)2 +O(x− 1)3

I(2)(x) ≈ I(2)′(1)(x− 1) +O(x− 1)2

I(3)(x, z) ≈ I(3)(1, z) +O(x− 1).

Where the required expressions are quite simple

lim
x→1−

I(1)′′(x) = 72π

(∫
O

S1u1u2u3
(u1u2u3)−1(u1 log u1 + u2 log u2 + u3 log u3)2δ(1− u1 − u2 − u3)du123+

3

∫
I

S1u1u2u3(u1u2u3)−1(−u1 log u1 + u2 log u2 + u3 log u3)2δ(1 + u1 − u2 − u3)du123

)
,

lim
x→1−

I(2)′(x) = −I(1)′′(1),

lim
x→1−

I(3)(x, z) =
z(3z − 1)

6
I(1)′′(1). (161)

Finally, doing the same kind of expansions for the Γ one has

Γ(3z + 1, 3(x− 1) log(ω/ωc)) ≈ Γ(3z + 1) +O(x− 1),

Γ(3z, 3(x− 1) log(ω/ωc)) ≈ Γ(3z) +O(x− 1), (162)

Γ(3z − 1, 3(x− 1) log(ω/ωc)) ≈ 1

3z − 1

(
Γ(3z)− (3(x− 1) log(ω/ωc))

3z−1
e−3(x−1) log(ω/ωc)

)
+O(x− 1).

Therefore

P = K3I(1)′′(1)
ω

3(1−x)
c

(x− 1)3z−1

[
Γ(3z + 1)

2 33z+1
− zΓ(3z)

33z
+

z

6 33z−1
Γ(3z)

]
+

−K3I(1)′′(1)ω3(1−x)
c

[ z

6 33z−1
(3 log(ω/ωc))

3z−1
e−3(x−1) log(ω/ωc)

]
. (163)
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We have not taken any kind of limit so far. Expression (163) is only an expansion up to first non trivial order in (x − 1).
Naturally, the first term of (163) is independent of ω, representing thus a constant flux. The second term does depend explicitly
on ω but it becomes independent of ω in the limit x → 1. This limit, on the other hand, requires z → 1/3 because of the
ill-defined limit 1

(x−1)3z−1 as x→ 1 and z → 1/3.

Indeed, the order and directions of the limits may thus play a role, which is evident in the study of the limit x → 1 and
z → 1/3 of 1

(x−1)3z−1 . However the final result is independent of the way one proceeds in the limit operation. This is because

the quantity [
Γ(3z + 1)

2 33z+1
− zΓ(3z)

33z
+

z

6 33z−1
Γ(3z)

]∣∣∣∣
z=1/3

≡ 0.

The final result is

lim
x→1−

lim
z→1/3

P = − 1

18
K3I(1)′′(1). (164)

Therefore, one has that the dimensionless constant is K = −
(

18P
I(1)′′(1)

)1/3

. Because I(1)′′(1) ≥ 0 the result is consistent with

n(ω) > 0 for ω < ωc :

nω =

(
18P

I(1)′′(1)

)1/3
1

ω
log1/3(ωc/ω). (165)

In the other limit ω > ωc we can perform the same calculation but changing the integration limit to be consistent

P = −
∫ ∞
ω

K3ω2−3x
(
I(1)(x) log3z(ω/ωc) + zI(2)(x) log3z−1(ω/ωc) + I(3)(x, z) log3z−2(ω/ωc) + . . .

)
dω.

It is easy to see that the only difference introduced by the change of the integration limits is a single sign:∫ ∞
ω

ω2−3x logs(ω/ωc) dω =
ω

3(1−x)
c

31+s(x− 1)1+s
Γ(1 + s, 3(x− 1) log(ω/ωc)),

which converges for x > 1. The final result then is given by

n(ω) =

(
18P

I(1)′′(1)

)1/3

ω−1 log1/3(ω/ωc), (166)

which also gives a positive wave action for ω > ωc.
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[25] O. Cadot, C. Touzé and A. Boudaoud, Phys. Rev. E 82 (2010) 046211.

[26] B. Miquel and N. Mordant, Phys. Rev. Lett. 107 (2011) 034501.
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[38] S. Chibbaro and C. Josserand, Phys. Rev. E 94, 011101(R) (2016).
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[41] Th. von Kármán, Ency. d. math. Wiss., Bd. IV. 2, II, Leipzig, 1910, §8.

[42] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon, New York, 1959.

[43] A.N. Kolmogorov: Dokl. Akad. Nauk SSSR 30 (1941) 299 [ English: Sov. Phys. Dokl.]

[44] Y.V. Lvov and S. Nazarenko, Phys. Rev. E 69, (2004) 066608;
Y. Choi, Y.V. Lvov and S. Nazarenko, Phys. Lett. A 332, (2004) 230;
Y. Choi, Y.V. Lvov and S. Nazarenko, Phys. Rev. E 201, (2005) 121;
Y. Choi, Y.V. Lvov and S. Nazarenko, “Recent developments in fluid dynamics 5 (2004) 225 (Transworld Research Network,
Kepala, India).
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