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Thin liquid or gas films are everywhere in nature, from foams
to submillimetric bubbles at a free surface, and their rupture
leaves a collection of small drops and bubbles. However, the
mechanisms at play responsible for the bursting of these films
is still in debate. The present study thus aims at understanding
the drainage dynamics of the thin air film squeezed by grav-
ity between a millimetric droplet and a smooth solid or a liquid
thin film. Solving coupled lubrication equations and analyzing the
dominant terms in the solid- and liquid-film cases, we explain why
the drainage is much faster in the liquid-film case, leading often
to a shorter coalescence time, as observed in recent experiments.

drop | coalescence | film | drainage

Coalescence is a major process in multiphase flows, since it
controls, with the break-up dynamics, the global evolution

of the number of droplets and bubbles in the flow. It is there-
fore crucial for spray cooling and coating (1), viscous flows in
capillaries (2, 3), emulsion and foams (4, 5), or droplet trans-
mission of diseases (6, 7), for instance. Coalescence is in fact
a complex phenomenon, the effective contact between two liq-
uid bodies being not at all automatic as the interfaces approach
each other, since surface interactions and viscous forces can, in
particular, contribute to separate the interfaces (8–11). These
forces can lead to the striking “floating drops” phenomena, as
already mentioned by Lord Rayleigh (12) and Osborne Reynolds
(13): For instance, it can be observed in an everyday life “exper-
iment” by watching small coffee drops dancing in the mug
above the liquid surface before sinking (14), or when a drop
is deposited on a vibrating liquid bath (15, 16). The coales-
cence dynamics is controlled at first by the drainage of the thin
fluid film separating the two liquid bodies, whether we con-
sider drop–drop, drop–film, or drop–substrate coalescences. The
drainage of this separating film determines the time for coales-
cence that can be defined as the time between the beginning
of the drainage regime (where no motion is present but the
drainage) to the time where the film ruptures so that the two
liquid bodies enter in contact, or the liquid starts to wet the
substrate. Such thin-film drainage follows a lubrication dynam-
ics (17–23), where the viscosity of the surrounding fluid induces
high pressure in the film that leads to the interface deformation
and sometimes to the entrapment of an air bubble at coalescence,
as observed in drop impacts, for instance (24, 25). However, the
lubrication dynamics prevents mathematically the rupture of the
film in finite time [at least when surface tension is present (26)],
even when the film is squeezed, so that the final stage of coales-
cence has to involve additional physical mechanisms, dominant
at microscopic or even nanoscopic scales. Usual suspects are
van der Waals interactions (27), surface roughness, thermal fluc-
tuations, Marangoni currents, and noncontinuum effects (28),
although their precise implications remain largely an open ques-
tion. Even if this final stage of the coalescence dynamics can
thus exhibit high fluctuations, it can usually be described as a
thickness cut-off below which the film rupture happens rapidly,
so that the lubrication dynamics can be taken as the dominant

mechanism to determine the coalescence time. Eventually, even
the drainage time can exhibit large variations in experiments and
models, mostly poorly understood, so that it is crucial to have a
better comprehension of the lubrication dynamics of drainage in
the different configurations encountered (11, 29).

Drop coalescence (30–32) can be obtained through mainly
two different practical configurations: drop collision (to another
drop, a bath, or a substrate in particular), where the drop veloc-
ity is the main control parameter (33); and drop deposition,
the situation considered in the present paper, where the drop
is smoothly deposited on the substrate, meaning that its veloc-
ity is zero and that the weight of the drop only is leading to its
coalescence with the substrate (29). While most of the experi-
mental, numerical, and theoretical studies have focused on the
drop/drop collision, only little attention has been paid eventu-
ally to the case of the deposition of a drop on a smooth liquid
substrate, where the coalescence dynamics is almost quasistatic,
since it is driven by the weight of the drop that squeezes the
air gap between the drop and the wetted substrate. Recently,
an experimental investigation of the coalescence of a millimet-
ric drop gently laying on a thin viscous film (29) has revealed
unexpected drainage dynamics: The drainage time is seen to be
much shorter in the presence of a very thin viscous film than the
time of touchdown estimated through simple lubrication argu-
ments. The authors show experimentally that tangential flows
at both interfaces between the gas and the liquids cannot be
neglected, as it is often done in theory, allowing a more rapid
drainage of the gas layer (34). These tangential flows are cre-
ated by the viscous entrainment of the liquids by the gas layer
that is squeezed, a mechanism also observed recently in Lei-
denfrost configuration (35). In order to elucidate the influence
of these tangential flows in the drainage dynamics, the present
study investigates the drainage dynamics of the thin air film
squeezed between a weighting millimetric drop and a solid or
wetted surface, thus varying the flow structure of the interstitial
gas layer.

Significance

When a millimetric droplet is laying on a smooth surface,
either liquid or solid, the slow gravity drainage of the air layer
separating the surface from the drop leads to the entrapment
of a thin bubble underneath. In this work, we investigate the-
oretically, and through numerical computations, the bubble-
drainage dynamics on a solid and a liquid film. We show and
explain how this dynamics before coalescence is much faster
on a thin liquid film than on a solid surface.
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Problem Formulation
We consider a liquid droplet landing gently on a wetted surface.
The main question we want to address is thus: How long does
it take for the two liquid surfaces to reach a threshold thickness
(defined by the rupture mechanism) as the viscosity of the liquid
film varies?

The liquid-film height is denoted by h1(r , t), and the local
height of the droplet interface is h2(r , t), where r is the radial
coordinate according to the axis of symmetry, and t is time. As
seen in Fig. 1, the three domains (liquid film, gas film, and liquid
droplet) are denoted, respectively, 1, 2, and 3, and every physi-
cal parameter (density, viscosity, etc.) will be noted with an index
corresponding to the relevant region.

The drop is weighting on the thin gas and liquid films, creat-
ing a pressure field that exactly compensates the drops’ weight
(inertia can be neglected in the drainage regime). Viscous and
pressure forces balance inside each film, creating viscous flows
leading to their squeezing. We thus model the dynamics using the
lubrication equation both in the gas and liquid films (domains 1
and 2 in Fig. 1), while a free slip boundary condition is taken at
the interface between the drop and the gas film (19, 36). Indeed,
considering a liquid motion inside the drop on the scale of the
radius of the drop a , as experimentally reported in ref. 29, the
tangential stress continuity across the gas film (of typical thick-
ness H̄ ) and the drop allows us to neglect the shear stress at the
interface on the gas side as long as (η2/η3)(a/H̄ )� 1, which is
the case in the experiments (29).

The weight of the drop is transmitted to the films through
the interface normal stress condition, involving a pressure jump
because of the surface tension. In the present study, for the sake
of simplicity of the equations, we consider the two-dimensional
(2D) version of the dynamics. It corresponds to assuming that
axi-symmetric terms can be neglected, which is acceptable as
soon as ∂A/∂r�A/r , for any field A(r , t), an approximation
that is valid far from the symmetry axis, and thus particularly
near the neck separating the entrapped gas bubble from the sur-

Fig. 1. Shape of a droplet lying on a thin liquid film. Underneath the drop,
a gas dimple is entrapped, and the liquid film is deformed. The computa-
tional domain is defined as the radial extent [0, R], where R is the radius at
which the slope of the droplet interface equals one. The top surface of the
drop corresponds to a static equilibrium shape, under the effects of gravity
and surface tension.

rounding, as argued, for instance, in ref. 37 in a similar context.
Finally, in the lubrication approximation, we take the linearized
curvatures for small slopes (|∂rh|� 1):

κ1'
∂2h1
∂r2

and κ2'
∂2h2
∂r2

.

Using lubrication theory in the two films, matching tangential
velocities and shear stress between regions 1 and 2 and free
slip boundary condition between regions 2 and 3, we obtain two
coupled evolution equations for h1 and H ≡ h2− h1:

∂h1
∂t

=
∂

∂r

(
h3
1

3η1

∂p1
∂r

+
h2
1H

2η1

∂p2
∂r

)
, [1]

∂H

∂t
=

∂

∂r

(
H 3

3η2

∂p2
∂r

+
h1H

2η1

{
h1
∂p1
∂r

+ 2H
∂p2
∂r

})
. [2]

For each equation, one recognizes the usual lubrication term
in the first term of the right-hand side, while the second term
corresponds to the coupling between the two layers due to the
tangential velocity boundary conditions. While in both films the
gravity can be neglected (18), the coupling with the weighting
drop is made through the pressure fields. Assuming small cap-
illary numbers in the drop (in the experiments of ref. 29, the
capillary numbers are always smaller than one, and mostly below
0.1), the pressure inside the drop can be taken purely hydro-
static, so that the pressure in the gas film (constant in z in the
lubrication approximation) is given by Laplace’s law:

p2 = p3(h2)− γκ2' p0− ρ3gh2− γ
∂2h2
∂r2

, [3]

where p0 is a reference pressure to be determined by the free-
surface boundary condition at the top of the drop, and γ is the
surface tension. The pressure in the liquid film (region 1) is also
given by Laplace’s law, yielding:

p2− p1(h1) = γκ1' γ
∂2h1
∂r2

. [4]

The fact that, within these approximations, we can neglect the
influence of the velocity field in the drop for the pressure that
is thus purely hydrostatic indicates that the deformation of the
drop is driven only by the gravity field and the lubrication pres-
sure beneath the drop. Therefore, the upper drop shape is simply
that of a sessile drop, balancing surface tension with gravity.
It means that, beside the region where the gas-film dynamics
is relevant, the drop shape is static! This remark is crucial for
solving numerically the system of equations above (Eqs. 1–4):
As shown in Fig. 1, we introduce a distance R, large enough
so that the lubrication pressure can be neglected. Actually, R
is chosen such that the slope of the sessile top surface that
patches the film interface at r =R is of the order of unity (in
the numerics shown here we have taken it equal to one, and we
have checked that the results are mostly unchanged when vary-
ing this parameter around this value) (Fig. 1). The films Eqs.
1 and 2 are solved for r <R, while the drop shape is that of
the static one outside this region (see more details in Materials
and Methods).

The system of equations is controlled by the following dimen-
sionless numbers, using for the typical radius of the drop the
value of R computed using the slope 1 for the patching condition
between the sessile drop and the gas layer/drop interface:

Bo =
ρ3gR

2

γ
, St1 =

η1

ρ3R
√
gR

, St2 =
η2

ρ3R
√
gR

.
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The last dimensionless number is the ratio between the asymp-
totic thickness of liquid film h0 = limr→∞ h1(r) and R:

α= h0/R.

In the present study, the Bond number Bo is assumed to have
a moderate value, neither too big nor too small compared to
one (Bo =O(1)). Notice that the experiments described in ref.
29 correspond to significantly smaller droplets, with Bo' 0.36
based on the equivalent radius of the droplet. In the following,
we shall investigate the drainage dynamics as the parameters
of the liquid film change, through the variation of our control
parameter St1. To dimensionalize the other parameters, we shall
use typical values of the Stokes numbers from the experiments
described in ref. 29: St2' 1.25× 10−4 and α' 0.02. With these
parameters, and after computing the top sessile drop, the value
of R for all of the computations is R' 1.4 mm. We will thus
vary the liquid-film parameters, from the typical values of the
experiments St1' 0.6 toward the deposition on a solid substrate
that can be accounted for simply in our equations by taking the
limit St1→∞.

Typical interfaces profiles of the numerical solution of Eq.
1, Eq. 2, and the vertical force balance Eq. 25 are seen in
Fig. 2 for two different configurations: On Right, the dynamics in
the liquid-film case (St1' 0.6) appears truly different from the
solid case shown on Left (St1 =∞). We expect, therefore,
the time of contact also to be different and to depend on St1.
The present paper aims, therefore, to understand how this con-
tact time depends on the liquid-film properties, focusing on the
influence of St1 on the drainage of the air film.

Drainage Dynamics
In that purpose, we investigate and clarify first the dimple-
drainage dynamics for these two characteristic cases St1 =∞ and
St1 = 0.6. Fig. 3 presents the evolution in time of the air gap
H /R as a function of r/R. As for Fig. 2, Left corresponds to the
solid substrate (St1→∞) and Right to the liquid film (St1' 0.6).
In both cases, the profiles correspond to τ = t

√
g/R = 0.7× 2n

with n ∈ [0, 9] in dimensionless units (Materials and Methods).
After the dimple is formed, at short time, the drainage appears

much faster in the case of a liquid film underneath. This fact
is closely related to the continuity of tangential velocity across
interface 1/2: In the solid case, this velocity is zero, whereas

Fig. 2. Dimensionless droplet and film shapes h2/R and h1/R at the dimen-
sionless time τ = t

√
g/R = 360, in the case of a solid surface (Left; St1 =∞)

and a liquid film (Right; St1' 0.6). Parameters are as follows: Bo = 1.01,
St2 = 1.25× 10−4. The red curve is the pressure in the gas film, and the
black curve is the pressure in the liquid film (pressure scale is not indicated).
At the pinch point, the pressure gradient in the liquid film is always much
smaller than the pressure gradient in the gas film.

it is finite in the case of a liquid film. Therefore, viscous dis-
sipation in the gas film at the tip of the dimple (where H is
minimal) slows down more efficiently the dimple drainage, by
contrast with the liquid-film case, where the gas can more easily
escape from the dimple. Moreover, the liquid film deforms under
the pressure field for finite St1, so that the drop shape under-
neath and the film thickness almost coincide, as it can be seen in
Fig. 2, Right.

Beside these qualitative observations, can we understand more
quantitatively the dynamics of the dimple drainage in both cases?
Fig. 4 shows the evolution with time for the two cases shown
in Fig. 3 (St1 = 0.6 and St1 =∞) of the two relevant quanti-
ties to describe the dimple geometry, H̄ (t) the dimple mean
height, defined below, and the minimal air gap, at the neck,
Hmin(t) =H (rmin(t), t), where rmin(t) is its radial neck position
(which is only slightly varying with time). Different scalings with
time are observed in the asymptotic limit t→∞: For the solid
substrate case St1 =∞ (black dashed lines), we have H̄ ∼ t−1/4

and Hmin∼ t−1/2, while for the liquid film St1 = 0.6 (blue solid
lines), the dynamics follows H̄ ∼Hmin∼ t−2/3.

To explain these scalings, let us first start with the solid
case limit, where Eq. 2 reduces to the well-known lubrication
equation:

∂H

∂t
=

1

3η2

∂

∂r

(
H 3 ∂p2

∂r

)
[5]

for which the drainage dynamics has been already characterized
(20–23). We will recall the main results here for the consistency
of our paper and also because it gives the framework for solv-
ing the finite St1 cases. The interface geometry consists of a
dimple of constant width, deflating slowly, connected to a small
gap region, where viscous dissipation dominates, located in rmin,
that we can take constant when we approach the drainage time.
We are looking for radial and vertical scalings of this small gap
region, namely, `(t) and Hmin(t), respectively. In the dimple, the
gas flux Q =− H3

3η2

∂p2
∂r

can be neglected, leading to a uniform
pressure P2. This is confirmed by Fig. 2, where the red curve
on the left (solid case) corresponds to the pressure in the gas
film. Integrating Eq. 3 twice according to r , where the gravity
term can be neglected for the small dimple, we obtain h2(r), and,
therefore H , assuming that H (rmin)' 0:

H (r , t) =
3

2

r2min− r2

r2min
H̄ (t), [6]

where

H̄ (t)≡ 1

rmin

∫ rmin

0

Hdr .

The curvature of the small gap region needs to be matched on its
right to the curvature of the sessile top surface, yielding:

Hmin

`2
∼ 1

`c
, [7]

where `c =
√
γ/ρ3g is the capillary length. Moreover, the

decrease per unit time of the dimple surface Sd is equal to
the leaking gas flux in the small gap. Indeed, integrating Eq. 5
between r = 0 and r = rmin, we get for the surface decrease:

− dSd

dt
=−rmin

dH̄

dt
=−H 3

min

3η2

∂p2
∂r

, [8]

Remember that we do our analysis in 2D, but notice that the
scalings would be unchanged in the three-dimensional analy-
sis, since the self-similar dynamics is around a fixed radius rmin.
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Fig. 3. Successive plots of the dimensionless gas-film height H/R in the
case of a solid film (St1→∞; Left) and a liquid film (St1 = 0.6; Right),
for τ = t

√
g/R = 0.7× 2n with n∈ [0, 9]. Parameters are Bo = 1.01, St2 =

1.25× 10−4.

In the thin-gap region, the pressure gradient is large and given
by Eq. 3:

∂p2
∂r
∼−γ ∂

3H

∂r3
∼−γHmin

`3
. [9]

Moreover, balancing the pressure in the dimple with the drop
weight and integrating the pressure gradient across the neck
gives the following relations:

P2∼
ρ3gR

2

rmin
and rmin∼Bo`c , [10]

where we have used the fact that the scaling for the surface of
our 2D drop is S ∼R2, which is true for small to moderate Bond
numbers. Using Eqs. 7–10, we obtain:

dH̄

dt
∼− γH 4

min

η2`3rmin
∼−

√
gR

Bo3/4St2

(
Hmin

R

)5/2
. [11]

So far, we have only used lubrication theory and the match-
ing of the curvature in rmin to the outer curvature given by the
top sessile drop. To close the system of equations, we need a
relation between the neck and the inner region. For the solid-
film case, it can be done by matching the slopes between the
dimple and the neck. Using the dimple geometry Eq. 6 and
the length scales relevant in the neck, this matching yields in
scaling:

Hmin

`
∼ H̄

rmin
, [12]

a result that could be obtained by using asymptotic matching
between the two regions (38). Finally, using Eqs. 7, 11, and 12,
we obtain:

`∼ H̄

Bo
, Hmin∼

R

Bo3/2

(
H̄

R

)2
, [13]

and

dH̄

dt
∼−

√
gR

Bo9/2St2

(
H̄

R

)5
. [14]

Integrating Eq. 14 in time, we finally obtain the following long-
time behaviors, already obtained, for instance, by (18):

H̄

R
∼Bo9/8St1/42 τ−1/4, [15]

Hmin

R
∼Bo3/4St1/22 τ−1/2, [16]

`

R
∼Bo1/8St1/42 τ−1/4, [17]

where τ = t
√

g/R is the dimensionless time. These scalings in
τ are confirmed by the numerical solution of Eqs. 1 and 2, as
seen in Fig. 4, where the dashed curves correspond to H̄ /R and
Hmin/R in the limit St1→∞.

In the liquid case, we have to question the dominant balance
in Eq. 2. This balance is actually the same as for the solid case,
for two reasons. The first one is that |∂p2/∂r |� |∂p1/∂r | in the
small gap region, as confirmed in Fig. 2. This is mainly due to
surface tension that damps the high-curvature regions on the
interface 1/2, and therefore smooths the pressure gradient. The
other reason is that in our configuration, and in the experiments
described in ref. 29, St2� St1, such that the first term in the
right-hand side of Eq. 2 is bigger than the third term, namely:∣∣∣∣H 3

3η2

∂p2
∂r

∣∣∣∣� ∣∣∣∣h1H 2

η1

∂p2
∂r

∣∣∣∣ ,
during our numerics. This condition gives, in fact, the validity

range

H � η2
η1

h1, or
H

h1
� St2

St1
,

for the scaling deduced below, suggesting that another scal-
ing should be observed for smaller neck thickness than those
computed numerically. Finally, the dominant balance in the
lubrication Eq. 2 is still consistent with Eq. 5. So, why are
the self-similar scalings observed in Fig. 4 so different between
the two cases? The answer lies in the fact that the scalings of
Hmin and H̄ are no longer related through Eq. 12, which is due
to the matching between the parabolic dimple and the neck. For
the liquid-film case, the dimple geometry is very different, show-
ing a flatter structure (Fig. 3, Right), and our numerics suggest
that the dynamics of Hmin and H̄ are similar:

Fig. 4. Dimensionless mean height of the dimple H̄? = H̄/R and minimum
height H?

min = Hmin/R as a function of dimensionless time τ in the case
of a liquid film (St1 = 0.6; solid curves) and a solid film (St1→∞; dashed
curves). (Inset) −dH̄?/dτ as a function of H?

min and the predicted law

H?5/2
min /Bo3/4St2. Ranges are [10−4, 10−1] in x and [10−7, 10] in y. Solid case,

black dashed curve; liquid-film case, blue solid curve.
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Hmin∼βH̄ [18]

up to a prefactor β that is a priori very small and depends on all
the control parameters: Bo, St1, St2, and α. Using Eqs. 7 and 11,
which are still valid in the liquid-film case (since the curvature of
the drop interface is much larger than the curvature of the film
interface), and Eq. 18, we obtain:

H̄

R
∼Bo1/2St2/32 β−5/3τ−2/3, [19]

Hmin

R
∼Bo1/2St2/32 β−2/3τ−2/3, [20]

`

R
∼ St1/32 β−1/3τ−1/3. [21]

These scalings in τ are again confirmed by numerical simula-
tions, as seen in Fig. 4. The agreement, although very good, is
not perfect because the dominant balance used in Eq. 2 is only
an approximation here.

Moreover, our approaches to determine the scalings assume
somehow a self-similar shape of the interface near the neck in
the form:

H (r , t)∼Hmin(t)F

(
r − rmin

`(t)

)
. [22]

Such self-similar character of the successive film thicknesses H ,
Eq. 22, can be verified. In the solid case, from Eqs. 7 and 12, we
obtain `∼ H̄ and Hmin∼ H̄ 2, while in the liquid-film case, from
Eqs. 7 and 18, we get `∼ H̄ 1/2 and Hmin∼ H̄ . Therefore, rescal-
ing the radial and vertical coordinates of the interface around
the neck according to these scalings allows us to check for spa-
tial self-similarity, as seen in Fig. 5. The interface profiles rescale
nicely near the neck for each case, while they do not at all in the
dimple region. Remarkably, plugging this self-similar ansatz Eq.
22 into the lubrication Eq. 5 does not lead to the balance between
the left- and the right-hand side of the equation for the scal-
ings obtained above, showing in fact that the evolution of Hmin is
subdominant versus the mass flux terms. Indeed, neglecting the
time-dependent and gravity terms in front of surface tension, we
obtain the so-called “current equation”:

F 3Fξξξ =C , [23]

where ξ= (r − rmin)/`(t) and C is a constant. This equation is
studied in great detail in ref. 2, where we learn that the selected

Fig. 5. Same profiles as in Fig. 3 rescaled according to [10H̄/R, 200(H̄/R)2]

(solid case; Left), [(H̄/R)1/2, H̄/R] (liquid case; Right), and shifted horizontally
in order for the neck to be at the same position for all profiles. The linear
and quadratic behaviors corresponding to the critical solution of Eq. 23 are
represented as red dots.

solution to this equation is usually the critical case, for which
growth is quadratic on one side and linear on the other. This
remark should be valid in the neck region, in both the liquid- and
solid-film cases. We have verified this fact on the rescaled profiles
shown in Fig. 5, and it turns out that, in both cases, the self-
similar shape behaves like ξ toward the inner region (dimple)
and ξ2 toward the outer region (sessile drop), as indicated in the
figure with red dots. This result is also consistent with the right
and left matchings used to obtain the self-similarity exponents.

Contact Time
An interesting output of the present study, relevant to the recent
experimental observations (29), is the time for the gas film to
reach a thickness small enough such that coalescence can occur.
Fig. 6 shows the dimensionless time it takes for the minimum
gas-film dimensionless height Hmin/R to reach a given value,
as a function of the Stokes number St1. The curves correspond
to decreasing thresholds (from 10−3 to 4× 10−4 from bottom
to top). Finally, the two lines correspond to the solid case for
a threshold 4× 10−4 (dashed) and 3× 10−4 (solid). Although
the fluid cases exhibit a local maximum, for 1. St1 . 100, even
higher than the solid curve (St1→∞) for the minimal threshold
(4× 10−4), we suspect that this local maximum disappears as the
threshold decreases. Indeed, the lower threshold limit 3× 10−4

in the solid case is well above the last curve for the liquid case.
However, keeping in mind that we want to compare this length
to a rupture-critical gas-layer thickness, it is interesting to notice
that there could be an optimum value of the Stokes number St1
for which the coalescence time is maximum. Although we do
not have a definitive explanation for the existence of this max-
imum time to reach a given threshold, we would like to argue
that this behavior comes from the competition between the gas-
film drainage and the squeezing of the liquid film. Indeed, in this
intermediate regime, the liquid film still deforms highly, so that
the gas-film drainage is affected by the liquid-film geometry.

In order to estimate the drainage time before the film rupture,
we need to estimate the typical length at which the physical mech-
anism for the rupture is pertinent. For the deposition on a liquid
film, van der Waals forces (27) or noncontinuum effects (39)
become relevant typically around and below 100 nm, leading (for
a typical drop size of 1 mm) to a dimensionless threshold of 10−4

of the order of the smallest threshold investigated numerically
in Fig. 6. On the other hand, for solid deposition, the rough-
ness of the substrate is often the dominant mechanism for the
film rupture. Taking a smooth substrate of roughness 1 µm, we
obtain a dimensionless threshold of 10−3. These estimates might
explain why, although the drainage on a thin liquid film is faster
than on a solid substrate, the coalescence time can be smaller
for solid substrate, as observed eventually in experiments (29).

Conclusion
In this study, we have been investigating the drainage dynam-
ics of a thin viscous liquid film squeezed by a millimetric droplet
under gravity. We have shown a significant drainage speed-up
when a liquid film covers the solid substrate, even if it is very
viscous (Figs. 4 and 6). The drainage time can, therefore, vary
by a few orders of magnitude as the viscosity of the liquid film
changes. Nevertheless, the final coalescence time remains depen-
dent of the final physical mechanism of the film rupture, and
our approach allows for a quantitative prediction of the coa-
lescence time when the threshold length scale is determined.
Although our self-similar predictions (Eq. 22) are probably dif-
ficult to measure experimentally, it would be very interesting to
measure rigorously the coalescence time when varying the viscos-
ity and the thickness of the liquid film. Moreover, we leave as a
perspective of the present work parametric studies consisting of
varying systematically these parameters, and the volume of the
drop, through the Bond number.
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Fig. 6. Dimensionless time τ for Hmin/R to reach a given threshold (from
4× 10−4 for blue to 10−3 for brown, with an increment of 10−4). The
black dashed and black solid lines correspond to 4× 10−4 and 3× 10−4,
respectively, in the solid case.

Materials and Methods
In order to solve numerically Eqs. 1 and 2, we need boundary conditions in
r = 0 and r = R. In r = 0, we use symmetric boundary conditions (h′1 = h′′′1 =

0, H′ = H′′′ = 0). In r = R, h1 is matched onto an outer static meniscus, and
H′ is matched to its value given by the sessile top surface. The last condition
for H is given by the vertical force balance:

ρ3Sg =

∫ R

0
p2dr = p0(t)R− ρ3gRh2− γ

∂h2

∂r
(R), [24]

where we have used Eq. 3, S is the surface of half of the drop (a surface in
our 2D numerics in fact), and

h2 =
1

R

∫ R

0
h2dr.

p2 is supposed to relax toward 0 in r = R:

0 = p0− ρ3gh2(R)− γ
∂2h2

∂r2
(R),

giving p0. Finally, we get an integral equation for h2:

S
R

= h2(R) +
γ

ρ3g

∂2h2

∂r2
(R)−

1

R

∫ R

0
h2dr−

γ

ρ3gR

∂h2

∂r
(R) [25]

which is solved at each timestep, together with Eqs. 1 and 2.
Eqs. 1–4 and 25 are made dimensionless according to the length scale R,

velocity scale
√

gR, and pressure scale ρ3V2 = ρ3gR. R is chosen to be the
radial distance at which the slope of the sessile top surface is equal to 1

(Fig. 1). Plugging Eqs. 3 and 4 into Eqs. 1 and 2, we obtain two nondimen-
sional equations for h?

1 = h1/R and H? = H/R involving spatial derivatives of
h?

1 and H? up to the fourth derivative. We use a second-order, semi-implicit,
finite-difference method, treating implicitly the spatial derivatives in the
right-hand side of Eqs. 1 and 2. Doing so, we get rid of the stiffness of these
equations, coming from the high-order spatial derivatives (40, 41).

Eqs. 1 and 2 read, respectively, after dropping the ?:

∂h1

∂τ
= h′2

(
−h2

1h′1
St1

−
6h1h′1H + 3h2

1H′

6St1

)

+ h′′2

(
−h3

1

3St1
−

h2
1H

2St1

)

+ h′′′2

(
−2h2

1h′1
St1Bo

−
6h1h′1H + 3h2

1H′

6St1Bo

)

+ h′′′′2

(
−2h3

1

3St1Bo
−

h2
1H

2St1Bo

)

+ H′′′
(

h2
1h′1

St1Bo

)

+ H′′′′
(

h3
1

3St1Bo

)
,

∂H

∂τ
= h′2

(
−H2H′

St2
−

2h1h′1H + h2
1H′

2St1
−

2h′1H2 + 4h1HH′

2St1

)

+ h′′2

(
−H3

3St2
−

h2
1H

2St1
−

h1H2

St1

)

+ h′′′2

(
−H2H′

St2Bo
−

2h1h′1H + h2
1H′

St1Bo
−

2h′1H2 + 4h1HH′

2St1Bo

)

+ h′′′′2

(
−H3

3St2Bo
−

h2
1H

St1Bo
−

h1H2

St1Bo

)

+ H′′′
(

2h1h′1H + h2
1H′

2St1Bo

)

+ H′′′′
(

h2
1H

2St1Bo

)
,

where h2 = h1 + H and ′ denote differentiation according to r. For all of
the computations presented in this article, the dimensionless spatial domain
r ∈ [0, 1] is discretized into 201 intervals, and the timestep is δt = 10−3.

Data Availability. All the data included in the present article and the
code used to solve the equations and obtain these data are available in
the 4TU Research Data repository at https://doi.org/10.4121/uuid:c09719c0-
8404-43e1-b1f1-1833ded0e87a.
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