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In stably stratified and rotating fluids, an axisymmetric columnar vortex can be
unstable to a special instability with an azimuthal wavenumber m = 1 which bends
and slices the vortex into pancake vortices (Gent & McWilliams Geophys. Astrophys.
Fluid Dyn., vol. 35 (1–4), 1986, pp. 209–233). This bending instability, called
the ‘Gent–McWilliams instability’ herein, is distinct from the shear, centrifugal or
radiative instabilities. The goals of the paper are to better understand the origin and
properties of this instability and to explain why it operates only in stratified rotating
fluids. Both numerical and asymptotic stability analyses of several velocity profiles
have been performed for wide ranges of Froude number Frh = Ω0/N and Rossby
number Ro = 2Ω0/f , where Ω0 is the angular velocity on the vortex axis, N
the Brunt–Väisälä frequency and f the Coriolis parameter. Numerical analyses
restricted to the centrifugally stable range show that the maximum growth rate
of the Gent–McWilliams instability increases with Ro and is independent of Frh for
Frh 6 1. In contrast, when Frh > 1, the maximum growth rate decreases dramatically
with Frh. Long axial wavelength asymptotic analyses for isolated vortices prove that
the Gent–McWilliams instability is due to the destabilization of the long-wavelength
bending mode by a critical layer at the radius rc where the angular velocity Ω is
equal to the frequency ω: Ω(rc)= ω. A necessary and sufficient instability condition
valid for long wavelengths, finite Rossby number and Frh 6 1 is that the derivative
of the vertical vorticity of the basic vortex is positive at rc: ζ ′(rc) > 0. Such a
critical layer rc exists for finite Rossby and Froude numbers because the real part
of the frequency of the long-wavelength bending mode is positive instead of being
negative as in a homogeneous non-rotating fluid (Ro= Frh =∞). When Frh > 1, the
instability condition ζ ′(rc)> 0 is necessary but not sufficient because the destabilizing
effect of the critical layer rc is strongly reduced by a second stabilizing critical layer
rc2 existing at the radius where the angular velocity is equal to the Brunt–Väisälä
frequency. For non-isolated vortices, numerical results show that only finite axial
wavenumbers are unstable to the Gent–McWilliams instability.
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1. Introduction

Vortices can be subjected to many instabilities in stably stratified and rotating fluids
because of their own structure or because of interactions with other vortices. If we
exclude the latter possibility by restricting the problem to the idealized configuration
of a single vertical columnar axisymmetric vortex, there are still several instability
mechanisms that can disrupt a vortex. The shear and centrifugal instabilities are
not specific to a stratified-rotating fluid and have been well-known since Rayleigh
(1880, 1917). The former is a two-dimensional instability that can destabilize
non-axisymmetric perturbations with azimuthal wavenumbers m > 2 if the vertical
vorticity derivative ζ ′(r) vanishes for some radius r (Rayleigh 1880; Howard & Gupta
1962; Carton & McWilliams 1989; Carnevale & Kloosterziel 1994). This necessary
condition is equivalent to the inflection point condition for parallel shear flows. The
centrifugal instability is intrinsically three-dimensional and most unstable for short
axial wavelength and axisymmetric perturbations m= 0 in inviscid fluids. The classical
Rayleigh criterion (Rayleigh 1917) for the centrifugal instability can be extended to
stratified-rotating inviscid fluid (Kloosterziel & van Heijst 1991; Billant & Gallaire
2005) by replacing the circulation by the absolute circulation, i.e. a necessary and
sufficient instability condition is that the square of the absolute circulation decreases
for increasing radius, regardless of the stratification. Even if the axisymmetric mode
is dominant in an inviscid fluid, it should be noted that non-axisymmetric modes can
be the most unstable in viscous fluids owing to the combined effects of stratification
and viscosity (Billant, Colette & Chomaz 2004) or confinement in shallow layers
(Lahaye & Zeitlin 2015) which damp short axial wavelengths.

Recently, a different type of instability has been shown to occur specifically in
vortices in a stratified rotating fluid: the radiative instability (Smyth & McWilliams
1998; Schecter & Montgomery 2004; Billant & Le Dizès 2009; Le Dizès & Billant
2009; Riedinger, Le Dizès & Meunier 2010, 2011; Park & Billant 2012, 2013).
This instability is due to a coupling between the waves sustained by the vortex and
inertial-gravity waves in the surrounding fluid. The mechanism of the instability can
be interpreted as a wave over-reflection at the critical radius where the azimuthal
phase velocity matches the angular velocity of the base flow, a radius which exists
only for non-axisymmetric waves. The radiative instability is most unstable when the
fluid is strongly stratified and non-rotating. As the background rotation increases, its
growth rate decreases and vanishes in the quasi-geostrophic limit (strongly stratified
and rapidly rotating fluid). This regime pertains to large scale atmospheric and
oceanic vortices (see Schecter & Montgomery (2006) for a summary of the typical
characteristics of various geophysical vortices).

A fourth type of instability has been evidenced by Gent & McWilliams (1986) on
vortices with zero-circulation in quasi-geostrophic fluids. In contrast to the shear or
centrifugal instabilities, it is most unstable for a finite axial wavenumber and occurs
only for the azimuthal wavenumber m = 1. This instability bends and fragments
the vortex into lenticular vortices (Gent & McWilliams 1986; Hua 1998; Smyth
& McWilliams 1998). Gent & McWilliams (1986) called this three-dimensional
instability the ‘internal instability’ as opposed to the ‘external instability’, i.e. the
two-dimensional shear instability. Here, we shall call the internal instability the
‘Gent–McWilliams instability’ in order to distinguish it from the other types
of three-dimensional instability. The Gent–McWilliams (GMW) instability is the
most dangerous instability in quasi-geostrophic fluids for sufficiently steep vortex



Gent–McWilliams instability of a vortex in stratified rotating fluids 7

A

B

(a) (b) (c) (d )

FIGURE 1. Mechanism of the GMW instability as explained by Flierl (1988) for piecewise
vortex profiles in a quasi-geostrophic fluid. As sketched in (a), we consider a columnar
vortex with two levels of constant vorticity which is perturbed by a long-wavelength
bending perturbation. The solid and dotted lines show the perturbed and unperturbed
vorticity contours, respectively. The vorticity is assumed positive in the core region and
negative in the surrounding annulus. The vorticity contours in the horizontal cross-section
A are represented in (b). The initial displacements of the inner and outer contours
are chosen to be in the positive x direction and equal (1x1 = 1x2 > 0). Because of
self-induction, the bent vortex will then rotate in the positive sense about its unperturbed
position. As indicated in (c), this leads to displacements in the positive y direction (1y1>
0, 1y2 > 0) in the cross-section A. However, the two contours are not displaced by the
same amount: the inner contour turns out to be more displaced than the outer one (1y1>
1y2> 0). In turn, since the vorticity is not of the same sign in the inner and outer regions,
this differential displacement creates positive (⊕) and negative (	) vorticity anomalies. As
sketched in (d), this dipole of vorticity anomalies tends to further translate the vortex
in the positive x direction, i.e. in the same direction as the initial displacement. The
same reasoning can be applied to the motions in the cross-section B. There is therefore
a positive feedback which will make the initial bending perturbation grow.

profiles such as for example the Carton & McWilliams (1989) vortex (Gaussian
angular velocity profile). Even if the instability is three-dimensional, Gent &
McWilliams (1986) have also shown that the necessary conditions for the shear
instability (Rayleigh and Fjortoft’s criteria) also apply to the GMW instability in a
quasi-geostrophic fluid.

Flierl (1988) has shown that the GMW instability also occurs on vortices with a
piecewise profile with two levels of non-zero uniform vorticity in quasi-geostrophic
fluids. A necessary condition for instability is that (ζi− ζo)ζo < 0, where ζi and ζo are
the inner and outer vorticities. This is equivalent to the condition that the vorticity
gradient changes sign between the two vorticity jumps. When the vortices are isolated
(i.e. zero circulation), the GMW instability is of a long-wavelength nature, i.e. its
growth rate is positive as soon as the axial wavenumber is non-zero. In contrast,
only finite axial wavenumbers (i.e. wavenumbers above a non-zero wavenumber
cutoff) are unstable when the circulation is non-zero. Flierl (1988) has also provided
a simple explanation of the instability mechanism. Two different processes are
involved: self-induced motion when the vortex is slightly bent along the vertical,
and two-dimensional advection by the vorticity anomalies generated when the two
vorticity contours are shifted relative to each other. This mechanism is illustrated in
figure 1 and explained in detail in the caption.

Smyth & McWilliams (1998) have studied the stability of the Carton and
McWilliams vortex beyond the quasi-geostrophic regime. Most interestingly, they have
shown that the GMW instability exists only in presence of both stratification and
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rotation. However, this observation remains unexplained. The Rayleigh and Fjortoft’s
stability criteria (Gent & McWilliams 1986) indeed apply only to quasi-geostrophic
fluids.

Hence, the main questions that we would like to address in this paper are: why
does the GMW instability occur only in stratified rotating fluids? And is it possible
to derive an instability condition valid for arbitrary rotation and stratification? These
questions are intimately linked to the preliminary question: what is the general
mechanism of the GMW instability? Even if a mechanism has been highlighted by
Flierl (1988) for piecewise vorticity profiles in quasi-geostrophic fluids, it is not
straightforward to extend it to arbitrary rotation and stratification and/or to continuous
vorticity profiles.

Interestingly, Reasor & Montgomery (2001) and Reasor, Montgomery & Grasso
(2004) have shown that certain vortices in quasi-geostrophic fluids tend to align when
they are tilted, i.e. a behaviour opposite to the GMW instability. This alignment
process has been attributed to a critical layer damping of the bending mode when
ζ ′(rc) < 0, where rc is the critical radius where the phase velocity of the wave ω/m
is equal to the angular velocity of the vortex Ω(rc) (Briggs, Daugherty & Levy 1970;
Schecter, Montgomery & Reasor 2002; Schecter & Montgomery 2003). In viscous
fluids, this damping comes from viscous effects that smooth the singularity while
in inviscid fluids, it can be understood from the conservation of angular momentum
(Schecter et al. 2000) or wave pseudo-momentum (Schecter et al. 2002).

Even if they focus on the alignment process and vortex profiles for which ζ ′(rc)< 0,
Schecter et al. (2002) and Schecter & Montgomery (2003) have also predicted
theoretically for profiles with a weak outer vorticity gradient that the critical layer
should destabilize the bending mode when ζ ′(rc) > 0 in strongly stratified and
rotating fluids. Such critical layer instabilities were first reported in the case of the
two-dimensional stability of vortices (Briggs et al. 1970; Le Dizès 2000; Schecter
et al. 2000) or parallel shear flows in shallow water (Balmforth 1999; Riedinger
& Gilbert 2014). Schecter et al. (2002) and Schecter & Montgomery (2003) did
not make a connection with the GMW instability but subsequently Reasor et al.
(2004), while further studying vortex alignment, have also made a linear numerical
simulation for a different vortex profile which leads to an exponential growth of the
vortex tilt. Interestingly, Reasor et al. (2004) pointed out that the critical radius is
located in the region of positive vorticity gradient and they speculated on the possible
link between the instability observed by Gent & McWilliams (1986) on isolated
vortices and a destabilization of the bending mode by a critical layer when ζ ′(rc) > 0
predicted by Schecter et al. (2002) and Schecter & Montgomery (2003) for profiles
with a weak outer vorticity gradient. Here, we shall prove this conjecture by means
of long-wavelength stability analyses of the bending mode of columnar vortices in
stratified rotating fluids.

Such a long-wavelength approach differs from the analyses of Schecter et al. (2002)
and Schecter & Montgomery (2003) where a formal expression for the growth rate
was derived under the assumption of a weak vorticity gradient at the critical radius
and under quasi-geostrophic or asymmetric balance approximations. These derivations
are based on the conservation of angular momentum or wave pseudo-momentum and
are equivalent to the perturbative approach of Briggs et al. (1970). The resulting
formula shows that the growth rate is of the same sign as the vorticity gradient at the
critical radius if the vorticity gradient is negative throughout the vortex core. However,
this formula is implicit since it requires prior knowledge of the eigenfunction and
frequency of the mode in the vortex core. These can be computed analytically only
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for the Rankine vortex. Furthermore, this formula cannot predict formally the sign
of the growth rate for the Carton and McWilliams vortex since the vorticity gradient
changes sign in the vortex core. It may be further noted that small vorticity gradients
are encountered for large radii for many vortex profiles, meaning that the assumption
of a weak vorticity gradient at the critical radius implies that the critical radius should
be large. This situation occurs for small frequencies, i.e. long-wavelength in the case
of the bending mode. Here, we shall use the long-wavelength assumption from the
outset and this will enable us to derive explicit analytical formula for the growth rate
of the bending mode for several vortex profiles, including the Carton and McWilliams
vortex, for any finite Froude and Rossby numbers, i.e. beyond the quasi-geostrophic
or asymmetric balance regimes.

These asymptotic analyses will also allow us to understand why the bending mode
can be unstable only in stratified-rotating fluid. The explanation can be anticipated
from what is known on the behaviours of the bending mode for a vortex with a
non-zero circulation. For such profiles, long-wavelength asymptotic analyses have
shown that the bending mode is neutral with a negative frequency in homogeneous
non-rotating fluids (Widnall et al. 1971; Saffman 1992) whereas it is neutral with a
positive frequency in stratified rotating fluids when the Froude number is lower than
unity: Frh=Ω0/N < 1 (Billant 2010), where Ω0 is the angular velocity on the vortex
axis and N the Brunt–Väisälä frequency. In the latter case, a critical radius rc where
ω = Ω(rc) thus exists, in contrast to homogeneous non-rotating fluids. For a vortex
with non-zero circulation, such a critical radius has no effect in the long-wavelength
limit in stratified rotating fluids because the derivative of the vorticity gradient ζ ′(rc)

is negligible. In this paper, we will show that the critical radius rc destabilizes the
long-wavelength bending mode when ζ ′(rc) is not negligible and positive. Of course,
the prerequisite will be that there exists a critical radius rc, i.e. the real part of the
frequency of the long-wavelength bending mode has to be positive.

Before carrying out these asymptotic analyses, we will conduct a numerical stability
analysis of the m= 1 azimuthal wavenumber for the Carton and McWilliams vortex.
This analysis will allow us to extend the previous results of Gent & McWilliams
(1986) and Smyth & McWilliams (1998) on the GMW instability by showing the
separate effects of the Rossby and Froude numbers. In particular, we will show that
the growth rate of the GMW instability decreases as soon as the Froude number is
larger than unity whatever the Rossby number. These numerical results will also serve
as a basis to check the asymptotic results. At the end of the paper, the stability of
other profiles that are not unstable in the long-wavelength limit will be also studied
numerically.

The paper is organized as follows: the general stability problem is described
in § 2. In § 3, the stability of the m = 1 azimuthal wavenumber is computed
numerically for the Carton and McWilliams vortex in stratified rotating fluids. In
§ 4, a long-wavelength asymptotic stability analysis is first carried out for the Carton
and McWilliams vortex. It is shown that the frequency and growth rate of the bending
mode are always positive for long-wavelength in stratified rotating fluids while the
bending mode is neutral with a negative frequency in homogeneous non-rotating fluids.
To investigate the role of the sign of ζ ′(rc), we next consider an angular velocity
profile with the non-dimensional form Ω ' an/r2n for large radius r, where an and
n are positive constants. It will be proved that the critical radius rc can destabilize
or stabilize the long-wavelength bending mode when n > 1 and n < 1, respectively.
In § 5, the latter instability condition in the long-wavelength limit is generalized to
ζ ′(rc) > 0 for arbitrary angular velocity profiles with a weak vorticity gradient ζ ′.
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Using the numerical results of § 3 for the Carton and McWilliams vortex, we further
show that this instability condition turns out to be valid not only for small vertical
wavenumber but also for any vertical wavenumber. In § 6, the stability of the m= 1
azimuthal mode is computed numerically for a family of profiles possessing regions
where ζ ′ > 0 together with a non-zero circulation. In this case, we shall see that the
GMW instability occurs only for finite axial wavenumbers.

2. Problem formulation

We consider an axisymmetric vortex with velocity u(r̂, θ, ẑ) = [0, Ûθ(r̂), 0] in
cylindrical coordinates (r̂, θ, ẑ) where ẑ is the vertical coordinate. The fluid is
assumed incompressible, stably stratified with constant Brunt–Väisälä frequency N
and rotating about the vertical axis at a rate f /2 where f is the Coriolis parameter. In
the following, we non-dimensionalise length by the radius of the vortex R and time
by 1/Ω0, where Ω0 is the angular velocity on the vortex axis. Quantities without a
hat will denote non-dimensional variables.

The vortex is assumed to be perturbed by infinitesimal perturbations (denoted with
a tilde) of velocity [ũr, ũθ , ũz], pressure p̃, and density ρ̃. Since the basic flow is
axisymmetric and uniform along the vertical, they are written as normal modes,

[ũr, ũθ , ũz, p̃, ρ̃] = [ur(r), uθ(r), uz(r), p(r), ρ(r)]ei(kz+mθ−ωt) + c.c., (2.1)

where k is axial wavenumber, m the azimuthal wavenumber and ω the frequency. We
consider that k and m are positive since negative wavenumbers can be retrieved by the
symmetry: ω(−k,m)=−ω∗(−k,−m)=ω(k,m). Under the Boussinesq approximation
and in the inviscid limit, the linearized governing equations can be reduced to a single
equation for ϕ = rur

d2ϕ

dr2
−
[

1
r
+ Q′

Q

]
dϕ
dr
−
[

m2

r2
+ k2Fr2

h
φ − s2

1− s2Fr2
h

+ m
rs

(
ζ ′ −

(
2

Ro
+ ζ
)(

2
r
+ Q′

Q

))]
ϕ = 0, (2.2)

where Q=m2/r2 − k2Fr2
hs2/(1− s2Fr2

h), s=mΩ −ω is the Doppler shifted frequency,
φ = (2Ω + 2/Ro)(ζ + 2/Ro) is the Rayleigh discriminant, ζ = (1/r)∂(rUθ)/∂r is the
vertical vorticity and Ω = Uθ/r is the non-dimensional angular velocity of the basic
vortex. The Froude number Frh and Rossby number Ro

Frh = Ω0

N
, Ro= 2Ω0

f
, (2.3a,b)

measure the effect of the stratification and rotation, respectively. The boundary
conditions impose that the perturbation is non-singular at r = 0 and decays or
corresponds to a wave propagating outward for r→∞. This implies that ϕ ∼ rm as
r→ 0 for m > 1. To impose the outer boundary condition, we use the two following
asymptotic solutions of (2.2) for r� 1

ϕ =Km(βkr)+ ω Ro
m(2+ω Ro)

βkrKm−1(βkr), (2.4)

ϕ =H(n)
m (|β|kr)− ω Ro

m(2+ω Ro)
|β|krH(n)

m−1(|β|kr), (2.5)
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with β2 = (4/Ro2 − ω2)/(1/Fr2
h − ω2), where Km is the modified Bessel function of

order m of the second kind and H(n)
m is the Hankel function of order m of kind n.

The solution (2.4) ensures that the perturbation decays as r→∞ except when ωi =
Im(ω) = 0 and β2 < 0. In the latter case, we use the solution (2.5) which describes
an outward propagating wave if n = 1 when ωr(Ro2/4 − Fr2

h) > 0 and n = 2 when
ωr(Ro2/4− Fr2

h) < 0, where ωr = Re(ω). When ωi > 0, the asymptotic solution (2.4)
corresponds also to the solution which propagates outwards.

Equation (2.2) has been generally solved by a shooting method. The numerical
integration is started from a small radius r1 and a large radius r2 toward a radius
rf using the asymptotic solutions of (2.2) and an initial guess for ω. This leads to
two couples of values at rf : [ϕ1(rf ), ϕ

′
1(rf )] and [ϕ2(rf ), ϕ

′
2(rf )]. The value of ω for

which the Wronskian ϕ2(rf )ϕ
′
1(rf )− ϕ1(rf )ϕ

′
2(rf ) vanishes is then searched for by an

iterative scheme. The path of integration is deformed in the complex plane in order
to avoid the singular radius rc where s = mΩ(rc) − ω = 0 or s = ±1/Frh. Since the
vortex profiles that will be studied have Ω ′(rc)< 0, the path is deformed in the upper
complex plane in order that the inviscid solution be the proper limit of the viscous
solution (Lin 1955; Le Dizès 2004).

The stability problem in the presence of viscous and diffusive effects has also been
solved by a Chebyshev pseudo-spectral collocation method (Antkowiak & Brancher
2004). This code has allowed us to check the results of the shooting code and to
compute the structure of the eigenmodes when critical layers are present since they are
smoothed by viscosity and diffusion. The Reynolds number is defined as Re=Ω0R2/ν

and the Schmidt number as Sc= ν/D, where ν is the kinematic viscosity and D the
molecular diffusivity of the stratifying agent.

3. Numerical results for the Carton and McWilliams vortex

We first study numerically the stability of the azimuthal wavenumber m= 1 for the
Carton & McWilliams (1989) vortex whose non-dimensional angular velocity is

Ω = e−r2
. (3.1)

The stability of this profile has already been analysed by Gent & McWilliams (1986)
in the quasi-geostrophic regime and by Smyth & McWilliams (1998) for finite Ro and
Frh but only for some particular ratios: Frh/Ro=∞, 0.5, 0.005 and 0. Here, we shall
investigate separately the effects of Frh and Ro.

Figure 2 shows the growth rate and frequency of the azimuthal wavenumber m= 1
for a fixed Froude number Frh = 1 and several positive Rossby numbers from Ro= 1
to Ro = 10. The growth rate curves for Ro 6 5 exhibit a bell shape as reported by
Gent & McWilliams (1986) and Smyth & McWilliams (1998). When Ro increases
from Ro= 1 to Ro= 5, the most amplified wavenumber increases and the maximum
growth rate slightly increases. The unstable wavenumber band also widens when Ro
increases but, remarkably, it corresponds to a fixed frequency range: 0 6 ωr 6 0.135
(figure 2b). Note that the critical value 0.135 is very close to exp(−2). The reason
for this will be seen in § 5.

The vertical vorticity of the most unstable perturbation for Ro = 1 is shown
in figure 3(a). It exhibits an inner dipolar structure surrounded by outer spiraling
perturbations. The inner and outer perturbations have a phase shift and are localized
in the regions where the basic vorticity ζ is negative and positive, respectively. Thus,
the perturbations will tend to translate the positive and negative vorticity regions of
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FIGURE 2. (a) Growth rate (ωi) and (b) frequency (ωr) as function of the vertical
wavenumber k for the profile (3.1) for m= 1 and Frh = 1 for different Rossby numbers:
Ro= 1 ——; Ro= 2 · · · · · ·; Ro= 3 – · – · –; Ro= 5 ——; Ro= 10 - - - -. The horizontal
dotted line in (b) shows the cutoff frequency ωr = 0.135.
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FIGURE 3. (Colour online) Vertical vorticity of the most unstable eigenmode for the
profile (3.1) for m = 1 and (a) Frh = 1, Ro = 1, k = 0.35, (b) Frh = 1, Ro = 10, k = 100
and (c) Frh = 2, Ro = 1, k = 0.1. The dashed line represents the radius r = 1 where the
sign of the basic vorticity changes. Note that these eigenmodes have been computed for
a large but finite Reynolds number Re= 106 with Sc= 1 in order to resolve the critical
layer in (c).

the basic vortex in different directions. This is a key feature of the mechanism of the
GMW instability as discussed by Flierl (1988) and illustrated in figure 1.

For higher Ro, as exemplified in figure 2 by Ro = 10, the growth rate is no
longer maximum for a finite axial wavenumber k but increases monotonically with
k (figure 2a). The vertical vorticity of the eigenmode for large k is then strongly
localized at a particular radius (figure 3b). As shown by Smyth & McWilliams (1998),
this corresponds to the centrifugal instability which is most unstable for k → ∞.
Indeed, the minimum of the Rayleigh discriminant φ = (2Ω + 2/Ro)(ζ + 2/Ro) is
negative when Ro> exp(2)= 7.39.

For negative Rossby number, the centrifugal instability is also present when Ro<−1
since min(φ) is negative. This can be seen in figure 4 where the growth rate and
frequency are displayed for several negative Rossby numbers at Frh = 1. The growth
rate increases monotonically with k for large k when Ro<−1, whereas for Ro >−1,
the growth rate is maximum for a finite wavenumber k. Interestingly, there are two
distinct and independent branches for Ro = −3 and Ro = −5 (figure 4): the GMW
instability branch at low k and the centrifugal instability branch at large k. As seen
in figure 4(b), the frequencies of these two branches differ significantly. In contrast,
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FIGURE 4. (a) Growth rate (ωi) and (b) frequency (ωr) as function of the vertical
wavenumber for the profile (3.1) for m = 1 and Frh = 1 for different Rossby numbers:
Ro = −0.5 - - - -; Ro = −1 ——; Ro = −3 · · · · · ·; Ro = −5 – · – · –; Ro = −10 ——;
Ro=−15 - - - -. The horizontal dotted line in (b) shows the cutoff frequency ωr = 0.135.
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FIGURE 5. (a) Growth rate (ωi) and (b) frequency (ωr) as function of the vertical
wavenumber k for the profile (3.1) for m = 1 and Ro = 1 for different Froude numbers:
Frh = 0.25 - - - -; Frh = 0.5 ——; Frh = 1 ——; Frh = 1.5 · · · · · ·; Frh = 2 – · – · –. The
horizontal dotted line in (b) shows the cutoff frequency ωr = 0.135.

for Ro=−10 and Ro=−15, the two branches are merged into a single continuous one
with similar frequencies. Remarkably, the maximum frequency of the GMW instability
branch is still ωr = 0.135 independently of Ro for Ro >−5 (figure 4b).

The effect of the Froude number for a fixed Rossby number Ro=1 is now displayed
in figure 5. The maximum growth rate is almost independent of the Froude number
when Frh 6 1 (figure 5a). The unstable frequency range also remains the same 0 6
ωr 6 0.135 even if the upper vertical wavenumber cutoff varies (figure 5b). However,
when Frh is increased above unity, the maximum growth rate decreases abruptly and
the unstable frequency range shrinks. As illustrated in figure 3(c), the vertical vorticity
of the most unstable perturbation for Frh = 2 still exhibits a dipolar structure as for
Frh 6 1, but there is an additional circular region of rapid variation at a particular
radius. This corresponds to a singularity of (2.2) which occurs at the radius where
s(rc2) = 1/Frh, i.e. rc2 = 0.8 for Frh = 2. Since such a critical layer singularity
is regularized in the presence of viscous and diffusive effects, the eigenmode in
figure 3(c) has been computed from the linearized Navier–Stokes equations by a
Chebyshev pseudo-spectral method for Re = 106 and Sc = ν/D = 1. In the next
section, we will show that the growth rate is strongly reduced when Frh > 1 because
of the damping due to this critical layer.
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FIGURE 6. Maximum growth rate for the profile (3.1) for m= 1 as a function of (a) Frh
for Ro= 1, and (b) Ro for Frh = 1.

The separate effects of the Rossby number for Frh = 1 and the Froude number for
Ro=1 on the maximum growth rate are summarized in figure 6. In figure 6(a), we see
that the maximum growth rate continues to decrease when the Froude number is large
but it remains positive even for the largest Froude number investigated: Frh= 20. The
maximum growth rate increases monotonically with Ro (figure 6b): it is approximately
doubled from Ro=−1 to Ro= 7.39. Only the Rossby number range: −1<Ro< 7.39
is shown in figure 6(b) since outside this range, the vortex is centrifugally unstable.
The centrifugal instability is then dominant over the GMW instability (figures 2a, 4a)
except close to the thresholds Ro=−1 and Ro= 7.39.

Finally, the combined effects of Ro and Frh on the maximum growth rate and the
most amplified wavenumber k of the GMW instability are depicted in figure 7. The
effect of the Froude number is the same independently of Ro: the maximum growth
rate is independent of Frh for Frh 6 1 and decreases abruptly with Frh when Frh > 1.
The monotonic increase of max(ωi) with Ro is also observed whatever Frh. The most
amplified wavenumber has been scaled by Frh/|Ro| in figure 7(b). With this scaling,
we see that it varies little and is around kFrh/|Ro| ≈ 0.25–0.45 regardless of Frh
and Ro.

4. Long-wavelength asymptotic analyses
As seen in § 3, the GMW instability for the Carton and McWilliams profile (3.1)

starts at k = 0, i.e. it is of a long-wavelength nature. For k = 0, an exact solution
of (2.2) for m = 1 which derives from the translational invariance is ϕ = r(Ω − ω)
(Michalke & Timme 1967). Using this solution at leading order, the frequency
and eigensolution of the azimuthal wavenumber m = 1 can be computed for small
wavenumber k by means of an asymptotic expansion. A similar asymptotic analysis
has been performed in stratified rotating fluids for vortices with non-zero circulation
(Billant 2010). Using the present non-dimensionalisation and definition of Frh and Ro
(see § 2), the frequency has been found to be

ω= 2a
(

kβ0

2

)2 [
−ln

(
k|β0|

2

)
+ δ(Frh, Ro)

a2
− γe

]
, (4.1)

up to order k2, where a = Γ̂ /(2πR2Ω0) with Γ̂ the dimensional circulation, β0 =
2Frh/Ro and γe = 0.5772 is the Euler constant. The constant δ is given by

δ(Frh, Ro)= A (Frh)Ro2

4
+B(Frh)Ro+D(Frh), (4.2)
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FIGURE 7. (Colour online) (a) Maximum growth rate and (b) scaled most amplified axial
wavenumber kFrh/|Ro| as a function of Frh and Ro for the profile (3.1) and for m = 1.
The contour interval is 0.002 in (a) and 0.007 in (b).

with

A (Frh)=
∫ ∞

0

ξ 3Ω4

1− Fr2
hΩ

2
dξ, (4.3)

B(Frh)=
∫ ∞

0

ξ 3Ω3

1− Fr2
hΩ

2
dξ, (4.4)

D(Frh)= lim
η0→∞

∫ η0

0

ξ 3Ω2

1− Fr2
hΩ

2
dξ − F3(η0), (4.5)

where

F3(η0)=
∫ η0 ξ 3Ω̃2

1− Fr2
hΩ̃

2
dξ, (4.6)

where Ω̃ denotes the asymptotic form of Ω for large radius. For vortices with non-
zero circulation, we have Ω̃ = a/r2, giving F3(η0)' a2 ln η0 for η0�√Frh. The factor
a appears in (4.1) because time is non-dimensionalised by 1/Ω0 instead of 2πR2/Γ̂
in Billant (2010).

The frequency (4.1) is purely real when Frh 6 1 whatever Ro. When Frh > 1,
the integrands in (4.3)–(4.5) are singular at the radius where Ω(rc2) = 1/Frh. This
singularity is regularized in the presence of viscous and diffusive effects and can
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be taken into account in the inviscid limit by bypassing the critical radius in the
upper complex plane. The constant δ is then complex with a negative imaginary part
implying that the mode m = 1 is damped. Therefore, the long-wavelength bending
mode is at best neutral but never unstable when the circulation is non-zero. However,
the formula (4.1) breaks down when a = 0, i.e. when the angular velocity does not
behave as Ω ' a/r2 for r� 1. For this reason, specific asymptotic analyses have been
carried out for the Carton and McWilliams profile (3.1) and for a profile of the form
Ω = an/r2n for r� 1, where an are n constants but n is different from unity. For both
profiles, two regions need to be considered in order to solve (2.2) asymptotically:
an inner region where r � 1/k and an outer region such that r � 1. However, the
analysis for each profile is different and so they are presented separately.

4.1. Carton and McWilliams vortex
A specificity of the profile (3.1) concerns the location of the critical radius rc where
Ω(rc) = ω. When ω� 1 and Ω ' a/r2, the critical radius is located at rc ' √a/ω.
Hence, since (4.1) shows that ω = O(k2), we have rc ∼ O(1/k), meaning that rc is
located in the outer region. In contrast, the critical radius for the profile (3.1) is
located at rc=

√−lnω. If we anticipate that ω'O(k) for the long-wavelength bending
mode of the profile (3.1), we can deduce that the critical radius is located in the inner
region: rc =O(

√−ln k).
This asymptotic problem is solved in detail in appendix A and only briefly

summarized here. The inner and outer solutions are expanded in the form

ϕ = ϕ0 + Fr2
hk2ϕ2 + · · · , (4.7)

with ϕ0 = r(Ω − ω) in the inner region. Even if ω will eventually be small, it is
simpler to consider it arbitrary to solve the inner problem. This is the reason why ω
appears in the leading order inner solution ϕ0. The expansion (4.7) is written in power
of kFrh for convenience since k always appears multiplied by Frh in (2.2). The second
order inner solution ϕ2 and the outer solution are computed in §§ A.1 and A.2. The
behaviour of the inner solution for small ω and for r� 1 is then determined in § A.3.
The matching between the inner and outer solutions for 1� r� 1/k and ω� 1 is
performed in § A.4. This leads to the dispersion relation:

ω2 = δk2β2
0

2

[
− 1

r2
c

+ 1
r4

c

(1+ iπγ )+ 1
r6

c

(
2π2

3
− 2iπγ

)
− 2π2

r8
c

+O
(

1
r10

c

, k2β2
0 ln(kβ0)

)]
, (4.8)

where δ is the constant defined in (4.2) and γ = sgn(ωi). The terms inside the square
brackets in (4.8) correspond to an expansion in inverse power of r2

c =−lnω. Several
orders have been computed since the series converges slowly for ω� 1 because of
the logarithm. The complex terms iπγ /r4

c and −2iπγ /r6
c come from the presence of

the critical radius rc.
The dispersion relation (4.8) is implicit since the critical radius depends on ω. To

determine whether or not there exist any solutions, it is first convenient to consider
only the first two leading orders in 1/r2

c :

ω2 = δk
2β2

0

2

[
− 1

r2
c

+ 1
r4

c

(1+ iπγ )
]
. (4.9)
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By writing ω= ρeiθ and δ =µeiα, the real and imaginary parts of (4.9) read

ρ2 cos(2θ − α)= µk2β2
0

2
(−ερ + ε2

ρ), (4.10)

ρ2 sin(2θ − α)= µk2β2
0

2
ε2
ρ(πγ − θ), (4.11)

where ερ =−1/ln ρ� 1. Combining (4.10) and (4.11) gives

tan(2θ − α)=−ερ(πγ − θ)+O(ε2
ρ). (4.12)

This relation is satisfied if

θ = α
2
+ qπ

2
− ερ

4
(2πγ − α − qπ)+O(ε2

ρ), (4.13)

where q is an integer. Inserting (4.13) into (4.10) then gives an implicit relation for
ρ = |ω|

ρ2(−1)q = µk2β2
0

2
(−ερ + ε2

ρ +O(ε3
ρ)), (4.14)

which can be satisfied at leading order only if q is odd. Hence, the implicit dispersion
relation (4.9) can be solved explicitly at leading orders by first choosing a small value
for ρ. Then, the corresponding value of θ and k can be obtained directly from (4.13)
and (4.14), respectively.

In order to exhibit the behaviour of the solutions, we first focus on the simplest
case Frh 6 1 for which there is no critical layer rc2 where Ω(rc2)= 1/Frh so that δ is
purely real and positive, i.e. α= 0. Then, (4.13) yields two solutions: θ =π/2− ερπ/4
for q = 1 and θ = −π/2 + ερπ/4 for q = −1. Other values of q are not relevant
since −π6 θ 6π. The dispersion relation (4.9) has therefore two solutions which are
complex conjugates of each other, one unstable and the other stable, which can be
written in the form:

ω= ρeiθ = ρ
[ερ

4
π+ i

]
, (4.15)

ω= ρ
[ερ

4
π− i

]
, (4.16)

where ρ (and ερ=−1/lnρ) is related to k through (4.14). The frequency ωr is positive
and O(ερ) smaller than the growth rate.

We now consider the case Frh> 1 for which δ is complex with a negative imaginary
part, i.e. −π< α 6 0 because of the critical layer rc2 where Ω(rc2)= 1/Frh. In this
case, the two solutions (4.15) and (4.16) become at leading order:

ω= ρ
[
−sin

α

2
+ ερ

4
(π− α) cos

α

2
+ i
(

cos
α

2
+ ερ

4
(π− α) sin

α

2

)]
, (4.17)

ω= ρ
[
sin

α

2
+ ερ

4
(π+ α) cos

α

2
− i
(

cos
α

2
+ ερ

4
(π+ α) sin

α

2

)]
, (4.18)

where ρ can be still determined as a function of k by means of (4.14). The two
solutions are no longer complex conjugates of each other. If we consider a fixed
value of ρ, the relation (4.17), which is illustrated in figure 8, shows that the growth
rate of the unstable solution decreases when α decreases from zero, meaning that the
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FIGURE 8. Frequency ωr (dashed lines) and growth rate ωi (solid lines) predicted by
(4.17) (thick lines) and (4.18) (thin lines) as a function of α= arg(δ) for a given value of
ρ= 0.01. The dotted line shows the critical value for which the solution (4.17) disappears.

instability is damped by the critical layer at rc2. From (4.13), we can deduce that the
growth rate goes to zero (i.e. θ = 0) when α ' −π + περ (dotted line in figure 8).
When α decreases further below this critical value, (4.13) no longer has a solution for
q= 1, i.e. the solution (4.17) does not exist anymore because the integration path has
been assumed to be on the real axis. However, the solution (4.17) could be continued
by deforming the integration path in the upper complex plane above the critical radius
rc. The mode (4.17) would be then non-regular and damped since the critical radius
would be located between the integration path and the real axis. In contrast, the stable
solution (4.18) (thin lines in figure 8) exists in the whole range −π < α < 0. The
damping rate of this mode is reduced when α decreases and vanishes for α=−π. Its
frequency becomes negative as soon as α <−ερπ/2.

Figure 9 shows α as a function of Frh and Ro. We see that α decreases and tends to
α =−π for large Froude number for any Rossby number. This decay occurs slower
when Ro is negative and moderate, i.e. −5 6 Ro 6 0. Hence, for a given value of
ερ =−1/ln |ω|, the growth rate of the unstable mode (4.17) should vanish for large
Froude number when α'−π+περ . This critical Froude number increases and tends
to infinity since α → −π as |ω| decreases to zero. In other words, the instability
should be totally suppressed only as the Froude number tends to infinity.

However, it should be noted that the dispersion relation (4.8) (and (4.9)) is no longer
valid when Frh =∞ when Ro is finite. The behaviour of the inner solution for large
radius is indeed different in this case so that the matching performed to derive (4.8)
breaks down. Nevertheless, it remains valid when Ro = ∞ i.e. for a stratified non-
rotating fluid and this is considered in appendix B. The evolution of the two solutions
of (4.8) is studied as a function of Frh. In particular, it is shown that in the limit
Frh =∞, there remains only one solution with a negative and purely real frequency
ω as predicted by (4.17) and (4.18).

We now compare the prediction of the full long-wavelength dispersion relation (4.8)
for the unstable mode to the numerical results. Figure 10(a) shows the asymptotic
and numerical growth rates and frequencies for small Froude and Rossby numbers
(Frh = 0.1, Ro= 0.1) approaching the quasi-geostrophic limit. We see that they agree
but only in a limited range of small wavenumbers: kFrh/Ro . 0.05. This relatively
rapid divergence is due to the fact that the asymptotic dispersion relation (4.8) has
been partly obtained as an expansion in power of the parameter 1/r2

c = −1/ln ω.
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FIGURE 9. (Colour online) Contours of α = arg(δ) as a function of Frh and Ro for the
profile (3.1). The contour interval is 0.3.

Because of the logarithm, this parameter can actually be not very small even if
ω is small so that the convergence of the asymptotics is slow. Other comparisons
for finite Froude and Rossby numbers are displayed in figure 10(b–d). The slopes
of the frequency and growth rate at k = 0 predicted by the asymptotics agree with
the numerical results for all the values of Frh and Ro investigated. As predicted by
(4.17), the growth rate remains positive for sufficiently small k even for the largest
Froude number investigated Frh = 5 (figure 10b). We can see that the slope of the
growth rate is smaller than the one of the frequency in figure 10(b,d) in contrast to
figure 10(a,c). As shown by (4.17) and figure 8, this occurs for α.−π/2, i.e. when
Frh is sufficiently larger than unity.

In summary, we have found that the azimuthal wavenumber m= 1 for the Carton
and McWilliams vortex (3.1) is always unstable in the long-wavelength limit for
finite Ro when Frh 6 1. Thus, even if the GMW instability is dominant only in the
centrifugally stable range −1< Ro< 7.39, it exists for long-wavelengths outside this
range of Rossby numbers. When Frh is increased above unity, the GMW instability
continues to exist in the long-wavelength limit but is strongly damped by the critical
layer where Ω(rc2)= 1/Frh. In the limit Ro= Frh =∞, the long-wavelength bending
mode is neutral with a negative frequency.

4.2. Vortices with algebraic decay of the angular velocity

We now investigate an angular velocity profile which behaves like Ω'an/r2n for large
radii, where an and n are constants. This is the case of the profile

Ω = 1/(1+ r2)n, (4.19)

considered by Gent & McWilliams (1986). The interest in this class of profiles lies in
the fact that the vertical vorticity derivative ζ ′' 4ann(n− 1)/r2n+1 for large radius can
be positive or negative depending on whether n> 1 or n< 1, respectively. This will
allow us to highlight the role of the sign of ζ ′ at the critical radius rc. However, this
asymptotic analysis can be carried out analytically only when n= 1+ ε with |ε|� 1,
i.e. when ζ ′(rc) is small. As discussed earlier, Briggs et al. (1970), Schecter et al.
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FIGURE 10. Comparison (thick lines: ωi; thin lines: ωr) between numerical results (solid
lines) and asymptotic results (dashed lines) for the profile (3.1) for m = 1 for several
combinations of Frh and Ro: (a) Ro= 0.1, Frh = 0.1; (b) Ro=−1, Frh = 5; (c) Ro= 0.2,
Frh = 1; (d) Ro= 5, Frh = 2.

(2002) and Schecter & Montgomery (2003) also used this assumption to derive their
expressions for the growth/decay rate due to the critical layer. In contrast to § 4.1,
the critical radius rc is located in the outer region for small wavenumber since rc '
(an/ω)

1/2n 'O(1/k1/n), where it has been anticipated that ω'O(k2) at leading order.
This asymptotic analysis is carried out in detail in appendix C. It gives the frequency
up to orders k2 and ε in the form:

ω=ω(0) + εω(1) +O(ε2), (4.20)

where

ω(0) = 2an

(
kβ0

2

)2 (
−ln

(
k|β0|

2

)
+ δ

a2
n

− γe

)
, (4.21)

ω(1) = 2an

(
kβ0

2

)2 [
1− E− γe − δ

a2
n

+ ln 2+ ln(k|β0|)
(

1− 2γe − 2δ
a2

n

+ 2 ln 2
)]

,

(4.22)

and E is a constant defined by

E = lim
η0→0

∫ η0/k

∞

4K2
1(β0kr)

r(1−ω(0)r2/an)
dr+ 2

β2
0η

2
0

− 2 ln(η0β0)

[
−1+ 2γe + 2ω(0)

k2β2
0 an
+ ln

(
η0β0

4

)]
. (4.23)
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The leading term ω(0) in (4.20) corresponds to (4.1). When ε is non-zero and Frh 6 1,
all the terms in (4.20) are real except the constant E. As seen in (4.23), this constant
can indeed be complex since the integrand is singular at the critical radius where
Ω(rc) − ω(0) ≡ an/r2

c − ω(0) = 0. Assuming that the integration path in (4.23) is
deformed in the upper complex plane since Ω ′(rc) < 0, the imaginary part of E is
then

Ei = Im(E)=πa−1, (4.24)

with a−1 the residue at rc,

a−1 =−2K2
1(kβ0rc). (4.25)

Hence, we see that Ei is negative, implying that the growth rate ωi =−εank2β2
0 Ei/2

is positive or negative when ε > 0 or ε < 0, respectively. Note that there also exists
a decaying mode when ε > 0 which is the complex conjugate of the unstable mode.
This can be obtained by integration in the lower complex plane. This stable mode
is regular since the integration path can be deformed continuously from the real axis
without encountering the critical radius rc, unlike the stable mode when ε < 0.

When Frh > 1, the additional critical radius Ω(rc2) = 1/Frh is present as for the
Carton and McWilliams vortex (§ 4.1). Its effect appears again in (4.20) through δi
the imaginary part of the constant δ. The destabilizing effect of the critical radius
Ω(rc)= ω(0) when ε > 0 is then in competition with the stabilizing effect due to rc2.
Assuming that δi is small, the growth rate is then at leading order

ωi = ank2β2
0

2

(
δi

a2
n

− εEi

)
. (4.26)

Therefore, there will be an instability in the long-wavelength limit only when

δi

a2
n

− επa−1 > 0. (4.27)

From (4.3)–(4.5), we can obtain

δi = πr3
c2

2Ω ′(rc2)

[
Ro

2Frh
+ 1
]2 1

Fr3
h
. (4.28)

This shows that δi depends only on (Frh, Ro) for a given velocity profile. In
contrast, the residue a−1 depends also on krc and therefore varies with (ω(0), k).
Thus, the condition (4.27) depends on the four parameters (Frh, Ro, ω(0), k).
However, if we consider a very small wavenumber k, we have from (4.21):
ω(0) ' −anβ

2
0 k2 ln(β0k/2)/2 at leading order for finite Rossby and Froude number.

This implies that kβ0rc = kβ0an/
√
ω(0) ' [−ln(β0k/2)/2]−1/2 showing that kβ0rc tends

to zero as k tends to zero. Hence, we can estimate the residue as

a−1 =−2K2
1(kβ0rc)' ln

(
β0k
2

)
. (4.29)

This shows that |a−1| tends to infinity when k vanishes. In contrast, (4.28) is
independent of the wavenumber. Therefore, if ε > 0, we can deduce that for any finite
Rossby and Froude numbers, the condition (4.27) will be satisfied for sufficiently
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FIGURE 11. Frequency ωr (thin lines) and growth rate ωi (thick lines) for m= 1 for the
profile (4.19), for n= 0.9 (a,c) and n= 1.1 (b,d) for Frh= 0.5 (a,b) and Frh= 1.3 (c,d) for
Ro=1. The solid and dashed lines show the numerical and asymptotic results, respectively.
The insert in (d) displays a close-up view for small kFrh/|Ro|.

small wavenumber. In other words, there should always exist an instability in the
long-wavelength limit for finite Froude and Rossby numbers as for the Carton and
McWilliams vortex (§ 4.1). However, when either Ro=∞ or Frh =∞, the previous
condition does not apply and it would be necessary to carry out specific analyses for
these limits. In the particular limit Ro=Frh=∞, it is known that the long-wavelength
bending mode when n= 1 is neutral with a negative frequency (Widnall et al. 1971;
Saffman 1992) as for the Carton and McWilliams vortex (appendix B). Hence, no
critical radius exists.

Figure 11 shows some comparisons between the predictions of (4.20) and numerical
results for the angular velocity profile (4.19) for n=0.9 (a,c) and n=1.1 (b,d) for two
Froude numbers Frh= 0.5 (a,b) and Frh= 1.3 (c,d) for a fixed Rossby number Ro= 1.
In each case, a good agreement is found for small wavenumber. When Frh = 0.5,
there is an instability in the long-wavelength limit when n= 1.1 (figure 11b) while the
case n= 0.9 (figure 11a) is stable since ε is positive and negative, respectively. When
Frh= 1.3, the value n= 0.9 (figure 11c) is still stable. The value n= 1.1 for Frh= 1.3
(figure 11d) seems also stable but if we examine the small wavenumber region more
closely, we see that the growth rate is actually positive, as predicted by (4.27). The
maximum growth rate is however very small. When Frh is increased further, the
maximum growth rate continues to decrease but, strictly speaking, it should remain
positive for sufficiently small k when Frh is finite.

5. General instability condition
The long-wavelength asymptotic analysis performed in § 4.2 can be generalized to

angular velocity profiles differing from the form Ω = an/r2(1+ε) for large radius but
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still with a weak gradient of vorticity ζ ′ for large radius i.e. Ω = an/r2 + εΩ1(r) so
that ζ =O(ε). As shown in § C.6, the growth rate ωi is then at leading order

ωi = ank2β2
0

2

[
δi

a2
n

− πζ ′(rc)K2
1(kβ0rc)

Ω ′(rc)

]
. (5.1)

Since δi 6 0, a general necessary condition for instability of the bending mode in the
long-wavelength limit is that there exists a critical radius rc where Ω(rc) = ω with
ζ ′(rc) > 0 since Ω ′(rc) ' −2an/r3

c < 0. This instability condition is sufficient when
Frh 61 since δi=0. When Frh>1, it can be also sufficient if |δi|/a2

n is smaller than the
destabilizing term (last term of (5.1)) as for the profiles considered in § 4.2. However,
this depends on each particular vortex profile and therefore the instability condition
will not always be sufficient for Frh > 1.

When Frh < 1, i.e. δi = 0, the expression (5.1) closely resembles to the growth
rate formula derived for weak vorticity gradient at the critical radius by Schecter
et al. (2002) under the quasi-geostrophic approximation and Schecter & Montgomery
(2003) under the asymmetric and hydrostatic balance approximations. However, the
formulas of Schecter et al. (2002) and Schecter & Montgomery (2003) are implicit
since they require prior numerical computation of the eigenfunction and frequency for
zero outer vorticity gradient. These formula can become explicit only for the Rankine
vortex profile with skirt (weak outer vorticity field) for which an analytic solution
can be found. In this case, these formula in the limit k � 1 become identical to
(5.1). In contrast, (5.1) is always explicit for any vortex profiles with small vorticity
gradient at large radius. The critical radius is indeed given by rc =

√
an/ω(0) where

the frequency at leading order ω(0) is given explicitly by (4.21). The formula (5.1)
is restricted to small wavenumbers k, but the formula of Schecter et al. (2002) and
Schecter & Montgomery (2003) are also implicitly restricted to small wavenumbers
since the assumption of weak vorticity gradient at the critical radius applies when
the critical radius is large, i.e. when the frequency and wavenumber are small for
the bending mode. In addition, we emphasize that (5.1) is valid for any finite Froude
and Rossby numbers and, therefore, is not restricted to the regime of validity of
the asymmetric and hydrostatic balance approximations in contrast to the formula of
Schecter & Montgomery (2003).

It is also worth noting that the instability condition ζ ′(rc) > 0 is equivalent
to the Rayleigh and Fjortoft necessary criteria for instability in the case of a
quasi-geostrophic fluid and a vortex with a monotonically decreasing angular velocity
(Gent & McWilliams 1986). Indeed, the Rayleigh criterion requires that there exists
an inflection point rI where ζ ′(rI)= 0 while the Fjortoft criterion demands that ζ ′> 0
for r > rI and ζ ′ < 0 for r < rI when Ω ′(r) < 0 for all r. Montgomery & Shapiro
(1995) have extended these criteria to flows under the asymmetric and hydrostatic
balance approximations. In contrast, the present asymptotic analysis and resulting
instability condition are valid for any finite Froude and Rossby numbers. However,
their validity are restricted to small k and small vorticity gradient ζ ′(rc), in contrast
to the Rayleigh and Fjortoft criteria.

In practice, we can show from the numerical results obtained for the profile (3.1)
(§ 3) that ζ ′(rc)>0 is a necessary condition for instability of the bending mode for any
vertical wavenumber and magnitude of ζ ′(rc) for finite Froude and Rossby numbers.
Figure 12(a) shows again the frequency and growth rate for Ro = Frh = 1 for the
profile (3.1) (i.e. corresponding to the bold line in figure 2). The derivative of the
vorticity at the critical radius ζ ′(rcr) is also plotted. Note that only the real part of rc
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FIGURE 12. Growth rate (——: ωi) and frequency, (——: ωr) for the profile (3.1) for
m = 1 as a function of kFrh/|Ro| for (a) Ro = Frh = 1 and (b) Ro = 1, Frh = 3. The
associated vorticity gradient ζ ′(rc) (- - - -) at the location of the critical radius on the real
axis rc.
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FIGURE 13. Growth rate as a function of the rescaled frequency ωr/Ω(rI) for m= 1 for
the profile (3.1) for (a) Frh = 1 and Ro varying: Ro=−0.5 - - - -; Ro= 1 ——; Ro= 2
· · · · · ·; Ro = 3 – · – · –; Ro = 5 —— and (b) Ro = 1 and Frh varying: Frh = 0.5 - - - -;
Frh = 1 ——; Frh = 1.5 · · · · · ·; Frh = 2 – · – · –; Frh = 3 ——.

is considered since the imaginary part of rc is small because ωi is small. As seen in
figure 12(a), the growth rate ωi and ζ ′(rcr) are positive in the same range of vertical
wavenumbers. Hence, the cutoff wavenumber kcFrh/|Ro|' 0.8 corresponds to the limit
where ζ ′(rc)= 0, i.e. when the critical radius rc becomes equal to the inflection point
rI =
√

2. The maximum value of the frequency corresponds therefore to ωr =Ω(rI)=
0.135, as observed in § 3. Figure 13(a), which shows the growth rate as a function of
ωr/Ω(rI), confirms that the GMW instability occurs if and only if 0 6 ωr/Ω(rI)6 1
for Frh = 1 for the different Rossby numbers investigated: −0.5 6 Ro 6 5 for which
only the GMW instability exists.

Figure 12(b) shows the growth rate and frequency for a Froude number larger
than unity: Frh = 3. In this case, the unstable wavenumber band corresponds only to
a portion of the range where ζ ′(rcr) > 0. This means that the instability condition
ζ ′(rc) > 0 is necessary but not sufficient. As shown in figure 13(b), the range of
rescaled frequency ωr/Ω(rI) for which the growth rate is positive is 06ωr/Ω(rI)6 1
only when Frh 6 1. When Frh > 1, the upper frequency cutoff is lower than Ω(rI)

because of the presence of the other critical radius Ω(rc2) = 1/Frh which is always
stabilizing. This frequency cutoff decreases when Frh increases but the asymptotic
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FIGURE 14. (a) Vorticity profiles corresponding to (6.1) for different values of the
parameter a = 0:0.2:1. (b) Critical Rossby numbers for the centrifugal instability as a
function of a.

dispersion relation (4.8) has shown that the instability is never suppressed for
sufficiently small frequency ω for finite Frh and Ro for the profile (3.1).

6. Non-isolated vortices
In the previous sections, we have considered vortex profiles that have been shown

to be unstable to the GMW instability only when their circulation is zero, i.e. when
they are isolated. However, this is not generic and it is possible to have profiles with a
non-zero circulation satisfying the GMW instability condition, i.e. a positive vorticity
gradient for some radius. The purpose of this section is to investigate numerically
the stability of the m= 1 azimuthal wavenumber for these vortices. To this end, we
consider a family of vortices with a non-dimensional angular velocity combining a
Lamb–Oseen and a Carton–McWilliams profiles:

Ω(r)= a
1− e−r2

r2
+ (1− a)e−r2

, (6.1)

where a is proportional to the non-dimensional circulation Γ = 2πa. When a = 1,
the vortex is a pure Lamb–Oseen vortex while a = 0 corresponds to a pure Carton–
McWilliams vortex. The angular velocity on the vortex axis is independent of a owing
to the non-dimensionalisation. The corresponding vorticity ζ is plotted in figure 14(a)
for different values of a in the range 06 a6 1. As a increases, the negative minimum
of vorticity is reduced and disappears for a= 1. Accordingly, the domain of existence
of the centrifugal instability (i.e. φ = (2Ω + 2/Ro)(ζ + 2/Ro) < 0) varies with a: the
upper critical Rossby number increases from Roc = exp(2) for a= 0 to Roc =∞ for
a = 1 (figure 14b). In contrast, the lower critical Rossby number remains Roc = −1
regardless of a. As in § 3, we shall study the GMW instability only for the Rossby
numbers that are centrifugally stable.

6.1. Effects of the circulation parameter a and Froude number Frh

Figure 15 shows the growth rate and frequency of the azimuthal wavenumber m= 1
for Frh = 1, Ro = 1 for various values of the circulation parameter a. The most
striking feature is that the instability no longer starts at k = 0 when a is non-zero.
The maximum growth rate and the upper wavelength cutoff also decrease when a
increases.
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FIGURE 15. (a) Growth rate and (b) frequency as a function of kFrh/|Ro| for the profile
(6.1) for m= 1 for Frh = 1 and Ro= 1 for increasing value of a by steps of 0.1.
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FIGURE 16. Comparison (thin lines: ωr; thick lines: ωi) between the numerical results
(solid lines) and the asymptotic frequency (4.1) (thin dashed lines) and growth rate (5.1)
(thick dashed lines) for the profile (6.1) for m=1 for different values of a for Ro=Frh=1:
(a) a= 0.3; (b) a= 0.5; (c) a= 0.8.

The stabilization of small wavenumber k comes from the fact that the angular
velocity now behaves like Ω ' a/r2 for large r. Indeed, the critical radius rc
for a given small value of ω is much larger, rc = √a/ω, than for a = 0 for
which rc =

√−lnω. This implies that the vorticity gradient at rc is O(e−a/ωω−3/2),
i.e. exponentially small instead of being O(ω(ln ω)3/2) for a = 0. Since the growth
rate for small wavenumber k is directly proportional to ζ ′(rc) (see (5.1)), it remains
exponentially small. The frequency and growth rate are compared to the asymptotic
frequency (4.1) and growth rate (5.1) in figure 16 for various values of a. The
asymptotic frequency (4.1) and the exact frequency agree for small k and then differ
as soon as the growth rate ωi begins to rise. Remarkably, the asymptotic growth
rate (5.1) also predicts well the lower wavenumber cutoff kc at which the exact
growth rate rises. However, it then quickly diverges. As seen in figures 16 and 15(a),
the lower wavenumber cutoff kc increases monotonically with a. This behaviour
can be understood from the fact that the growth rate becomes non-negligible when
ζ ′(rc) is no longer exponentially small, i.e. approximately when rc ' 3 whatever the
value of a. Thus, the corresponding frequency ωc ' a/r2

c increases linearly with a.
Since the formula (4.1) turns out to vary weakly when a varies (see figure 16), the
corresponding wavenumber kc, i.e. ω(kc)= a/r2

c , increases with a.
Figure 17(a) further shows the growth rate as a function of the rescaled frequency

ωr/Ω(rI), where rI is the inflection point (ζ ′(rI)= 0) determined for each value of a.
This figure demonstrates that the growth rate vanishes when ωr=Ω(rI) regardless of a.
Therefore, the instability occurs only when ζ ′(rc) > 0 as already observed for a = 0
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FIGURE 17. The rescaled growth rate ωi as a function of the rescaled frequency ωr/Ω(rI)
for the profile (6.1) for m= 1 by steps of 0.1 and for Ro= 1 for increasing values of a,
(a) Frh = 1 and (b) Frh = 1.2.
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FIGURE 18. (a) Growth rate and (b) frequency as a function of kFrh/|Ro| for the profile
(6.1) for m= 1 for Frh = 1.2 and Ro= 1 for increasing values of a by steps of 0.1.

in § 5. The growth rate is however negligible for small rescaled frequency ωr/Ω(rI)

because ζ ′(rc) is then exponentially small as explained previously.
Figure 18 shows now the growth rate and frequency for a Froude number above

unity: Frh = 1.2, still for Ro = 1. The trends when a increases are the same as for
Frh = 1 (figure 15). The new feature is that the growth rate is negative for small k
and then suddenly increases as for Frh = 1 but the maximum growth rate becomes
positive only for a . 0.7. Figure 17(b) shows that the upper wavenumber cutoffs for
a. 0.7 correspond to the same value of the rescaled frequency ωr/Ω(rI). This critical
value is very close to the threshold ωr/Ω(rI)= 1 in contrast to figure 13(b) where the
critical rescaled frequencies ωr/Ω(rI) were clearly smaller than unity for a= 0. This
difference comes from the fact that the Froude number was larger in figure 13(b),
Frh > 1.5, than in figure 17(b). Another difference is that the growth rate is negative
for small wavenumber (i.e. small ωr/Ω(rI)) in figure 17(b) while for the Carton and
McWilliams profile in figure 13(b), the growth rate remains positive for small k even
when Frh > 1. This stabilization increases with a but also with the Froude number.
For example, figure 19 displays the growth rate and frequency for a fixed value of the
circulation parameter (a= 0.7), but different Froude numbers. The maximum growth
rate decreases when Frh is above unity and becomes negative for Frh= 1.3. Thus, the
instability is completely suppressed when the Froude number Frh is above a critical
value that depends on the circulation parameter a.
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FIGURE 19. (a) Growth rate and (b) frequency as a function of kFrh/|Ro| for the profile
(6.1) for m= 1 for a= 0.7,Ro= 1 and varying Frh: Frh= 0.8 ——; Frh= 1 - - - -; Frh= 1.2
– · – · –; Frh = 1.3 · · · · · ·.
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FIGURE 20. Growth rate and frequency as a function of kFrh/|Ro| for the profile (6.1)
for m= 1, a= 0.7,Frh= 1.2 and varying Ro: Ro= 50 ——; Ro= 20 · · · ·; Ro= 10 - - - -;
Ro= 5 ----; Ro= 2 ······; Ro= 1 ——; and Ro=−0.5 - - - - (a) growth rate, (b) frequency.
The horizontal dotted line in (b) shows the cutoff frequency ωr = 0.163.

6.2. Effect of the Rossby number

The effect of the Rossby number for a fixed Frh is shown in figure 20. The Rossby
number is varied between 0.8 and 50, i.e. within the centrifugally stable range for
a = 0.7 (−1 < Ro < 254, see figure 14b). The maximum growth rate increases with
Ro as for the Carton and McWilliams vortex (figure 2a).

Figure 21(a) shows the growth rate as a function of ωr/Ω(rI). All the curves for
Ro610 go to zero very close to the critical value ωr/Ω(rI)=1 as previously observed.
However, the growth rate for Ro = 20 and Ro = 50 remain clearly positive beyond
this cutoff. Two examples of eigenmodes for Ro = 5 and Ro = 50 are depicted in
figure 21(b). The eigenmode for Ro= 50 exhibits oscillations outside the vortex core
in contrast to the one for Ro = 5. Indeed, when the Rossby number is large, the
eigensolution for large radius can be wavelike (see (2.5)) since the parameter β2 =
(4/Ro2−ω2)/(1/Fh2−ω2) is negative when |ωr|> 2/Ro (assuming ωi= 0 and Frh <

|Ro|/2). Such outward radiation of inertia gravity waves lead to the radiative instability
as shown by Smyth & McWilliams (1998), Schecter & Montgomery (2004), Billant
& Le Dizès (2009), Le Dizès & Billant (2009), Riedinger et al. (2010, 2011), Park
& Billant (2012) and Park & Billant (2013).
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FIGURE 21. (a) Growth rate as a function of the rescaled frequency ωr/Ω(rI) for the
profile (6.1) for m= 1, a= 0.7, Frh = 1.2 and for different values of Ro: Ro= 50 ——;
Ro= 20 · · · ·; Ro= 10 - - - -; Ro= 5 ----; Ro= 2 ······; Ro= 1 ——; and Ro=−0.5 - - - -.
(b) Radial velocity of the eigenmode for Frh = 1.2, a = 0.7 for (Ro = 50, kFrh/|Ro| =
0.086: ——) and (Ro= 5, kFrh/|Ro| = 0.15: - - - -).

Since the maximum frequency of the GMW instability is max(ωr)=Ω(rI)= 0.163
for a = 0.7 independently of the Rossby and Froude numbers, the critical Rossby
number at which the eigenmodes become radiative for some wavenumbers can be
estimated at Roc=2/max(ωr)'12. Above this Rossby number, the radiation of inertia
gravity waves provides a second source of instability in addition to the critical layer
at rc. This explains why the mode m= 1 remains unstable beyond the cutoff frequency
ωr =Ω(rI) for Ro= 20 and Ro= 50 in figure 21(a).

7. Conclusion
In this paper, we have investigated the stability of the azimuthal wavenumber m= 1

of an axisymmetric columnar vortex in a stratified and rotating fluid. As shown
by Gent & McWilliams (1986) and Smyth & McWilliams (1998), this azimuthal
wavenumber can be unstable to an instability which bends the vortex and leads to
the formation of lenticular vortices when the fluid is both stratified and rotating. This
three-dimensional instability, called the ‘Gent–McWilliams (GMW) instability’ herein,
can occur in the centrifugally stable regime and in the quasi-geostrophic limit. These
properties make this instability clearly different from all other known instabilities of
columnar axisymmetric vortices: shear instability, centrifugal instability and radiative
instability. We have carried out both numerical and asymptotical stability analyses of
several vortex profiles to better understand the origin of this instability, to explain
why it occurs only in stratified rotating fluids and to derive an instability condition
valid outside the quasi-geostrophic regime.

We have first recovered and extended the numerical results of Gent & McWilliams
(1986) and Smyth & McWilliams (1998) for the stability of the azimuthal wavenumber
m = 1 for the Carton and McWilliams vortex. In the centrifugally stable regime
−1 6 Ro 6 7.39, we have shown that the maximum growth rate of the GMW
instability increases with Ro and is independent of Frh for Frh 6 1. In contrast, when
Frh > 1, the maximum growth rate abruptly decreases with Frh and the eigenmode
exhibits a critical layer singularity at the radius where Ω(rc2)− ω = 1/Frh. Thereby,
the maximum growth rate becomes very small for large Froude number.

These numerical results for the Carton and McWilliams vortex have been completed
by an asymptotic analysis of the long-wavelength bending mode. Such mode is a
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generic mode which derives from the translational invariances in the two-dimensional
limit. Hence, its frequency ω vanishes for k = 0 and can be computed by an
asymptotic expansion for small wavenumber k. We have found that there exist
two long-wavelength bending modes with complex conjugate frequency ω. The real
part of the frequency ωr and growth rate ωi of the unstable mode are always positive
for finite Rossby and Froude numbers for sufficiently small wavenumbers and are in
good agreement with those of the GMW instability computed numerically. This shows
that the GMW instability exists for long-wavelengths not only in the centrifugally
stable regime: −16Ro6 7.39, but also outside of this regime. As the Froude number
is increased above unity, the GMW instability continues to exist but the slope of the
growth rate with k rapidly decreases and becomes negligible because of the damping
by the critical layer rc2 where Ω(rc2) = 1/Frh. The asymptotic results have also
allowed us to study the transition from a stratified to an homogeneous fluid in the
case of a non-rotating fluid (Ro=∞). We have found that the range of wavenumbers
of the unstable long-wavelength bending mode shrinks to zero as the Froude number
becomes infinite because of the damping by the critical layer rc2. In contrast, the
stable long-wavelength bending mode continues to exist as Frh increases. It becomes
neutral with a negative frequency as Frh →∞ as for the vortices with a non-zero
circulation (Widnall et al. 1971).

This asymptotic analysis for the Carton and McWilliams vortex shows that the
GMW instability is intimately linked to the existence of a critical radius rc where
Ω(rc) = ω as conjectured by Reasor et al. (2004). In order to prove the role
played by the sign of the vorticity gradient ζ ′(rc) at the critical radius rc, a second
long-wavelength asymptotic analysis has been carried out for vortices exhibiting an
algebraic decay of the angular velocity Ω ∼ an/r2n for large radius, with n close
to unity. The sign of ζ ′ is positive if n > 1 and conversely is negative if n < 1. In
the particular case of n = 1, corresponding to a vortex with a constant circulation,
the long-wavelength bending mode for finite Rossby and Froude numbers is known
to have a positive frequency ωr with zero growth rate if Frh 6 1 and a negative
growth rate if Frh > 1 because of the critical layer rc2 where Ω(rc2)= 1/Frh (Billant
2010). Here, we have shown that the critical layer rc where Ω(rc)=ω has a positive
or negative contribution to the growth rate if n > 1 or n < 1, respectively. For
finite Rossby and Froude numbers, this positive contribution overcomes the negative
contribution of the critical layer rc2 for sufficiently small wavenumber. Thereby, the
bending mode is always unstable for sufficiently long wavelength if n> 1.

For general vorticity profiles, the latter instability condition becomes ζ ′(rc) > 0
in agreement with the condition derived by Schecter et al. (2002) and Schecter &
Montgomery (2003) under the quasi-geostrophic and asymmetric balance approxi-
mations, respectively. This condition is also equivalent to the Rayleigh inflection
point and Fjortoft necessary criteria derived by Gent & McWilliams (1986) in
quasi-geostrophic fluids and by Montgomery & Shapiro (1995) under the asymmetric
balance approximation. However, the necessary instability condition derived herein is
not restricted to the quasi-geostrophic or asymmetric balance regimes but is valid for
any finite Froude and Rossby numbers. Furthermore, it is necessary and sufficient if
Frh 6 1. Nevertheless, we stress that it is restricted to small vorticity gradients ζ ′ and
has been derived in the long-wavelength limit. The numerical results for the Carton &
McWilliams (1989) vortex show that this necessary instability condition is in practice
valid for any axial wavenumber k and magnitude of ζ ′ for finite Froude and Rossby
numbers.

Finally, we have investigated the stability of a family of vortices combining
a Lamb–Oseen and Carton and McWilliams profiles. These vortices exhibit both
positive vorticity gradient ζ ′(r) > 0 for some radii and a non-zero circulation in
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contrast to the two profiles previously studied. We have shown that these non-isolated
vortices are also unstable to the GMW instability in stratified rotating fluids, but only
for finite axial wavenumbers as previously observed by Flierl (1988) for piecewise
vorticity profiles in quasi-geostrophic fluids. The long-wavelength limit k� 1 is stable
(or marginally unstable) because the vorticity gradient at the critical radius ζ ′(rc) is
exponentially small. This result comes from the fact that the critical radius rc is
very large when the circulation (Γ = 2πa) is non-zero and the frequency is small:
rc ' (a/ω)1/2. Another particularity of the GMW instability for these non-isolated
vortices is that the damping effect of the critical radius rc2 where Ω(rc2)= 1/Frh can
completely overcome the destabilizing effect of the critical radius rc when the Froude
number is sufficiently large.

In summary, the origin of the GMW instability can be traced to a destabilization of
the long-wavelength bending mode of a columnar vortex by a critical layer rc where
Ω(rc) = ω/m when ζ ′(rc) > 0. This mode is specific to the azimuthal wavenumber
m = 1 since it derives from the translational invariances. However, more generally,
three-dimensional modes for other azimuthal wavenumbers m > 2 could be also
destabilized by a critical layer if their frequency range lies in the range 0<ω/m<Ω0.
Some vortex waves for these azimuthal wavenumbers may indeed have a frequency
in this range, both in homogeneous fluids (Kelvin 1880; Fabre, Sipp & Jacquin 2006)
and stratified rotating fluids (Schecter et al. 2002; Park & Billant 2013). It would
be interesting to investigate their stability for vortex profiles satisfying the condition
ζ ′(rc) > 0.
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Appendix A. Long-wavelength analysis for the Carton and McWilliams vortex in
stratified rotating fluids

In this appendix, (2.2) is solved asymptotically for small kFrh and m = 1 for the
Carton and McWilliams vortex (3.1) using the expansion (4.7). The frequency ω is
first considered arbitrary for simplicity. Two regions are considered: an inner region
where r� 1/k and an outer region where r� 1. The matching of the solutions in
these two regions will lead to the dispersion relation.

A.1. Inner region
At leading order in kFrh, (2.2) reduces to

d2ϕ0

dr2
+ 1

r
dϕ0

dr
−
[

1
r2
+ ζ

′

rs

]
ϕ0 = 0. (A 1)

The solution, which is non-singular at r= 0, is

ϕ0 =Crs, (A 2)

where C is a constant and we recall that s=Ω −ω. At second order, we have

d2ϕ2

dr2
+ 1

r
dϕ2

dr
−
[

1
r2
+ ζ

′

rs

]
ϕ2 =H

dϕ0

dr
+
[
φ − s2

1− s2Fr2
h
− 1

rs

(
2

Ro
+ ζ
)

H
]
ϕ0, (A 3)
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where

H =−2rs
rΩ ′ + s(1− s2Fr2

h)

(1− s2Fr2
h)

2
. (A 4)

The solution can be found by reduction of order in the form

ϕ2 = ϕ0J, (A 5)

where

J =
∫ r

0
η

s(2Ω − s+ 2/Ro)
1− Fr2

hs2
dη+

∫ r

0

1
η3s2

[
I1(η)+ 4I2(η)

Ro
+ 4I3(η)

Ro2

]
dη (A 6)

and

Ip(η)=
∫ η

0

ξ 3s5−p

1− Fr2
hs2

dξ, (A 7)

with p= 1, 2, or 3. The inner solution is therefore

ϕin = ϕ0[1+ k2Fr2
hJ] + · · · . (A 8)

A.2. Outer region
In the outer region, we define a rescaled radius such that U= kr with U=O(1). Since
Ω and ζ are exponentially small for r=O(1/k)� 1, (2.2) becomes at leading order

d2ϕ

dU2
− 1

U
[1+G] dϕ

dU
−
[

1
U2
+ β2 + 4+ 2G

ωU2 Ro

]
ϕ = 0, (A 9)

where

G= −2(1−ω2Fr2
h)

1−ω2Fr2
h −ω2U2

(A 10)

and β2 = (4/Ro2 −ω2)/(1/Fr2
h −ω2). Assuming that β2 > 0 and ωi = 0 or ωi 6= 0, the

solution which satisfies the boundary condition at infinity is

ϕout = E
[

K1(βU)+ ω Ro
2+ω Ro

βUK0(βU)
]
+O(k2Fr2

h), (A 11)

where E is a constant.

A.3. Behaviour of J for large r
Before matching the inner and outer solutions, we need to determine the behaviour of
the function J defined in (A 6) for r� 1. To this end, we assume now that ω is small.
We first determine the behaviour of the integrals Ip(η) defined in (A 7) for η� 1. We
have

I1(η)=A (Frh)+O(ω, ω4η4), (A 12)
I2(η)=B(Frh)+O(ω, ω3η4), (A 13)

I3(η)=D(Frh)+ F3(η)+O(ω, ω2η4), (A 14)
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FIGURE 22. Parameters A (——), B (- - - -) and D (· · · · · ·) as a function of Frh for the
Carton and McWilliams vortex (3.1): (a) real part and (b) imaginary part.

provided that 1� η� 1/
√
ω and ωFrh� 1. The constants (A ,B,D) are defined in

(4.3)–(4.5) and the function F3 in (4.6). For the Carton and McWilliams profile (3.1),
the angular velocity decays exponentially with r so that the asymptotic form of Ω for
large r can be taken as Ω̃ = 0, leading to F3(η0)= F3(η)= 0. Accordingly, we have
I3(η)=D(Frh) for η� 1. The constants (A ,B,D) are plotted as a function of the
Froude number in figure 22. We see that they are real and positive for Frh < 1 and
complex with a negative imaginary part when Frh > 1. As mentioned in § 4.1, this is
because the integrands are singular at the critical radius rc2 where Ω(rc2)= 1/Frh and
the integration path is deformed in the upper complex plane. From (A 12)–(A 14), we
deduce that the behaviour of J for large r is at leading order

Jr�1 = 4
Ro2 δ(Frh, Ro)

∫ r 1
η3s2

dη, (A 15)

where δ is defined in (4.2). In order to further integrate (A 15), it is first convenient
to write ω= ρeiθ and to use a change of variable x= e−η2

/ρ. This yields

Jr�1 =−
2δε2

ρ

ω2Ro2

∫ e−r2
/ρ 1

x(1− bx)2(1− ερ ln x)2
dx, (A 16)

where b= e−iθ and ερ =−1/ln ρ.
Since ω is assumed to be small, the integral (A 16) can be computed asymptotically

in power of the small parameter ερ when ερ|ln x| � 1, i.e. when

ρ� x� 1
ρ
. (A 17)

The integration range in (A 16) is therefore split into three intervals:

∫ e−r2
/ρ

=
∫ x1

+
∫ x2

x1

+
∫ e−r2

/ρ

x2

, (A 18)

where the bounds (x1, x2) are chosen such that ρ � x2� 1 and 1� x1� 1/ρ. The
three corresponding integrals are denoted J1, J2 and J3.
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In the first interval, we have x� 1 so that we can write

J1 =−
2δε2

ρ

ω2 Ro2

∫ x1 1
x(1− bx)2(1− ερ ln x)2

dx=− 2δε2
ρ

ω2 Ro2

∫ x1 1+O(1/x)
b2x3(1− ερ ln x)2

dx.

(A 19)
This yields

J1 = 2δ
ω2b2 Ro2

(
2e−2/ερEi(2(ε−1

ρ − ln x1))− ερ

x2
1(1− ερ ln x1)

+O
(

1
x3

1

))
, (A 20)

where Ei is the exponential integral (Abramowitz & Stegun 1970). Similarly, we have
x� 1 throughout the third interval so that

J3 =−
2δε2

ρ

ω2 Ro2

∫ e−r2
/ρ

x2

1
x(1− bx)2(1− ερ ln x)2

dx=− 2δε2
ρ

ω2 Ro2

∫ e−r2
/ρ

x2

1+O(x)
x(1− ερ ln x)2

dx,

(A 21)
giving

J3 =−
2δε2

ρ

ω2 Ro2

[
1
ε2
ρr2
− 1+O(x2)

ερ(1− ερ ln x2)

]
. (A 22)

Finally, in the intermediate interval, we have ερ|ln x| � 1 leading to

J2 = −
2δε2

ρ

ω2 Ro2

∫ x2

x1

1
x(1− bx)2(1− ερ ln x)2

dx

= − 2δε2
ρ

ω2 Ro2

∫ x2

x1

1+ 2ερ ln x+ 3ε2
ρ(ln x)2 +O(ε3

ρ)

x(1− bx)2
dx. (A 23)

This gives

J2 = −
2δε2

ρ

ω2 Ro2

[
1

1− bx
− ln

(
1− bx

x

)
+ ερ

(
ln x

(
ln x− 2+ 2

1− bx
− 2 ln(1− bx)

)
+ 2 ln(1− bx)− 2 Li2(bx)

)
+ ε2

ρ ln x
(

3bx ln x
1− bx

+ (ln x)2 + 6 ln(1− bx)− 3 ln x ln(1− bx)
)

− 6ε2
ρ((−1+ ln x)Li2(bx)− Li3(bx))+O(ε3

ρ)

]x2

x1

, (A 24)

where Lin is the polylogarithm function of order n (Abramowitz & Stegun 1970). We
can also expand J1 and J3 with ερ since ερ ln x1� 1 and ερ ln x2� 1. This gives

J1 =
δε2

ρ

ω2b2x2
1 Ro2

(
1+ ερ(1+ 2 ln x1)+ 3

2
ε2
ρ(2 ln x1 + 2(ln x1)

2)+O(ε3
ρ)

)
, (A 25)

J3 =−
2δε2

ρ

ω2 Ro2

(
1
ε2
ρr2
− 1
ερ
− ln x2 − ερ(ln x2)

2 − ε2
ρ(ln x2)

3 +O(ε3
ρ)

)
. (A 26)
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The integral J2 can be also simplified using the fact that x2� 1 and x1� 1:

J2 = −
2δε2

ρ

ω2 Ro2

[
1+ ln(−b)+ ln x2 + 1

2b2x2
1

− ερ
(

π2

3
+ 2 ln(−b)+ (ln(−b))2 − (ln x2)

2 − 1+ 2 ln x1

2b2x2
1

)
+ ε2

ρ

(
(ln x2)

3 +π2 +π2 ln(−b)+ 3 ln(−b)2 + ln(−b)3

+ 3(1+ 2 ln x1 + 2(ln x1)
2)

4b2x2
1

)]
. (A 27)

Collecting the three integrals, we obtain

Jr�1 = J1 + J2 + J3

= − 2δ
ω2 Ro2

[
1
r2
− ερ + ε2

ρ(1+ ln(−b))− ε3
ρ

(
π2

3
+ 2 ln(−b)+ (ln(−b))2

)
+ ε4

ρ(π
2 +π2 ln(−b)+ 3 ln(−b)2 + ln(−b)3)+O(ε5

ρ)

]
. (A 28)

Since the small parameter depends on the logarithm of |ω|: ερ = −1/ln|ω|, the
convergence of (A 28) is quite slow for small ω. This is the reason why we have
computed Jr�1 up to order ε4

ρ . It should be noted that (A 28) can be simplified by
using as small parameter ε̃ρ =−1/lnω, i.e. equivalently ε̃ρ = 1/r2

c . It yields

Jr�1 =− 2δ
ω2 Ro2

[
1
r2
− ε̃ρ + ε̃2

ρ(1+ iπγ )− ε̃3
ρ

(
−2

π2

3
+ 2iπγ

)
− ε̃4

ρ2π2 +O(ε̃5
ρ)

]
,

(A 29)
where γ = 1 when 0 < θ < π and γ = −1 when −π < θ < 0, if the integration
is performed on the real axis. All the complex terms in (A 29) are included in the
parameter ε̃ρ except two. These two terms correspond to the residue at the singular
radius rc =

√−lnω.

A.4. Matching
The inner and outer solutions should match in the overlap region 1� r� 1/k where
they are both valid. To this end, we consider the behaviours of the inner solution (A 8)
for r� 1 and the outer solution (A 11) for U = kr� 1. Using the behaviour of the
function J determined in the previous section for r� 1 and ω� 1, the inner solution
for r� 1 is

ϕin = −Cωr+C
2Fr2

hk2

Ro2

δ

ω

[
1
r
− r

r2
c

+ r
r4

c

(1+ iπγ )

− r
r6

c

(
−2π2

3
+ 2iπγ

)
− 2π2r

r8
c

+
(

1
r10

c

)]
+O(Fr4

hk4). (A 30)

In turn, the outer solution (A 11) becomes at leading order for kr� 1 and ω� 1

ϕout = E
β0kr
+ Eβ0kr

2

[
ln
(
βkr
2

)
+ γe − 1

2

]
, (A 31)
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where β0 = 2Frh/Ro. The expressions (A 30) and (A 31) match at leading order if

E= k3β3
0 Cδ

2ω
, (A 32)

−ω+ δk
2β2

0

2ω

[
− 1

r2
c

+ 1
r4

c

(1+ iπγ )+ 1
r6

c

(
2π2

3
− 2iπγ

)
− 2π2

r8
c

]
=O

(
β4

0 k4

ω
ln(β0k)

)
.

(A 33)

The latter relation yields a dispersion relation valid for small k:

ω2 = k2β2
0δ

2

[
− 1

r2
c

+ 1
r4

c

(1+ iπγ )+ 1
r6

c

(
2π2

3
− 2iπγ

)
− 2π2

r8
c

]
. (A 34)

We can check a posteriori that it is legitimate to neglect the right-hand side of (A 33).
In fact, (A 34) simply imposes the condition that the inner solution (A 30) decays with
r and this condition could have been obtained from (A 30) without solving the outer
problem. An alternative way of writing (A 34) is

ω2 = k2β2
0δ

2

[
−ερ + ε2

ρ(1+ iΘ)− ε3
ρ

(
π2

3
+ 2iΘ −Θ2

)
+ ε4

ρ(π
2 + iπ2Θ − 3Θ2 − iΘ3)

]
,

(A 35)

where Θ =πsgn(θ)− θ , ερ =−1/ln |ω| and θ = arg(ω).

Appendix B. Effect of the Froude number on the long-wavelength bending mode
of the Carton and McWilliams vortex in non-rotating fluids

When Ro=∞, the matched asymptotic analysis conducted in appendix A and § 4.1
for the Carton and McWilliams vortex (3.1) remains valid whatever the Froude number
Frh. In this case, we have therefore the opportunity to study the transition from a
stratified fluid to an homogeneous fluid Frh =∞.

In the limit Ro=∞, the dispersion relation (4.8) can be rewritten in the convenient
form (see (A 35))

ω2 = k2Λ

2

[
−ερ + ε2

ρ(1+ iΘ)− ε3
ρ

(
π2

3
+ 2iΘ −Θ2

)
+ ε4

ρ(π
2 + iπ2Θ − 3Θ2 − iΘ3)

]
,

(B 1)

where

Λ= Fr2
hA = Fr2

h

∫ ∞
0

ξ 3Ω4

1− Fr2
hΩ

2
dξ, (B 2)

where A is defined in (4.3).
In the limit Frh→∞, Λ tends to a finite value which is real and negative: Λ =
− ∫∞0 ξ 3Ω2 dξ . Hence, it is straightforward to see that (B 1) has a solution where ω
is purely real and negative (i.e. Θ = 0)

ω2 =−k2Λ

2

[
ερ − ε2

ρ + ε3
ρ

π2

3
− ε4

ρπ
2

]
. (B 3)
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FIGURE 23. Frequency ωr (thin lines) and growth rate ωi (thick lines) as a function of k
for the azimuthal wavenumber m= 1 for the Carton and McWilliams vortex (3.1) for (a)
Frh= 3, (b) Frh= 4, (c) Frh= 4.5 and (d) Frh=∞ for Ro=∞. The solid lines show the
numerical results while the dashed line represents the asymptotic frequency (B 1).

In fact, this is the only solution of (B 1). As for vortices with a non-zero circulation
(Widnall et al. 1971), the long-wavelength bending mode of the Carton and
McWilliams vortex in homogeneous non-rotating fluid is therefore neutral with a
negative frequency. This implies that there is no critical radius Ω(rc)=ω.

Figure 23 shows the two solutions of (B 1) for several Froude numbers from
Frh = 3 to Frh =∞ and compares them to numerical results. We see that the branch
with positive growth rate predicted by (B 1) exists only for small wavenumbers
when Frh = 4 (figure 23b). It disappears when the growth rate vanishes because
the integration path is on the real axis. For Frh = 4.5, this branch shrinks further,
and when Frh = ∞ it has completely disappeared. In contrast, the other branch
continues to exist as Frh increases. Its frequency remains negative but its damping
rate diminishes as Frh increases. It becomes neutral in the limit Frh =∞. For all the
Froude numbers investigated, (B 1) is in good agreement with the numerical results
for small wavenumber.

Appendix C. Long-wavelength analysis for vortices with angular velocity decaying
algebraically in stratified rotating fluid

In this appendix, a long-wavelength asymptotic analysis similar to the asymptotic
analysis of appendix A is carried out for vortices with an angular velocity behaving
like Ω ' an/r2n for large radius. In contrast to appendix A, it is more convenient to
assume that ω is small from the outset and expanded with k2Fr2

h

ω= 0+ Fr2
hk2ω2 + · · · . (C 1)
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As before, the inner and outer solutions are expanded in the form

ϕ = ϕ0 + Fr2
hk2ϕ2 + · · · . (C 2)

The inner solution will be determined for arbitrary n while the outer solution can be
computed analytically only for n= 1+ ε with |ε| � 1.

C.1. Inner region

In the inner region, the solutions ϕ0 and ϕ2 have the same form as in (A 2) and (A 5)
except that, since ω=ω2k2Fr2

h+· · · , s can be approximated by Ω and the term −rωC
in the leading order solution (A 2) appears in the second order solution ϕ2:

ϕ0 =CrΩ, (C 3)

ϕ2 = ϕ0

[∫ r

0
η
Ω(Ω + 2/Ro)

1− Fr2
hΩ

2
dη+

∫ r

0

1
η3Ω2

(
Ĩ1(η)+ 4Ĩ2(η)

Ro
+ 4Ĩ3(η)

Ro2

)
dη

]
−Cω2r,

(C 4)

where

Ĩp(η)=
∫ η

0

ξ 3Ω5−p

1− Fr2
hΩ

2
dξ, (C 5)

with p= 1, 2 or 3.

C.2. Outer region

As in § A.2, the outer solution can be determined by defining a rescaled radius U= kr
with U=O(1). However, the angular velocity Ω and vorticity ζ are now not negligible
since Ω ∼ an/r2n for r� 1. Indeed, the rescaling of (2.2) gives for such a profile:

d2ϕ

dU2
+ 1

U
[1+M]

dϕ
dU
− ϕ

 1
U2
+ β0

2 +O(Fr2
hω

2, Fr2
hk4n, Fr2

hk2nω)

− 4n(1− n)

U2

(
1− ωU2n

ank2n

) + MU2n−1

(k2n −ωU2n/an)

[
2

Ro
+ 2(1− n)k2n

U2n

]= 0, (C 6)

where M =O(Fr2
hω

2, Fr2
hk4n, Fr2

hk2nω) and β0 = 2Frh/Ro.
Hence, since ω=ω2k2Fr2

h, (C 6) reduces at leading order to:

d2ϕ

dU2
+ 1

U
dϕ
dU
− ϕ

[
1

U2
+ β2

0 −
4n(1− n)

U2[1− k2(1−n)Fr2
hω2U2n/an]

]
= 0. (C 7)
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This equation can be solved asymptotically when n = 1 + ε with |ε| � 1. To do so,
we expand the outer solution and ω2 with ε

ϕout = ϕ(0)0 + εϕ(1)0 + · · · , (C 8)

ω2 =ω(0)2 + εω(1)2 + · · · . (C 9)

The solution at leading order is

ϕ
(0)
0 =K1(β0U). (C 10)

At the next order, we have

d2ϕ
(1)
0

dU2
+ 1

U
dϕ(1)0

dU
− ϕ(1)0

[
1

U2
+ β2

0

]
= 4ϕ(0)0

U2(1− Fr2
hω

(0)
2 U2/an)

. (C 11)

The solution is found by reduction of order

ϕ
(1)
0 =K1(β0U)

∫ U

∞

1
ηK2

1(β0η)

∫ η

∞

4K2
1(β0ξ)

ξ(1− Fr2
hω

(0)
2 ξ

2/an)
dξ dη, (C 12)

where the integration constants have been chosen such that ϕ(1)0 tends to zero for
U→∞.

C.3. Behaviour of the inner solution for large r
In preparation for the matching, we determine the behaviour of the inner solution for
r� 1. We start by determining the behaviours of the integrals Ĩp(η) defined in (C 5).
Because Ω ∼ an/r2n as r→∞, we have for η� (anFrh)

1/2n

Ĩ1(η)∼A (Frh)+O(1/η8n−4), (C 13)
Ĩ2(η)∼B(Frh)+O(1/η6n−4), (C 14)

Ĩ3(η)∼D(Frh)+ F3(η), (C 15)

where A ,B,D are defined in (4.3)–(4.5) and F3 in (4.6). Using the asymptotic form
of Ω for large radius Ω̃ = an/r2n gives the function:

F3(η)=
∫ η Ω̃2ξ 3

1− Fr2
hΩ̃

2
dξ = a2

n

[
η4−4n − 1

4− 4n

]
. (C 16)

The behaviour of the second order inner solution (C 4) for r � max(Fr1/2n
h , 1) is

therefore

ϕ2 ∼C
[

4
an Ro2

δr2n−1

4n− 2
+ an

2 Ro2(1− n)

(
r3−2n − r2n−1

2n− 1

)
−ω2r

]
, (C 17)
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where δ is defined in (4.2). The behaviour of the inner solution for large r is then

ϕin ∼ C
[

an

r2n−1
+ Fr2

hk2

[
4

an Ro2

δr2n−1

4n− 2
+ 1

2 Ro2(1− n)

×
(

r3−2n − r2n−1

2n− 1

)
−ω2r

]]
+O(Fr4

hk4). (C 18)

If we now further assume that n= 1+ ε with |ε| � 1, we obtain

ϕin = Can

[
1
r
− 2ε

ln r
r
+ k2Fr2

hr

[
2δ

a2
n Ro2 +

2 ln r− 1
Ro2 − ω

(0)
2

an

+ ε
(
−ω

(1)
2

an

4δ
a2

n Ro2 (ln r− 1)+ 1
Ro2 (2− 2 ln r)

)]]
+O(ε2, k4Fr4

h). (C 19)

C.4. Behaviour of the outer solution for small U
In order to match the inner and outer solutions, we need also to determine the
behaviour of (C 12) for U� 1, i.e. for r� 1/k. To do so, we first rewrite (C 12) in
the form ϕ

(1)
0 =M(U)K1(β0U) where

M(U)=
∫ U

∞

χ(η)

ηK2
1(β0η)

dη (C 20)

and

χ(η)=
∫ η

∞

4K2
1(β0U)

U(1− Fr2
hω

(0)
2 U2a−1

n )
dU. (C 21)

When η is small, we have

χ(η)= E− 2
β2

0η
2
+ 2 ln(ηβ0)

(
−1+ 2γe + 2ω(0)2 Fr2

h

β2
0 an

+ ln
ηβ0

4

)
+O(η2), (C 22)

where E is a constant defined as

E =
∫ η0

∞

4K2
1(β0U)

U(1− Fr2
hω

(0)
2 U2a−1

n )
dU + 2

β2
0η

2
0

− 2 ln(η0β0)

(
−1+ 2γe + 2ω(0)2 Fr2

h

β2
0 an

+ ln
(
η0β0

4

))
, (C 23)

with 0< η0� 1. Using (C 22), we can now determine the behaviour of M for small
U. We obtain

M = G− 2 ln(Uβ0)+ β2
0 U2

[
E
2
− Fr2

hω
(0)
2

β2
0 an
+ ln(Uβ0)

(
−1+ 2γe + 2Fr2

hω
(0)
2

β2
0 an

− 2 ln 2

)]
+β2

0 U2(ln Uβ0)
2 +O(U4), (C 24)
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where G is a constant. This constant can be set to zero without loss of generality by
a simple rescaling of the leading order solution. This implies that ϕ(1)0 for small U is
of the form:

ϕ
(1)
0 = MK1(β0U)=−2 ln(Uβ0)

β0U
+ β0U

2

[
E− 2Fr2

hω
(0)
2

β2
0 an

+ ln(Uβ0)

(
−1+ 2γe + 4Fr2

hω
(0)
2

β2
0 an

− 2 ln 2

)]
+O(U3). (C 25)

We can then deduce that the outer solution (C 9) becomes for small U = kr

ϕout = 1
β0kr
+ β0kr

2

[
ln(β0kr)

2
+ γe − 1

2

]
+ ε

[
−2 ln(β0kr)

β0kr
+ β0kr

2

×
(

E− 2Fr2
hω

(0)
2

β2
0 an

+ ln(β0kr)

(
−1+ 2γe + 4Fr2

hω
(0)
2

β2
0 an

− 2 ln 2

))]
+ · · · . (C 26)

C.5. Matching
The expressions of the inner and outer solutions (C 19) and (C 26) match if

Can = 1
β0k

(1− 2ε ln(kβ0)), (C 27)

2Cank2 Fr2
h

Ro2

(
1+ ε

(
2δ
a2

n

− 1
))
= β0k

2
+ εβ0k

2

(
−1+ 2γe − 2 ln 2+ 4Fr2

hω
(0)
2

β2
0 an

)
,

(C 28)

Cak2Fr2
h

[
2δ

a2
n Ro2 −

1
Ro2 −

ω
(0)
2

an
+ ε

(
− 4δ

a2
n Ro2 +

2
Ro2 −

ω
(1)
2

an

)]

= β0k
2

(
ln
β0k
2
+ γe − 1

2

)
+ εβ0k

2

×
[

E− 2Fr2
hω

(0)
2

β2
0 an

+ ln(kβ0)

(
−1+ 2γe + 4Fr2

hω
(0)
2

β2
0 an

− 2 ln 2

)]
. (C 29)

The first relation gives the constant C while the two others give the dispersion
relation

ω = Fr2
hk2(ω

(0)
2 + εω(1)2 )=

anβ
2
0 k2

2

(
−ln

β0k
2
− γe + δ

a2
n

)
+ εan

β2
0 k2

2

[
1− E− γe − δ

a2
n

+ ln 2+ ln(β0k)
(

1− 2γe − 2δ
a2

n

+ 2 ln 2
)]

+O(ε2, k4 ln(k)). (C 30)
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C.6. Generalization to arbitrary profiles with a weak gradient of vorticity for
large radius

In this section, we consider an angular velocity profile different from the form Ω '
an/r2(1+ε) but still with a weak gradient of vorticity at large radii. In other words, its
angular and vorticity profiles for large radii can be written in the general form

Ω =Ω0(r)+ εΩ1(r), ζ = εζ1(r), (C 31a,b)

where Ω0(r) = an/r2, ε� 1 and (Ω1, ζ1) are of order unity. In this case, the outer
solution has the same form as found in § C.2 except that (C 12) is replaced by

ϕ
(1)
0 =K1(β0U)

∫ U

∞

1
ηK2

1(β0η)

∫ η

∞

ζ ′1(ξ/k)K
2
1(β0ξ)

k(Ω0(ξ/k)−ω(0)) dξ dη. (C 32)

This implies that the frequency will be of the same form as in (4.20) with ω(0) given
by (4.21) and ω(1) by

ω(1) = 2an

(
kβ0

2

)2

(−E+ g1(k, ω(0), Frh, Ro)), (C 33)

where

E= lim
η0→0

∫ η0/k

∞

ζ ′1(r)K
2
1(β0kr)

(Ω0(r)−ω(0)) dr+ g2(k, η0, ω
(0), Frh, Ro), (C 34)

where the functions g1 and g2 will be different for each particular profile considered
and would have to be determined by matching the inner and outer solutions. However,
without determining the explicit expression of these functions, it is easy to see that
they should be real if ω(0) is real. Hence, if δi is small, we can deduce that the growth
rate will be at leading order

ωi = 2an

(
kβ0

2

)2 [
δi

a2
n

− επζ
′
1(rc)K2

1(kβ0rc)

Ω ′0(rc)

]
+O(εδi), (C 35)

since the residue of the integral in (C 34) at rc is a−1 = ζ ′1(rc)K2
1(kβ0rc)/Ω

′
0(rc).

Equation (C 35) can be also rewritten in terms of the full profiles (C 31)

ωi = 2an

(
kβ0

2

)2 [
δi

a2
n

−π
ζ ′(rc)K2

1(kβ0rc)

Ω ′(rc)

]
+O(εδi). (C 36)
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