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The bifurcation structure of viscous steady axisymmetric vortex
breakdown with open lateral boundaries

Elena Vyazmina,a� Joseph W. Nichols, Jean-Marc Chomaz, and Peter J. Schmid
Laboratoire d’Hydrodynamique (LadHyX), CNRS, École Polytechnique, 91128 Palaiseau Cedex, France

�Received 22 December 2008; accepted 28 May 2009; published online 31 July 2009�

The effect of small viscosity on the behavior of the incompressible axisymmetric flow with open
lateral and outlet boundaries near the critical swirling number has been studied by numerical
simulations and asymptotic analysis. This work extends the theoretical studies of Wang and Rusak
and numerical results of Beran and Culik to the case of flow with open lateral and outlet boundaries.
In the inviscid limit the columnar flow state constitutes a solution that is known to become unstable
at a particular swirl parameter. An asymptotic expansion shows that for small perturbations about
this inviscid state an exchange of stability gives rise to a double saddle node bifurcation. The
solution of the Euler equations breaks into two branches of the Navier–Stokes equations with a gap
between the branches in which no near-columnar flow can exist. Around this region, two
steady-state solutions exist for the same boundary conditions, one close to the columnar state and
the other corresponding to either an accelerated or a decelerated state. This bifurcation structure is
verified by numerical simulations, where the Navier–Stokes solutions are computed using branch
continuation techniques based on the recursive projection method. For relatively small Reynolds
numbers the numerically computed bifurcation curve does not exhibit any characteristic fold, and
thus no hysteresis behavior. In this case, only a single equilibrium solution is found to exist, which
changes monotonically from the quasicolumnar state to the breakdown solution. For large Reynolds
numbers, however, the numerically determined bifurcation diagram confirms the fold structure
characterized by the disappearance of the nearly columnar state via a saddle node bifurcation. Using
the minimum axial velocity on the axis as a measure of the flow state we show that the agreement
between theory and numerics is asymptotically good. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3176476�

I. INTRODUCTION

Vortex breakdown is a feature of many flows that have
both axial and azimuthal velocity components; these flow
fields are known as swirling flows. It is characterized by an
abrupt and dramatic change in the structure of the axisym-
metric core, which leads to the appearance of stagnation
points on or near the axis of symmetry followed by regions
of reversed flow referred to as the vortex breakdown bubble.

The study of vortex breakdown is of great interest to,
among other fields, aerodynamics and combustion physics.
Breakdown also arises in a number of natural settings such as
tornadoes, dust devils, and water spouts.1 Its occurrence in
the flow over delta wings at high angles of attack can have a
significant effect on lift, drag, and pitching moment as re-
ported by Hummel and Srinivasan.2 For the design of com-
bustion chambers, Beer and Chigier3 and Faler and
Leibovich4 emphasized the importance of understanding the
flow structure of vortex breakdown. In this configuration,
breakdown is intentionally triggered to improve air-fuel mix-
ing, and thus produce a more stable and compact flame as
well as a more complete combustion process.

Scientific interest in explaining this nonlinear phenom-
enon has produced a great body of experimental, numerical,
and theoretical studies. In addition, several review articles on

vortex breakdown have appeared: See, for example, Refs.
5–14. According to these reviews various stability criteria
have been developed and proposed over the years. Despite a
great deal of progress, many details of the vortex breakdown
process are still poorly understood, and the continued study
of this phenomenon is essential both for fundamental reasons
and for the development of different technological devices
such as hydrocyclone separators,15 combustion chambers,8

nozzles, and other applications where swirl plays an impor-
tant role.

In an early study, Squire16 and Benjamin17 investigated
inviscid, incompressible, axisymmetric, swirling flow in a
pipe. They defined a critical level of swirl ScB when infinitely
long small-amplitude axisymmetric standing waves appear in
the flow. Supercritical vortex flow with a swirl of S�ScB

does not support such waves, whereas subcritical flow with
S�ScB does.

Leibovich18 revealed that the critical state is a singular
point for the inviscid steady flow. Using weakly nonlinear
asymptotic analysis he observed a branch of the steady-state
Euler equations that bifurcates at the critical swirl from the
columnar state and continues into the region S�ScB. This
branch describes a standing solitary wave arising from the
base columnar state in an infinitely long pipe.

Keller et al.19 considered inviscid axisymmetric vortex
breakdown in an infinitely long pipe characterized by a semi-a�Electronic mail: elena.vyazmina@ladhyx.polytechnique.fr.
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infinite stagnation region with free boundaries on the base
columnar flow. This solution describes the transition from a
base inlet columnar state to another columnar state further
downstream that has the same dynamics due to the conser-
vation of axial momentum along the pipe. For a fixed vorti-
cal core radius at the inlet, this solution only exists for a
specific swirl S0 with S0�ScB.

In a sequence of papers, Rusak and co-workers14,20–28

comprehensively investigated the dynamics and stability be-
havior of an incompressible axisymmetric vortex flow in a
finite-length circular pipe. Fixed profiles for axial flow, cir-
culation, and azimuthal vorticity have been imposed at the
inlet of the pipe, together with zero-radial-velocity boundary
conditions at the outlet. These conditions take into account
the flow behavior observed in the experimental work of
Bruecker and Althaus29 who reported that the inlet flow did
not change appreciably as vortex breakdown occurred. The
same behavior has also been demonstrated in the numerical
investigations of Beran,30 Lopez,31 and Snyder and Spall.32

Based on these conditions the theoretical work of Rusak and
co-workers provides an encompassing picture of the physical
mechanisms underlying axisymmetric vortex breakdown �see
Fig. 1�. The existence of three steady branches connected by
two critical levels of swirls S0 and S1 �S0�S1� has been
shown, where the branch corresponding to the critical swirl
S1 represents an extension of Benjamin’s17 theory of vortex
breakdown in an infinite pipe to the case of a finite-length
pipe, while the branch associated with S0 is an extension of
that of Keller et al.19 also to a finite-length pipe. As was
reported by Wang and Rusak20 the columnar state is abso-
lutely stable for S�S0, linearly stable for S0�S�S1, and
unstable for S�S1. The solitary-wave branch connecting the
states corresponding to the swirls S0 and S1 is unstable and
describes axisymmetric traveling waves convecting down-
stream. The breakdown branch originating from the state
with swirl S0 is globally stable for any swirl S�S0 �see
Fig. 1�.

The analysis of Wang and co-workers20–23 shows that the

critical flow state at a swirl S1 consists of a marginal equi-
librium. Mathematically, it is well known that transcritical
bifurcations, such as the one near swirl S1, are structurally
unstable, i.e., any perturbation to the solution near the critical
point can lead to significant changes in the bifurcation be-
havior, and thus in the nature of the solution.21,22 When per-
turbed, the transcritical bifurcation at S1 separates into two
branches which no longer meet at S1. For example, Lopez31

found a fold indicating the existence of multiple solutions as
well as hysteresis and limit point behavior, characteristic of a
perturbed transcritical bifurcation.

At present, most theoretical and numerical investigations
have primarily focused on swirling flow in pipes with corre-
sponding boundary conditions. In this paper we generalized
the analysis of swirling flows to the case with open lateral
and outflow boundaries. This work furthermore extends the
asymptotic analysis of Wang and Rusak24 to this different set
of lateral and outlet boundary conditions. While swirling
flows in combustion chambers are confined, the geometry of
these chambers is usually complex. Furthermore, vortex
breakdown also occurs in applications where the flow is par-
tially or fully unconfined such as the flow over delta wings or
the geophysical flows mentioned above. Since both of these
scenarios �complex confined geometry and unconfined ge-
ometry� have significantly different boundary conditions than
those for flow in a pipe, we focus in the present paper on the
influence of these boundary conditions on the vortex break-
down solutions obtained over the entire domain. This is ac-
complished by comparing results obtained with different
boundary conditions using both an extended asymptotic
analysis and direct numerical simulation �DNS�.

The paper is organized as follows. Section II gives the
equations governing viscous vortex breakdown and provides
a detailed description of the chosen boundary conditions. In
Sec. III the numerical simulations are presented. The critical
swirl number is found in Sec. IV. The asymptotic analysis of
near-critical swirling flow is provided in Sec. V. Then, in
Sec. VI, the asymptotic and numerical solutions of the prob-
lem are compared and the relation between the present in-
vestigation and the breakdown of vortex flow in a pipe is
discussed. Finally, our results are summarized in Sec. VII.

II. MATHEMATICAL MODEL

To model vortex breakdown, we consider an unsteady,
axisymmetric, incompressible viscous flow of constant den-
sity ��=1� in a cylindrical domain of outer radius R and axial
length x0. We use cylindrical coordinates where x, r, and �
denote the axial, radial, and azimuthal directions, respec-
tively. Likewise, the components of velocity in the axial,
radial, and azimuthal directions are represented by ux, ur, and
u�, respectively, and p denotes the pressure. We note that the
ordering of the velocity components used in this paper dif-
fers from the convention used in Ref. 24.

The flow is governed by the axisymmetric Navier–
Stokes and continuity equations which, in nondimensional
form, read

S

u
xmin

0

S
1

S
cv1

S
0

quasi−columnar

decelerated
state

vortex−breakdown

u
x0

FIG. 1. Qualitative bifurcation diagram for axisymmetric vortex breakdown
for both inviscid and viscous flows. Here, uxmin is the minimum axial veloc-
ity found at any point in the computational domain.
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These equations have been nondimensionalized by a charac-
teristic length equal to the radius of the vortex core, rcore, and
a characteristic velocity taken as the inlet axial velocity, ux0.
This results in a Reynolds number defined as

Re =
ux0rcore

�
,

where � is the kinematic viscosity of the fluid. We have
stated the time-dependent governing equations since our nu-
merical simulations solve these equations by time stepping
and recursive projection until a steady state is reached, as
described in Sec. III. The steady vortex breakdown states of
interest then satisfy the above system of governing equations
with the time-dependent terms equal to zero.

At the inlet, the nondimensional axial, radial, and azi-
muthal velocity components are prescribed as

ux�0,r� = 1,

ur�0,r� = 0, �1�

u��0,r� = U��r��/ux0 = Su�0�r� ,

where U� is the dimensional azimuthal velocity profile in
dimensional coordinates r�=rrcore. The nondimensional swirl
parameter S=U��rcore� /ux0 represents the ratio of the azi-
muthal velocity at the edge of the core to the axial free-
stream velocity. This definition of the swirl parameter en-
forces the normalization u�0�1�=1 of the nondimensional
azimuthal velocity profile at the inlet. The total velocity pro-
file given by Eq. �1� is axisymmetric and will be held con-
stant at the inlet of our domain. Among the velocity profiles
in the category described by Eq. �1� are the Burgers vortex
that was used by, e.g., Beran and Culik33 and the Grabowski
profile introduced by Grabowski and Berger34 and used re-
cently by Ruith et al.35

At the outlet we apply Neumann boundary conditions for
each velocity component as in Ref. 35,

�ux

�x
�x0,r� = 0,

�ur

�x
�x0,r� = 0,

�u�

�x
�x0,r� = 0. �2�

At the centerline we impose the conditions ur�x ,0�=0 and
u��x ,0�=0 due to the axisymmetry of the flow.

As emphasized by Ruith et al.36 the use of free-slip
boundary conditions in the radial direction requires exces-
sively large computational domains to avoid backscatter
from the radial boundaries. To truncate the domain at smaller
radii, one must allow for mass and momentum to be ex-
changed across the radial boundary, and thus account for
entrainment of exterior fluid into the jet. To this end, no-
viscous-traction boundary conditions in the radial
direction,37

� · n = 0,

are applied, where � represents the viscous stress tensor and
n stands for the unit normal vector in the lateral directions.
In cylindrical coordinates this equation can be rewritten in
component form as

�ur

�r
�x,R� = 0,

�ur

�x
�x,R� +

�ux

�r
�x,R� = 0, �3�

�u�

�r
�x,R� −

u�

r
�x,R� = 0.

For our present investigation we neglect the fact that the
inlet azimuthal velocity does not exactly satisfy the lateral
boundary conditions �3�. Following the argument given by
Ruith et al.,36 however, we note that for both the Grabowski
and Burgers profiles the stress tensor component correspond-
ing to the azimuthal velocity at the radial edge of the domain
decays like 1 /R2, and therefore can be neglected for suffi-
ciently large radial domains.

We remind the reader that the majority of past theoretical
investigations used a no-flux radial boundary condition �re-
flecting the conservation of the total mass flux across the
pipe� as well as a zero radial velocity at the outlet. In our
study we analyze the vortex breakdown problem with open
lateral boundary conditions and purely convective behavior
at the outlet.

III. NUMERICAL SIMULATIONS

The numerical simulations are based on the incompress-
ible time-dependent axisymmetric Navier–Stokes equations
in cylindrical coordinates �x ,r ,��. The computational do-
main has the dimensionless size R=10 and x0=20; it is nu-
merically resolved by nr=127 and nx=257 grid points in the
radial and axial directions, respectively, with a uniform mesh
in the axial direction and with an algebraic mapped mesh38 in
the radial direction which clusters grid points near the cen-
terline and the lateral boundaries. To reach a steady state,
simulations of the time-dependent Navier–Stokes equations
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were run until the L2-norm of the difference of the velocity
field from one time step to the next became smaller than
10−11.

The Grabowski profile34 is used for the radial velocity,
and the axial and azimuthal velocity components are defined
piecewise for the regions inside and outside a characteristic
radius. The Grabowski profile represents a smooth change
from solid body rotation inside the characteristic radius and
potential flow farther away. The velocity profile at the inflow
boundary is forced to be axisymmetric and constant over
time,

ux�0,r� = 1,

ur�0,r� = 0,

�4�
u��0,0 � r � 1� = Sr�2 − r2� ,

u��0,1 � r� = S/r .

The outflow convective boundary conditions used in numeri-
cal computations,

�ux

�t
+ C

�ux

�x
= 0,

�ur

�t
+ C

�ur

�x
= 0,

�u�

�t
+ C

�u�

�x
= 0,

which reduce, for the steady state, to Eq. �2� used in theory,
were the same as in Ref. 36. The numerical simulations were
carried out for zero normal viscous stress boundary condi-
tions �3� on the lateral frontier of the domain.

The incompressible Navier–Stokes equations are solved
by a pressure projection method.39 Spatial derivatives are
approximated with sixth-order compact schemes, and a
fourth-order Runge–Kutta scheme is used for integration in
time. The code used in the present study was adapted from a
code used to study nonswirling variable-density jets. For fur-
ther details, please see Ref. 40.

As a representative reference case, a swirling jet is se-
lected with the dimensionless governing parameters of Re
=200 and S=1.095. This choice is identical to the reference
cases obtained by Grabowski and Berger34 and by Ruith
et al.35 This results in simulations that closely match the
streamline patterns presented in Fig. 3, frames �a� and �b�, of
Ruith et al.35

The recursive projection method �RPM� of Shroff and
Keller41 is used as a tool to stabilize the fixed-point iterative
procedure and also as a convergence accelerator. RPM seeks
to identify the space associated with the dominant eigenval-
ues and to eliminate its negative influence on the original
fixed-point iteration by combining it with Newton iterations
for the identified subspace. Once a steady state is found, the
eigenvalues determined by the RPM procedure give directly
its stability properties.

In order to demonstrate the bifurcation structure of the
flow, a quantitative measure of the flow is needed to monitor
the development of the steady-state solutions as the govern-
ing parameters are varied. An appropriate diagnostic quantity

is uxmin, the minimum of the axial velocity in the meridional
half-plane, which is equivalent to the minimum of axial ve-
locity in the entire domain. In the current investigation, two
governing parameters are varied, the swirl parameter S and
the Reynolds number Re. For each choice of these param-
eters we compute a steady-state branch of the solution, where
each new steady-state computation uses the previously cal-
culated steady state as an initial condition.

In Fig. 2, the steady-state solution branch for Re=200
represents the spatial evolution of streamlines dependent on
the swirl parameter. In the figure, steady-state solutions were
computed at 342 separate values of S, uxmin was extracted
from each of these solutions, and the solid curve was plotted
through these points using linear interpolation. Here, we ob-
serve the gradual change in the solution from the columnar
state �a� to vortex breakdown states �d, e, f�. From this bi-
furcation structure the development of recirculation bubbles
can be studied. As the swirl increases, the appearance of a
single recirculation bubble indicates the initial onset of vor-
tex breakdown. In the figure, this occurs when the bifurca-
tion curve passes through point c, where uxmin first becomes
negative owing to the presence of recirculation. As the swirl
parameter increases further yet, a second recirculation bubble
forms just downstream of the first, as shown in state f .

In a similar fashion as in Fig. 2, Fig. 3 shows the steady-
state solution branch for Re=1000, together with the swirl-
dependent spatial evolution of the streamlines. In this case,
373 separate steady-state solutions were computed, slightly
more than in the previous case. More solutions were needed
because of the small arc-length parameter necessary for con-
tinuation in the vicinity of the critical point labeled b in Fig.
3 where the slope of the bifurcation curve becomes vertical.
This critical point �b� divides the stable columnar branch of
the bifurcation curve from the unstable branch. The stream-
line pattern of solution state a in Fig. 3 is representative of
the branch corresponding to the columnar state, which is
characterized by relatively large positive values of uxmin. Be-
yond the critical point �b�, perturbations of the flow propa-
gate downstream and a subsequent generation of the recircu-
lation bubble is observed close to the outlet, as shown by the
streamline plots corresponding to solution states d and e.
This is in contrast to the calculations shown in Fig. 2 where
the recirculation bubble forms closer to the inlet and means
that the higher Reynolds number flow strongly interacts with
outlet boundary conditions. Also in contrast to the previous
calculations, where stable solutions are found along the en-
tire bifurcation curve for Re=200, solutions found beyond
the critical point for Re=1000 are linearly unstable. It is
important to note, however, that the solutions become lin-
early unstable only beyond the critical point in the Re
=1000 case, and so this branch is referred to as the unstable
steady-state branch to distinguish it from the stable columnar
branch. Initializing DNS with this unstable state, we observe
an exponential departure away from the initial condition and
eventual convergence to the stable columnar branch. In the
case of pipe flow, the unstable steady-state branch connects
two stable branches �columnar and vortex breakdown�,
which are part of one curve with a fold as described by Ref.
31. For the case considered here we found the spatial struc-
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ture of the vortex breakdown branch to be highly sensitive to
the swirl parameter when Reynolds numbers are high. This
prevented us from following this entire branch and connect-
ing it to the unstable one. In this region, a continuation in-
crement of 10−5 or 10−6 on swirl parameter was needed to
follow the bifurcation curve. In addition, each point along
the curve required approximately 105 iterations to converge
to a steady solution; therefore, this would require a total of
1010 iterations to traverse the necessary range of swirl num-
bers. Small portions of the vortex breakdown branch have
been computed exhibiting one �streamline pattern f , Fig. 3�
or two bubbles depending on the swirl number value.

By examining the flow behavior �see the streamline pat-
terns in Fig. 3� it is easy to conclude that the problem
strongly depends on the outlet boundary conditions, i.e., the
manner in which velocity perturbations leave the computa-
tional domain. The Neumann outlet boundary conditions al-
low an open recirculation region to exist. From a physical
point of view this bubble comes from the outlet, and for a
larger domain the vortex breakdown state will appear at
smaller swirl parameters, and the recirculation bubbles will
again form at the outlet in a similar way to Fig. 3.

IV. THE CRITICAL STATE OF INVISCID
SWIRLING FLOW

We consider a steady base flow given by an inviscid
solution of the steady Euler equations which corresponds to
transport downstream of the inlet boundary conditions �1�.
This base flow will be perturbed by infinitesimal distur-
bances as

ux�x,r� = ux0 + �ux1�x,r� + ¯ ,

ur�x,r� = �ur1�x,r� + ¯ ,

u��x,r� = Su�0�r� + �u�1�x,r� + ¯ ,

p�x,r� = p0�r� + �p1�x,r� + ¯ ,

where �	1. Substitution into the Euler and continuity equa-
tions and considering only terms which are first order in �
results in the linearized equations
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FIG. 2. �Color online� Bifurcation diagram describing the formation of vortex breakdown as the swirl is increased. The minimum axial velocity uxmin is plotted
as a function of the swirl number S for Re=200. Each point along the bifurcation curve corresponds to a steady-state solution of the Navier–Stokes equations.
The streamlines of some of the corresponding characteristic steady states are shown on the top and on the right. The wiggles on the bifurcation diagram visible
after S=1 are converged �i.e., identical when the resolution is increased�; they disappear when a less specific measure is taken as, for example, the overall
mean value of ux.
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+

1

r

��rur1�
�r

= 0.

Eliminating pressure from the first two equations of �5� we
arrive at

ux0
�2ur1

�x2 − ux0
�2ux1

�xr
− 2

u�0

r
S

�u�1

�x
= 0,

ux0
�u�1

�x
+

ur1

r

��ru�0�
�r

S = 0, �6�

�ux1

�x
+

1

r

��rur1�
�r

= 0.

Subsequent substitution of the continuity equation and the
expression for u�1 into the first equation of Eq. �6� reduces

system �5� to the linear partial differential equation for the
radial velocity, ur1:

�

�r
�1

r

�rur1

�r
� +

�2ur1

�x2 + S22u�0ur1

r2ux0
2

��ru�0�
�r

= 0,

ur1�x,0� = 0,
�ur1

�r
�x,R� = 0, �7�

ur1�0,r� = 0,
�ur1

�x
�x0,r� = 0.

Equation �7� can be rewritten in the form Lur1=0, where
L is a linear partial differential operator defined by the fol-
lowing expression:

L =
�

�r
�1

r

�

�r
r� +

�2

�x2 + S2 2u�0

r2ux0
2

��ru�0�
�r

. �8�

It is important to point out that this problem has nontrivial
solutions only for specific values of S, corresponding to the
bifurcation points. For other values of S, if a nonsteady linear
solution was computed, it would have a growth rate different
from zero.

The solution of Eq. �7� ur1�x ,r�=Aũr1�x ,r� is obtained
by separation of variables according to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

S

u
xmin

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

a b c

d

e

f

a

b

c

d
e

f

FIG. 3. �Color online� Bifurcation diagram describing the formation of vortex breakdown as the swirl is increased. The minimum axial velocity uxmin is plotted
as a function of the swirl number S for Re=1000. Each point along the bifurcation curve corresponds to a steady-state solution of the Navier–Stokes equations.
The streamlines of some of the corresponding characteristic steady states are shown on the top and on the right.
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ũr1�x,r� = sin�
x���r� ,

where A denotes amplitude. The first eigenvalue S1 of Eq. �7�
defines the critical swirl of the flow. The critical swirl S1 is a
bifurcation point of solution branches of the steady Euler
equation obtained by the above separation with 
=� /2x0,
where 1=S1

2 and ��r� are determined by the eigenvalue
problem

d

dr
�1

r

d�r��r��
dr

� + �− 
2 + 1
2u�0

r2ux0
2

d�ru�0�
dr

����r� = 0,

�9�

��0� = 0,
d�

dr
�R� = 0.

The associated perturbation velocities are

ũx1�x,r� = �cos�
x� − 1�
1




1

r

d�r��r��
dr

,

ũ�1�x,r� = �cos�
x� − 1�
S1


ux0

��r�
r

d�ru�0�
dr

.

Since we are solving the inviscid problem we do not enforce
the lateral and outlet boundary conditions on the axial and
azimuthal velocities deduced from ũr1.

V. ASYMPTOTIC EXPANSION OF NEAR-CRITICAL
SWIRLING FLOWS IN THE LARGE REYNOLDS
NUMBER LIMIT

For small viscosities and small departure from the invis-
cid critical swirl S1 we consider the perturbation approach
used by Wang and Rusak24 about the critical inviscid solu-
tion for S1. They have shown that two small parameters have
to be introduced measuring the viscosity and the closeness to
the critical inviscid state � to maintain a uniformly valid
solution in the neighborhood of the critical swirl. We let
=S2 and 1=S1

2, and anticipating the dominant balance
valid when perturbing a transcritical bifurcation, we set
=1+��� and �=�2�� with ��=O�1� and ��=O�1�.
We then assume a perturbed solution in the form

ux�x,r� = ux0 + �ux1�x,r� + �2ux2�x,r� + ¯ ,

ur�x,r� = �ur1�x,r� + �2ur2�x,r� + ¯ ,

�10�
u��x,r� = Su�0�r� + �u�1�x,r� + �2u�2�x,r� + ¯ ,

p�x,r� = p0�r� + �p1�x,r� + �2p2�x,r� + ¯ ,

where �	1. The perturbation variables ux1, ur1, and u�1 sat-
isfy the following boundary conditions:

ux1�0,r� = 0, ur1�0,r� = 0, u�1�0,r� = 0,

ur1�x,0� = 0, u�1�x,0� = 0.

�ur1

�r
�x,R� = 0,

�ur1

�x
�x0,r� = 0.

We enforce the same boundary conditions on the higher-
order terms ux2, ur2, and u�2.

At leading-order � we recover the linear equation �7�
with S2=1, which can be formally written as Lur1=0,
where L is defined by Eq. �8�. As described in Sec. IV the
solution of this equation is

ur1�x,r� = Aũr1�x,r� = A sin�
x���r� ,

with A as an arbitrary amplitude to be determined by com-
patibility equations at higher order, 
=� /2x0, and ��r� as
the solution of Eq. �9�.

At second order the linearized operator L applied to ur2

is forced by terms stemming from the lower-order solution

�ux0
�

�r
�1

r

�rur2

�r
� + ux0

�2ur2

�x2 + 1
2u�0ur2

r2ux0

��ru�0�
�r

�
= − A2��−

ũr1

r
+ ũx1

�

�x
+ ũr1

�

�r
�� � ũr1

�x
−

� ũx1

�r
�

−
2ũ�1

r

� ũ�1

�x
+

2u�0
	1

rux0
�ũx1

� ũ�1

�x
+

ũr1

r

�rũ�1

�r
��

− A��
2u�0ũr1

r2ux0

��ru�0�
�r

+ ��1
2u�0

rux0

�

�r
�1

r

��ru�0�
�r

� .

Here the first term in the right-hand side of the equation is
not linear, being proportional to A2, and corresponds to the
transport of the perturbation by the perturbation. The second
term is linear in A and originates from the change in the
linearized operator with swirl parameter. The last term is
independent of A and represents the effect of viscosity on the
base flow.

This equation may be formally written as
Lur2=��ũx1 , ũr1 , ũ�1 ,u�0�. It is easy to show that Eq. �7� is
self-adjoint with respect to the scalar product


ur��ur� =  ur�urrdrdx .

Using the compatibility condition �Fredholm alternative�
to find ur2 we need the forcing ��ũx1 , ũr1 , ũ�1 ,u�0� to be or-
thogonal to the kernel of the adjoint that reads here 
ũr1 ���
=0, giving

A2M1 − A��M2 + ��M3 = 0, �11�

with
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M1 = 
0

x0 
0

R ��−
ũr1

r
+ ũx1

�

�x
+ ũr1

�

�r
�� � ũr1

�x
−

� ũx1

�r
�

−
2ũ�1

r

� ũ�1

�x
�ũr1rdrdx

+ 
0

x0 
0

R 2u�0
	1

rux0
�ũx1

� ũ�1

�x
+

ũr1

r

�rũ�1

�r
�ũr1rdrdx ,

M2 = − 
0

x0 
0

R 2u�0ũr1

r2ux0

��ru�0�
�r

ũr1rdrdx ,

M3 = − 
0

x0 
0

R

1
2u�0

rux0

�

�r
�1

r

��ru�0�
�r

�ũr1rdrdx .

Integration over x leads to

M1 =
x0

2

�2ux0
2 N1, M2 =

x0

ux0
N2, M3 =

41x0

�ux0
N3,

with

N1 = − 2�� −
4

3
�1

0

R �

�r
�u�0

��ru�0�
�r

��3

r
dr +

�2ux0
2

12x0
2 

0

R

��3� − 8�� + 3��rr��2dr

− ux0
2 �� −

4

3
�

0

R ��r�rr − ��rrr�r3 + ���rr + �r
2�r2 + 3��rr − 4�2

r2 �dr ,

N2 = − 
0

R u�0

r

��ru�0�
�r

�2dr , �12�

N3 = − 
0

R

u�0
�

�r
�1

r

��ru�0�
�r

��dr .

For the Grabowski profile, where the axial flow is uniform
and equal to ux0=1, it can be shown that N1 and N3 are
positive.

Equation �11� has a real solution for A if

���� � 2
	M1M3

�M2�
	�� = 4

	N1N3

�N2�
	��x01

�3ux0
. �13�

If �����2	M1M3�� / �M2�, Eq. �11� has no real solutions; as
mentioned by Wang and Rusak,24 in this case no steady vis-
cous solution exists near the critical point.

Close to the critical state, with condition �13� satisfied,

A =
��M2 � 	����2M2

2 − 4��M1M3

2M1

=
��N2 � 	����2N2

2 − 16��x01N1N3/��3ux0�
2x0N1/��2ux0�

.

�14�

Multiplying Eq. �13� by � we get that ���
=2	M1M3� / �M2�, meaning that no solution exists between
Sc�1 and Sc�2,

Sc�1
2 = 1 − 4

	N1N3

�N2�
	�x01

�3ux0
,

Sc�2
2 = 1 + 4

	N1N3

�N2�
	�x01

�3ux0
,

which defines a saddle fold bifurcation point of the steady
axisymmetric Navier–Stokes solution. The value Sc�1

2 corre-
sponds to the first viscous correction to the inviscid critical
swirl.24

Starting from Eqs. �10�, �9�, and �14�, multiplying by �,
and neglecting all terms of higher order, the asymptotic ex-
pansion near the critical swirl 1 reads

ux�x,r� = ux0 +
�N2 � 	���2N2

2 − 16�x01N1N3/��3ux0�
2x0N1/��2ux0�

�cos�
x� − 1�
1




1

r

��r��r��
�r

,

ur�x,r� =
�N2 � 	���2N2

2 − 16�x01N1N3/��3ux0�
2x0N1/��2ux0�

sin�
x���r� , �15�
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u��x,r� = Su�0�r� +
�N2 � 	���2N2

2 − 16�x01N1N3/��3ux0�
2x0N1/��2ux0�

�cos�
x� − 1�
S


ux0

��r�
r

��ru�0�
�r

.

Careful analytical investigation of the expression for the
axial velocity �Eq. �15�� shows that the minimum axial ve-
locity always occurs at the centerline of the domain at the
outlet for the decelerated state. Thus, the minimum axial ve-
locity in the whole domain uxmin is equivalent to ux�x0 ,0�.

We conclude, as in the pipe flow considered by Wang
and Rusak,24 that, for a small but finite viscosity, the
modified transcritical bifurcation of the Euler solution
consists of two Navier–Stokes branches about 1 with a fi-
nite gap between these two branches equal to

8�	N1N3 / �N2��	�x01 /�3ux0.
The bifurcation diagram in terms of the minimum axial

velocity uxmin along the centerline, evaluated by using Eq.
�15�, is a nonlinear function in �. Steady columnar flow at
leading order exists for S2�Sc�1

2 and S2�Sc�2
2 . The branches

are not connected and the resulting gap near the critical swirl
demonstrates that no near-columnar axisymmetric state ex-
ists for the corresponding range of the swirl parameter. Out-
side this region two near-columnar equilibrium states can
exist for the same boundary conditions. For S2�Sc�1

2 one
branch describes a nearly columnar state and the other a
decelerated axial flow which corresponds to the unstable
steady-state branch described in Sec. III. The deceleration is
evident in the streamline plots of Fig. 3, since the streamlines
diverge as the flow develops downstream in this case. For
S2�Sc�2

2 one branch consists of the accelerated state and the
second relaxes toward the columnar state.

VI. GRABOWSKI PROFILE

For the Grabowski profile �Eq. �4�� we compute the
eigenfunction � to determine the bifurcation behavior based
on our asymptotic results. A spectral method based on
Chebyshev polynomials �see, e.g., Ref. 42� was used to solve
Eq. �9� resulting in the eigenfunction ��r� displayed in Fig.
4 by the solid thick line. Equation �9� outside the character-
istic radius r=1 can be solved analytically, which gives the
exact value ��R�=0.027 041 443 06 once the equation has
been integrated in the core. The numerical integration in this
outer region produces ��R�=0.027 041 443 046, which al-
lows us to estimate the numerical error to be on the order of
10−11. The constants N1=0.059 819 851 197 575, N2
=−0.070 295 010 313 843, and N3=0.763 981 542 125 681
were computed using the Clenshaw–Curtis quadrature to
approximate the integral equations �12� �see, e.g., Ref.
43�.

To test the validity of these asymptotic results, we com-
pare them to the results obtained from numerical simulations
�Sec. III�. Figure 5 compares the same solution branch for
Reynolds numbers Re=2000 and Re=1500 obtained from
numerical simulations �dashed thick and thin lines, respec-
tively� and the asymptotic solution �solid lines of corre-
sponding thickness�. The straight black lines represent bifur-
cation curves for the inviscid case, and the intersection of the
two straight lines defines the inviscid critical swirl number
S1. Perturbations increase as the Reynolds number decreases,
which qualitatively agrees with the numerical results.44 A
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FIG. 4. The normalized eigenfunctions for a Grabowski
profile. The thick solid line corresponds to open flow
and the dashed-dotted line to a flow in a straight pipe.
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similar dependence of the solution on the Reynolds number
has already been discussed for the pipe case.24

Despite a Reynolds number of only Re=2000, we obtain
a good agreement between numerical calculations and
asymptotic analysis from Sec. V. We expect an even closer
match between the analytic and numerical bifurcation curves
for higher Reynolds numbers; this attempt, however, would
require a significantly larger resolution �i.e., denser compu-
tational grid, which in turn necessitates a smaller time step
and an increased number of iterations to obtain the steady-
state solution�; the central processing unit time to calculate
stable and unstable branches would be computationally too
expensive.

Since we have verified that the extended analysis agrees
well with the numerical simulations for Re=2000, we may

now use this tool to explore the effects of differing condi-
tions at lateral and outlet boundaries. First, we compare our
problem with open lateral boundaries to the flow in a pipe in
which the lateral boundary condition is changed from an
open, traction-free condition to a closed, free slip condition:

ur1�x,R� = 0,

while keeping the same outlet �Neumann� boundary condi-
tions.

The eigenfunction ��r� corresponding to this case is
shown in Fig. 4 by the dashed-dotted line. One can observe a
moderate difference between the two curves, but they have
roughly the same shape. Even though the behavior of the
curves near the lateral boundary at r=10 is different �the
solid curve remains nonzero allowing entrainment whereas
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FIG. 6. Bifurcation curves obtained from asymptotic
analysis for Re=2000. The solid black line corresponds
to the Neumann outlet problem with open lateral
boundaries, the dashed-dotted line to flow in a pipe
opened at the outlet, and the dashed curve to a flow in a
pipe with zero radial velocity at the outlet �Ref. 24�.
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FIG. 5. Bifurcation curves obtained from asymptotic
analysis for Re=1500 �thin solid line� and Re=2000
�thick solid line� and from numerical simulations for
Re=1500 �thin dashed line� and Re=2000 �thick
dashed line�.
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the dashed-dotted curve does not�, the peaks of the curves,
near the center of the domain, are of about the same height
and width. This indicates that the problem is only weakly
sensitive to the type of imposed lateral boundary conditions.

The bifurcation curves corresponding to open and closed
lateral boundaries �Fig. 6� also demonstrate that the solution
depends very weakly on the lateral boundary conditions. Fig-
ure 6 also reports results obtained by Wang and Rusak24 on a
pipe flow with a different outlet condition �Dirichlet�. The
difference is larger than when the lateral boundary condition
alone is modified. This demonstrates a higher sensitivity to
the outlet boundary condition. We found that the critical in-
viscid swirl number in the present case is 1=0.944 630 73,
which is smaller than for a pipe with a Dirichlet boundary
condition at the outlet, where 1=0.950 646 78, as reported
by Wang and Rusak.24

VII. DISCUSSION AND CONCLUSIONS

In this paper we investigated the influence of a small but
finite viscosity on the bifurcation diagram of axisymmetric
swirling Euler flow with traction-free lateral and convective
outlet boundary conditions. We study the flow stability by
investigating the bifurcation structure of steady-state solu-
tions to the above problem. This has been accomplished both
by means of numerical simulations and by theoretical
analysis.

To validate our numerical simulations, we first consid-
ered the bifurcation structure of a low Reynolds number case
�Re=200� as shown in Fig. 2. For this case, our computed
steady-state solutions agreed very well with those found in
the literature.35 Figure 2 shows that for small Reynolds num-
bers only one equilibrium solution exists, which represents
the smooth monotonic change from the near-columnar state
to vortex breakdown.

Numerical simulations and an asymptotic expansion
about the critical swirl parameter for higher Reynolds num-
bers were also developed. The asymptotic analysis was car-
ried out in a similar manner to Wang and Rusak24 but for
different boundary conditions, namely, open lateral and out-
let boundaries. As discussed in Sec. I, such a set of boundary
conditions allows us to expand the theory of the swirling
flows involving vortex breakdown to flow configurations
such as combustion chambers, delta wings, and many others.
It was shown that in a neighborhood of S1 small but finite
viscosity causes the steady Euler solution to give rise to two
steady Navier–Stokes solutions whose branches show a gap.
A small-disturbance analysis revealed a dependence on both
viscosity as well as on a measure of the closeness to the
critical swirl. It showed the existence of two critical viscous
thresholds in parameter space, such that Sc�1

2 �S1
2�Sc�2

2 , with

the size of the gap �Sc�1
2 −Sc�2

2 � proportional to 	�x0S1
2. This

means that no quasicolumnar states exist for Sc�1
2 �S1

2

�Sc�2
2 . Experimental and numerical investigations conducted

in this parameter range should obtain only one equilibrium
solution: the vortex breakdown state. Outside this parameter
range, however, up to three equilibrium states �quasicolum-
nar, decelerated or accelerated, and vortex breakdown� exist
for identical boundary conditions and sufficiently large Rey-

nolds numbers, as shown in Fig. 1. In this case, the deceler-
ated state represents an unstable steady state and lies be-
tween the two other �columnar and vortex breakdown� states
which are stable.

In spite of the fact that the inlet azimuthal velocity does
not exactly satisfy the lateral boundary conditions, the
present asymptotic analysis displayed good agreement with
numerics, as shown in Fig. 5. Also, both the numerical and
theoretical investigations found that the flow near the critical
swirl is more sensitive to the outlet boundary conditions than
to the lateral ones. Figure 6 shows that the asymptotic results
changed more appreciably when the outlet boundary condi-
tion changed from Neumann to Dirichlet, in contrast to a
change in the lateral boundaries from open to closed. From
Fig. 3, we interpret the sensitivity of the solution to the outlet
boundary condition to be caused by the nucleation of a re-
circulation bubble at the outlet boundary.

Asymptotic analysis also predicts the existence of an up-
per breakdown-free state for S�Sc�2, corresponding to the
accelerated state.24 We wish to point out, however, that the
viscous corrections in expansion �10� are valid for �	 �S2

−S1�, where S2 is the second eigenvalue of problem �9�. In
our case �Re=2000� these values are of the same order, i.e.,
���S2−S1��0.02, indicating that Re=2000 is a too small
Reynolds number to apply the theory for S�Scv2, meaning
that the upper fold might not exist for such a moderate Rey-
nolds number. As mentioned above, we expect a better match
between the analytic and numerical solutions as the Rey-
nolds number increases.
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