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The transport of liquid plugs in a microfluidic branching tree is studied experimentally. The global flow

pattern can be either symmetric or asymmetric, with daughter plugs dividing in synchrony or asynchrony

as a function of the driving flow rate and the network geometry. For trees with narrowing channels, the

plugs always reach the exits even at low flow rates. In contrast, only one path is opened in networks with

widening channels when the flow rate is low. This behavior is explained by a comparison of the pressure

drop necessary to drive viscocapillary motion of plugs in straight channels with the nonlinear pressure

variations as a plug passes a bifurcation. A model is built, which predicts that only narrowing networks

can be fully filled, while widening networks can never be fully invaded by a two-phase flow.
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Large-scale rearrangements in connected networks have
attracted much attention in recent years, mostly in theo-
retical studies of networks as models for social interac-
tions, disease propagation, and electrical and fluid
transport [1,2]. In the case of fluid transport in intercon-
nected geometries, complex dynamics can arise when the
local pressure–flow-rate relations are nonlinear, for ex-
ample, when the flow takes place in compliant conduits
[3,4] or in the presence of immiscible interfaces [5]. In
such situations, the local flow-rate fluctuations lead to
instantaneous, global reequilibration of the pressure, thus
producing long-range couplings in the flow. This can play a
dominant role for flows in porous or biological media,
where the evolution of multiphase flows occurs through a
competition between viscous and capillary effects, which
are both influenced by the local details of the geometry.

Microfluidic devices have been proposed for modeling
such flows since they offer fine control over the geometry,
in addition to providing detailed optical access to the fluid
behavior (see, e.g., [6]). However, most previous studies
have considered the statistics of transport on a global scale,
usually by coarse-graining the local dynamics. This has
limited the ability to build networks with prescribed char-
acteristics, such as the ones studied theoretically, due to a
lack of local constitutive relations that can be generalized.
Here, we fill this gap by presenting a deterministic study of
the advance of a two-phase flow in a complex network.

We are particularly motivated by two-phase flows that
take place in the pulmonary airways and therefore focus on
binary branching trees. The air passages in the lung can be
occluded by liquid plugs either in pathological situations,
such as Respiratory Distress Syndrome, or as a method for
drug delivery in which medication is administered as a
liquid bolus into the airways. Indeed, such treatment is
already commonplace among premature infants, who suf-
fer from a deficit of surfactant in the lung and whose
survival depends on succeeding to flow some surfactant
into the distal branches of the airways [7]. While models of

liquid transport in bifurcating airways have already been
explored in experiments, both in vitro [8,9] and ex vivo
[10], in addition to numerical models [11,12], there re-
mains a large gap between the microscopic understanding
of the motion of a single plug and the organization of the
flow on a large scale in a network of channels.
We use microfluidic techniques to build two binary

branching networks with different recursion rules and ob-
serve the flow of a single liquid plug that is pushed into
each. Networks, such as the one shown in Fig. 1, are made
of polydimethylsiloxane (PDMS) using soft lithography
techniques [13]. Perfluorodecalin is used to make the liquid
plugs. It has viscosity � ¼ 5� 10�3 Pa s and surface ten-
sion � ¼ 20� 10�3 N=m and also provides good wetting
conditions on the PDMS surfaces. The channel height at all

FIG. 1 (color online). Image of a narrowing network with 5
generations. Generation (bifurcation) numbers are labeled with
Arabic (Roman) numerals. A constant flow rate is applied
through the network inlet, at generation 0. Sixteen holes are
made at the exits to fix the boundary condition at atmospheric
pressure. The four paths along which measurements are made
are marked.
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branches is b ¼ 50 �m, while its width wi varies by a
constant factor �: wiþ1 ¼ �wi, where the subscript
denotes the generation number. Two networks are studied:
a narrowing network with � ¼ 0:83 (referred to later as
the N network) and a widening network with � ¼ 1:2
(W network). The channel widths range from 342 to
720 �m in both cases.

A typical experiment consists of creating a liquid plug at
the root of the network and then pushing it at a constant
flow rate Q while recording its motion with a fast camera.
At each bifurcation, the plug divides into two daughters of
nearly equal size, and these daughters are transported in
their respective branches. The positions of the daughter
plugs are followed as they travel through four representa-
tive paths, as labeled in Fig. 1, and their traveled distances
from the entrance are plotted in Figs. 2 and 3.

When pushed at a low flow rate ofQ ¼ 2 �l=min in the
N network, the plug initially flows in generation 0 until it
reaches the first bifurcation at which it divides into two
daughters: The single solid black line in Fig. 2(a) thus leads
to two lines (solid black and dashed blue). The dashed one
then stops when it reaches bifurcation II, while the solid
one passes and its daughters (solid black and dash-dotted
red) advance to bifurcation III, where they now stop. At
this point, the dashed plug divides through bifurcation II
and catches up with the early ones. The difference in
traveled distance between the dashed and solid lines, which
had increased up to one generation, decreases again. When
all of the daughters have arrived at bifurcation III, they
divide and travel to the next bifurcation one by one.

The evolution for Q ¼ 5 �l=min is similar except that
the dashed plug divides at bifurcation II while the daughters
of the solid are still moving in generation 2, corresponding

to a period when flow exists in both branches. Three daugh-
ters also pass bifurcation III and travel through generation 3
simultaneously, followed by the dashed daughter that ad-
vances on its own. Finally, all the daughters advance simul-
taneously at high flow rates (Q ¼ 20 �l=min), and the
distance plots are all superposed in this case. In all cases,
the liquid penetrates everywhere in theN network regard-
less of the driving flow rate.
The flow patterns in theW network are shown in Fig. 3.

The initial behavior for Q ¼ 2 �l=min is similar to that in
the N network, but a difference arises at bifurcation II,
where the dashed daughter of the initial plug is blocked and
remains stationary until the end of the experiment. The
other plug divides and its daughters reach bifurcation III,
where only the dash-dotted red daughter continues, leaving
the solid black one stationary. Since there is no flow in
branches downstream of a bifurcation where a plug is
blocked, the flux is limited to only a quarter of the network
on the level of generation 3 when Q ¼ 2 �l=min. As for
Q ¼ 4 �l=min, daughters of the initial plug pass bifurca-
tion II successively, but only two daughters (solid and
dash-dotted) pass through bifurcation III, while the other
two get blocked. In the end, flow is set up in half of the
network. When the flow is pushed at Q ¼ 20 �l=min, the
daughters pass bifurcation II together but the crossings of
bifurcation III are not simultaneous, resulting in asynchro-
nous advance of the daughters afterward. Nevertheless, the
whole network is penetrated at this high flow rate.
To understand the flow distribution, note that the pres-

ence of a liquid plug in the network modifies the dynamics
in two ways. First, when the plug moves in a straight
channel, it introduces a resistance to flow through its
viscosity and surface tension. The relation between
the viscocapillary pressure Pvc and the capillary number
Ca ¼ �U=�, for a plug of length L, can be written as [5]
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FIG. 3 (color online). Traveled distance in the W network.
Driving flow rates: (a) 2, (b) 4, and (c) 20 �l=min.
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FIG. 2 (color online). Traveled distance along four paths as a
function of time in the N network. Driving flow rates: (a) 2,
(b) 5, and (c) 20 �l=min. The shaded and nonshaded areas
represent successive generations.
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Pvc ¼ FðwÞLCaþGðwÞCa2=3; (1)

where FðwÞ andGðwÞ are functions of the channel widthw.
Since the plugs are driven at an imposed flow rate here, the
value of Pvc can be obtained from Eq. (1) with the plug
velocity calculated as U ¼ Q=ðwbNÞ, where b is the
channel height, w is the channel width in the ith genera-
tion, and N is the number of moving plugs in that genera-
tion, ranging from 1 to 2i.

The second effect appears when the plug crosses a
bifurcation, which we treat here as a quasistatic process
unlike Ref. [5]. In this case, interface deformations imply
position-dependent pressure variations, since the curvature
of the front interface decreases and then increases again, as
shown in Figs. 4(a) and 4(b). At a given plug position, there
exists therefore a capillary pressure difference Pcap which

may resist the driving force:

Pcap ¼ �=rr � �=ra; (2)

where rr and ra are the signed radii of curvature of the rear
and front interfaces, respectively. The evolution of the inter-
face shapes during this passage can be calculated from
geometric constrains, by considering the angle of the bifur-
cation and the contact angle between the liquid and the
PDMS,while imposing a constant curvature on the interface.
As the plug advances, Pcap increases before rapidly decreas-

ing as it touches the opposite wall, as shown in Fig. 4(c).

This calculation shows the existence of a threshold
pressure necessary to push the plug through a given bifur-
cation. It corresponds to the maximum value of Pcap. In the

same way as for wi, Pthr varies with the generation number
asPthr;iþ1 ¼ ð1=�ÞPthr;i. This leads toPthr;iþ1 > Pthr;i in the

N network, indicating that it is easier for the plugs located
in bifurcation i to pass than the plugs in bifurcation iþ 1.
The distance between faster and slower daughters therefore
cannot exceed one generation, in agreement with the ex-
perimental observations in Fig. 2. Conversely, in the W
network, the distance between plugs can grow indefinitely
since Pthr;i continuously decreases.

These nonlinear pressure variations in the bifurcation
lead to long-range interactions across distinct subregions
of the network when several plugs are present. A unit
consisting of three connected bifurcations, as shown in
Figs. 4(d) and 4(e), represents the basic building block to
understand these interactions and explain the global behav-
ior in the tree. The image in Fig. 4(d) is taken as the two
daughters, A and B, enter a bifurcation. Here, the front
interfaces of the plugs are both deformed, and the common
pressure �P driving the two plugs is given by Pcap. Slight

variations in the geometry are always present in the experi-
ments, leading to one of the plugs dividing before its sister
[Fig. 4(e)]. Given that the flux in the system is imposed by
the syringe pump, �P will adjust to satisfy the relation of
Eq. (1), evaluated for the two daughters of Amoving at the
velocity U ¼ Q=2wb. The behavior of plug B can then be
deduced by comparingPvc for themoving daughters of plug
A and Pthr for the bifurcation. If Pvc < Pthr, plug B adjusts
its position to equilibrate Pcap ¼ �P and stays blocked. If

Pvc >Pthr, plug B passes the bifurcation, leading to a new
value of�P that can be calculated by using Eq. (1) for four
daughter plugs moving in the next generation.
This process has to be generalized to the case from 1 to

2i�1 plugs dividing at the ith bifurcation, which gives a
range of possible values for Pvc ¼ �P in the ith genera-
tion, as shown by the shaded areas of Fig. 5. As more
plugs pass the bifurcation they have entered, the number
N of moving plugs increases and �P decreases. As long
as �P> Pthr, the late plugs continue to divide and in-
troduce more daughters, which lowers �P even more.
When �P< Pthr, some plugs in the ith bifurcation remain
blocked at a position where Pcap ¼ �P is achieved. The

relative values of Pvc and Pthr for each generation are
given in Fig. 5 for the two networks. In that figure, the top
line of each shaded area corresponds to one plug dividing,
while the bottom line shows the pressure when all the
plugs have divided.
The main difference between the two networks appears

once an early plug that has divided reaches the next bifur-
cation. The threshold pressures associated with successive
bifurcations, plotted by the (þ) symbols in Fig. 5, must
be compared at this stage and the plug with the lower
threshold will divide. In the N network, the upstream
plugs always divide before plugs in the downstream
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FIG. 4. Micrographs showing a liquid plug entering a bifurca-
tion (a) and after touching the opposite wall (b). The radius of
curvature at the front interface changes value and sign during
this passage. (c) The variation in Pcap versus the distance of the

front interface from the facing tip. The calculation is performed
by using Eq. (2) and for bifurcation II in the N network. (d),
(e) Mesoscale building block for exploring long-range interac-
tions in the tree.
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bifurcation. In contrast, the downstream plug always di-
vides first in theW network, and the upstream plug can no
longer advance once it is stuck at the bifurcation.

The above argument thus shows that all the plugs can
reach the exits in the N network regardless of driving
flow rate since the early daughters wait for others at the
downstream bifurcation. When Q ¼ 2 �l=min, we have
Pvc < Pthr and plugs advance one after another, in agree-
ment with the experimental observation in Fig. 2(a). Since
Pvc > Pthr in the first four generations when Q ¼
20 �l=min, the plugs move together, as confirmed by the
experiment in Fig. 2(c). In the region where Pthr overlaps
Pvc, some of the daughters first advance simultaneously but
will be caught up by the latecomers at a downstream
bifurcation. In contrast, when Pvc <Pthr in the W net-
work, only one daughter can advance while all the others
are blocked at different level bifurcations, in agreement
with Fig. 3(a) for Q ¼ 2 �l=min. However, since Pvc >
Pthr forQ¼ 20�l=min, all the daughters are pushed to the
exits. Given a network with more generations, we can
predict that some plugs will stop before reaching the exits
due to the strong decrease of Pvc with the generation
number, as shown in Fig. 5(b).

In conclusion, we have identified a mesoscale element
consisting of three adjacent bifurcations, which coarse
grains the microscopic interactions and which can be
used to build any network topology. The global transport
in the network can now be inferred from an analysis of
interactions at this mesoscale and between different mes-
oelements. In our fluid transport case, the evolution de-
pends on the interplay between a dynamically determined
pressure (Pvc) and a geometrically controlled threshold
value (Pthr), which is the source of the dominant nonline-
arities. Generalizing these results to trains of multiple
plugs is straightforward [14] and can lead to insights for
many technological applications [15] or for flows in porous
media [16], where viscocapillary balance is important.

More broadly, such threshold switching behavior is found
in many networks beyond fluid mechanics [1,2], and the
mesoscale approach can be adapted to the general case.
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FIG. 5 (color online). Comparison of threshold pressures at every bifurcation to the pressures imposed in the straight channels by the
driving flow rates Q ¼ 2 and 20 �l=min. Labels on the x axis denote the bifurcation number for the threshold and the generation
number for the viscocapillary pressure. (a) N network and (b) W network.
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