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Abstract
On its way to turbulence, plane Couette flow–the flow between counter-
translating parallel plates–displays a puzzling steady oblique laminar-turbulent
pattern. We approach this problem via Galerkin modelling of the Navier–
Stokes equations. The wall-normal dependence of the hydrodynamic field is
treated by means of expansions on functional bases fitting the boundary
conditions exactly. This yields a set of partial differential equations for spa-
tiotemporal dynamics in the plane of the flow. Truncating this set beyond the
lowest nontrivial order is numerically shown to produce the expected pattern,
therefore improving over what was obtained at the cruder effective wall-
normal resolution. Perspectives opened by this approach are discussed.

Keywords: wall-bounded flow, laminar-turbulent transition, Galerkin
modelling

(Some figures may appear in colour only in the online journal)

1. Context

Turbulent flows display transport properties strongly enhanced with respect to those of
laminar flows, a feature that has particularly important consequences in configurations of
engineering interest. Understanding how a given laminar flow becomes turbulent or a tur-
bulent flow decays to laminar is therefore of great interest, both conceptually and practically.
In this respect, the case of wall-bounded flows is of utmost concern since the transition can be
direct, without the intermediate steps observed, e.g. in free shear flows (Huerre and
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Rossi 1998, Manneville 2015a). This direct transition is a result of the local stability of
laminar flow in competition with nontrivial solutions to the Navier–Stokes equation (NSE for
short) in the range of control parameters where the transition effectively takes place. As
analysed by Waleffe (1997), the mechanism by which such nontrivial solutions exist, the self-
sustainment process (SSP), is now thought to be well understood, but laminar-turbulent
coexistence still raises important questions. In Hagen–Poiseuille flow (HPF), the flow under
pressure gradient through a circular pipe, the transition takes place when turbulent puffs, the
nontrivial states alluded to above, split and propagate turbulence before they have time to
decay, a scenario well-reproduced by the reaction-diffusion model introduced by Barkley
(2011a). In its own transitional range, plane Couette flow (PCF), the simple shear flow
developing between counter-translating plates, experiences laminar-turbulent coexistence in
the form of steady oblique bands (Prigent et al 2002, Duguet et al 2010, Barkley and
Tuckerman 2005). The Reynolds number, the relevant control parameter, is here defined as

ν=R Uh where U is the speed of the plates, h the half gap width between them, and ν the
kinematic viscosity of the fluid. The bands are observed for < <R R Rg t. Below the global
stability threshold Rg turbulence is only transient, in the form of finite-lifetime spots, and the
laminar base flow is always recovered after the spots have decayed. Beyond the upper
threshold Rt turbulence is essentially featureless, i.e. uniform. A model, also of the reaction-
diffusion type, was proposed by one of us (Manneville 2012) to account for this pattern
formation, in which a Turing mechanism was proposed to be responsible for the bands when
R is decreased below Rt. Such explicative models are analogical in essence. Trying to support
them directly using a reliable simplification of the primitive problem in order find out the
physical mechanisms behind laminar-turbulent coexistence is the real purpose of the work
presented here.

In the transitional range, the nontrivial solutions appear to be strongly coherent at the
scale of the distance to the wall, pipe diameter (Hof et al 2004) or gap between plates
(Bottin et al 1998). This feature can be incorporated in the sought-for models using Galerkin
methods that project the solutions and their dynamics on well-chosen functional bases
(Finlayson 1972). Such a method was used by Waleffe to build a dynamical system imple-
menting the SSP for PCF with stress-free boundary conditions directly from the NSE
(Waleffe 1997). His model is a system of ordinary differential equations governing the
amplitude of velocity components involved in the SSP upon assuming full coherence at the
scale of a Minimal Flow Unit (Jiménez and Moin 1991), with size of the order of the distance
between the walls. Although it is valuable to discuss the SSP, this assumption is inappropriate
for studying the extended systems of interest, long pipes or wide channels.

The method can however be adapted to such cases where the variables have to be field
amplitudes governed by partial differential equations still involving spatial coordinates rather
than scalars functions of time satisfying ordinary differential systems. Basically, coherence in
the flow is taken into account by projecting the hydrodynamic variables onto a limited
number of wall-normal modes with corresponding amplitudes depending on the remaining
coordinates, axial for pipe flow, in-plane for PCF. In spirit, this modelling approach can be
considered as the analytical implementation of a direct numerical simulation (DNS) scheme in
which the wall-normal spectral resolution would be varied in a controlled fashion. When
practiced in a strictly numerical context (Rolland and Manneville 2011), this strategy showed
that laminar-turbulent bands in transitional PCF are remarkably robust since they are pre-
served upon drastically reducing the number of Chebyshev polynomials used to represent the
wall-normal dependence of the flow. As the resolution was decreased, the quantitative price to
be paid was a progressive narrowing of the Reynolds number range where the bands were
observed, accompanied by a downwards shift of that range explained by an aborted energy
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transfer towards small scales, whereas, qualitatively speaking, the main properties of the
pattern were preserved.

Performing more work ‘by hand’ would yield equations that were more cumbersome
than the NSE but would encode wall-normal coherence at the moderate Reynolds numbers of
interest in a crucial way. Eliminating supposedly less relevant degrees of freedom, we can
hope for better physical understanding and for higher numerical efficiency since the physical
dimension of the problem would then be reduced from three to two. The limit would of course
be that the obtained equations would need to still be manageable. Here, we present an
extension of a previous Galerkin model by Lagha and one of us (Lagha and
Manneville 2007a) that pursues this agenda. In that study, the model was truncated at lowest
significant order and retained only three fields. It displayed most of the expected qualitative
properties except for the presence of any organised laminar-turbulent coexistence in wide
domains (Manneville 2009). Taking into consideration the previously mentioned simulation
results at reduced resolution (Manneville and Rolland 2011) we surmised that this deficiency
would be corrected by truncating the expansion at a higher level. With four more fields, the
numerical simulations display the expected patterns as described in section 3, therefore
validating the approach sketched in section 2. Perspectives opened by this approach will be
discussed in section 4. The explicit expression of the model is given in appendix.

2. Model

The derivation follows from previous work in (Lagha and Manneville 2007a) with the dif-
ference that, in order to avoid difficulties in the treatment of the pressure field, the NSE
governing the departure from laminar flow is now written in a velocity-vorticity formulation
as described in (Schmid and Henningson 2001), p.155ff, i.e. the (nonlinear) Orr–Sommerfeld
equation for the wall-normal velocity component v:

 ν∂ + ∂ − ″∂ + = ( )u v u v v, (1)t x x vb
2

b
4

and the Squire equation for the wall-normal vorticity component ζ = ∂ − ∂u wz x , where u and
w are the streamwise x( ) and spanwise z( ) velocity components, respectively:

ζ ν ζ∂ + ∂ + ′∂ + =ζ ( )u u v . (2)t x zb b
2

In these general equations the base flow is = u yv e( ) xb b . When dealing with PCF, using the
half-gap width h as length unit and h U as time unit, with U the speed of the plates driving the
flow at = ±y 1 we have ≡u y y( )b . In that system of units the Reynolds number R is
numerically just equal to ν1 , i.e. the inverse of the kinematic viscosity of the fluid. Primes
denote the differentiation with respect to the wall-normal coordinate y( ), hence ′ ≡u 1b and

″ ≡u 0b . The nonlinear terms v and ζ are complicated, formally quadratic, expressions of
the velocity components and their derivatives that can be found in (Schmid and
Henningson 2001). It will turn out to be convenient to use a poloidal-toroidal decomposition
of the hydrodynamic fields by introducing a velocity potential ϕ and a stream function ψ such
that:

Δϕ= −v , (3)

ψ ϕ ψ ϕ ζ Δψ= −∂ + ∂ = ∂ + ∂ = −u w, , , (4)z xy x zy

Δ denoting the in-plane Laplacian ∂ + ∂xx zz.
The Galerkin approach used in (Lagha and Manneville 2007a) separates the in-plane

space dependence of the hydrodynamic field from its wall-normal dependence by expanding
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it onto a polynomial basis in y, yielding amplitudes functions of x z, and time t. The no-slip
boundary conditions to be fulfilled read ζ ψ ϕ= = = = = =u v w 0 at = ±y 1 and, from
the continuity condition ∂ + ∂ + ∂ =u v w 0x y z , ϕ∂ = ∂ =v 0y y at = ±y 1. The basis functions
are chosen so as to fulfil these boundary conditions exactly. The functions chosen for ζu w, , ,
and ψ are in the form = −f y y R y( ) (1 ) ( )i i

2 , =i i0 ,..., max; the Ri are polynomials of degree i,

and imax is the truncation order. For v and ϕ the functions are taken as = −g i y S y( ) (1 ) ( )i i
2 2 ,

=i i1 ,..., max; the Si are polynomials of degree −i 1 for consistency with the continuity
condition at given imax. The bases f{ }i and g{ }i are separately made orthonormal via a
standard Gram–Schmidt procedure using the canonical scalar product

∫〈 ∣ 〉 =
−

+
r s r y s y y( ) ( )d1

2 1

1
. Basis functions are shown in figure 1 from which it is clearly

understood how (i) the resolution close to the plates is improved by increasing the truncation
order, and (ii) the profiles chosen for v incorporate the boundary condition
∂ ± =v x z t( , 1, , ) 0y . The analytic expressions of basis functions up to =i 5max are given in
appendix A.1. As pointed out by Rolland (2012) in appendix B of his PhD thesis, the chosen
basis f g{ , }i i is related to Jacobi polynomials of alternate possible use in standard spectral
methods for the NSE (Canuto et al 2007).

According to the standard Galerkin procedure (Finlayson 1972), the expansions
ϕ Φ= ∑v V x z t g y{ , } { , }( , , ) ( )i i i i and ζ ψ Ψ= ∑u w U W Z x z t f y{ , , , } { , , , }( , , ) ( )i i i i i i are

inserted in the equations which are then projected onto the relevant bases, equation (1) for v
onto g{ }i , and equation 2 for ζ onto f{ }i . The concrete derivation is straightforward and can be
automated once the order of truncation imax has been fixed. The formal expression of the
model reads:

Δ Δ ν Δ Δ ΔΦ+ ∂ + + ∂ − + + =       { }( )( )( ) ¯ ¯ 2 , (5)t x
V2 ( )

ν Δ ΔΨ ΔΦ∂ + ∂ − + + ∂ =     { }( )( ) ¯ ¯ . (6)t x z
Z( )

In these expressions Φ and Ψ stand respectively for the arrays Φ Φ{ ,..., }i1
t

max and

Ψ Ψ{ ,..., }i0
t

max , superscript ‘t’ denoting transposition.  is the identity matrix of order imax in

Figure 1. Basis functions for the wall-normal vorticity ζ (left) and the wall-normal
velocity v. Functions used in our model are displayed with thick lines; f0: black, dotted;
( f g,1 1): green, continuous; ( f g,2 2): red, dashed; ( f g,3 3): blue, dash-dotted. Higher-

order functions are shown with thin lines. The work in (Lagha and
Manneville 2007a, 2007b) made use of f f g{ , , }0 1 1 only.
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equation (5) and +i 1max in equation (6). ̄ is a square but non-diagonal matrix of order
+i 1max , playing a role similar to . All other matrices, , ̄, , ̄, , and ̄ are either square

or rectangular, with coefficients obtained straightforwardly by integration over −[ 1, 1] of the
appropriate products of fi, gj and their derivatives. About one half of the possible
combinations cancel due to parity considerations. Remarkably enough, matrices ,  and ̄
are diagonally dominant [ ≫ +i i i i k( , ) ( , )] and the absolute value of the diagonal terms
increases rapidly with the position of the coefficient [ ≪ + +i i i i( , ) ( 1, 1)], which suggests
possible simplifications in the equations governing the dynamics of the field amplitudes.
Finally,  V( ) and  Z( ) are complicated, formally quadratic expressions of the (U V W, ,i i i)ʼs that
have to be derived from the Φ Ψ( , )i i ʼs introduced upon elimination of the pressure. Their
explicit expressions are given in appendix A.2.

Equations (5)–(6) only involve ΔΦ and ΔΨ , which implies that some care is needed
when dealing with spatially averaged terms corresponding to Fourier modes at

=k k( , ) (0, 0)x z . This is the price to pay for having used the velocity-vorticity formulation
that avoid the explicit treatment of the pressure field (Schmid and Henningson 2001). It is
then convenient to identify the uniform contributions to u and w explicitly by assuming:

ψ ϕ ψ ϕ= − ∂ + ∂ = + ∂ + ∂u u w w¯ ˜ , ¯ ˜ ,z xy x zy

with ū and w̄ still function of y and t but independent of x and z, while ψ̃ refers to the (x, z)-
varying part of ψ. Notations being unambiguous, the tilde will be dropped in the following.
On general grounds, the mean flow components ū and w̄ are governed by

ν ν∂ − ″ = − ′ ∂ − ″ = − ′u u uv w w wv¯ ( ¯) ( ) , ¯ ( ¯ ) ( ) , (7)t t

where the overline means averaging over the in-plane coordinates. In the model, this is treated
by expanding ū and w̄ onto basis f{ }i . From the continuity equation we get:

Ψ Φ Ψ Φ= − ∂ + ∂ = + ∂ + ∂ U U W W, (8)z x x z

whereU and W stand for arrays U U{ ,... }i0
t

max and W W{ ,... }i0
t

max while matrix  arises from
the projection of ∂ vy onto the basis used to expand u and w in the continuity equation. Upon
projection, equations (7) read:

ν ν∂ − = ∂ − =     U U W W¯ , ¯ (9)t
x

t
z

0
( )

0
( )

where  x
0
( ) and  z

0
( ) are the projections of the (x, z) spatially averaged nonlinear terms in

equations (7). The model is now complete and ready for use.

3. Validation

By construction, the model has all the properties required to account for the transitional
regime of PCF: it can be seen that the laminar flow is linearly stable for all Reynolds numbers,
despite transient energy growth linked to lift-up, and that its nonlinearities redistribute but
conserve the kinetic energy contained in finite amplitude perturbations. A numerical solver
was developed in order to examine whether bands can be recovered beyond lowest nontrivial
truncation order =i 1max . Wanting to add higher modes of both parities, we chose =i 3max ,
i.e. 7 fields: Ψi , =i (0: 3), and Φi, =i (1: 3). In-plane space dependence was handled using a
Fourier pseudo-spectral scheme that gets rid of aliasing via the usual 3 2 rule (Canuto
et al 2007), i.e. in directions x z{ , }, the numbers of evolving modes are N x z{ , } and nonlinear

terms are evaluated via back-and-fro FFTs with solutions reconstructed on N x z
3

2 { , } points.

Time marching was treated by formally rewriting the initial problem  ∂ = +X X X( )t as
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  ∂ − = −t X t X[exp( ) ] exp( ) ( )t and solving the new problem using a Runge–Kutta
scheme of order 4.

In parallel to the study in (Manneville and Rolland 2011) dealing with DNS at reduced
wall-normal resolution, the first numerical experiment was devoted to the recovery of the
featureless turbulent state belonging to the nontrivial branch at high R in a domain of size

× = ×L L 32 32x z , aiming at an optimisation of the in-plane numerical resolution in view of
the reliable simulation of domains as wide as possible at the cheapest possible computational
cost. Results shown in figure 2 display the power spectra of the streamwise component of the
perturbation velocity u as a function of wave-numbers nz for nx = 0 (left) and of nx for nz = 0
(right). Normalisation by the total number of modes N Nx z makes the curves corresponding to
the different resolutions lie on top of each other. In the left panel, the peak generated by the
spanwise statistical periodicity of streaks and streamwise vortices is clearly identified for all
the resolutions considered but more pronounced for × = ×N N 128 128x z than for 32 × 32.
This corresponds to =N L 4x z x z, , and 1, with effective space steps δ = 0.25x z, or 1,
respectively, to be compared to the period of the streaks λ ∼ L nz z str with ≈n 7str , hence
about λ ∼ 4.6z in reasonable agreement with known results. As seen in the right panel, the
streamwise correlations decrease in a monotonic way as expected from the discussion in
(Philip and Manneville 2011) where size effects on the temporal versus spatiotemporal
character of the dynamics was scrutinised. The subsequent study is restricted to the config-
urations mentioned in table 1 below, with the resolutions found acceptable from the previous
experiment.

Our main result is that, in all cases, steady oblique patterns of alternately laminar and
turbulent domains were observed in a limited range of Reynolds numbers, between ≈R 150g

and ≈R 159t . Figure 3 (top) for R = 151 illustrates the two different possible orientations of a
single band pattern in the domain 108 × 48. Orientation fluctuations are known to exist in
DNSs at such an intermediate size. They are also present in the model as seen in the bottom
panel showing the alternative dominance of modes +(1, 1) and −(1, 1), while the other
modes are less intense. Here fluctuations seem more important than in DNSs, with briefer
episodes of well-formed pattern and a much smaller signal-to-noise ratio than in figure 3 of
(Rolland and Manneville 2011).

Figure 2. Fourier spectral power of the streamwise perturbation velocity component u
in the mid-plane y = 0 as functions of wave-numbers nz for nx = 0 (left) and nx for nz = 0
(right). The corresponding Fourier wave-vectors read π=k n L2x z x z x z{ , } { , } { , }, where

L x z{ , } are the streamwise (x) and spanwise (z) dimensions of the computational domain.

The curves correspond to the different resolutions studied, in the form N N*x z, where
N x z{ , } are the maximum running wave-numbers.
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Figure 3. Patterning in a domain of size 108 × 48 at R = 151. Top: the two different
orientations +(1, 1) (left) and −(1, 1) (right) with perturbation energy field averaged
over the gap in grey levels, black = laminar, white = largest local energy. Bottom:
Orientation fluctuations evidenced by the spectral power in modes with wave-numbers
n n( , )x z , =n 1, 2x , = ± ±n 1, 2z .

Figure 4. Patterning in a domain of size 128 × 84. Left: Patterns at R = 154. Right:
Bifurcation diagram (distance to laminar flow as a function of Reynolds number,
see text).

Table 1.

Lx Lz N Lx x N Lz z

108 48 2 4
128 84 2 4
680 340 1 1
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Larger domains can accommodate more bands as seen in figure 4 (left) for a 128 × 84
domain. The average of the turbulent energy over the volume V of the domain,

∫= + +E u v w x y z( )d d d
V Vt
1 1

2
2 2 2 , has been measured through the whole transitional

range. The bifurcation diagram displayed in figure 4 (right) is again as expected, however the
occurrence of large-scale laminar-turbulent coexistence in the form of oblique bands, easily
detected visually and permitting the identification of ≈R 150g and ≈R 159t , leaves a weaker
signature on the variation of Et with R than in DNSs for which a marked break at Rt and a
linear decrease below were observed. Here the smoother variation of E R( )t and the absence of
clear-cut change at Rt between the band regime (open circles) and uniform turbulence (filled
circles) are presumably again a direct consequence of the higher level of fluctuations. Below
R = 150, turbulence is only transient but a mean energy, roughly constant before the decay
stage, can still be measured (open square). In principle Rg should be located using a statistical
study in line with the approach in terms of chaotic transients, like in (Lagha and
Manneville 2007a). Its detection via a single experiment where R was progressively decreased
by small steps has been judged sufficient for the present purpose.

Finally, in a very wide domain 680 × 340 of size comparable to that of the largest
experimental setups (Prigent et al 2002), patterns with many wavelengths were obtained.
Comparing figure 5 here and figure 8 in (Manneville and Rolland 2011) one notes that the
model generates outputs quite similar to what is obtained in DNSs at reduced wall-normal
resolution, itself representing the experimental situation reasonably well.

Whereas at a qualitative level the model is fully satisfactory, we have however noted
certain quantitative discrepancies. First the transitional range is shifted downwards somewhat
more importantly than in the DNSs (Rolland and Manneville 2011). This can be understood
by noticing that the amount of energy extracted from the base flow by viscous stresses at the
plates is transferred though a very short range of wall-normal small scales most likely to
dissipate it. This artificially maintains more turbulent activity in the system at given R, or
equivalently a similar turbulence level at lower R, than in better resolved simulations and
laboratory experiments where energy is transferred to and efficiently dissipated in much
smaller scales. (There is little or no trade-off for the in-plane dissipation that is treated like in
the full-3D DNSs.) For a concrete comparison, experiments (Prigent et al 2002) and well-
resolved full-3D DNSs (Duguet et al 2010) give the upper threshold (featureless turbulence)
at ≈R 410t and the lower threshold (global stability) at ≈R 325g . In simulations at reduced
resolution (Manneville and Rolland 2011), Ny being the number of Chebyshev polynomials

Figure 5. Snapshot of the solution in a domain of size 680 × 340 at R = 151. To reach
such a size, the in-plane resolution has been lowered to Nx = Lx, Nz = Lz, without
destroying the pattern.
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used in the representation of the wall-normal dependence, these values are shifted down to
350 and 270 for Ny = 15 and to 275 and 215 for Ny = 11. Here we have ≈R 159t and

≈R 150g but the pattern is still well rendered. This larger shift can therefore be understood
because the effective wall-normal resolution is much lower. The fact that a physically relevant
solution is obtained here while the Chebyshev implementation breaks down with similarly
few modes is due the optimal rendering of boundary conditions on v achieved by our basis
choice (see below).

Second, though the angle between the bands and the streamwise direction is correct, the
wavelengths of the pattern, both streamwise and spanwise, are too short by a factor of 1.5 to
2, and the patternʼs orientation in domains of intermediate size fluctuates more than in the
DNSs. The amount of enhancement however, is difficult to appreciate quantitatively. These
phenomena remain unexplained for the moment but might relate to the effect of the wall-
normal resolution on the streamwise coherence that was shown to play an important role in
the existence of the pattern (Philip and Manneville 2011). A hand-waving confirmation of this
effect on the robustness of the bands comes from the continuous trend observed as the
resolution is decreased, here as the truncation level imax is lowered, in rough correspondence
with what was observed when reducing the wall-normal resolution in DNSs. First, a con-
spicuous steady pattern is observed with =i 3max . Next, for =i 2max (not reported here but
studied in parallel) coexistence of fluctuating, wide, laminar and turbulent domains are
observed in an even narrower Reynolds range; these domains remain disorganised and do not
form bands. Finally, for =i 1max (Lagha and Manneville 2007a), streaks stay short, the
transitional range seems to be reduced to a point at a somewhat larger value ( ≈R 170g ), and
wide steady coexisting domains do not exist: either turbulent domains grow from small germs
in a laminar background or the reverse (Manneville 2009). As a matter of fact, a similar but
worse situation occurred in full 3D simulations at exaggeratedly reduced resolution since
nontrivial states with unphysical small scales and no patterns were obtained for Ny = 9 and 7
and blow-up occurred for <N 7y , which give a marked advantage to our separately optimal
wall-normal representations of v and ζ. These observations should contain some physics that
warrant elucidation, as is suggested in the next section.

4. Perspectives

Understanding the transition to turbulence in wall-bounded flows, and especially PCF that is
linearly stable for all R and displays alternating laminar and turbulent oblique stripes on its
way to fully developed turbulence, is a hard problem when starting from the NSE. Some
simplification can be expected by taking a key ingredient into account: the transition takes
place at moderate values of the Reynolds number for which the flow is controlled by the
presence of coherent structures (Hof et al 2004, Bottin et al 1998). The model that we have
derived incorporates this feature by means of a Galerkin expansion of the dynamics optimally
adapted to the boundary conditions at the walls. Truncating the expansion beyond lowest
nontrivial order, keeping 7 amplitudes instead of 3 in (Lagha and Manneville 2007a, 2007b),
has allowed us to recover the experimentally and numerically observed patterning at a
minimal price (downward shift of the transitional range, somewhat too short pattern wave-
lengths). This limitation can be overcome by increasing imax, which raises the interesting
question of the convergence rate of the approximation. Such a study would possibly be
rewarding because, to be precise, DNSs treating the three space directions on a similar footing
are computationally extremely demanding (Duguet et al 2010). In a spirit akin to that of large
eddy simulations, the present modelling avoids wasting numerical resources by singling out
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hydrodynamic coherence in the wall-normal direction and skipping the explicit computation
of the small scales.

An indication that the convergence of our approach could be fast is the observation
reported by one of us–see Figure B6 in (Manneville 2015)–that the fraction of the pertur-
bation energy retained in projections of fully resolved numerical solutions onto the basis
considered here tends to 1 exponentially fast as the truncation order is increased: 90%, 97%,
and 99% for =i 1max , 3, and 5, respectively. This does not prove that the global dynamics of
the system would be equally well captured quantitatively by increasing the number +i2 1max

of fields in the model but hints at such a convergence, as generally expected for spectral
approaches, here relying on specific complete series of Jacobi polynomials (Rolland 2012). At
the cost of the pre-treatment of the problem that amounts to the once-for-all automated
derivation of an effective set of equations of a sufficiently high order, it might be found
interesting to replace the full 3 D numerical simulations of the NSE by a finite set of two-
dimensional partial differential equations already taking the continuity condition fully into
account and managing with wall-normal coherence in the transitional range. A quantitative
estimate of the expected gain in terms of memory requirements and time steps definitely
warrants further study.

In a complementary perspective, one can rather think of analysing the properties of the
model. First, in-plane coherence may be added to the wall-normal coherence inherent in the
derivation. This can be done by inserting specific assumptions about the (x, z)-dependence of
fields ϕ and ψ, in particular strict periodicity in space at the scale of the MFU (Jiménez and
Moin 1991). With =i 1max and further limiting the in-plane expansion to the first harmonic, it
is then straightforward to recover Waleffeʼs models (Waleffe 1997) by making the corre-
sponding educated guess. A system of eight equations for eight amplitudes is obtained,
identical to his system (10) but with a different set of coefficients acknowledging the dif-
ference in boundary conditions (which, in passing, shows the structural genericity of that
model). For example, the equation for the streamwise mean-flow component called M by
Waleffe and governed by his equation (10a) here reads:

ν γ α γ− = + −⎡⎣ ⎤⎦( )
t
U p U s BE UV

d

d
¯

1

4
¯ 21 11 1 101

2 2

where ≡ −U M 11 , while other symbols have the same definition as in (Waleffe 1997),
especially the streamwise and spanwise wave-vectors α π= ℓ2 x and γ π= ℓ2 z, ℓx and ℓz
being the dimensions of the MFU. The numerical values of coefficients in the equation above
can be obtained from the formal expressions in appendix A2. Following the very same line, a
recent study (Manneville 2015b) shows that uniform large scale flows are generated just by
shifting the phase of specific ingredients of Waleffeʼs eight-equation model. Combining this
with the introduction of appropriately weighted in-plane second harmonics should help us to
account for oblique coherent structures like those recently found by Daly and Schneider
(2014), though the actual derivation of a model possessing them as fixed points would be
cumbersome.

Beyond the simple hypotheses corresponding to strictly periodic coherent structures, the
next step is to describe spatially slow turbulence modulations corresponding to the patterns
observed experimentally through the formal introduction of a slow dependence of the
amplitude of the local bifurcated state, in the spirit of the derivation of standard multiple-scale
envelope equations. The approach cannot be as rigorous as, e.g., that for convection the since
the bifurcated state stays at finite distance from the laminar-flow base, which leaves room for
further modelling. Of the two scales introduced, the fast one accounts for mechanisms at the
MFU scale and the slow one corresponds to the modulations. The slow variables are driven
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by source terms arising from a filtering of the Reynolds stresses, like in (Lagha and
Manneville 2007b) and it can be seen that the modulation of the uniform large scale flows
alluded to above generates nonlocal contributions of the class identified by Hayot and
Pomeau (1994) as playing an essential role in the balance between laminar and turbulent
regions responsible for patterning. But, in contrast with their phenomenological introduction
of such contributions, here they directly arise from the equations and are therefore sensitive to
the local orientation of the flow with respect to the streamwise direction, hopefully giving a
microscopic support to the empirical observations of (Duguet and Schlatter 2013).

Finally, large scale flows are present already with =i 1max (Lagha and Manneville
2007b, Manneville 2015b), though steady patterns are not observed in that case (Manne-
ville 2009). Taking smaller wall-normal scales into account ( >i 1max ) is therefore necessary
for a theoretical interpretation of the stabilisation of long-wave modulations observed with

=i 3max , as reported in section 3. Simplification of models with higher truncation levels
would then take advantage of the diagonal dominance of matrices , , and ̄ noticed earlier
to perform the adiabatic elimination of terms of least relevance yielding an effective model for
the slowly evolving terms. Such a heavy work could however possibly not be necessary and
considering seven fields might be sufficient up to an optimisation of the modelʼs coefficients.
As a matter of fact, the three first amplitudes Ψ Ψ Φ( , , )0 1 1 are the most appropriate to deal with
the nontrivial properties of the in-plane flow dependence. So, if one is willing to include more
of the wall-normal dependence, it should suffice to consider that the pairs Ψ Φ( , )2 2 and
Ψ Φ( , )3 3 collect all the higher order contributions of each parity and, owing to its generic
structure, to restrict oneself to the consideration of the seven-field model as an effective
system replacing the NSE. In this perspective, except as a starting guess, sticking to the values
of the coefficients obtained in the strict Galerkin expansion is not advisable and introducing
some multiplicative randomness at appropriate strategic places like in (Barkley 2011a) seems
profitable. Applying the program sketched in the previous paragraph to this new primitive
problem is currently developed, which is expected to improve over the one-dimensional
phenomenological approaches of Manneville (2012) and Hayot and Pomeau (1994).

5. Conclusion

The subcritical coexistence of different regimes forming laminar and turbulent patterns in
PCF and other wall-bounded flow configurations is a difficult problem in which the interplay
of mean flow corrections and finite amplitude perturbations plays a crucial role. Our approach
via Galerkin decomposition yields explicit models replacing the NSE by coupled systems
governing amplitudes that encode the gross features of the flow. The derivation is systematic
and the structure of the obtained models is generic, reflecting that of the primitive equations.
Simulations of those models reproduce the patterning provided that the truncation level is not
too low. They are next amenable to further analysis, especially through in-plane space
dependence assumptions and explicit scale separation. Here, this program has been developed
for PCF but its adaptation to other flows such as plane Poiseuille or Couette–Poiseuille flow,
cylindrical Couette–Taylor flow, etc. is straightforward. Obtaining a Barkley-like model for
Hagen–Poiseuille flow from first principles can also be considered along similar lines, using
basis functions adapted to the tube geometry and the no-slip condition. The extension to the
less trivial case of boundary layer flows of various kinds, with their free-stream boundaries at
infinity, remains a stimulating challenge. Once obtained such models offer tools to scrutinise
laminar-turbulent coexistence and provide us with detailed physical explanations of this
phenomenon of great conceptual and practical importance.
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Appendix. Explicit expressions

A.1. Basis functions

• In-plane velocity components and wall-normal vorticity component:

= −

= −

= − −

= − −

= − − +

= − − +

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )

( )

( )

( )

f y

f y y

f y y

f y y y

f y y y

f y y y y

(0)
1

4
15 1 ,

(1)
1

4
105 1 ,

(2)
21

8
5 1

1

7
,

(3)
3

8
1155 1

1

3
,

(4)
33

64
2730 1

6

11

1

33
,

(5)
429

64
70 1

10

13

15

143
,...

2

2

2 2

2 2

2 4 2

2 4 2

• Wall-normal velocity component:

= −

= −

= − −

= − −

= − − +

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )

( )

( )

g y

g y y

g y y

g y y y

g y y y

(1)
3

16
35 1 ,

(2)
3

16
385 1 ,

(3)
33

32
91 1

1

11
,

(4)
39

32
385 1

3

13
,

(5)
195

128
1309 1

2

5

1

65
,...

2 2

2 2

2 2 2

2 2 2

2 2 4 2

A.2. Coefficients in the evolution equations

Taking care of the order of the subscripts introduced, symmetries within the sets of coeffi-
cients are easily detected, directly or via integration by parts. Energy conservation relies on
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the symmetries of coefficients introduced in the expressions of nonlinear terms. The elements

of matrix  appearing in (8) are straightforwardly obtained as ∫= ′
−

+
c y f gdji j i1

1
.

A.2.1. Equation (5) for Φj .

• linear terms:

∫
∫ ∫

∫

δ =

= ″ = ″

= ″″

−

+

−

+

−

+

−

+



 



( )

y g yg

y g g a y g yg

p y g g

matrix ¯: ¯ d ( ),

matrices and ¯ : a d , ¯ d ,

matrix : d ;

ji j i

ji j i ji j i

ji j i

1

1

1

1

1

1

1

1

• nonlinear terms, for ∈j i(1: )max :

∑∑ ∑∑

∑∑

∑∑

Δ Δ= ∂ + ∂ +

− ∂ + ∂ + ∂

− ∂ + ∂

= = = =

= =

= =

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

N q U V W V q V V

r U U U W W W

r U V W V

¯

2

¯ ,

j
V

i

i

k

i

jik x i k z i k

i

i

k

i

jik i k

i

i

k

i

jik xx i k xz i k zz i k

i

i

k

i

jik x i k z i k

( )

0 1 1 1

0 0

0 1

max max max max

max max

max max

∫ ∫
∫ ∫

= = ′

= ′ = ″
−

+

−

+

−

+

−

+
( ) ( )

q y g f g q y g g g

r y g f f r y g f g

with: d , ¯ d ( ) ,

d , ¯ d .

jik j i k jik j i k

jik j i k jik j i k

1

1

1

1

1

1

1

1

A.2.2. Equation (6) for Ψ j .

• linear terms matrices   , ¯ , and ¯ :

∫ ∫ ∫= = = ″
−

+

−

+

−

+
( )b y f yf b y f g p y f fd , ¯ d , ¯ d ,ji j i ji j i ji j i

1

1

1

1

1

1

• nonlinear terms, for ∈j i(0: ):max

∑∑

∑∑

= ∂ − + ∂ − ∂

+ ∂ − ∂

= =

= =

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦)

( )( ) ( )

( ) ( )

N s U U W W U W

s U V W V¯ ,

j
Z

i

i

k

i

jik xz i k i k zz xx i k

i

i

k

i

jik z i k x i k

( )

0 0

0 1

max max

max max

with ∫ ∫= = ′
−

+
−

+
s y f f f s y f f gd , ¯ d ( )jik j i k jik j i k1

1

1

1
.
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