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Adaptive and Model-Based
Control Theory Applied
to Convectively Unstable Flows
Research on active control for the delay of laminar–turbulent transition in boundary
layers has made a significant progress in the last two decades, but the employed strat-
egies have been many and dispersed. Using one framework, we review model-based
techniques, such as linear-quadratic regulators, and model-free adaptive methods, such
as least-mean square filters. The former are supported by an elegant and powerful theo-
retical basis, whereas the latter may provide a more practical approach in the presence
of complex disturbance environments that are difficult to model. We compare the meth-
ods with a particular focus on efficiency, practicability and robustness to uncertainties.
Each step is exemplified on the one-dimensional linearized Kuramoto–Sivashinsky equa-
tion, which shows many similarities with the initial linear stages of the transition pro-
cess of the flow over a flat plate. Also, the source code for the examples is provided.
[DOI: 10.1115/1.4027483]

1 Introduction

The key motivation in research on drag reduction is to develop
new technology that will result in the design of vehicles with sig-
nificantly lower fuel consumption. The field is broad, ranging
from passive methods, such as coating surfaces with materials that
are super hydrophobic or nonsmooth [1], to active methods, such
as applying wall suction or using measurement-based closed-loop
control [2]. This work positions itself in the field of active control
methods for skin-friction drag. In general, the mean skin friction
of a turbulent boundary layer on a flat plate is an order of magni-
tude larger compared to a laminar boundary layer. One strategy to
reduce skin-friction drag is thus to push the laminar–turbulent
transition on a flat plate downstream [3]. Different transition sce-
narios may occur in boundary layer flows, depending on the inten-
sity of the external disturbances acting on the flow [4]. Under low
levels of free-stream turbulence and sufficiently far downstream,
the transition process is initiated by the linear growth of small per-
turbations called Tollmien–Schlichting (TS) waves [3]. Eventu-
ally, these perturbations reach finite amplitudes and breakdown to
smaller scales via nonlinear mechanisms [5]. However, in the
presence of stronger free-stream disturbances, the exponential
growth of TS waves are bypassed and transition may be directly
triggered by the algebraic growth of streamwise elongated struc-
tures, called streaks [4]. One may delay transition by damping the
growth of TS waves and/or streaks, and thus postpone their non-
linear breakdown. This strategy enables the use of linear theory
for control design.

Fluid dynamists noticed in the early 1990s that many of the
emerging concepts in hydrodynamic stability theory already
existed in linear systems theory [6,7]. For example, the analysis of
a system forced by harmonic excitations is referred to as signaling
problem by fluid dynamicists, while control theorists analyze the
problem by constructing a Bode diagram [8]; similarly, a large
transient growth of a fluid system corresponds to large norm of a
transfer function and matrix with stable eigenvalues can be called
either globally stable or Hurtwitz [5,9].

However, the systems theoretical approach had taken one step
further, by “closing the loop,” i.e., providing rigorous conditions
and tools to modify the linear system at hand. It was realized by
fluid dynamists that the extension of hydrodynamic stability
theory to include tools and concepts from linear control theory
was natural [10–12]. A long series of numerical investigations
addressing the various aspects of closed-loop control of transi-
tional [13–15] and turbulent flows [16–18] followed in the wake
of these initial contributions.

At the same time, research on active control for transition delay
has been advanced from a more practical approach using system
identification methods [19] and active wave-cancellation techni-
ques [20]. Most work (but not all) is experimental, which due to
feasibility constraints has favored engineering and occasionally
ad hoc methods. One of the first examples of this approach is the
control of TS waves in the experiments by Ref. [21] using a wave-
cancellation control; the propagating waves are canceled by gen-
erating perturbations with opposite phase. This work was followed
by number of successful experimental investigations [22–25] of
transition delay using more sophisticated system identification
techniques.

On the other hand, both numerical and experimental approaches
have pushed forward flow control research, they have in a large
extent evolved disconnected from each other; the systems control
theoretical approach has provided very important insights into
physical mechanisms and constraints that have to be addressed in
order to design active control that is optimal and robust, but most
of the works have stayed at a proof-of-concept level and have not
yet been fully implemented in practical applications. Although
there are exceptions [26,27], the majority of experimental active
control has essentially suffered from the opposite; most control-
lers are developed directly in the experimental setting on a trial-
and-error basis, with many tuning parameters that have to be
chosen for each particular setup.

This review aims at presenting model-based and model-free
techniques that are appropriate for the control of TS waves in a
flat-plate boundary layer. We compare and link the two
approaches using a linear model that is similar to the linearized
Navier–Stokes equations and exhibits a large transient amplifica-
tion behavior and time delays. This presentation is unavoidably
influenced by the authors’ background and previous work; com-
plementary reviews on flow control can be found in Refs. [2],
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[28], and [29], where the linear approach is analyzed, and in the
reviews by Refs. [30] and [31], focussed on the identification of
reduced-order models for the linear control design. Finally, we
refer to Refs. [32–34] for a broader prospective.

1.1 The Control Problem. Consider a steady uniform flow
U1 over a thin flat plate of length L and infinite width. Inside the
two-dimensional (2D) (Blasius) boundary layer that develops over
the plate, we place a small localized disturbance (denoted by d in
Fig. 1) of simple Gaussian shape; the setup is the same as in Ref.
[35] and the simulation is performed using a spectral code [36].
Figure 2 summarizes the spatiotemporal evolution of the disturb-
ance. It shows a contour plot of the streamwise component of the
perturbation velocity at a wall normal position Y ¼ d�ð0Þ, where
d* (X) is the displacement thickness of the boundary layer. The
temporal growth of this disturbance is determined by classical lin-
ear stability theory (i.e., eigenvalue analysis of the linearized
Navier–Stokes equations). Such analysis reveals that asymptoti-
cally a compact wave-packet emerges—a TS wave-packet—that
grows in time at an exponential rate while traveling downstream
at group velocity of approximately U1/3. This disturbance behav-
ior is observed as long as the amplitude is below a critical value
(usually a few percent of U1) [5]. Above the critical value, non-
linear effects have to be taken into account; they eventually result
in a break down of the disturbance to smaller scales and finally to
transition from a laminar to a turbulent flow [5]. However, the key
point,which enables the use of linear theory for transition control,
is that the disturbance may grow several orders of magnitude
before it breaks down.

Using a spatially localized forcing (denoted by u in Fig. 1) down-
stream of the disturbance, one may modify the conditions in order
to reduce the amplitude of the wave-packet and thus delay the tran-
sition to turbulence. Physically this forcing is provided by devices
called actuators. An example of an actuator is a loudspeaker that
generates short pulses through a small orifice in the plate. The vol-
ume of the loudspeaker and the shape of the orifice determine the
type of actuation. Another example is plasma actuators, where a
plasma arch is used to induce a forcing on the flow [37].

In closed-loop control, a sensor (denoted by y in Fig. 1) is used
to measure the disturbance that is meant to be canceled by the ac-
tuator (u): Based on these measurements, one computes the actua-
tor action in order to effectively reduce the amplitude of the
perturbation. Examples of sensors include pressure measurements
using a small microphone membrane mounted flush to the wall,
velocity measurements using hot-wire anemometry near the wall
or shear-stress measurements using thermal sensors (wall wires).
Finally, we place a second sensor (denoted by z in Fig. 1) down-
stream of the actuator to measure the amplitude of the perturba-
tion after the actuator action. The minimization of this output
signal may serve as an objective of our control design, but the
measurements also provide a means to assess the performance of
the controller.

Having introduced the inputs and outputs, the control problem
can be formulated as the following: given the measurement y(t),

compute the modulation signal u(t) in order to minimize a cost
function based on z(t). The system, when given the measurement
y(t), provides the control signal u(t) is referred to as the compensa-
tor. The design of the compensator has to take into account com-
peting aspects such as robustness, performance, and practical
feasibility.

The objective of this review is to guide the reader through the
steps of compensator design process. We will exemplify the theory
and the associated methods on a one-dimensional (1D) model-
based on the linearized Kuramoto–Sivashinsky (KS) equation (pre-
sented in Sec. 2). The model reproduces the most important stabil-
ity properties of the flat-plate boundary layer, but it avoids the
problem of high-dimensionality and thus the high numerical costs.
In Sec. 3 full-information control problem is addressed via optimal
control theory; linear-quadratic regulator (LQR) and model-
predictive controller (MPC) strategies are derived and compared.
The disturbance estimation problem is addressed in Sec. 4, where
classical Kalman estimation theory and least-mean-square (LMS)
techniques will be introduced and compared. The techniques of
Secs. 3 and 4 will be combined in order to design the compensator
in Sec. 5. This section also contains adaptive algorithms that
enhance the robustness of the compensator. The review finalizes
with a discussion in Sec. 6 about some important features character-
izing the control problem when applied to three-dimensional (3D)
fluid flows and conclusions Sec. 7.

2 Framework

We first introduce our choice of model KS equation, inputs
(actuators/disturbances) and sensors. This is followed by a presen-
tation of concepts pertinent to our work, namely, the state-space
formulation (Sec. 2.4), transfer functions and finite-impulse
response (Sec. 2.5), controllability and observability (Sec. 2.6),
closed-loop system (Sec. 2.7), and robustness (Sec. 2.8). This
chapter contains the mathematical ingredients that will be used in
Sec. 3–5.

2.1 Kuramoto–Sivashinsky Model. In this paper, we focus
our attention on flows dominated by convection/advection, where
disturbances have negligible upstream influence and are quickly
swept downstream with the flow. We make use of a particular var-
iant of the KS equation to model a linear and convection-
dominated flow. Originally, the KS equation was developed to
describe the flame front flutter in laminar flames [38,39]. This
model exhibits in its space-periodic form a spatiotemporal chaotic
behavior, with some similarities to turbulence [40]. The standard
KS equation reads

Fig. 1 Scheme of a Blasius boundary-layer flow developing
over a flat plate. A disturbance modeled by d grows exponen-
tially while convected downstream. The actuator u is used to
attenuate the disturbance before it triggers transition to turbu-
lence; the actuation signal is computed based on the measure-
ments provided by the sensor y. The output z, located
downstream of the actuator, estimates the efficiency of the con-
trol action.

Fig. 2 Response to a small, localized initial condition in a Bla-
sius boundary-layer flow. A Tollmien–Schlichting wave-packet
emerges and grows exponentially while propagating down-
stream. Contours of the streamwise component of the velocity
are shown as a function of the streamwise direction (x) and
time (t ). The location along the normal-direction y is chosen in
the vicinity of the wall.
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where ~t is the time, ~x 2 ½0; ~LÞ the spatial coordinate, and
~v ¼ ~vð~x; ~tÞ the velocity. The boundary conditions accompanying
Eq. (1) are periodic in ~x. The second term on the left side in
Eq. (1) is the nonlinear convection term, while on the right side
two viscosity terms appear. The two latter terms may be associ-
ated to the production and dissipation of energy at different spatial
scales. In particular, the second-order derivative term is related to
the production of the energy via the variable g, called antiviscos-
ity, while the dissipation of the energy is connected to the fourth-
order derivative term, multiplied by the hyperviscosity l [41].

Equation (1) can be rewritten such that it is parametrized by a
Reynolds-number-like coefficient. Introducing a reference length ~l
and a reference velocity ~V defines the nondimensional position x,
velocity v, and time t by

x ¼ ~x
~l
; v ¼ ~v

~V
; t ¼

~V
~l

~t (2)

Applying the transformation to Eq. (1), the KS equation in dimen-
sionless form becomes
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where x 2 ½0;LÞ. The parametersR and P are defined as

R ¼
~V~l3

l
; P ¼ g

l
~l2 (4)

where R takes the role of the Reynolds number Red� , and P regu-
lates the balance between energy production and dissipation.

We assume that the system is sufficiently close to a steady solu-
tion V(x)¼V. Then, it is possible to describe the dynamics of per-
turbations using the linearized KS equation. For the chosen
parameters, the steady solution is stable, but an external perturba-
tion may be amplified by an order-of-magnitude before it dies out
(this requires nonperiodic boundary conditions in the streamwise
direction as we impose below). Introduce the perturbation v0ðx; tÞ

vðx; tÞ ¼ V þ ev0ðx; tÞ (5)

where e� 1. By inserting this decomposition into Eq. (3) and
neglecting the terms of order e2 and higher, the linearized KS
equation is obtained

@v0

@t
¼ �V

@v0

@x
� 1

R P @
2v0

@x2
þ @

4v0

@x4

� �
(6)

It is the convective and amplifying properties of this non-normal
system that makes it a good model of the 2D Blasius boundary
layer flow. Following Ref. [42], we analyze the stability properties
of Eq. (6), by assuming traveling wave-like solutions

v0 ¼ v̂ ei ax�xtð Þ (7)

where a 2 R and x ¼ xr þ ixi 2 C. Substituting Eq. (7) in Eq.
(6), a dispersion relation between the spatial wave-number a and
the temporal frequency x is obtained

x ¼ Vaþ i
P
R a2 � 1

R a4

� �
(8)

This relation is shown in Fig. 3 for R ¼ 0:25;P ¼ 0:05, and
V¼ 0.4. The parameters are chosen to closely model the Blasius

boundary layer at Red� ¼ 1000. The imaginary part of the fre-
quency xi is the exponential temporal growth rate of a wave with
wave-number a. In Eq. (8) it can be observed that the term in a2

(associated to the production parameter P), is providing a positive
contribution to xi, while the a4 term (related to the dissipation pa-
rameter R), has a stabilizing effect. The competition between
these two terms determines stability of the considered wave. From
Fig. 3, it can be observed that for an interval of wave-numbers a,
xi> 0, i.e., the wave is unstable. The real part xr determines the
phase speed of the wave in the x direction

c ¼D xr

a
¼ V (9)

Note that the phase speed c is independent of a, in contrast to the
boundary-layer flow, which is dispersive [5].

2.2 Outflow Boundary Condition. So far in our analysis we
have assumed periodic boundary conditions for the KS equation.
As we are interested in modeling the amplification of a propagat-
ing wave-packet near a stable steady solution (as observed in the
case of boundary-layer flow), it is appropriate to change the
boundary conditions to an outflow condition on the right side of
the domain

@3v0

@x3

����
x¼L

¼ 0;
@v0

@x

����
x¼L

¼ 0 (10)

while on the left side of the domain, at the inlet, an unperturbed
boundary condition is considered

v0jx¼0¼ 0;
@v0

@x

����
x¼0

¼ 0 (11)

With an outflow boundary condition, a localized initial perturba-
tion in the upstream region of the domain travels in the down-
stream direction while growing exponentially in amplitude until it
leaves the domain. This is the signature of a convectively unstable
flow. Note that this choice of boundary conditions is the main
variant with respect of the original KS equation, characterized by
periodic boundaries. Figure 4 shows the spatiotemporal response
to a localized initial condition of KS equation with outflow bound-
ary condition. The set of parameters R;P, and V has been chosen
to mimic the response of the 2D boundary-layer flow, shown in
Fig. 2. However, note that in the KS model the wave crests travel
parallel to each other with the same speed of the wave-packet,

Fig. 3 The real frequency xr and its imaginary part xi are
shown as a function of the spatial frequency a, in (a) and (b),
respectively. The relation among the spatial and temporal fre-
quencies is given by the dispersion relation (8). Positive values
of xi characterize unstable waves (gray region).
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whereas in the boundary layer, they travel faster than the wave-
packet which they form. Indeed the system is not dispersive, i.e.,
the phase speed c equals the group speed cg as shown by Eq. (9);
conversely, as already noticed, the 2D BL is dispersive.

2.3 Introducing Inputs and Outputs. Having presented the
dynamics of the linear system, we now proceed with a more sys-
tematic analysis of the inputs (actuators/disturbances) and sensor
outputs described in Sec.1.1. Consider the linearized KS equation
in Eq. (6)

@v0

@t
¼ �V

@v0

@x
� 1

R P @
2v0

@x2
þ @

4v0

@x4

� �
þ f 0ðx; tÞ (12)

where the forcing term f0 (x, t) now appears on the right hand side.
This term is decomposed into two parts

f 0ðx; tÞ ¼ bdðxÞdðtÞ þ buðxÞuðtÞ (13)

The temporal signal of the incoming external disturbance and of
the actuator are denoted by d(t) and u(t), respectively, while the
corresponding spatial distribution is described by bd and bu. In
this work, the time-independent spatial distribution of the inputs is
described by the Gaussian function

gðx; x̂;rÞ ¼ 1

r
exp � x� x̂

r

� �2
" #

(14)

The scalar parameter r determines the width of the Gaussian dis-
tribution, whereas x̂ determines the center of the Gaussian. The
two forcing distributions in Eq. (13) are

bdðxÞ ¼ gðx; x̂d;rdÞ; buðxÞ ¼ gðx; x̂u; ruÞ (15)

The disturbance d is positioned in the beginning of the domain at
x̂d ¼ 35, while the actuator u in the middle of the domain at
x̂u ¼ 400 (see Fig. 5). In the presentation above, the particular
shape bd(x) of the disturbance d is part of the modeling process.
However, note that the introduction of the upstream disturbance
using a localized and well defined shape bd(x) is a model. In prac-
tice, due to the receptivity processes, the distribution and the
appearance of the incoming disturbance is not known a-priori, and
thus difficult to predict using, for instance, a low-order model.

A similar issue may arise for the model of the actuator bu(x),
where the forcing distribution can even be time varying. For
example, the spatial force that a plasma actuator induces in the

flow depends on the supplied voltage, e.g., modulated by the am-
plitude u(t) [37]. As we will discuss in Secs. 4.2 and 5.4, one may
design a controller without knowing bd(x) and bu(x), but for the
sake of presentation we may assume in this section that such
models exist.

By using Eq. (14) as integration weights, we define two outputs
of the system as

yðtÞ ¼
ðL

0

cyðxÞv0ðx; tÞ dxþ nðtÞ (16)

zðtÞ ¼
ðL

0

czðxÞv0ðx; tÞ dx (17)

where L is the length of the domain defined earlier and

cyðxÞ ¼ gðx; x̂y; ryÞ; czðxÞ ¼ gðx; x̂z;rzÞ

The output y provides a measurement of an observable physical
quantity—for example, shear-stress, a velocity component, or
pressure near the wall—averaged with the Gaussian weight. In re-
alistic conditions, this measured quantity is subject to some form
of noise that may arise from calibration drifting, truncation errors,
and/or incomplete cable shielding. This is taken into account by
the forcing term n(t). It is often modeled as random noise with
Gaussian distribution of zero-mean and variance a, and can be
regarded as an input of the system. The second output z(t), located
far downstream, represents the objective of the controller: assum-
ing that the flow has been already modified due to the action of
the controller, this controlled output is the quantity that we aim to
keep as small as possible.

In Fig. 6, we show the response of our system to a Gaussian
white noise in d(t) with a unit variance, where all temporal fre-
quencies are excited. Via the dispersion relation (8), each tempo-
ral frequency xr is related to a spatial frequency a¼V xr. The
input signal d(t) is thus filtered by the system, where after a short
transient, only the unstable spatial wavelengths are present in the
state v(t), Fig. 6(a), and the two output signals y(t) and z(t),
Figs. 6(c) and 6(d). The variance of the output z(t) is higher than
the variance of y(t) by a factor 10, independently by the realiza-
tion; this is because the wave-packets generated by d is growing
in amplitude while convected downstream. We note that each
realization will generate a different time evolution of the system
but with the same statistical properties (black and gray lines in
Figs. 6(b)–6(d)).

2.4 State-Space Formulation. We discretize the spatial part
of Eq. (12) by a finite-difference scheme. As further detailed in
Appendix A, the solution is approximated by

v0iðtÞ ¼ v0ðxi; tÞ i ¼ 1; 2; :::; nv

defined on the equispaced nodes xi¼ iL/nv, where nv¼ 400. The
spatial derivatives are approximated by a finite-difference (FD)
scheme based on five-point stencils. Boundary conditions in
(11–10) are imposed using four ghost nodes i¼ –1, 0 and

Fig. 4 Response to a small, localized initial condition in a 1D
KS flow (6) with R5 0:25;P5 0:05, and V 5 0.4. The contours
are shown as a function of the streamwise direction (x) and the
time (t). The initial condition triggers a growing and traveling
wave-packet, similar to the 2D boundary-layer flow shown in
Fig. 2. [script00.m].

Fig. 5 Spatial support of the inputs and outputs along the
streamwise direction. All the elements are modeled as a Gaus-
sian function (14), with rd 5 ru 5 ry 5 rz 5 4.

060801-4 / Vol. 66, NOVEMBER 2014 Transactions of the ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 09/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



i¼ nvþ 1, nvþ 2. The resulting finite-dimensional state-space
system (called plant) is

_vðtÞ ¼ A vðtÞ þ BddðtÞ þ Bu uðtÞ (18)

yðtÞ ¼ CyvðtÞ þ nðtÞ (19)

zðtÞ ¼ CzvðtÞ (20)

where v 2 Rnv represents the nodal values v0i. The output matrices
Cy and Cz approximate the integrals in Eqs. (16) and (17) via the
trapezoidal rule, while the input matrices Bd and Bu are given by
the evaluation of Eq. (15) at the nodes.

Some of the control algorithms that we will describe are pref-
erably formulated in a time-discrete setting. The time-discrete
variable corresponding to a(t) is

aðkÞ ¼ aðkDtÞ; k ¼ 1; 2; ::: (21)

where Dt is the sampling time. Accordingly, the time-discrete
state-space system is defined as

vðk þ 1Þ ¼ ~AvðkÞ þ ~BddðkÞ þ ~BuuðkÞ (22)

yðkÞ ¼ ~CyvðkÞ þ nðkÞ (23)

zðkÞ ¼ ~CzvðkÞ (24)

where ~A ¼ exp ADtð Þ; ~B ¼ DtB, and ~C ¼ C. For more details, the
interested reader can refer to any control book (see, e.g., Ref. [8]).

2.5 Transfer Functions and Finite-Impulse Responses.
Given a measurement signal y(t), our aim is to design an actuator
signal u(t). The relation between input and output signals is of pri-
mary importance. Since we are interested in the effect of the con-
trol signal u(t) on the system, we assume the disturbance signal
d(t) to be zero. Thus, given an input signal u(t) and a zero initial
condition of the state, the output z(t) of Eqs. (18)–(20) may
formally be written as

zðtÞ ¼
ðt

0

PzuðtÞ uðt� sÞds (25)

where the kernel is defined by

PzuðtÞ ¼
D

Cze
AtBu; t � 0 (26)

Note that the description of the input–output (I/O) behavior
between u(t) and z(t) does not require the knowledge of the full
dynamics of the state but only a representation of the impulse
response between the input u and the output z, here represented by
Eq. (26). A Laplace transform results in a transfer function

ẑðsÞ ¼ P̂zuðsÞûðsÞ ¼ ðCzðsI � AÞ�1
BuÞûðsÞ

with s 2 C. Henceforth, the hat on the transformed quantities is
omitted since related by a linear transformation to the correspond-
ing quantities in time-domain. One may formulate a similar
expression for the other input–output relations, which for our case
with three inputs and two outputs, induces 6 transfer functions,
i.e.,

zðsÞ
yðsÞ

" #
¼
PzdðsÞPzuðsÞPznðsÞ
PydðsÞPyuðsÞPynðsÞ

" # dðsÞ
uðsÞ
nðsÞ

264
375 (27)

I/O relations similar to Eq. (25) can be found for the time-
discrete system. The response z(k) of the system (with v0¼ 0) to
an input u(k) is

zðkÞ ¼
Xk

i¼1

~PzuðiÞ uðk � iÞ (28)

where

~PzuðkÞ ¼
D ~Cz

~Ak�1 ~Bu; k ¼ 1; 2; ::: (29)

This procedure is usually referred to as z-transform; for more
details, we refer to Refs. [8] and [43]. In the limit of k!1, it is
possible to truncate Eq. (28), since the propagating wave-packet
that is generated by an impulse in u will be detected by the output
z after a time delay (this can be observed in Fig. 7, where the
impulse response is depicted). Thus, ~PzuðiÞ is nonzero only in a
short time interval and one may truncate the sum to a finite num-
ber of time steps, Nzu,f. Due to the strong time delay, the initial
part of the sum is also zero and the lower limit of the sum can start
from Nzu,i. This results in a sum

zðkÞ �
XNzu;f

i¼Nzu;i

~PzuðiÞ uðk � iÞ (30)

which is called the finite-impulse response (FIR) [44]. Note that
the presence of time delays in the system is a limiting factor of the
control performance. In general, a disturbance with a time scale
smaller than the time delay that affects the system is difficult to
control [8]. In particular, while the compensator could still be able
to damp those disturbances, it may lack robustness (Sec.2.8).

Fig. 6 Top frame (a) shows the spatiotemporal response to
white noise d(t). (b) The velocity contours are shown as a func-
tion of the streamwise direction (x) and time (t). The signals y(t)
and z(t) are shown for two different realizations (black and gray
lines) in (c) and (d), respectively. Dashed lines indicate the
standard deviation of the signals. [script01.m].
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2.6 Controllability and Observability. The choice of sen-
sors and actuators is particular relevant for the control design;
indeed, the measurement of the sensor y enables to compute the
control signal u(t) that feeds the actuator. Thus, it is important to
know: (i) if the system can be affected by the actuator u; (ii) if the
system can be detected by the sensor y. In other words, we aim at
identifying the states of the system that are controllable and/or
observable. These two properties of the I/O system are referred to
as observability and controllability [8,30] and can be analyzed
introducing the corresponding Gramians Go and Gc

Go ¼D
ð1

0

eAHtCHCeAt dt (31)

Gc ¼D
ð1

0

eAtBBHeAHt dt (32)

By construction, the Gramians (Go,Gc) are positive semi-definite
matrices in Rnv�nv and can be computed for each or all the
outputs/inputs. It can be proved that the two Gramians are solu-
tions of the Lyapunov equations [8]

AHGo þGoAþ CHC ¼ 0 (33)

AGc þGcAH þ BBH ¼ 0 (34)

The spatial information related to the Gramians can be analyzed
by diagonalizing them; the corresponding decompositions allow
to identify and rank the most controllable/observable structures
[30]. On the other hand, for systems characterized by a small
number of degrees of freedom, it is possible to directly identify
the regions where the flow is observable and/or controllable.
Figure 8 shows the controllability Gramian related to the actuator
u (Gc,u) and the observability Gramian related to the sensor y
(Go,y) for our system. The region downstream of the actuator is
influenced by its action, due to the strong convection of the flow.
The observability Gramian Go,y indicates the region where a prop-
agating perturbation can be observed by the sensor y. Note that
the two regions do not overlap, thus wave-packets generated at
the location u are not detected by a sensor y, when is placed
upstream of the actuator. This feature has important consequences
on the closed-loop analysis, as introduced in Sec. 2.7.

2.7 Closed-Loop System. The aim of the control design is to
identify a second linear system KuyðtÞ, called compensator, that
provides a mapping between the measurements y(t) and the
control-input u(t), i.e.,

uðtÞ ¼
ðt

0

KuyðyÞyðt� sÞds

The chosen compensator is also called output feedback controller
[45,46]. This definition underlines the dependency of the control
input u(t) from the measurements y(t). By considering the relation

in frequency domain and inserting it into the plant (27), the
closed-loop system between d(s) and z(s) is obtained in the form

zðsÞ ¼ PzdðsÞ þ
PzuðsÞKuyðsÞPydðsÞ
1� PyuðsÞKuyðsÞ

� �
dðsÞ (35)

By choosing an appropriate KuyðsÞ, we may modify the system
dynamics. The graphical representation of the closed-loop system
is shown in Fig. 9. The transfer function PyuðsÞ describes the sig-
nal dynamics from the actuator u to the sensor y. By definition, a
feedback configuration is obtained when PyuðsÞ 6¼ 0, i.e., when
the sensor can measure the effect of the actuation. On the other
hand, if PyuðsÞ is zero (or very small), the closed-loop system
reduces to a disturbance feedforward configuration [45,46]. In this
special case, from the dynamical point of view such a system
behaves as an open-loop system despite the closed-loop design
[43]. Due to this inherent ambivalence within the framework of
the output feedback control, sometimes the definition of reactive
control is used for indicating all the cases where the control signal
is computed based on measurements of the system; thus, the defi-
nition of closed-loop system more properly applies to a system
where the reactive controller is characterized by feedback [47].

In a convection-dominated system, the sensor should be placed
upstream of the actuator, in order to detect the upcoming wave-
packet before it reaches the actuator (see also Fig. 8); if it is

Fig. 7 Time discrete impulse response (�) between the input u
to the output z; due to the presence of strong time delays in the
system, a lag of t�550 is observed. The relevant part of the ker-
nel is reconstructed via a FIR filter (�). [script02.m].

Fig. 8 Controllability (Gc,u) and observability (Go,y) Gramians,
normalized by their trace; the absolute values are reported in
logarithmic scale as a function of the streamwise direction (x).
Due to the symmetry, only the upper/lower triangular part of
each Gramian is shown. [script03.m].

Fig. 9 Schematic figure showing the 5 transfer functions defin-
ing the closed-loop system (35). The transfer functions Pyd ;Pzd

describe the input/output behavior between the disturbance d
and the outputs y and z, respectively; Pyu and Pzu relate the ac-
tuator u to the two outputs y and z, respectively, while Kuy is
the compensator transfer-function. Because of the convectively
unstable nature of the flow, Pyu is negligible for the chosen
sensor/actuator locations; thus it does not allow any feedback.
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placed downstream, the actuator has no possibility to influence the
propagating disturbance once it has reached the sensor. Figure 10
shows the state and signal responses of the KS system to impulse
in u, where it is clear that the actuator’s action is not detected by
the sensor y, in practice PyuðsÞ � 0. Note that no assumption
about the compensator has been made; the feedback or feedfor-
ward setting is determined by the choice of sensor and actuator
placement.

2.8 Robustness. In practice, model uncertainties are unavoid-
able and it is important to estimate how much the error arising
from the mismatch between the physical system and the model
affects the stability and performance of the closed-loop system. In
general, one wishes to have a controller that does not amplify
unmodeled errors over a range of off-design conditions: a robust-
ness analysis aims at identify this range. A useful quantity in this
context is the sensitivity transfer function, which is defined as the
denominator in the second term on the right-hand side of Eq. (35),
i.e.,

SðsÞ ¼ 1

1� PyuðsÞKuyðsÞ
(36)

Robustness can be quantified as the infinity norm of SðsÞ. Good
stability margins are guaranteed when this norm is bounded, typi-
cally k S k1< 2:0, see Ref. [43]. A second measure is the phase
margin that represents the maximum amount of allowable phase
error before the instability of the closed-loop occurs. Indeed, the
gain margin and the phase margin are the upper limit of amplifica-
tion and phase error, respectively, which guarantee marginal sta-
bility of the closed-loop system.

Note that the internal stability functions are characterized by a
proper dynamics. In the loop-shaping approach, the controller is
designed by shaping the behavior of the internal transfer function
[43]. Unfortunately, this methodology is difficult to be applied in

complex system. A systematic approach for the robust design is
represented by the optimal, robust H1 (see Ref. [46]), where the
sensitivity margins can be optimized. A more computationally
demanding alternative is represented by the controllers based on
numerical optimization running on-line, such as the MPC
(Sec. 3.2) or adaptive controllers (Sec. 5.4).

Thus, feedback controllers may be designed to have small sen-
sitivity. In that regard robustness is a nonissue in a pure feedfor-
ward configuration; indeed, PyuðsÞ � 0 and k S k1� 1. However,
a feedforward controller is highly affected by unknown disturban-
ces and model uncertainty that drastically reduce the overall per-
formance of the device. Moreover, a feedforward controller is not
capable in modifying the dynamics of an unstable plant; thus,
feedback controllers are required for globally unstable flows [31].

The studies performed by Refs. [48] and [49] show that in
convectively unstable flows a feedback configuration allows the
possibility of robust-control design but it does not guarantee opti-
mal performances in terms of amplitude reduction. In this review,
we adopt a feedforward configuration in order to achieve optimal
performances. As we will discuss in Sec. 5.4, robustness may be
addressed to some extent using adaptive control techniques.

3 Model-Based Control

In this section, we assume the full knowledge of the state v(t)
for the computation of the control signal u(t). This signal is fed
back into the system in order to minimize the energy of the output
z(t). For linear systems, it is possible to identify a feedback gain
K(t), relating the control signal to the state, i.e.,

uðtÞ ¼ KðtÞvðtÞ (37)

The aim of the section is to compare and link the classical LQR
problem [50] to the more general MPC approach [2,51]. In the
former approach, one assumes an infinite time horizon (t ! 1),
allowing the computation of the feedback gain by solving a Ric-
cati equation (see Sec. 3.1.1). In the latter approach, the optimiza-
tion is performed with a final time T that is receding, i.e., it slides
forward in time as the system evolves. In Sec. 3.2.1, we introduce
this technique for the control of a linear system with constraints
on the actuator signal, while in Sec. 3.2.3 the close connection
between the unconstrained MPC and the LQR is shown. Finally,
note that the framework introduced in this section makes use of a
system’s model. Model-free methods based on adaptive strategies
are introduced in Sec. 5.

3.1 Optimal Control. The aim of the controller is to compute
a control signal u(t) in order to minimize the norm of the fictitious
output

z0ðtÞ ¼ zðtÞ
uðtÞ

� �
¼ Cz

0

� �
vðtÞ þ 0

1

� �
uðtÞ (38)

where now the control signal is also included. We define a cost
function of the system

L vðuÞ; uð Þ ¼ 1

2

ðT

0

z
u

� �H
wz 0

0 wu

� �
z
u

� �
dt (39)

This cost function is quadratic and includes the constant matrices
wz� 0 and wu> 0. The matrix wz is used to normalize the cost
output, specially when multiple z(t) are used, while the weight wu

determines the amount of penalty on control effort [50]. Using
Eq. (38), Eq. (39) is rewritten as

L vðuÞ; uð Þ ¼ 1

2

ðT

0

vH CH
z wzCz

� �
vþ uHwuu

� �
dt

¼ 1

2

ðT

0

vHWvvþ uHwuu
� �

dt (40)

Fig. 10 The disturbance generated by the impulse response of
the system at the actuator location u in (a) is shown as a
function of the streamwise direction (x) and time (t). The wave-
packet is detected only by the output z (c); due to the convec-
tive nature of the flow, the sensor placed upstream of the
actuator can not detect the propagating disturbance, and the
resulting signal is practically null (b). [script02.m].
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where Wv ¼ CH
z wzCz. We recall from Sec. 2.3 that the sensor Cz

is placed far downstream in the domain, so we are minimizing the
energy in localized region. We seek a control signal u(t) that mini-
mizes the cost function L vðuÞ; uð Þ in some time interval t 2 ½0; T�
subject to the dynamic constraint

_vðtÞ ¼ A vðtÞ þ BuuðtÞ (41)

Note that we do not consider the disturbance d(t) for the solution
of the optimal control problem. In a variational approach, one
defines a Lagrangian

LðvðuÞ; uÞ ¼ 1

2

ðT

0

vHWvvþ uHwuu
� �

dt

þ
ðT

0

pHð _v� Av� BuuÞ dt (42)

where the term p(t) acts as a Lagrangian multiplier [52] (also
called the adjoint state). The expression in the last term is
obtained via integration by parts. Instead of minimizing L with a
constraint Eq. (41) one may minimize ~L without any constraints.

The dynamics of the adjoint state p(t) is obtained by requiring
@~L=@v ¼ 0, which leads to

� _pðtÞ ¼ AHpðtÞ þWvvðtÞ
0 ¼ pðTÞ

(43)

The adjoint field p(t) is computed by marching backward in time
this equation, from t¼ T to t¼ 0. The optimality condition is
obtained by the gradient

@~L
@u
¼ BH

u pþ wuu (44)

The resulting equations’ system can be solved iteratively as
follows:

(1) The state v(t) is computed by marching forward in time
(41) in t 2 ½0; T�. At the first iteration step, k¼ 1, an initial
guess is taken for the control signal u(t).

(2) The adjoint state p(t) is evaluated marching (43) backward
in time, from t¼ T to t¼ 0. The initial condition p(T) is
taken to be zero.

(3) Once the adjoint state p(t) is available, it is possible to com-
pute the gradient via Eq. (44) and apply it for the update of
the control signal using a gradient-based method; one
may, for example, apply directly the negative gradient
Duk ¼ �ð@~Lk=@uÞ, such that the update of the control sig-
nal at each iteration is given by

ukþ1 ¼ uk þ lkDuk:

The scalar-valued parameter lk is the step-length for the opti-
mization, properly chosen by applying backtracking or exact line
search [53]. An alternative choice to the steepest descent algo-
rithm is a conjugate gradient method [54].

The iteration stops when the difference of the cost function L
estimated at two successive iteration steps is below a certain toler-
ance or the gradient value @~L=@u! 0. We refer to Ref. [52] for
more details and to Ref. [55] for an application in flow
optimization.

3.1.1 LQR. The framework outlined in Sec. 2 is rather general
and it can be applied for the computation of the control signal u(t)
also when nonlinear systems or receding finite-time horizons are
considered. However, a drawback of the procedure is the necessity
of running an optimization on-line, next to the main flow
simulation/experiment. When a linear time-invariant system is

considered, a classic way to proceed is to directly use the optimal
condition (44) in order to identify the optimal control signal u(t)

uðtÞ ¼ �w�1
u BH

u pðtÞ (45)

The computed control signal u(t) is optimal as it minimizes the
cost function L vðuÞ; uð Þ previously defined. Assuming a linear
relation between the adjoint state and the direct state,
pðtÞ ¼ XðtÞvðtÞ, the feedback gain is given by

KðtÞ ¼ �w�1
u BH

u XðtÞ (46)

It can be shown that the matrix X(t) is the solution of a differential
Riccati equation [50]. When A is stable, X(t) reaches a steady
state as T ! 1, which is a solution of the algebraic Riccati
equation

0 ¼ AHXþ XA� XBuw�1
u BH

u XþWv (47)

The advantage of this procedure is that X is a constant and needs
to be computed only once. The spatial distribution of the control
gain K is shown in Fig. 11 for the KS system analyzed in Sec. 2,
where the actuator is located at x¼ 400 and the objective output at
x¼ 700. From Fig. 11, one can see that the gain is a compact
structure between the elements Bu and Cz. The control gain is
independent on the shape of external disturbance Bd.

For low-dimensional systems (nv< 103), solvers for the Riccati
equations (47) are available in standard software packages [56].
For larger systems nv< 103, as the ones investigated in flow con-
trol, direct methods are not computationally feasible. Indeed, the
solution of Eq. (47) is a full matrix, whose storage requirement is
at least of order Oðn2

vÞ. The computational complexity is of order
Oðn3

vÞ regardless the structure of the system matrix A [57]. Alter-
native techniques include the Chandrasekhar method [58], Krylov
subspace methods [59], decentralized techniques based on Fourier
transforms for spatially invariant system [13,60,61] and finally
iterative algorithms [62–65]. Yet, a different approach consists of
reducing nv before the control techniques are applied. In practice,
we seek a low-order surrogate system, typically of Oðnv;rÞ
� 10� 102, whose dynamics reproduces the main features of the
original, full-order system. Once the low-order model is identified,
the controller is designed and fed into the full-order system; such
an approach enables the application of a controller next to real
experiments, using small (and fast) real-time computations. The
model-reduction problem is an important aspect of control design
for flow control; we refer to Sec. 6 for a brief overview.

3.2 MPC. MPC controllers make use of an identified model
to predict the behavior of the system over a finite-time horizon
(see Refs. [66–68] for an overview on the technique). In contrast
with the optimal controllers presented in Sec. 3.1, the iterative
procedure is characterized by a receding finite horizon of optimi-
zation. This strategy is illustrated in Fig. 12; at time t0, a control
signal is computed for a short window in time [t0, t0þTc] by

Fig. 11 Control gain K computed using the LQR technique for
wz 5 1 and wu 5 1, (see Sec. 3.1.1). [script04.m]
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minimizing a cost function (not necessarily quadratic); Tc is the
final time of optimization for the control problem. The minimiza-
tion is performed online, based on the prediction of the future tra-
jectories emanating from the current state at t0 over a window of
time [t0, t0þ Tp], such that Tp� Tc. In other words, the control sig-
nal is computed over a horizon Tc in order to minimize the pre-
dicted deviations from the reference trajectory evaluated on a
(generally) longer time of prediction Tp. Once the calculation is
performed, only the first step Ta is actually used for controlling
the system. After this step, the plant is sampled again and the pro-
cedure is repeated at time t¼ t0þ Ta, starting from the new initial
state.

The MPC approach is applicable to nonlinear models as well as
all nonlinear constraints (e.g., upper maximum amplitude for the
actuator signals). We present an example of the latter case in
Sec. 3.2.1.

3.2.1 MPC for Linear Systems With Constraints. Although it
is possible to define MPC in continuous-time formulation (see for
instance Refs. [66] and [51]), we make use of the more convenient
discrete-time formulation. Let M ¼ Tp=Dt and N ¼ Tc=Dt, where
the parameter Dt is the sampling time. Since Tp� Tc, we have
M�N. Augmenting the expression (28) with a term representing
an initial state v(k) at time k, we get

zðk þ jjkÞ¼ ~Cz
~Aj vðkÞ þ

Xminðj;NÞ

i¼1

~Cz
~Ai�1 ~Bu uðk þ j� iÞ

¼ ~PzvðjÞ vðkÞ þ
Xminðj;NÞ

i¼1

~PzuðiÞ uðk þ j� iÞ (48)

where j ¼ 1; 2;…;M. The state equation can be written in matrix
form by recursive iteration, resulting in the matrix-relation

zpðkÞ ¼ PzvvðkÞ þ PzuupðkÞ (49)

The matrix Pzv appearing in Ref. (49) is the observability matrix
of the discrete-time system

Pzv ¼

~Pzvð1Þ
~Pzvð2Þ

..

.

~PzvðMÞ

26664
37775 ¼

~Cz
~A

~Cz
~A2

..

.

~Cz
~AM

26664
37775 (50)

while the matrix Pzu, related to the convolution operator, reads

Pzu ¼

~Pzuð1Þ
~Pzuð2Þ ~Pzuð1Þ

..

. ..
. . .

.

~PzuðNÞ ~PzuðN � 1Þ 	 	 	 ~Pzuð1Þ

..

. ..
. ..

.

~PzuðMÞ ~PzuðM � 1Þ 	 	 	 ~PzuðM � N þ 1Þ

26666666666666664

37777777777777775

¼

~Cz
~Bu

~Cz
~A~Bu

~Cz
~Bu

..

. ..
. . .

.

~Cz
~AN�1 ~Bu

~Cz
~AN�2 ~Bu 	 	 	 ~Cz

~Bu

..

. ..
. ..

.

~Cz
~AM�1 ~Bu

~Cz
~AM�2 ~Bu 	 	 	 ~Cz

~AM�N ~Bu

2666666666666664

3777777777777775
: (51)

In literature, the matrix Pzu is also referred to as dynamic matrix,
because it takes into account the current and future input changes
of the system. Note that the entries of the observability matrix
(50) are directly obtained from the model realization, while the
entries of the dynamic matrix (51) are represented by the time-
discrete impulse response between the actuator u and the sensor z.
The input vector zp(k) and output vector up(k) are defined collect-
ing the corresponding time-signals at each discrete step

zpðkÞ ¼

zðk þ 1jkÞ
zðk þ 2jkÞ

..

.

zðk þMjkÞ

26664
37775; upðkÞ ¼

uðkjkÞ
uðk þ 1jkÞ

..

.

uðk þ N � 1jkÞ

26664
37775 (52)

Thus, the matrix relation (49) provides a linear relation between
the state v(k) and the output zp(k) when the system is forced by
the control input up(k). The evaluation of the future output vector
zp(k) represents the prediction step of the procedure; indeed,
assuming that the control signal contained in the vector up(k) is
known, we aim at computing the future output zp(k), related to the
trajectory emanating from the initial condition v(k).

By following the same rationale already adopted in the optimal
control problem, a cost function LðkÞ that minimizes the output
z(t) while limiting the control expense is defined

LðkÞ ¼
XM

i¼1

zHðk þ ijkÞwzzðk þ ijkÞ

þ
XN�1

i¼0

uHðk þ ijkÞwuuðk þ ijkÞ

¼ zpðkÞHWzzpðkÞ þ upðkÞHWuupðkÞ (53)

The parameters Wz and Wu are represented by block diagonal
matrices containing the weights wz and wu. One may also have
nonquadratic costs functions in MPC; examples are given by Ref.
[51] for the control of a turbulent channel. In our case, we choose
a quadratic cost function in order to compare performance with
the LQR controller. By combining the cost function (53) and the
state equation (49), we get

Fig. 12 MPC strategy: the controller is computed over a finite
time-horizon Tc, based on the predicted time-horizon Tp. Once
the solution is available, the control signal is applied on a
shorter time windows Ta. In the successive step, the time-
window slides forward in time and the optimization is per-
formed again, starting from a new initial condition at t 5 Ta. The
procedure is iterated while proceeding forward in time.
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LðkÞ ¼ zpðkÞHWzzpðkÞ þ upðkÞHWuupðkÞ ¼
¼ PzvvðkÞ þ PzuupðkÞ
	 
H

Wz PzvvðkÞ þ PzuupðkÞ
	 


þ upðkÞHWuupðkÞ (54)

Note that this manipulation is analogous to the definition of
Lagrangian already shown for the LQR problem (42). The mini-
mization of LðkÞ with respect of up(k) reads

min
upðkÞ

1

2
up

HðkÞHupðkÞ þ cðkÞupðkÞ : CupðkÞ 
 D

� �
(55)

where

H ¼ 2 PH
zuWzPzu þWu

� �
cðkÞ ¼ 2vHðkÞPH

zvWzPzu (56)

and CupðkÞ 
 D is a constraint [69], which we have not specified
yet. Once this minimization problem is solved, the control signal
is applied for one time step, corresponding to DT¼ Ta, followed
by a new iteration at step kþ 1.

3.2.2 Actuator Saturation as Constraint. The need of intro-
ducing constraints in the optimization process usually arises when
we consider real actuators characterized by nonlinear behavior,
due to saturation effects. For example, the body force generated
by plasma actuators [37,70]—usually approximated by consider-
ing the macroscopic effects on a flow—is often modeled as a non-
linear function of the voltage [71,72].

Consider now a control signal, whose amplitude is required to
be bounded in the interval �umax 
 u 
 umax. We thus minimize

min
upðkÞ

1

2
up

HðkÞHupðkÞ þ cðkÞupðkÞ : umin 
 upðkÞ 
 umax

� �
(57)

where H and c are given by Eq. (56). One may solve this con-
strained MPC using nonlinear programming [53]. Since the func-
tion to be minimized is a quadratic function, we have used a
reflective Newton method suggested by Ref. [73]; this method is
implemented in the MATLAB routine quadprog.m.

We proceed by comparing the performance of the MPC control-
ler with the LQR solution discussed in Sec. 3.1.1. For a direct
comparison, we apply an ad hoc saturation function to the LQR
control signal, i.e.,

uLQR ¼
uLQR if �umin < uLQR < �umax

�umin if �umin � uLQR

�umax if �umax 
 uLQR

8<: (58)

As shown in Fig. 13, the control signal computed by the MPC
(blue solid line) closely follows the LQR solution (dashed black
line), except in the intervals where the value is larger or smaller
than the imposed constraint. By simply applying the saturation
function in Eq. (58) to the LQR signal, the controller becomes
suboptimal; the resulting solution deviates from the optimal one
and settles back on it after t� 300 time units. Simply cutting off
the actuator signal of LQR results in a significant reduction of per-
formance, which in terms of root-mean-square (rms) is almost one
order of magnitude (shown in Fig. 14). The main drawback of the
constrained MPC is the computational time required by the online
optimization, that can be prohibitive in experimental settings.

3.2.3 MPC for Linear Systems Without Constraints. For a lin-
ear system with the quadratic cost function (40) but without con-
straints, a prediction/actuation time sufficiently long allows to
approximate the solution of the LQR. This is not obvious from the
mere comparison of the continuous-time LQR-objective function,
(40) and (42), and the discrete-time MPC-objective function, (53)
and (54). For a detailed discussion, we refer to Ref. [74], where
the equivalence is demonstrated analytically. In the following, the
equivalence is exemplified using the KS equation.

When there are not imposed constraints, the optimization prob-
lem in Eq. (55) corresponds to a Quadratic Program [53]; by tak-
ing the derivative of LðkÞ with respect of up(k), we may obtain
up(k) as solution of the following least-square problem

upðkÞ¼ �H†cH

¼ � PH
zuWzPzu þWu

� �†
PH

zuWzPzvvðkÞ

¼

K0

K1

..

.

KN�1

266664
377775vðkÞ

(59)

where ð	Þ† indicates the Moore–Penrose generalized inverse ma-
trix [75]. Note that this is a least square problem (in general,
M�N). If we assume an actuation time-horizon Ta¼Dt, at each
time step the control signal u(k) reads

uðkÞ ¼ K0vðkÞ (60)

In Fig. 15(a), the solid dashed line corresponds to the LQR gain
obtained by solving a Riccati equation, while the colored lines
correspond to the unconstrained MPC solution for different final

Fig. 13 Control design in presence of constraints: the gray
regions indicate the limits imposed to the amplitude of the con-
trol signal u(t). The control u(t) is designed following two differ-
ent strategies: LQR with a saturation function (–) and
constrained MPC (–), see Sec. 3.2.2. The LQR solution (– –) is
introduced as reference. The performances of the controllers
are shown in terms of rms-velocity reduction in Fig. 14.

Fig. 14 Control of the KS equation. The rms velocity as a func-
tion of the x direction is analyzed; the uncontrolled configura-
tion (–) is compared to three different control strategies already
considered in Fig. 13 (same legend).
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time of prediction Tp. For a shorter time of optimization
(Tp¼ 750, red solid line) only a portion of the dynamics of ~PzuðiÞ
(see Fig. 15(b)) is contained in the MPC gain. For longer times
(Tp¼ 1250, blue solid line) the MPC converges to the infinite-
time horizon LQR solution.

4 Estimation

In this section, we assume that the only information we can
extract from the system is the measurement y(t). This signal is
used to provide an estimation v̂ðtÞ of the state such that the error
given by

eðtÞ ¼ vðtÞ � v̂ðtÞ (61)

is kept as small as possible. We first derive the classical Kalman
Filter, where in addition to y(t), one requires a state-space model
of the physical system. Then we discuss the LMS technique,
which only relies on the measurement y(t).

4.1 Luenberger Observer and Kalman Filter. The observer
is a system in the following form:

_̂vðtÞ ¼ Av̂ðtÞ þ BuuðtÞ � LðyðtÞ � ŷðtÞÞ (62)

ŷðtÞ ¼ Cyv̂ðtÞ (63)

ẑðtÞ ¼ Czv̂ðtÞ (64)

This formulation was proposed for the first time by Luenberger in
Ref. [76], from whom it takes the name. Comparing this system
with Eq. (18), it can be noticed that it takes into account the actua-
tor signal u(t) but it ignores the unmeasurable inputs—the disturb-
ance d(t) and the measurement error n(t). In order to compensate
this lack of information, a correction term based on the estimation
ŷðtÞ of the measurement y(t) is introduced, filtered by the gain
matrix L.

The aim is to design L in order to minimize the magnitude of
the error between the real and the estimated state, i.e., expression

defined in Eq. (61). Taking the difference term by term between
Eqs. (18) and (62), an evolution equation for the e(t) is obtained

_eðtÞ ¼ ðAþ LCÞeðtÞ þ BddðtÞ � LnðtÞ (65)

It can be seen that the error is forced by the disturbance d(t) and
the measurement error n(t), i.e., precisely the unknown inputs of
the system.

4.1.1 Kalman Filter. In the Kalman filter approach both the
disturbance d(t) and the measurement error n(t) are modeled by
white noise, requiring a statistical description of the signals. The
autocorrelation of the disturbance signal is given by

RdðsÞ ¼D
ðþ1
�1

dðtÞdHðt� sÞ dt (66)

This function tells us how much a signal is correlated to itself after
a shift s in time. For a white noise signal this function is nonzero
only when a zero shifting (s¼ 0) in time is considered and its
value is the variance of the signal. Hence, the correlation func-
tions for the considered inputs signal d(t) and n(t) are

RdðsÞ ¼ RddðsÞ and RnðsÞ ¼ RndðsÞ (67)

where Rd and Rn are the variances of the two signals and d(s) is
the continuous Dirac delta function. When a system is forced by
random signals, also the state becomes a random process and it
has to be described via its statistical properties. Generally the cal-
culation of these statistics requires a long time history of the
response of the system to the random inputs. But for the linear
system (65), it is possible to calculate the variance of the state
Re 2 Rnv�nv by solving the following Lyapunov equation [30]:

Aþ LCy

� �H
Re þ Re Aþ LCy

� �
þ BdRdBH

d þ LRnLH ¼ 0 (68)

The trace of Re is a measure of how much the mean value of the
error e(t) differs from zero during its time evolution. One may
thus define the following cost function for the design of L:

N ¼ Tr Reð Þ ¼ lim
T!1

1

2T

ðT

�T

eHðtÞeðtÞ dt (69)

where Tr(	) indicates the trace operator.
With a similar approach as in Sec. 3.1, we define a Lagrangian

~N ¼ TrfRe þ K½ðAþ LCyÞHRe

þReðAþ LCyÞ þ BdRdBH
d þ LRnLH�g (70)

where the Lagrangian multiplier K enforce the constraint given by
Eq. (68). The solution of the minimization is obtained by the
imposing the solution to be stationary respect the three parameters

Fig. 15. In (a) the LQR solution (Sec. 3.1.1) is compared to the
MPC gains computed for two different times of optimization Tp

without constraints, see Sec. 3.2.3. The optimization times are
compared to the impulse response PzuðtÞ (b). Note that for lon-
ger time Tp, covering the main dynamics of the impulse
response PzuðtÞ, the MPC and LQR solutions are equivalent.

Fig. 16 Kalman estimation gain L computed for Rd 5 1 and
Rn 5 0.1, (see Sec. 4.1.1). [script06.m].
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L, Re, and K. The zero-gradient condition for L gives us the
expression for the estimation gain

L ¼ �R�1
n CyRe (71)

The zero-gradient condition for the Lagrangian multiplier K
returns the Lyapunov equation in Eq. (68): combining this equa-
tion with Eq. (71), a Riccati equation is obtained for Re

AHRe þ ReA� ReCH
y R�1

n CyRe þ BdRdBH
d ¼ 0 (72)

In Fig. 16 the estimation gain L is shown, where it can be
observed that the spatial support is localized in the region immedi-
ately upstream of the sensor y. In this region the amplitude of the
forcing term in the estimator is the largest to suppress estimation
error.

In Fig. 17, we compare the full state (a) to the estimated state
(b) when the system is forced by a noise signal d(t). As a result of
strong convection, we observe that an estimation is possible only
after the disturbance has reached the sensor at x¼ 300, since
upstream of this point there are no measurements. For control
design it is important that v(t) is well estimated in the region
where the actuators are placed; hence, the actuators have to be
placed downstream of the sensors [48,49].

4.2 Estimation Based on Linear Filters. A significant draw-
back of the Kalman filter is that it requires a model of the disturb-
ance Bd for the solution of the Riccati equation (72). One may
circumvent this issue by using FIR to formulate the estimation

problem. In analog to the formulations based LQR (model based)
and on MPC (FIR based), we will compare and link the Kalman
filter to a system identification technique called the LMS filter.
Many other system identification techniques exist, the most com-
mon being the autoregressive-moving-average with exogenous
inputs employed in the work of Ref. [77].

From Eqs. (62) to (64), we observe that the estimator-input is
the measurement y(k), while the output is given by the estimated
values of z(k). The associated FIR of this system is

ẑðkÞ ¼
XNf ;zy

i¼Ni;zy

�Cz
~̂A

i�1
DtL

 �
yðk � iÞ ¼

XNf ;zy

i¼Ni;zy

~EzyðiÞ yðk � iÞ

(73)

where ~̂A ¼ eðAþLCyÞDt and ~EzyðiÞ denotes the impulse response
from the measurement y(k) to the output z(k). Note that, since we
are considering a convectively unstable system, the sum in Eq.
(73) is truncated using appropriate limits Ni,zy and Nf,zy [44]. Next,
we present a method where ~EzyðiÞ is approximated directly from
measurements, instead of its construction using the state-space
model.

4.2.1 LMS Filter. The main idea is to identify an estimated
output ẑðkÞ for the system, by minimizing the error

eðkÞ ¼ ẑðkÞ � zðkÞ ¼
XNf ;zy

i¼Ni;zy

~EzyðiÞ yðk � iÞ

0@ 1A� zðkÞ (74)

where z(k) is the reference measurement. The unknown of the
problem is the time-discrete kernel ~EzyðiÞ. Thus, we aim at adapt
the kernel ~EzyðiÞ such that at each time step the error e(k) is mini-
mized, i.e.,

min
~Ezy

e2ðkÞ (75)

The minimization can be performed using a steepest descent algo-
rithm [78]; thus, starting from an initial guess at k¼ 0 for ẑðkÞ; ~Ezy

is updated at each iteration as

~Ezyðijk þ 1Þ ¼ ~EzyðijkÞ þ lðkÞkðijkÞ (76)

where kðijkÞ is the direction of the update and l(k) is the step-
length. Note that each iteration corresponds to one time step. The
direction can be obtained from the local gradient, which is given
by

kðijkÞ ¼ � @e2ðkÞ
@~EzyðiÞ

¼ �2eðkÞ yðk � iÞ (77)

This expression was obtained by forming the gradient of the error
e(k) with respect to ~EzyðiÞ and making use of the estimated output
ẑðkÞ (73).

The second variable that needs to be computed in Eq. (76) is
the step-length l(k). Consider the error at time-step k computed
with the updated kernel ~Ezyðijk þ 1Þ

~eðkÞ¼
XNf ;zy

i¼Ni;zy

~Ezyðijk þ 1Þ yðk � iÞ

0@ 1A� zðkÞ

¼ eðkÞ þ lðkÞ
XNf ;zy

i¼Ni;zy

kðijkÞ yðk � iÞ

0@ 1A (78)

where Eqs. (75) and (76) have been used. The step-length l(k) is
calculated at each time step in order to fulfil

Fig. 17 Spatiotemporal evolution of the response of the sys-
tem to a disturbance d(t) (a), compared to the estimated full-
order state, using a Kalman filter (b); the contours are shown as
a function of the streamwise direction (x) and time (t). The
error-norm between the original state and the estimated state is
shown in (c). The vertical blue, dashed line indicates when the
estimator is turned on. [script06.m].
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min
lðkÞ

~eðkÞ2 (79)

by imposing a zero-derivative condition with respect to l(k)

@~eðkÞ2

@lðkÞ ¼ 2~eðkÞ
XNf ;zy

i¼Ni;zy

kðijkÞ; yðk � iÞ

0@ 1A ¼ 0 (80)

Assuming that

XNf ;zy

i¼Ni;zy

kðijkÞyðk � iÞ 6¼ 0 (81)

and considering Eq. (78), the optimal step length becomes

lðkÞ ¼ � eðkÞP
i kðijkÞyðk � iÞ : (82)

In Fig. 18(a), the LMS-identified kernel ~EzyðiÞ is shown as a
function of time t ¼ kDt. When the LMS filter is turned on at
t¼ 4000, the filter starts to compute the kernel, which progressively
adapts. While the iteration proceeds, the error decreases as shown
in Fig. 18(b). In the limit of T!1, when a steady solution can be
assumed, the kernel computed by the LMS filter converges to the
kernel ~Ezy obtained by the Kalman filter (see Fig. 19).

The main drawback of the LMS approach is that the method is
susceptible to a numerical stability [78]. A usual way for improv-
ing the stability is to bound the step-length l(k) by introducing an
upper limit. In particular, it can be proven that in order to ensure
the convergence of the algorithm, the following condition has to
be satisfied:

0 < lðkÞ < �l ¼ 2

Ry
(83)

where the upper-bound �l is defined by the variance Ry of the mea-
surement y, i.e., the input signal to LMS filter.

5 Compensator

Using the theory developed in Secs. 3 and 4, we are now ready
to tackle the full control problem (Fig. 20): given the measure-
ment y(t), compute the modulation signal u(t) in order to minimize
a cost function based on z(t). In the first part of this section we
will focus on the Linear-Quadratic Gaussian (LQG) regulator that
couples a Kalman filter to a LQR controller. Then we present a
compensator based on adaptive algorithms using LMS techniques.

5.1 LQG Regulator. By solving the control and estimation
Riccati equations and the associated gains (L and K), we build a
system that has as an input the measurement y(t) and as an output
the control signal u(t)

_̂vðtÞ ¼ ðAþ BuKþ LCyv̂ðtÞ � LyðtÞ (84)

uðtÞ ¼ K v̂ðtÞ (85)

This linear system is referred to as the LQG compensator. The
estimation and control problem, discussed in Secs. 3 and 4, are
both optimal and guarantee stability as long as the system is
observable and controllable [8]. In particular, the disturbance d
and the output z have to be placed, respectively, in the y-observ-
able and u-controllable region (Fig. 8). Under these conditions, a
powerful theorem, known as the separation principle [8], states
that optimality and stability transfer to the LQG compensator.

The closed-loop system obtained by connecting the compensa-
tor to the plant becomes

Fig. 18 In (a) the evolution of eEzy ðiÞ is calculated by an adapt-
ive LMS filter and shown as a function of the discrete time (iDt).
The estimation starts at t 5 4000, as indicated by a blue dashed
line (–). As the iteration progresses, the error-norm constantly
reduces (b). [script07.m].

Fig. 19 Impulse responses (y fi z) of the estimator as a func-
tion of the discrete time. Red circles (�) correspond to the FIR
time-discrete Kalman-filter-based kernel eEzy ðiÞ and the blue
squares (�) to the one identified by the LMS algorithm.
[script07.m].

Fig. 20 Block diagram of the closed-loop system. The com-
pensator, consisting of a controller coupled to an estimator,
computes the control signal u(t) given the measurement y(t).
The minimization of the measurement z(t) is the target parame-
ter of the controller. Note that in a feedforward controller, the
output z can be used to add robustness to the compensator (for
instance, in adaptive filters, Sec. 5.4).
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_vðtÞ
_̂vðtÞ

� �
¼ A BuK

�LCy Aþ BuKþ LCy

� �
vðtÞ
v̂ðtÞ

� �
þ Bd

0

� �
dðtÞ (86)

Figure 21 shows the response of Eq. (86) when a white random
noise is considered as an input in d(t). The horizontal solid black
line in the top frame depicts the location of y sensor: this signal is
used to force the compensator at the location depicted in the lower
frame with a black dashed line. The compensator then provides a
signal to the actuator (dashed black line in the upper frame) to
cancel the propagating wave-packet. We let the two systems start
to interact at t¼ 4000, as depicted by the dashed blue line. As
soon as the first wave-packet, which is reconstructed by the com-
pensator, reaches the actuation area, the compensator starts to

provide a nonzero actuation signal back to the plant. Recall that
the state v̂ðtÞ of the LQG compensator is an estimation of the state
of the real plant v(t). This can be seen by comparing Figs. 21(a)
and 21(b); downstream of the sensor y the state of the compensa-
tor matches the controlled plant.

Optimal controllers were applied to a large variety of flows,
including oscillator flows, such as cavity and cylinder-wake flow,
where the dynamic is characterized by self-sustained oscillations
at well-defined frequencies, see Ref. [28]. Note that v(t) and v̂ðtÞ
have the same size: if complex systems are considered, a full-
order compensator can be computationally demanding [65];
model reduction and compensator reduction enable to tackle these
limitations and design low-order compensators, see Sec. 6.

5.2 Proportional Controller With a Time Delay. One may
ask how a simple proportional controller compares to the LQG for
our configuration. In a proportional compensator, the control sig-
nal u(t) is simply obtained by multiplying the measurement signal
y(t) by a constant P. Because of the strong time delays in our sys-
tem, one needs to introduce also a time-delay s between the mea-
surement y(t) and the control signal u(t). The simplest control law
for our system is

uðtÞ ¼ P yðt� sÞ (87)

where the “best” gain P and the time-delay s can be found via a
trial-and-error basis (in our case, s¼ 250 and P¼ –0.5432). This
technique is also similar to opposition control [79], where blowing
and suction is applied at the wall in opposition to the wall-normal
fluid velocity, measured a small distance from the wall.

In Fig. 22, we compare the velocity rms obtained with LQG
compensator (red) and P-s compensator (green). It can be
observed that although both techniques reduce the perturbation
amplitude downstream of the actuator position (x¼ 400), the per-
formance of the LQG regulator is nearly an order of magnitude
better than the proportional controller. This can be mainly attrib-
uted to the additional degrees of freedom given by the nv� nv

LQG feedback gains, as opposed to the two-degree freedom P-s
controller. Indeed, the LQG gains are computed assuming an
accurate knowledge of the state-space model. Also shown
(dashed-solid line) is the full-information LQR control whose per-
formance is comparable the partial-information LQG controller:
the difference between the two is due to the difference between
the estimated state v̂ðtÞ and the real state v(t), i.e., the estimation
error e.

5.3 Model Uncertainties. The LQG compensator is based on
coupling an LQR controller and a Luenberger observer. Both of
them are based on a model of the system and, as a consequence,
their effectiveness is highly dependent on the quality of the model

Fig. 21 Spatiotemporal response in presence of a white noise
input d(t) for the closed-loop system (a) and the compensator
(b); the disturbance is shown as a function of the streamwise
direction (x) and time (t). The measurement y(t), feeding the
compensator, is shown in (c). At t 5 4000 (– –), the compensator
starts its action and after a short lag the actuator is fed with the
computed control signal u(t). The perturbation is canceled, as
shown in the contours reported in (a) and the output z(t) mini-
mized (t > 5000). [script08.m].

Fig. 22 The rms velocity as a function of the streamwise loca-
tion x is shown for the uncontrolled case (–), the LQG (–), the
LQR (– –) and the opposition controller P 2 s (–). [script08.m,
script09.m].
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itself. Any difference between the model and the real plant can
cause an abrupt reduction of the performances of the compensator
[49,80]. Model error can be attributed to, for example, nonlinear-
ities due to the violation of the small perturbation hypothesis,
nonlinearities of the actuator or sensors/actuators shape and
positioning.

The robustness problem can be illustrated using a simple exam-
ple. Suppose that one wants to cancel a traveling wave with a
localized actuator; what one should do is to generate a wave that
is exactly counter-phase with respect to the original one. Suppose
that exact location of the actuation action is difficult to model.
Shifting the actuator position slightly is equivalent to adding an
error in the estimation of the phase of the original signal. This will
in turn cause a mismatch between the wave that is meant to be
canceled and the wave created by the actuator, thus resulting in an
ineffective wave-cancellation—in the worst case, it may result in
an amplification of the original wave.

As shown in Fig. 23, when we displace the actuator further
downstream by 5 spatial units and apply the compensator
designed for the nominal condition to this modified system, the
performance of the LQG regulator deteriorates. Since the compen-
sator provides a control signal that is meant to be applied in the
nominal position of the actuator, the control signal is not able to
cancel the upcoming disturbance.

Essentially, we are suffering from the lack of robustness of the
feedforward configuration, since the sensor cannot measure the
consequence of the defective actuator signal. There are different
means to address this issue.

One can combine the feedforward configuration with a feed-
back action, in order to increase robustness. This can be accom-
plished using the second sensor z—downstream of the actuator—
in combination with the estimation sensor y—placed upstream of
the actuator. The combination of feedback and feedforward is the
underlying idea of the MPC controller applied to our configuration
[27]. However, there are some drawbacks due to the computa-
tional costs of the algorithm; indeed, the entries of the dynamic
matrix (51) are computed during the prediction-step using time
integration, whose domain increases with the time delays of the
system. Thus, the integration and the dimensions of the resulting
matrices can represent a bottleneck for the online optimization.
An alternative is the use of an adaptive algorithm, which adapts
the compensator response according to the information given by
z(t), as shown in Sec. 5.4.

5.4 Filtered-X Least-Mean Square (FXLMS). The objec-
tive of FXLMS algorithm is to adapt the response of the compen-
sator based on the information given by the downstream output z.
The first step of the design is to describe the compensator in a suit-
able way in order to modify its response. The FXLMS algorithm
is based on a FIR description of the compensator. Recall again
that the compensator is a linear system (input is the measurement
y(t) and output is the control signal u(t)), which in time-discrete
form can be represented by

uðkÞ ¼
X1
j¼1

~KuyðjÞ yðk � jÞ �
XNuy

j¼1

~KuyðjÞ yðk � jÞ (88)

where ~KuyðjÞ is a time-discrete kernel. Due to the stability of the
system, we have ~KuyðjÞ ! 0 as t ! 1, so that the sum can be
truncated after Nuy steps. In the case of LQG compensator ~Kuy has
the form

~KuyðjÞ ¼
D

K exp Aþ LCy þ BuK
� �

Dtðj� 1Þ
	 


L

for i ¼ 1; 2;… The kernel ~KuyðjÞ of the LQG controller is shown
with red circles in Fig. 24. In this case Nuy¼ 533, which gives
~KuyðjÞ
�� �� < 10�2 for j > Nuy.

The FXLMS technique modifies online the kernel ~KuyðjÞ in
order to minimize the square of measurement z(t) at each time
step [23], i.e.,

min
~KuyðjÞ

z2ðkÞ (89)

The procedure is closely connected to the LMS filter discussed
in Sec. 4.2.1 for the estimation problem. The kernel ~KuyðjÞ is
updated at each time step by a steepest-descend method,

~Kuyðjjk þ 1Þ ¼ ~KuyðjjkÞ þ lðkÞkðjjkÞ (90)

where l(k) is calculated from Eq. (82) and kðjjkÞ is the gradient of
the cost function z(k) with respect of the control gains ~KuyðjÞ. In
order to obtain the update direction, consider the time-discrete
convolution for z(k)

zðkÞ¼
X1
i¼0

~PzdðiÞ dðk � iÞ þ
X1
i¼0

~PzuðiÞ uðk � iÞ

¼
X1
i¼0

~PzdðiÞ dðk � iÞ þ
X1
i¼0

~PzuðiÞ
XNuy

j¼0

~KuyðjÞ yðk � i� jÞ

¼
X1
i¼0

~PzdðiÞ dðk � iÞ þ
XNuy

j¼0

~KuyðjÞ
X1
i¼0

~PzuðiÞ yðk � j� iÞ

Fig. 23 Robustness to uncertainties of the system: the actua-
tor is displaced of 5 length units from its nominal position. The
performance of the adaptive filter FXLMS (– – and 	�) is com-
pared to the LQR (– –), LQG (–) and P-s (–) compensators; as a
reference, the uncontrolled case is shown (–). The rms-velocity
is shown as a function of the streamwise direction (x). The
adaptive filter performs reasonably well in the presence of
unmodeled dynamics; the performances are enhanced by the

use of a online identified ~Pzu (– –). The performances of the
LQG (–) and P-s (–) compensators are significantly reduced
(compare with Fig. 22). [script10.m].

Fig. 24 Robustness to uncertainties of the system: FXLMS
control gain eKuy ðiÞ (�) is shifted along the time-discrete coordi-
nate if compared to the static LQG gain (�) to compensate for
the unmodeled shift in actuator position. [script10.m].
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From this expression it is possible to obtain the gradient

kðjjkÞ ¼ � @zðkÞ2

@ ~KuyðjÞ
¼ �2zðkÞ

X1
i¼0

~PzuðiÞyðk � j� iÞ (91)

which can be simplified by introducing the filtered signal yf(k)

yf ðkÞ ¼
X1
i¼0

~PzuðiÞ yðk � j� iÞ �
XNf ;zu

i¼Ni;zu

~PzuðiÞ yðk � iÞ (92)

Note that a FIR approximation of ~PzuðiÞ has been used. Hence,
the expression in Eq. (91) becomes

kðjjkÞ ¼ �2zðkÞ yf ðk � jÞ (93)

In order to get the descend direction, the measurement y(t) is fil-
tered by the plant transfer function ~PzuðiÞ.

Starting the online optimization from the compensator kernel
~KuyðjÞ given by the LQG solution, the algorithm is tested on our
problem. In Fig. 23, we observe that the algorithm is able to
recover some of the lost performance of LQG (due to shift in actu-
ator position) and it is comparable to the full-information control
performed by the LQR controller with the nominal gain K. This is
possible because of the adaptation of the kernel ~KuyðjÞ, to the new
actuator location.

Figure 24 shows how the convolution kernel has been modified
by the algorithm; the kernel is shifted in time in order to restore
the correct phase shift between the control signal u(t) and the mea-
surement signal y(t) in the modified system. The shift in time
between the two peaks (visible in the inset figure) is exactly the
time that it takes for the wave-packet to cover the additional dis-
tance between the sensor and the actuator. Recalling from Sec. 2,
that the wave-packet travels with a speed V¼ 0.4, it will take
Dxu=V ¼ 5=0:4 ¼ 12:5 time units to cover the extra space
between u and y.

From Eq. (91), it can be noted that the FXLMS is not com-
pletely independent from a model of the system; in fact the convo-
lution kernel ~PzuðiÞ is needed to compute the gradient kðjjkÞ used
by the algorithm. In the previous example, the nominal transfer
function has been used, given by the model of the plant

~PzuðiÞ ¼ Cze
ADtði�1ÞBu; i ¼ 1; 2; ::: (94)

One may obtain a kernel ~PzuðiÞ that is totally independent by the
model—thus without any assumption on placement/shape of both
actuator and sensors—by using the LMS identification algorithm

derived in Sec. 4.2.1. In Fig. 23, we compare ~PzuðiÞ obtained from
Eq. (94) using inaccurate state-space model (since actuator posi-

tion has shifted) (solid blue) with ~PzuðiÞ obtained by model-free
identification using LMS technique (dashed blue). We observe
that when combining adaptiveness with a more accurate model-

free identification of ~PzuðiÞ, the performance is improved
significantly.

Note that this algorithm when applied to flows dominated by
convection, and thus characterized by strong time delays, results
in a feedforward controller where the feedback information is
recovered by the processing of the measurements in z. This
method is known to as active noise cancellation [23,81]. We can
identify two time scales: a fast time scale related to the estimation
process and a slow time scale related to the adaptive procedure
[47]. For this reason, this method is suitable for static or slowly
varying model discrepancies.

6 Discussion

In this section, we discuss a few aspects that have not been
addressed so far, but are important to apply the presented

techniques to an actual flowing fluid. Many other important sub-
jects such as choice of actuator and sensors, nonlinearities and re-
ceptivity are not covered by this discussion.

6.1 Low-Order Control Design. The discretization of the
Navier–Stokes system leads to high-dimensional systems that eas-
ily exceed 105 degrees of freedom. For instance, the full-order so-
lution of Riccati equations for optimal control and Kalman filter
problems cannot be obtained using standard algorithms [59].

One common strategy is to replace the high-dimensional system
with a low-order system able to reproduce the essential input–out-
put dynamics of the original plant. This approach is referred to as
reduce-then-design [82] (left part of Fig. 25). First, a reduced-
order model is identified using an appropriate model reduction or
system identification technique; then the validated reduced-order
model is used to design a low-order compensator. The dual
approach is called design-then-reduce or compensator reduction
(right part of Fig. 25). In this case, a high-order compensator is
designed as first step (if possible). The second step is the reduction
of the compensator to a low-order approximation.

Both the approaches lead to a low-order compensator that can be
used to control the full-order plant, but they are not necessarily
equivalent [82]. In the reduce-then-design approach, we neglect a
number of states during the model-order reduction of the open loop
that might become important for the dynamics of the closed-loop
system. Despite these limitations, the reduce-then-design approach
is the most common in flow control due to its computational advan-
tages; indeed, the challenge of designing a high-dimensional com-
pensator to be reduced strongly limits this alternative.

6.2 Model Reduction. Following the reduce-then-design
approach, the first step consists of identifying a reduced-order
model, typically reproducing the I/O behavior of the system. We
can distinguish two classes of algorithms. The first category is
based on a Petrov–Galerkin projection of the full-order system. In
this case, the I/O behavior of the system is reconstructed starting
from a low-order approximation of the state-vector vr, character-
ized by a number of degree of freedom r � n; the projection can
be performed on global modes [83], proper orthogonal modes
(POD), obtained from the diagonalization of the controllability
Gramian (see Sec. 2.6), or balanced modes, for which the controll-
ability and observability Gramians are equal and diagonal
[30,84,85]. This strategy has been widely used in the flow-control
community in the past years for the identification of linear
[35,83,86–88] and nonlinear models [89–91]. In particular, when
nonlinear effects are considered, it is necessary to take into
account the effect that a finite disturbance in the flow has on the
base-flow, as shown by Ref. [89] for a cylinder wake flow. At low

Fig. 25 Two strategies are possible to compute a reduced-
order compensator, reduce-then-design and design-then-
reduce. In general, the two paths do not lead at the same
results.
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Reynolds numbers, a small number of modes are sufficient to
reproduce the behavior of oscillators such as the cylinder wake,
while a larger number of modes is required to reproduce the I/O
behavior of convective unstable flows. This is mainly due to the
presence of strong time delays [8] that characterize this type of
systems, Sec. 2.5.

The second approach stems from the I/O analysis of the formal
solution carried out in Sec. 2.5; we note that a low-order represen-
tation of the transfer function is enough to reconstruct the I/O
behavior of the system. The computation of this representation
can be performed applying system identification algorithms [19].
Once the transfer functions are identified, one constructs a
reduced-order model in canonical form. These techniques were
widely used for experimental investigations (see, e.g., Refs. [24]
and [25]) and have been recently applied also in numerical studies
[77,92]. Indeed, for linear systems, it can be shown that
projection-based techniques and system identification techniques
can provide equivalent reduced-order models [93]. We refer the
reader to the reviews by Refs. [29] and [31] for a broader
overview.

6.3 Control of Three-Dimensional Disturbances. A sketch
of the three-dimensional control setup of the flow over a flat-plate
is shown Fig. 26. Compared to the 2D boundary-layer flow a sin-
gle actuator u, sensor y and output z are now replaced by arrays of
elements localized along the spanwise direction, resulting in a
multi-input multi-output (MIMO) system. The localization (size
and distance between elements) of sensors and actuators may sig-
nificantly influence efficiency of the compensator [88,94]. An im-
portant question one must address for MIMO systems is how to
connect inputs to outputs. A first approach consists of coupling
one actuator with only one sensor (for instance, the one upstream);
in this case, the number of single-input single-output (SISO) con-
trol units equals the number of sensor/actuator pairs. This
approach is called decentralized control-design; despite its sim-
plicity in practical implementations, the stability in closed loop is
not guaranteed [8]. The dual approach where only one control-
unit is designed and all the sensors are coupled to all the available
actuators is called centralized control. In Ref. [88], the
centralized-controller strategy was found necessary for the design
of a stable TS-wave controller. The main drawback of a fully
centralized-control approach is that the number of connections for
a flat plate of large span quickly becomes impractical due to all
the wiring. One may then introduce a semi-decentralized control-
ler [95], where small MIMO control units are designed and con-
nected to each other; in Ref. [95], it is shown that a number of
control units can efficiently replace a full centralized control with
a limited lost of performance.

Another important aspect that has been accounted for in a
MIMO setting is the choice of the objective function z. The mini-
mization of a set of signals obtained from localized outputs with
compact support does not necessarily correspond to a reduction of
the actual perturbation amplitude in a global sense. For 1D and
2D flow systems any measurement taken locally, close to the solid
wall and downstream in the computational domain, is sufficient
for obtaining consistency between the perturbation and signal

minimization [35]; this is not the case for 3D systems. An optimal
way for choosing the output Cz is the output projection suggested
by Ref. [85], where a projection on a POD basis is performed. The
resulting signal z(t) corresponds to the amplitude coefficients of
the POD modes, i.e., the temporal behavior of the most energetic
coherent structure of the flow. This method can also provide use-
ful guidelines for the location of output sensors.

7 Summary and Conclusions

This work provides a comprehensive review on standard
model-based techniques (LQR, Kalman filter, LQG, MPC) and
model-free techniques (LMS, X-filtered LMS) for the delay of the
transition from laminar to turbulence. We have focussed on the
control of perturbation evolving in convective flows, using the lin-
earized Kuramoto–Sivashinsky equation as a model of the flow
over the flat-plate to characterize and compare these techniques.
Indeed, this model provides the two important traits of convec-
tively unstable fluid systems, namely, the amplifying behavior of
a stable system and a very large time delay.

Many researches have been performed on flow control using the
very elegant techniques based on LQR and LQG [30,48,94].
Although these techniques may lead to the best possible perform-
ance and they have stability guarantees (under certain restrictions),
their implementation in experimental flow control settings raises a
number obstacles: (1) the choice of actuator and sensor placement
that yields a good performance of convectively unstable systems
results in a feedforward system. We have highlighted the robust-
ness issues arising from this configuration when using standard
LQG-based techniques. (2) Disturbances, such as free-stream tur-
bulence, and actuators, such as plasma actuators, can be difficult to
model under realistic conditions. (3) The requirement of solving
two Riccati equations is a major computational hassle, although it
has successfully been addressed by the community using model-
order reduction techniques [35] or iterative methods [65].

Model-free techniques based on classical system-identification
methods or adaptive-noise-cancellation techniques can cope with
the limitations of model-based methods [23]. For example, we
have presented algorithms that improve robustness by adapting to
varying and unmodeled conditions. However, model-free techni-
ques have their own limitations: (i) one may often encounter insta-
bilities, which in contrast to LQR/LQG, cannot always be
addressed in a straightforward manner by using concepts such as
controllability and observability. (ii) The number of free parame-
ters (such as the limits of the sums appearing in FIR filters) that
need to be modeled are many and chosen in a somewhat ad-hoc
manner.

The conclusion is that there does not exist one single method
that is able to deal with all issues, and the final choice depends on
the particular conditions that must be addressed. While a model-
based technique may provide optimality and physical insight, it
may lack the robustness to uncertainties that adaptive methods are
able to provide. We believe that future research will head toward
hybrid methods, where controllers are partially designed using nu-
merical simulations and partially using adaptive experiment-based
techniques.
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Appendix A: Numerical Method

FD schemes are used to approximate the spatial derivatives in
Eq. (12). In particular, a centered scheme based on stencils of five
nodes is used for the second-order and fourth-order derivatives
while a one-node-backward scheme is used for the first-order

Fig. 26 Control configuration for a 3D flow developing over a
flat plate. A possible configuration consists of localized sen-
sors and actuators placed along the spanwise direction.
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derivative. The latter is required due to the convective nature of
the system: a decentered scheme reduces the spurious, numerical
oscillation of the approximated solution [96].

The grid is equispaced xi ¼ iL=nv, with i ¼ 1; 2; :::; nv. Once
the FD scheme is introduced, the time evolution at each of the in-
ternal node is solution of the ordinary differential equation (ODE)

dv0iðtÞ
dt
¼ �V

X1

j¼�3

db
1;j v0iþjðtÞ �

P
R
X2

l¼�2

dc
2;l v0iþlðtÞ

� 1

R
X2

l¼�2

dc
4;l v0iþlðtÞ þ bdðxiÞ dðtÞ þ buðxiÞ uðtÞ (A1)

where v0iðtÞ ¼ v0ðxi; tÞ for i ¼ 1; 2; :::; nv. The outflow boundary
conditions in Eq. (10) on the right boundary of the domain lead to
the linear system of equations

@v0

@x

����
x¼L

¼ 0 )
X1

j¼�3

db
1;j v0nqþjðtÞ ¼ 0 (A2)

@3v0

@x3

����
x¼L

¼ 0 )
X2

j¼�2

dc
3;j v0nvþjðtÞ ¼ 0 (A3)

The solution of this system allows us to express the boundary
nodes i ¼ nv þ 1; nv þ 2 as a linear combination of the inner
nodes. Similarly, the left boundary condition in Eq. (11) leads to
an expression for the nodes i¼ 0,–1

v0jx¼0¼ 0 ) v00ðtÞ ¼ 0 (A4)

@v0

@x

����
x¼0

¼ 0 )
X3

j¼�1

df
1;j v00þjðtÞ ¼ 0 (A5)

where a forward FD scheme is used for the first-order derivative
approximation. Equation (A1) together with the boundary condi-
tions can be rewritten in compact form as

_vðtÞ ¼ AvðtÞ þ BddðtÞ þ BuuðtÞ (A6)

where Bd ¼ fbdðxiÞg;Bu ¼ fbuðxiÞg and the matrix A 2 Rnv�nv is
a banded matrix (see also Eq. (18)).

The Crank-Nicolson method is used to march the system for-
ward in time (18). Given a time step Dt, the value of the state
vðtþ DtÞ is given by the expression

vðtþ DtÞ ¼ CN�1
I CNEvðtÞ þ Dt BddðtÞ þ BuuðtÞð Þ½ � (A7)

where CNI ¼ I� Dt=2A and CNE ¼ Iþ Dt=2A. This is an
implicit method, i.e., requires the solution of the linear system
CN�1

I , and this operation can be numerically expensive.

Appendix B: Numerical Code

A downloadable package of the MATLAB routines used to
produce the results presented in this paper can be found at
website1 and in the “Supplemental Data” tab for this paper on the
ASME Digital Collection). The 11 scripts listed below cover all
the methods that are presented in this work.

script00.m: Time Evolution of a Spatially Localized Initial
Condition. The time response of the plant to a Gaussian-shaped
initial condition is calculated: the generated wave-packet travels
downstream while growing and is detected by the outputs y and z.
The spatiotemporal time evolution of v(x,t) is plotted together
with the output signals.

script01.m: Response to a White Gaussian Disturbance d(t). A
white noise signal is considered as input d(t) and the time-response
of the plant is calculated. The statistics of the velocity are computed
and visualized for comparison with the controlled cases.

script02.m: External Description. An alternative description of
the system, based on the input/output behavior of the system is
calculated. In particular, the response of the system is calculated
via a FIR filter and compared with the LTI system description,
i.e., internal description.

script03.m: Controllability and Observability Gramians. The
controllability and observability Gramians are computed solving
the Lyapunov equations in Eqs. (33) and (34).

script04.m: Linear-Quadratic Regulator. A LQR controller is
applied to the plant and tested when the system is excited by a
white Gaussian noise d(t). The statistics of the velocity are com-
puted and visualized in order to be compared to the other con-
trolled cases.

script05.m: Model Predictive Control. Constrained MPC is
used in presence of saturation of the actuator. The system is
excited by a white Gaussian noise d(t). The statistics of the veloc-
ity are computed and visualized in order to be compared with the
other controlled cases.

script06.m: Kalman Filter. A Kalman filter is designed for the
plant and used to estimate the system state when excited by a
white Gaussian noise d(t).

script07.m: Least-Mean Square Filter. A LMS filter is used to
identify the FIR-kernel Ezy. The resulting kernel is compared with
the Kalman filter solution.

script08.m: Linear-Quadratic Gaussian Compensator. A LQG
compensator is designed coupling a LQR controller and a Kalman
filter. The compensator is tested when the system is excited by a
white Gaussian noise d(t).

script09.m: P� s Compensator. A simple opposition control is
designed using explicitly the time delay. The system is excited by
a white Gaussian noise d(t). The control gain has been obtained
by a trial and error procedure.

script10.m: Filtered-X Least-Mean Square Algorithm. FXLMS
algorithm is implemented. The initial condition is provided by the
impulse response of the corresponding LQG compensator; a
robustness test is carried by displacing the actuator location.

Following functions are required by the above scripts:
[A, x, I]¼KS_init(nq): Given the number of degree of freedom

nv, it provides the state matrix A obtained by a FD discretization
of the spatial derivatives. Five grid-point stencil FD schemes are
used: in particular, a one grid point de-centered scheme is used to
enhance the stability of the numerical solution.

d¼ fd_coeff(n, dx): It provides the FD coefficients used by
KS_init.
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