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An alternative method is proposed in order to obtain, as A — + o, the asymptotic
cxpansion of the double integral

K(A):= f‘" j L leyPlog!x log! (e y)g(Axy”) dx d.

where fis smooth enough and g belongs to #(R), a space defined in the text. This
expansion is derived by employing a powerful tool—the integration in the finite-
part sense of Hadamard. « 1995 Academic Press. Inc.

l. INTRODUCTION

Suppose that C designates the set of complex numbers and introduce
the set of complex functions A(R) := {g, g is bounded in a neighborhood
on the right of zero, g € Ll (J0, +% [, C), and for all ¢ € N, lim, ...
x9]g(x)| = 0}. Observe that if $(R) denotes the Schwartz space, $(R) C
“A(R). Consider now positive integers j and /, reals a and b with @ > 0 and
b > 0, and also two complex numbers « and 8 with Re(a) = 0 and
Re(B) = 0. For a real A and two complex functions f and g belonging
respectively to 6 *(R?) and to #(R), the quantity K(A) is defined as

K(A):= ﬂ) L]) [xeyflog xlog/ y]f(x, v)g(Ax“y") dx dy. (1.1)

It may be useful to establish the asymptotic expansion of the double
integral K(A) with respect to the real A as A — +o0,
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If Im(a) = Im{B) = 0 and g € F(R), Barlet [1] and Bruning [3] showed
that such an expansion only involves terms such as K4 (f)A~(«r-Dia Jogm
A and K%, (A B 1o ) where m € {1, ..., j + | + 1}, n is a positive
integer, and K2, K are generalized functions with support in the set {(x,
y) € [0, 1] X [0, 1]: xy = 0}. For j = I = 0, McClure and Wong [7] derived
those generalized functions. Their work is based on the use of a convenient
and widely employed tool, the Mellin transform (see for instance Bleistein
and Handelsman [2] and Wong [10]). Unfortunately they did not propose
the general expansion when j and / are any positive integers, although they
mention a device to derive it.

Nowadays many approaches are available to deal with the asymptotic
expansion of an integral. One may think of the above-mentioned Mellin
transform but also of the distributional point of view as recently developed
by Estrada and Kanwal in the one-dimensional case [4], but also for multi-
dimensional generalized functions [6, 7]. The aim of this paper is to give
the general asymptotic expansion of K(A), for g belonging to «4(R) and
A — +oo, This is performed by using an alternative method detailed in
Sellier [9].

This paper is organized as follows. In Section 2, the mathematical frame-
work and two basic theorems are exposed. For r real and fsmooth enough,
the asymptotic expansion of K(A), up to order o(A™"), is stated in Section
3. The derivation of this result is established in Section 4. Finally, some
examples are proposed in Section 5.

2. MATHEMATICAL FRAMEWORK

The important concept in this work is the integration in the finite part
sense of Hadamard, noted fp [ h(x) dx. For further details the reader is
referred to Schwartz [8] and Sellier [9]. It is recalled that C designates the
set of complex numbers.

DerintTioN 1. For i > 0, a complex function g is of the second kind
on the open set |0, nf if and only if there exist a family of positive integers
(M(n)), two complex families (8,), (g.»). and a complex function G
such that

N m=M(n)

Ve e ]O,T)[. g(S) = Z Z gnmsﬁ" lOgm(G) + G(S)* (21)

n=0 m=K(n)

Re(Bn) < Re(By-1) <+ <Re(B)) < Re(By):=0,
lml} G(e)E Candgy:=0 if B, =0. (2.2)
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Following Schwartz [8], the complex lim, ., G(e) is called the finite part
in the Hadamard sense of the quantity g(¢) and denoted by fp[g(s)]. If
gn.m = 0 for all (n, m), fp[g(&)] reduces to lim, ., g(e).

DerIntTION 2. A complex function f is of the first kind on the right at
real x, if and only if there exist a real 5* > 0, a family of positive integers
(/7(i)), two complex families («;), (f;;), and a complex function F* such
that

I 77
fx) = ED 20 Filx = xol* log/ Ix — xo| + F*(x — xo),a.e.in Jxp, xo + 7],
=0 j=

Re(a;) <Re(aj-) <--- <Re(aj) <Re(aj):= -1, (2.3)
F* € Li([x0, %0 + "], C).

This definition is extended to the case xo = +o° by stating that fis of
the first kind at infinity if and only if there exist a positive real A, a family
of positive integers (J/ (7)), two complex families (y;), (f77), and a complex
function F* such that

I J)
fxy=2 2 fixvloglx + F*(x),  ae.in[A, +o],
=0 j=0
Re(y,) <Re(y;-1) < - <Re(y1) < Re(yy) =1 (2.4)

and F> e Ll ([A. +[, C).

Moreover, for two complex families («,), (a.n) and a family of positive
integers (M(n)), if the sequence (Re(«,,)) is strictly increasing, the abridged
notation below is used, for any real r, to designate the specific finite sum
of terms

N M(n)
D> GgmEloghei= 2 > a,etloghe,
n=0 m=0

m.Re(a)<r
Re(ap) < Re(a;) <+ - < Re(an- ) <Re(ay)=r (2.5)
and N := sup{n, Re(a,) = r}.
If g is a complex function we shall write lim,_, g(&) = ,',"RA:?Z)) oy @y €
log” ¢ if and only if there exist a real s > r and a complex function G,
bounded in a neighborhood of zero in which g(&) = 2, ge(w=r dume log”
e + £°G,(g). When there exists m, with a,,, # 0, it is possible to intro-

duccu So(g) = Re(ap). Naturally, we will note lim,_.. g(u) =
2,’,"&(;"), At ¥ log™ u if and only if there exist a real s > r and a complex
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function G, bounded in a neighborhood of infinity in which g(u) =
2 Re(pyerdumtt 7 log™ u + G (u). Here if there exists m with aq, # 0,
we set S.(g) := Re(vyy).

If b is a real with b > 0, two spaces are now defined.

DeriniTiON 3. For real values r; and r,

1. 20, b[, C) := {f. fis a complex pseudofunction of the first kind
on the right at zero: if b < +o then f & L}.(]0, b], C), else f € LI.(]0,
w [, C) and fis also of the first kind at infinity},

2. €2(]0,b[,C) := {f, fis a complex pseudofunction and there exist
complex famllles (), (A;) with (Re(a, )) sjt({lctly increasing, a family of
positive integers J(i) with lim, ., f(x) = ,Rt(u yer, Ayjx log/ x; if b < +o
then f € L,(]0,b]. C) else fe L]0, +=[, C) and there exist complex
families (y,). (B,,,,,) WIth (Re(y,)) strictly increasing, a family (M(#n)) with
lim, ... f(x) = 2, Rqy ,< L B x 7 log™ x}.

Obviously, for r, = —1and r, = 1,€22(]0, b[, C) CP(]J0, b{, C). Moreover,
the operation (for its definition consult Schwartz [8] and Sellier [9])
fp: f—fp f‘) f(x) dx is a linear transformation acting on 2(]0, bf, C).
Another set of pseudofunctions, corresponding to an extension of the defi-
nition of €}2(]0, b[, C) to the dimension two, is introduced.

DeFiNiTION 4. For reals r, and r; a pseudofunction K(x, «) belongs to
F72(]0, b[. C) if and only if, for A large enough, K(x, Ax) € 6(]0, b[, C)
and it satisfies the following properties:

1. There exist a positive integer N, a complex family (y,) with
Re(yy) < --- < Re(y,) = ry, familics of positive integers (M{n)) and of
complex pseudofunctions (K,,(x)), a real s; > rp, a complex function
G, (x.u), areal B = 0, and a real n > 0 such that for any (x, u) €
10,5 X [, +eo],

N M(n)
1.1.  K(x,u)= Z 2 Ko(xhe v log”u + u 2 G, (x, u), (2.6)
n=0 m=0 -
b
12, U X G, (x, Ax) dx| = B < +, 2.7)
7 <

1.3. there exist a positive integer /, a complex family («;) with
Re(ay) < -+ < Relay) := ry, a family of positive integer (J(i)), with, for
ne{0, .., NLmelo, .. Mn)} K,, € é:h*zy‘()” (], b[. C), and there also
exist a complex family (K,,,,,) a real s, < ry, a complex function L,,,
bounded in a neighborhood of zero in which
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1 J()

KHI"('X) = 2 2 Kﬁ{m x“‘ log, X + xXILIIH'I(X)' (2'8)

i=0 =0

2. For the same 7, /, 5, families («;) and (J(i)), there exist a real A =
1 > 0, a family of complex pseudofunctions (A7), a complex function H,
(x, u), areal B' = 0, and a real W > 0 such that for 0 < x = W and
u > 0,

I J{i)

2.1. K(x.u) =Y > h(u)x=log/ x + x"H, (x, u), (2.9)
=0 j=0

2.2, lj: uH, (WA uydu| = B' < +oo, (2.10)

23. fori € {0, .., I} and j € {0 J()}, hi € %“R““(; (o,

Re

2.0

+oo[, C). More prec1sely llm,,_.nh (u) = ,, Re(8,)=1-Rela, yH }j,u¥r log? 1 and
2
also lim,_ .. h'(u) = E;'RC(Y'FHRK(“)K"mu v log” u. Moreover, there

exists a complex function O;; bounded in a neighborhood of infinity in
which

N M{n)

hi(u) = > Kilu "log" u + u 0, (u). 2.11)

n=0 m=0

3. Finally, there exists a complex function W, , (x, u) bounded in
]0.1] X [A, + [, defined as

N M(m)

xhu W, () i= K(x, u) — E 2 K, m(x)ulog™ u

n=0 m=0

(2.12)

I J(i) N M(n)
- [h"’(u) = > K log” u:I x¢ilog x.

i=0 j=0 n=0 m=0

Taking into account all these notations or definitions and setting (if n
and p are positive integers with p = n) C§ := nVpin — p)].
we state two basic theorems whose derivations are provided in Sellier

(%]

THEOREM 1. For a real r, if there exist ry = r — 1 and ry = r such that
K(x,u) € F ([0, b[, C), then the integral I(A) admits the following expansion
with respect to the large parameter X:
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I(A):=fp L’)’ K(x, Ax) dx

= Ch | fp bK,,,,,(x)x"anog"”lx dx | A7 logh A
0

mRe(y)=sr (=0

i o .

+ > 2= [fpf hi(v)veilogi™(v) dv (2.13)

j.Re(a)=r-11=0 0
i QL HY log! -1

— ——log A
{p:li,f*a‘*l} g=0 1 +] + q — 1
2 Ag) Ki A ] (a,41) 100!

-+ —.ﬂ.....__lo wirm=l ) [ A~ D o A + AT .

{my,=1+e) m=0 1 +j+m-— I & g 0( )

where each sum 2, g.,<. is defined by (2.5).

It is important to note that coefficients occurring in the expansion given
by this theorem are integrals in the finite-part sense of Hadamard, even if
the initial quantity /(1) reduces to a usual integration (in Lebesgue’s sense).
This is one of the advantages of this approach: the concept of integration
in the finite part sense of Hadamard appears naturally.

In fact, one often encounters the particular case where K(x, Ax) =
h(x)}H(Ax), i.e., the variables x and u := Ax are separated. The theorem
below deals with these circumstances.

THeorReM 2. Consider two complex pseudofunctions h €&
%(]0, b[, C) and also H € €([0, +=[, C). Assume that there exist three reals
t,v,wwitht = —Sy(H), w = Max(—t, =1 — Sy(h)) and also if b = +x,
v = Max(l — S.(H),1 —t),and t = 1 — S.(h). Moreover, assume that
also h € €7.1(]0,b[, C), H € €.(]J0, +[, C), and h(x}H(Ax) € P(]0, b|,
C). Then, for any real r < t, the integral J(A) admits the expansion:

J(A):=fp j " h(x)H(Ax) dx

= > > CLH:, [fp j: h(x)x " log™ '(x) dx] A" logh A

m.Re(y)sr (=0

/ - )
+ > > CH-1D'hY I:fpj Hv)veilog!(v) dv (2.14)
jRelay=r-1 170 0
Qp) 0
B P ._'_Hgi——_l()glﬂ‘*qil A
([):ﬁp:*ﬂ,*]) g=0 1 +] + q— !
K H, 1 ! ] {0+ 1) 100!
+ —————log! /" A | A7 D ogl A + 0(A7),
(n:’y;‘ra,} mE:() 1 +j+m-— ! & & 0( )
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where it is understood that lim,_oh(x) = 2, ge(m=—1hx% log/ x and for
function H, lim,_.Hu) = Z, repeHimtt ™ log™ u, lim,_ (H(u) =
Eq.Re(g)ng?,quﬂﬁ log" u.

3. THE ExpPANSION OF K(A)

For (p. q) € N2, @¥9(]0, 1]%) is the set of complex functions f such that
V(i. ) EN*with0 = i < p and 0 < j < g, then '3[ f]/(9x'dy’) exists and
is continuous on an open set containing 0, 1[2.

The expansion of K(A) is stated in the following theorem where the
quantities a, b, «, B, j, and ! remain those defined in the introduction.

THeEOREM 3. Consider r = Max(Re(a)/a, Re(B)/b) + 1 and integers
p. = [ar — Re(a)l, p, := [br — Re(B)] where {d] denotes the integer part
of real d, N := sup{g € N, 1 + ¢ + Re(B) = br} = [br — Re(B)] — 1,
I:=sup{g EN, 1 + g + Re(e) =< ar} = [ar — Re(a)] — 1 and N, :=
inflg € N, a[Re(B) + ¢ + 1] > b[Re(a) + i + 1]} If f &€ 2@2)(]0, 1[3),
the integral K(A) defined by (1.1) admits, as A tends to infinity, the expansion

KO =3 S KIS logma + 3 S Kan(HA-e s Dinlogn »

n=0m=0 i=0 m=U

Nl _ 3.1
+ 2 > D Sum(HA D l0gm A + 0(A7),

=0 n=0 m=0

where K5, K% . and S, are generalized functions defined as

cnm j-m 1 m a k ® )
hg s k — = _ = B+n j-m-k b
Knm(f) B n! ;} ijm < b) < b) [[O u lOg (u)g(ll ) dll]

X [fp f(l) xrx—(a/b)(BHHl) logl+k(x)f;(x’ 0) dx:l’ (32)
Cm.’ m 1 m b k " .

Ko(f) = — Z Ctom <— 5) (— ;1-) jo u i logh " (1) g(u?) du
X [fp |y e 1084 (y) £(0, y) dy} (33)

and S, (f) ;= 0ifa(B + n+ 1) b(a +i + 1); else
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| ._t_lll’ﬂl_!(l IH(l MO0
Smm(f)'_ (1 +]+ [)l a b nli! A

X [J: B Y 001 (Y o (1) du].

(3.4)

Since g € A(R), the integrals involving the function g in formulas (3.2),
(3.3), and (3.4) are legitimate. Moreover, the assumption f €
@¥2)(]0, 1[%) guarantees the existence of each integration appearing in
the finite part sense of Hadamard.

Observe that formula (3.1) provides an asymptotic expansion up to order
o(A™") when function f is smooth enough. In fact, if r < Max(Re(a)/a,
Re(B)/b) + 1 and f & %"V(J0, 1[?) then K(A) = o(A ). If f € €*(R?),
this theorem agrees with the results of Barlet [1] and McClure and Wong
{7] (when j = [ = 0) and extends their validity to the case g € A(R).

4. DERIVATION OF THE EXPANSION

This derivation is achieved in several steps and uses Theorems 1 and 2.

4.1.

Step 1: Choice of K(x, u). Suppose that A is a large and positive real and
set A" := AY“ If a new complex function G defined by G(x) := g(x9) is
introduced, then K(A) rewrites as

! 1 :
K(3) =[x log!x [ 33 1og7 3 y)GA xy?) dy] dx

\ (4.1)
= jn K(x, M'x) dx

where
K(x,u) = x“log’ x j | y# log! yf(x, )G uy"') dy. (4.2)
Obviously K(x, A'x) € 2(]0, 1[, C). Now each property of Definition 4

is investigated.

4.1.1. Property 1. We set u' = u" and use the function H with
H(x) := G(x"*) = g(x*). Hence
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K(x,u) = K(x,u') = x*log' x J(l)y“ log/ yf(x, y)H(u'y)dy.  (4.3)

Since ' — + when u — +, for any x € J0, 1] the asymptotic expansion
of K(x, 1) as u — +« is obtained by applying Theorem 2 to the expansion
of K(x, u') as u’ — +=. Here, the definition of H and the assumption
g € A(R) show that f}, = 0 (since im,_,. x" |H(x)| = 0, Vn € N),
h(y) which presents an adequate expansmn near y = 0 with «; := B+i
and h{:= fi(x,0)/i!, and finally that fp [, H(v)v¥* log/"'(v) dv = [ v#"
log’ ' (v)g(v”) dv and thereby exists. Actually, for positive integers i and
n we have adopted the usual notation: f%, := 4’9" f/ax‘dy". Keeping in mind
the definition N := sup{g € N, Re(B) + g + 1 = br}, the expansion of
K(x, u) for x > 0, as u — +o and up to order o(u’' "), is

K(x, u) f'(r 0) {
x*log'(x) ;2;‘;

z Cl(-1)" [J: vE  Jog/ ! (VIH (V) dv]
"=
w BN ogh

Consequently, the reader may check that the relations (2.6) and (2.7)
are satisfied by K(x, u) with y, ;= a(B + n + 1)/b, M(n) := j, r; :=
a[Re(B) + N + 1]/b, and

Cm __1 n I =
K,m(x):= # (b) [j“ vE " log/ "(v)g(v?) dv:| x*log! xfi(x,0)

(4.4)
E,,,,,X” lOg[ xf"{(x. 0)

Because f € 4U-1N*1)(]0, 1]?) this last equality (4.4) shows that K,,,(x)
admits an appropriate expansion near x = (; i.e., condition (2.8) is fulfilled
with o; := a + i, j:= I, Ki},:= E,,, f#(0,0)/i!, and also r; := Re(a) + 1.

4.1.2. Properties 2 and 3. The expansion of K(x, u) as x — 0 is required.
Since f € @ 1N-1)(]0, 1]?) it is legitimate to derivate the integral appearing
in relation (4.2) with respect to the variable x and thereby to obtain the
required expansion. The reader may verify that relations (2.9) and (2.10)
are fulfilled with «; := o + i, j = [ and

) 1 n L
hl(u):= q L)y" log’ yfi(0, y)G(uy™) dy, (4.3)

u+lrl Iog’(r)

xH, (x,u) = T+ 1)

[ y#log! yf i (6(x)x, y)G(uV”’")dy] (4.6)

where 0 < 6(x) < 1, for all x € [0, 1].
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Since g is bounded in a neighborhood on the right of zero, h?(«) satisfies
the same property. If u — + o0, the expansion of h”(u) is deduced from an
application of Theorem 2 (as already achieved for the expansion of K(x,
u) for x given and u — +). Hence, if © — + and up to order o(u™""),

h(u) ~ i i aen” (%) [ jn Vi logm(v) g (vh) dv]

n=0m=0 i'n!

(4.7)
fl‘r((o’ 0)u77n logm .

Consequently, k' obeys relation (2.11). Moreover, use of Definition (4.6)
ensures property 3 of Definition 2.3.

4.2.

Step 2: Application of Theorem 1 to K(x, u). As K(x, u) satisfies all the
required properties, Theorem 1 applies. However, since A"(x) is bounded
in a neighborhood of zero and Re(a;) = Re(a) + i = 0, the term of the
right-hand side of (2.13) containing H}, is zero. Thus the expansion of
K(A) = K(X') reduces to K(A') = T1(X") + To(A') + T3(A") + o(A'R) with
R := Min(r; + 1, r,), and:

(i) T.(A") is the first sum arising on the right-hand side of (2.13), i.e.,

N J om
T.\A)=2 > > Ck [fp f (') K (x)x 77 log"'”"’(x)dx:l A logh A’
n=0m=0 k=0
(4.8)

(ii) T>(A") is the second sum on the right-hand side of (2.13), i.e.,

I
To(A) =2 > CH-1)* [fp f“ hi(u)uslog!*(u) du} Al logk )
(=0 k=0
(4.9)

(iii) T5(A") is the last sum occurring on the right-hand side of (2.13)
which is related to the behavior of A¥ near infinity. Here,

! ! I Kf{m
TyA) =2 2 CH=DF X X g AT g

=0 k=0 (n:y“:uﬁ])m:i)
(4.10)

Note that the definition of R, ry, r», and A’ := A7 leads to o(A' ) =
o(A™"). Each contribution T(A"), T>(A"), and T5(A') is treated below.
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in which @, is the displacement of the nth mass from equilibrium and P,
is its momentum. (For the convenience of the reader, in this section we
shall denote the space variable by n, n € Z, whereas the time variable will
be t, t = 0.) To simplify the notation, we omit the dependence on the
time variable.

Considering (6.1) for a lattice infinitely long in both directions we set

a(n) = te!Qu-17 Q02

(6.2)
b(n) = —P,/2, nelZ.
We emphasize that a(n) and b(n) depend smoothly on a parameter 7. In
addition, it is evident that a(n) > 0 for all n.
We turn our consideration to motion which is confined in some finite
region of the lattice, assuming no motion in the distance. Therefore, for
|n] > 1, we have

QIIH“QN:Ov Pn:O

and hence, we can think of a(n) — ¥and b(n) — 0 rapidly as |n| — o,

To derive the connection between the Toda lattice and the Schrodinger
discrete second-order eigenvalue problem, we introduce the self-adjoint
operator L and the skew-adjoint operator B, acting on H = [*(Z,) by
the formulas

Ly(n) = a(n — )y(n — 1) + b(n)y(n) + a(n)y(n + 1)
By(n) = a(n)y(n + 1) —a(n — V)y(n — 1).

In view of the setting given by (6.2), the Lax representation of the equations
of motion (6.1) is given by

dL _ o
— =[B.L]=BL - LB.

It implies that all the eigenvalues A of L are time-independent (they are
constants of the motion). In addition, since the operator L is self-adjoint,
they are also real.

From the asymptotic behavior of the coefficients a(n) and b(n) of the
operator L, the eigenvalue equation

Le(n) = A¢(n) (6.3)
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is asymptotically close to

Ae(n — 1) + @(n + 1)] = Ag(n). (6.4)
The translation L — LE transforms (6.3) to

e(n +2) + b(n)e(n + 1) + a(n — e(n) = )‘ZIT) e(n+1), (6.5)

where b(n) = b(n)/a(n) and @(n — 1) = a(n — 1)/a(n), satisfying b(n) —
0 and @(n) — 1 rapidly as |n| — . Hence, Eq. (6.5) can be written as

@(n +2) = 2ap(n + 1) + ¢(n) = vi(n)e(n) + va(n)e(n + 1) (6.6)

for some functions v,(n) and v,(n) that decay sufficiently fast as |n] — .
In our notation from Section 3, the matrix formulation of Eq. (6.6) gives

x(n +1) = [, + B(n)]x(n), (6.7)
where
e
x(n) = e(n + 1)
and
0 1 0 0
A, = and B(n) = .
-1 2A vi(n) va(n)

Set A = ¥z + z7'). In light of our previous results, the Jost solutions
@;(n, z) of (6.6) are characterized by

ei(n,z) ~ 2" asn—

en,z) ~z7" asn-— —owo,

It is evident that, for {z| = 1, the pairs of functions {¢|(n, z), ¢;(n, z7')}
and {¢:{n, z), ¢2(n, z7')} form a distinguished basis of solutions for the
difference operator L — Al as n — o and n — —oc, as long as z # *1.
We have
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one may be tempted both to invert the integrations and to use the
change of variable u“ := v“?” without caution. Unfortunately, L, de-
notes an integral in the finite part sense of Hadamard and this con-
cept requires great care when attempting any transformation, such as
change of variable, inversion of the integrations. First a useful result is
recalled.

Prorostrion 1. For reals c and d with 0 < ¢ < c¢,jE N, and « € C

f “ xrlog/ x dx = Pi(d) — Pi(c). (4.21)
with
» log/* (¢ :
PiLy(1) = —}%T(land Pi(t)
Ly (4.22)
— satl _ 13 —
D 1)“/ o). fora =,
For i and k given and positive integers we set N; := inflg € N

a[Re(B) + g + 1] > b[Re(a) + i + 1]}, Fy(y) := f 0.y) = 2%,

"(0,0)y"/n!, and introduce the function WN(v) = fn y# log’ yFu(y)
g(v*y") dy. Observe that for Re(a) +i + 1 < ar this definition of N, ensures
a(Re(B) + N;) = b(Re(a) + i + 1) =abr,ie, N;<br — Re(B) =N +
1. Because f € @ "N*1(]0, 1[?), this remark shows that such a definition
of Fy is legitimate. Application of Theorem 2 provides the behavior of this
function Wy (v), as v — +. More precisely,

] (?pF
Wy (v) ~ }j Z Appy ———(O)v 7 log™ viy,:=a(B +p + 1)/b, (4.23)

p=0m'=0

and (A,,,') are complex coefficients.
These notations allow L to be cast into the following form

L= ]U [ v log! yFu(y)g(vy") dy} vetlogh(v) dv
(4.24)

L f(0,0 ‘
+ Z ( )ff “ Y log/(y)g (v y”)dv] veloghi(v) dv.

n=0

Observe that the first term on the right-hand side of (4.24), noted A, is a
usual integral. Indeed, according to (4.22) and (4.23), the possible divergent
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contribution as v — +« corresponds to the circumstances Re(a) + i +
1 — Re(y,) = 0, i.e, ajRe(B) + p + 1] = b[Re(a) + i + 1], which may
be only obtained for p = N; — 1 (see definition of N;). Butif p = N, —
I, aPFy/ay?(0) = 0. It is also legitimate to apply successively
Fubini’s theorem and a change of variable u“ := vy® to this integral A.
Hence

A ]()yﬂ (b/a)(aeti+1) log yFN(y) [J" ll“”lOgl k(uyfb/a)g(ua) du]
(4.25)
Actually, this is a usual integration since Re(8) — Re[b(a + i + 1)]/a +
N; + 1 > 0 (see the above definitions of integer N, and functlon Fr).

Taking into account the linearity of the transformation fp: & — fp f h(x)
dx and (4.25), L is rewritten as

1 . . R o X
L;‘k = fp J’()yﬁ’(h/u)(aﬂ+l) logl ,Vflr(os_\’) [J(, wee log/—k(uy—h/u)g(ua) dll] dy

Z 100, o){ ! ysem-wmieien jogr
0

n=0

l:j: vu,,‘ loglfk(vy’b/a)g(vu) dv] dy (426)
ES 1 . )
i 2 [ Ly tonto)aeyy dy e togroy v}

The first term on the right-hand side of (4.26) is noted M,,. Use of the
Newton binomial formula ensures

1 1 k
ToA'):= E E ( ) )\h(mml)logk A

=0 k=0
!

1 1 . v .
= ;} i {fp ) YA Bl D o0 /() F(0, y) (4.27)

F wEx, u, A)g(u®) du] dy}

Q

with
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{
A""*””Ef(x, u. /\') = Z Cf('—l)k lng()\”a) logl—k(uy«b/a)
k=0

{ I-m
=log!(uy A M7y = > > Crck,, (4.28)
m=0 k=0
a a . '

! ! {-m
' 1 m.k ! -(blaYa~i+ - i
(FISEDE DY LZ EX3ofp [ y? 00D log/ H(y) £1(0. y) dy]

(4.29)
A*((l+i+ 1Yyu logrn A

with

lmk . mek ___1_ " — {7_ g * o a+i 1-m—k a
Epig = ClCi , . oY log (W)g(u®) du .
(4.30)

Note that T4(A") is the second term on the right-hand side of (3.1).

Now, in order to deal with the remaining terms on the right-hand side
of (4.26) a useful lemma is stated. The set B(R) is introduced as B(R) :=
{g. ¥y € C with Re(y) > —1, ¥g € N x" log?(x)g(x) € L|,([0, +[, C),
lim,_... x? |g(x)| = 0 and for any real r > 0, X’ (') y? logi(y)g(Xy) dy
is bounded as X — 07}. Observe that $(R) C A(R) C B(R).

LemMma 1. Consider reals a > 0, b > 0, complex numbers vy and 8 with
Re(y) = 0, Re(8) = 0, positive integers j and g and a function g € B(R).
If we set

. 1 — + ] ® I’ -0/ia a
%}(y.8,8):=1fp f“y* (P10 log/(y) U(, v logi(vy " )g(v )dV] dy,
(431)

P % 1 ;
% "(y.8.8):=1p || [ [} yr10g/(n)8(vy") dy] vilog/v)dv,  (4.32)

then Al(y,8,8):=%](y.8.8) — @'/ (v.8,8) = 0; except if a(y + 1) =
b(8 + 1). In this latter case
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4 _ l)lkq(l)l“ J C;_n(_l)m
8;(y.8.8) (a b) | Zmrari

(4.33)
[F wr N ogit e Y (y) e(u) du].

0

Proof. For the sake of simplicity we note %7(g) = %7(y, 5,g). Ob-
serve that

q

) b\™" 1 . e
/(8)= 2 Cy <— ;) [fp [y 0g ’(y)dy]

m={}

(4.34)
,:f: velog? "(v)g(v*) dv].

First suppose that a(y + 1) = b(6 + 1). Then, see (4.34) and (4.22),
%7(g) = 0. Use of the change of variable z := vey® gives for the integral

d:= [, y" logi(y)g(viy®) dy,

J a\" [1oe™ v . ” . ] .
d= mE:U Clm (__ E) [ gb( ) p~{aib)ty 1)L) Z{y 1)/b-1 log’ ;(leb)g(z) dz]
(4.35)

Taking into account the assumption a(y + 1) = b(& + 1) and relations
(4.22) and (4.32), an integration by parts (always valid when dealing with
integration in the finite part sense of Hadamard) makes it possible to write

. ) 1 J Cm(_l)m a)m
ap 4 = F g E P A T AN i
@ I(g) iF)[Jq(‘))](j bm:()m + q +1\p

(4.36)
lij: av(a/h](}"l)/l logmnﬁl(v) log}'ﬂn(vu/h)g(va) dV]

with

o7 . ] . m a ”' log'7l+l[+1(v) S+1—(a/b)y+1)
s Fer () S

Y )b j-m( o 1ib — L& C/"nC;I""
[ log/ "(z'"")g(zydz = 3, 3

meonsom+q+ 1

(~2)" v rogmo i) log"’"’”("“”’)[ VIR ()80 dy ]
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Since f(: vy log"(y)g(viy?)y dy = b~ D fl Y Wh-D-1 gen Ye(veY) dY
with Re[(y + 1)/b — 1] > —1 and g belongs to B(R) (see the assumption
bearing on X~ f”yy fog9(y)g(Xy) dy as X — (%), it is easy to obtain
#(0) = 0. Moreover, application of Theorem 2 ensures that for all real
r > a(Re(y) + 1)/b, as v — =,

| T s ,
[,y 1027180y ")dV‘ZC ( ) UO r log"! (t)g(t”)dtjl

p 4.37
v @hrDge v + o(v ). (4.37)

Taking into account the assumption a(y + 1) = b(6 + 1), F(v) rewrites
as v — % F(V) = 2o Smo 2t Fopnt log'*¢-/="*I"(v) + o(v-"). Conse-
quently (according to Definition 1 with & := v™!), fp[F(v)]; = 0. Finally,
change of variable « := v* in the integrals appearing on the right-hand side
of (4.36) provides the equality (4.33).

Now suppose that a{y + 1) # b(é + 1) and that j = 0. With relation
(4.22) equality (4.34) rewrites as

o _ ( l)m 1
i) = q’( ),,,Eum —mi[s+ 1= @b)(y + D"
(4.38)

[J” vilogd "(v)g(v*) dv].
Change of variable z := v¢y®, integration by parts, and relation (4.22) lead to
gl (=) v?log™ (v)

@'3(g) = pl&W)]s — b L) ['nl) m'[1+ 06— (alb)(y + 1)]1+qmr]g(v“) dv,
(4.39)

with

R 11§ Gt et [ 0 R I DN
€)= 3 T 5 @iy + DI |y 8C ) |

(4.40)

Here (see asymptotic expansion (4.37), with n = 0), the function £ takes the
form &v) = 2o E,v? 00D [ogm" vy + o(v 1), with b(8 + 1) #a(y + 1)
and &0) = 0. Thus, fp[&v)]; = 0. If we set m := g — m’ in cquality (4.38),
G(g) = Dd(g). The case j # 0 is obtained by induction. Suppose that



758 A. SELLIER

a(y + 1) # b(6 + 1) and that for all positive integer ¢ and all func-
tions & € B(R), B (h) = D'/(h). This is true for j = 0. As log/*'(y) =
—a log/(y)[log(vy ""“) — log(v)]/b, Definition (4.31) takes the following
form:

* ]]~a‘ j
Dla(g) =~ 297 (g) + 5 p [y TV logi(y)

(4.41)
[f: v logd(vy ) g(v) log(v¥) dv] dy.

On the other hand, as log(y) = log(y"v*)/b — a log(v)/b, Definition (4.32)
1s rewritten as

,( a rg+
@a(g) = -727(8)
(4.42)

1 o )
+ f . [ f , V7 log/(y) log(vy)g(vey®) dy] v?log?(v) dv.

Observe that if g € B(R) and w(x) := log(x)g(x) then w € R(R). Conse-
quently, if we choose h(x) = log(x)g(x) or h(x) := g(x), the induction
assumption shows that @7,,(g) = 9'/.,(g).

Definitions (4.31) and (4.32) give

’ k( 1)‘\ = {atit]) koyr
Ts(X'):= Z}_‘, (L — M)A D [ogk A

i=0 k=0

=_ ?_::)c;((—nA 2 Z [5(0.0) {@;k(g +tna+ig) (4.43)

=0 n=0 l'n!

WDHB + na+ i,g)} A D ogk o,

Il

For 0 = n = N, — 1, it may be possible to have a(8 + n + 1)
bl + i + 1), if a[lm(B)] = b[Im(a)] and a[Re(B) + n + 1] =
b[Re(a) + i + 1]. Application of Lemma 1 leads to

=G G

[i cr(-1y ]X u(;jwﬁl)/b—llog1+j+l~k(u)g(u)du:l (4.44)

L8005 ey

Z0 {mA{ln)=0} i'n! £

M\

m 0m+l—k+1
)\—(a+1~1)/u logk A
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In fact, see treatment of quantity /,,, EL=O Cr(—1)y"m+1+k+1)"t =
o' = kYA +j+ 1~ k). Thus

Ty = LD <1)’“ (1)“ L (0,0)
5 (1+j+ D' \a b 20 nealim=0y  i'n!

[J: w88 (1, N g (u) du]

(4.45)

with

14)+/

Ss(u, A):= > CXL(— 1) Togh (u)A- Gt Diajogtd -k ) (4.46)
k'=j+1
Finally, T5(A") + Ts(A") is the last contribution in Eg. (3.1).

5. APPLICATIONS

To conclude a few illustrations of formula (3.1) are proposed. First, it is
worth noting that Theorem 3 applies if g(1) = G(u)e ™ where 8 € C with
Re(8) > 0 and G belongs to L|,(]0, +%[,C) and is also bounded in a
neighborhood on the right of zero and at infinity. Each of the given examples
will satisfy this property.

ExampLe 1. Assume that g(u) :=0ifu =1, g € LL.(J0, +[, C), and
g is bounded near zero. If r = 1 and f € @9)(]0, 1{?) with s := [r], then

M) = [ [ o), y)g(Ary) dx dy

{r]-1

=po(A") + 20 ;,17{[,[(1) u"g(u) du] [fp j(tx“"*” log(x)fi(x,0) dx

n=

~fp ﬁ)y"("”’[log(ﬂ + 11140, y) dy]

+ [fp [yy - a0.) dy] [ [ u tog(w)g () du]

nn

ry 1 !
“an [f 4 1082 ()g (1) duc = 21og A [ log(u)g () du

+ log?(A) f:) u"g(u) du]} AU,
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This result is obtained by applying (3.1) witha = b =1, a = 8 = 0,
j=0,and ! = 1.

ExampLE 2. If g(u) := e and, for complex y such that Re(y) > 0, the
Gamma and Digamma functions obey the usual definitions I'(y) := :
wle " du, W(y) := I’ (y)/F(y) (1t is recalled that ¥(1) = —C, and for
nE€N* W(n+1)=—C,+ 2, k" where C. denotes the Euler’s constant),
Theorem 3 ensures for r = 1 and f € @UH"D(]0, 1[?) the expansion

s [2r4-1 g~
[ feoyye s dedy =y, HED2)
0 n=0 2"’

)

[fp f(] X —(n+1) /7frz(r O) dx] A {(n+1)/2

frj-1
+ 2 [ ""*”f,’;(O.y)dy]A‘”” (5.1)

I(i2n lifk 7k+l(0, O)
&6 202k + 1)!

+ log[ADA 1 4+ o(A77),

(—W(k + 1)

where for M € N*: [(M) := (M — 1)/2 if M is odd, else (M) := (M —
2)/2. For k € N, the well known relations I'(k) = (k — 1)! and f(] u”
log(u)e ™ du = T''(k + 1)/I'(k + 1) have been employed.

ExampLE 3. It may be useful to extend the treatment of the above
example to the case of a complex parameter A. More precisely, it is assumed
that A € C with Re(A) — +o. We introduce the real s such that A =
Re(A)[1 + is] (if i designates the complex such that i = —1) and choose
glu) = g(u) := e """ For g > 0, b > 0, Re(a) > 0, Re(B) > 0, (I, j) €
N2, r = Max(Re(a)/a, Re(B)/b) + 1, H := [ar — Re(a) — 1], N := [br —
Re(B) — 1L pc = lar — Re(a)l. py, := [br — Re(B)]. and f €
Gptrer)(]0, 1[?) the next expansion holds:

1) = ﬁj xy*log' x log/ yf(x, y)e W0 dx dy

= Z i Cf’/i’ Cj m_:l—)""‘:"‘(ﬁf(%/“_ﬂndk <B___+_n+_l)

1
n=0m=0 n' k=0 b b

[fpj xe ('I/b)w"”’l)logl "(r)f"(x 0) dx]
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{RC(A]—([;MH /b log"’[Re(A)]

H o cm 1=m mikik

! DA A el R

+23 Gr Ol S gt (0
om0 a a

1 ; 3
* [fp L,y"'”""'“*"*”IOg’*‘(y)ff(O,y)dy}

[Re(A)] 17 log"[Re(A)]

NI A G0, 0010 (1 Y
+ Z z _(h_i;(—)]_. (_) (_[; Z ']"*j+[(_1)]+m

n=0h=0 nlhl(l +h+ [)' a frmpary

Bt+n+1

X Ef 1+j+i-m
R b

) [Re(A)]-6-* " log{Re(A)]
+ o([Re()] ).

where A,y = Tif bla + A + 1) = a(B + n + 1), else Ay, := 0 and for
v € C with Re(y) > 0 and k € N,

Pr(y) = j: u ! logh(u)e V™ du
k
= (14is) 7 >, Ci(—=1)*"logk /(1 + is)I(y)
1=0

where ' designates the derivative of order / of complex function Gamma.

By replacing A by Re(A) — -+ and choosing g(u) := e 4 Theorem
3 ensures this result. In fact, £¥(y) = (1 + is) ¥ 2o Ci(—1)* ' logc'(1 +
is)E,(y) where each complex E,(y) is defined as E,(y) := f:[(l + is)ul!
log/[(1 + is)ule ""™*(1 + is) du. Introduction of the complex variable
z:= (1 +is)uandof theset € := {z € C; z = (1 + is)t fort € R,} allows
us to write E,(y) = [« F{(z) dz with F)(z) := zv" ' log/(z)e *. Observe that
F; turns out to be analytic in C\{0}. Moreover, for 0 < ¢ < R and if ?
is a path of C defined as P := 6,p U €.x U T, U Tp with €, :=
€% esz|=RLCr:={tER e=t=R}L T, :={ee’for)=0=
arctan(s)}, 7z := {Re” for 0 = 8 < arctan(s)} the assumption Re(y) > 0
ensures that lim,_, [, Fiz) dz = 0 = limg_ .. [ . F(z) dz. Conse-

b1
quently, Efy) = lim_op.n [, Fiz) dz = limeog..n J| FAt) dt
Jo o Vog(ne "de = TO(y).

For instance, if r > 1 and real A — + o, choiccof s = 1,a = 4, b =
l.a=0=8, flx,y) =sin(x),{ = 0, and j = 1 leads (with I'"?(1) =
726 + C) 1o

I
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P() f :] J (I) sin(x) log(y)e ***" dx dy

- {[log(l +D+C.+ log[}\]jl[fp f(llx’4 sin(x) dx]

+4fp j(]' x *log(x) sin(x) dx} 1)\+ ;

_ [(% + Cz) log?(1 + 1) — log(1 + i) + 1 —2[C,log(1 + i)

+ 1]log[A] + logz[)t]:| 48(%5

[(;{42114) (1 + i) % D20k + 1)/2)(—1)*+!

T & 202k + DI - k)

A*(k+l)/2 + O(Air).

This result enables us to deal with the asymptotic expansion of the follow-

in

Nefiie

10

g integrals:
b ™ 4 ~axty —
1(A) = fo J“ sin(x) log(y) cos(Ax*y)e ™ ¥ dx dy = Re[ P(A)],

L{A) = ﬂ) J:) sin{x) log(y) sin()\x“y)e’“‘-“ dxdy = —1m[ P(})].
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