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PACS 68.15.+e – Liquid thin films
PACS 47.85.mf – Lubrication flows
PACS 47.55.nb – Capillary and thermocapillary flows

Abstract – We discuss the drainage of a wetting film deposited on a vertical solid covered with
a regular array of microposts. It is shown that the classical Jeffreys’ law, observed on flat solid, is
deeply modified by the texture: 1) the film thickness does not follow anymore a scaling law, as a
function of time; 2) below a critical thickness on the order of the pillar height, the film thickness
drastically decreases; 3) at long time, a residual film remains trapped in the network of posts. All
these facts are interpreted by considering the interaction between the “free film” flowing above the
posts, and the “trapped film” inside the roughness. Beside a general description of the drainage
of film on rough surfaces, our study shows that textures can be used to influence, or even block,
the flow of liquid films on inclines.

Copyright c© EPLA, 2011

The drainage of a liquid film (density ρ, viscosity η)
coating an incline is an archetypal problem of interfacial
hydrodynamics. Due to the film thinness, the flow reflects
the boundary conditions at the solid/liquid and liquid/air
interfaces, so that this problem is a model one for demon-
strating anomalies at interfaces, such as generated by the
presence of surfactants, textures or slip [1–4]. Let us start
by the classical case of a thin film coating a flat verti-
cal solid, as discussed in the early thirties by Jeffreys [5].
The film (of initial thickness ho) thins because of grav-
ity. In the lubrication approximation, the velocity profile
can be calculated using a no-slip condition at the solid
surface, and a no-stress condition at the liquid surface.
This yields a parabolic velocity profile, and a flux Q per
unit width: Q= ρgh3/3η, where h denotes the local film
thickness. This quantity is a priori a function of time t and
position x (x being the vertical coordinate with its origin
at the top of the film). The function h(x, t) is found by
writing the flux conservation (∂Q/∂x=−∂h/∂t), which
together with the expression for the flux Q leads to an
evolution equation for the interface:

∂h

∂t
=−ρgh

2

η

∂h

∂x
. (1)
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By separating the variables x and t, Jeffreys showed
that this equation admits two families of solution [5]: 1) a
constant thickness h≈ ho; 2) a parabolic profile (h∼√x),
which follows the Reynolds thinning law (h∼ 1/√t):

h(x, t) =

(
ηx

ρgt

)1/2
. (2)

Equation (2) expresses a balance between viscous resis-
tance ηV/h2, and gravity ρg, where V denotes the mean
velocity of the flow. If we write that V scales as x/t, we
indeed recover eq. (2).
Both solutions of eq. (1) generally coexist, in two

different regions: at the top of the film (x= 0), there is no
liquid above so that the draining fluid is not replaced: the
film thickness must then decrease with time in this region
(eq. (2)). By contrast, one expects far from the top an
invariance of the profile and the constant thickness h≈ ho
should be observed. The transition between both solutions
is expected when h(x)≈ ho, that is, for x≈ ρgh2ot/η. The
thinned parabolic region given by (2) thus propagates at
the constant velocity ρgh2o/η.
Our aim is to discuss how roughness at the solid surface

modifies these simple laws, as it modifies spreading [6–10].
In order to be quantitative, we used as model rough
substrates wafers covered with square arrays of cylindri-
cal micro-posts (fig. 1). The dimensions of the texture
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Fig. 1: Textured substrates used in this study: silicon wafers
are etched, which leaves posts of height hp, mutual distance
d and radius b; hp is between 1 and 35µm, d is 10 or 20µm,
and b is 1.5µm. The textures are “dilute”: the ratio φ= πb2/d2

between the top surface and the bottom one is much smaller
than unity (< 10%).

(height hp between 1 to 35µm, radius b≈ 1.5µm and
mutual distance d= 10 or 20µm) are well defined, owing
to controlled etching [11]. The height in particular can be
chosen with a precision of 100 nm, and passivation steps
during etching allow us to generate pillars of large (>10)
aspect ratio hp/2b.
The textured substrate is plunged in a bath of silicone

oil (of viscosity η between 10 and 350mPa · s) from which
it is withdrawn. The withdrawal velocity (1 to 10mm/s)
selects an initial uniform film thickness ho between hp and
a few times hp (typically 10 to 50µm) [4,12,13]. Then, the
plate is stopped and kept vertically, and the film thickness
is measured as a function of time at a fixed position x
below the top of the film. The measurement is performed
by reflectometry: a probe illuminates the sample with a
spot of white light (0.5mm in diameter) and collects the
reflected light. The frequency spectrum shows oscillations,
due to the interferences arising from the presence of the
film. The film thickness is deduced from this spectrum,
with uncertainties smaller than 5%. We checked that the
signal reflected by the wafer is not affected by the presence
of micro-posts, whose surface concentration φ= πb2/d2

remains modest, on the order of 5 to 10%.
We compare in fig. 2 the time evolution of the film

thickness on surfaces either flat or textured. The initial
thickness is equivalent in both experiments (about 40µm),
the oil is the same (η= 19.5mPa · s), and the measurement
is made at x ≈ 1 cm below the top of the film.
Apart from the very beginning (t < 10 s), the drainage is

found to be different in the two experiments. On a smooth
solid (fig. 2a), the film thickness obeys Jeffreys’ law: it
first remains constant (h≈ ho ≈ 45µm), for about 10s— a
duration in close agreement with the time ηx/ρgh2o ≈ 10 s
deduced from eq. (2). Later, the film thickness decreases
as t−1/2, as expected from eq. (2) drawn with a solid
line for x= 12mm, a value comparable to the distance
between the top of the film and the probe (about 1 cm).
On the textured solid, the film also thins for t > 10 s, but
the drainage is slower than on a flat solid, as indicated
by Jeffreys’ exponent −1/2 in the figure. However, at t∼
800 s, the drainage suddenly accelerates, and the thickness

(a)

(b)

Fig. 2: Gravitational thinning of a viscous film on a vertical
substrate, as a function of time. The film is made of silicone
oil (viscosity η= 19.5mPa · s and density ρ= 970 kg/m3), and
its thickness h is measured by reflectometry about 1 cm below
the top of the film. (a) The substrate is a flat silicon wafer.
The dashed line indicates the initial thickness h= ho, and
the solid line shows eq. (2) (Jeffreys’ law), with x= 12mm.
(b) The substrate is a similar wafer, yet covered with a square
array of microposts of height hp = 10.2µm, diameter 2b= 3µm
and mutual distance d= 10µm. The solid line shows the slope
−1/2, and the dotted line the pillar height h= hp.

rapidly falls from 13µm to 10.2µm. This step-behavior
happens when the film thickness approaches the pillar
height, which it matches at longer time. This terminal
regime is quite natural: at the texture scale, gravitational
effects are much smaller than surface effects, so that a
wetting liquid such as silicone oil remains trapped between
the posts despite the action of gravity [8].
For characterizing the beginning of the drainage (until

the step occurs), we plot in fig. 3 the thickness hf = h−hp
of the “free film” standing above the pillars. We again
show in the graph the slope −1/2.
In this logarithmic representation, it is observed that

the thickness of the free film does not follow a scaling law.
In addition, its drainage can become quicker than on a flat
solid —a consequence of the existence of liquid within the
pillars, on which the free film somehow slips. It is indeed
tempting to describe the influence of this underlying layer
via a slip condition at the boundary between both films,
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Fig. 3: Gravitational thinning of a viscous film on a vertical
textured substrate, as a function of time. The data are the
same as in fig. 2b, but we now show the time evolution of
the thickness hf = h−hp of the “free” film standing above the
pillars of height hp. We also indicate the slope −1/2.

as proposed by Beavers and Joseph for liquids flowing
on saturated porous media [3]. We shall see later that a
pure slip condition generates a 1/t-behavior for the free
film, which is not observed in fig. 3. Therefore we propose
instead to describe this system as the superposition of two
films, as sketched in fig. 4: a trapped film of thickness
hp with an effective viscosity αη > η (because the pillars
increase the friction), and a free film of thickness hf and
viscosity η. Such a description recently allowed us to model
the uptake of liquid by a textured substrate drawn out of
a bath [13]. We also showed in [13] how α depends on
the texture: since the friction in the trapped layer takes
place on both the bottom surface and pillar walls, the
viscous force scales as ηV/h2p+ ηV/d

2, larger by a factor
α∼ 1+h2p/d2 than the force ηV/h2p resisting the flow of a
film of thickness hp on a flat surface. Hence the geometrical
ratio hp/d fixes the effective viscosity αη of the trapped
layer, which can be varied over a large interval.
In the lubrication approximation, we can calculate

the velocity profile in both layers. The four associated
boundary conditions are classically a no-slip condition at
the solid surface (y= 0), a no-stress condition at the free
surface (y= h) and the continuity of both the velocity and
stress at the boundary between the two layers (y= hp).
Hence we get two parabolic profiles for the velocity, which
can be written respectively: u(y) = (ρg/αη) (y2/2−hy)
for y < hp (trapped film); and u(y) = (ρg/η) (y

2/2−hy+
(1− 1/α)(h2p/2+hphf )) for y > hp (free film). We deduce
the total flux Q of liquid flowing downwards, expressed
per unit length perpendicular to the plane of fig. 4:

Q=
ρg

3αη
(αh3f +3h

2
fhp+3hfh

2
p+h

3
p). (3)

Conservation of flux imposes ∂Q/∂x=−∂h/∂t=
−∂hf/∂t, from which we obtain an evolution equation for

Fig. 4: (Colour on-line) In our model, we decompose the film of
thickness h in two layers: 1) A layer trapped inside the pillars
(of height hp), treated as a film of viscosity αη larger than
the liquid viscosity η; since the pillars increase the friction
of the liquid, α has to depend on the geometry of the array
of pillars. 2) A free layer of thickness hf flowing above the
previous one. In the lubrication approximation, the velocity
u(y) has a parabolic profile in each layer (see the text).

the (free) interface:

∂hf

∂t
=−∂hf

∂x

ρg

αη
(αh2f +2hfhp+h

2
p). (4)

For either hp→ 0 or α→∞ (in the latter limit, the
posts are so dense that the trapped layer cannot move
anymore, as if it were solid), we logically recover eq. (1). If
the deposited film is thick enough (hf >hp/α, always true
in this study), the first term in the bracket is dominant
at short time, so that we expect Jeffreys’ solution for the
free film (constant thickness first, then hf ∼ (ηx/ρgt)1/2):
the free film is so thick that textures do not influence its
drainage. Later, the film gets thinner, and the second term
in the bracket may become dominant. This term describes
the flow of a free film on a substrate on which it slips,
with a slip length λ= hp/α and for hf >λ. Considering
this term alone, we obtain the corresponding drainage
behavior:

hf =
αηx

2ρghpt
. (5)

We indeed observe in fig. 3 an acceleration of the
drainage as the film thins, but the scaling law expected
from eq. (5) (hf ∼ 1/t) is clearly not obeyed. This can be
understood: we would expect such a regime if the second
term in bracket were larger than the two others, which
implies hf >hp and hf <hp/α. Since α is by definition
larger than unity, these two inequalities cannot be satisfied
simultaneously, which implies that the essence of this
problem cannot be captured by a simple slip condition at
the boundary between the films. But eq. (4) also includes
the flow inside the texture (third term in the brackets),
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(a)

(b)

Fig. 5: (a) Time evolution of the position x∗ of the step
observed in figs. 2(b) and 3: the step moves downwards at
a constant velocity c= x∗/t (here 35µm/s). (b) Step velocity
c as a function of the velocity at which a film of height hp
falls inside the texture (eq. (6)). Both velocities are found
to be comparable (the line has a slope 1). Full and empty
symbols correspond to p= 10 and p= 20µm, respectively,
and the symbols indicate different viscosities (square: η=
9.7mPa · s, circle: η= 19mPa · s, triangles: η= 48mPa · s, star:
η= 97mPa · s,+: η= 340mPa · s).

which turns out to be a key fact for understanding what
happens as the film thins (hf <hp). Then, this third term
becomes dominant, so that eq. (4) becomes a convection
equation ∂hf/∂t=−(ρgh2p/αη)∂hf/∂x. The (free) liquid
film gets entrained by the underlying film at a velocity c
given by

c=
ρgh2p

αη
, (6)

where both the pillar height and the factor α (itself a
function of hp) reflect the influence of the trapped layer.
Hence the step in figs. 2b and 3 can be interpreted as the
passage below the probe of the extremity of the free film
entrained by the underlying layer: if we balance the viscous
force αηV/h2p in this layer with gravity ρg, we indeed find
V = c (eq. (6)).
By displacing the probe along the vertical direction, we

could follow the position x∗ of the step as it moves down-
wards along the plate. As seen in fig. 5a, the step falls

Fig. 6: Critical thickness h∗f of the free film at the moment of
the step, as a function of the pillar height. For small pillars,
the critical thickness increases linearly with hp. When the pillar
height becomes comparable to the distance d between pillars,
the critical height saturates. (Squares: d= 10µm, circles: d=
20µm.)

at a constant velocity c (in this example, c≈ 35µm/s);
we measured this velocity for various samples (d= 10 or
20µm, hp = 1.5–35µm), and found that c depends on the
solid texture, as shown in fig. 5b where it is plotted as
a function of ρgh2p/αη, as suggested by eq. (6). In this
expression, the numerical coefficient α was determined
experimentally for each sample from withdrawal experi-
ments [13]. In [13], it was also found to be captured by
the formula α≈ 1+7.2h2p/d2. In fig. 5b, the line shows a
slope 1: eq. (6) is indeed obeyed.
This interpretation also allows us to predict the film

thickness h∗f at which the step occurs. As mentioned
earlier, the third term then becomes dominant in the
brackets of eq. (3), i.e. for hf <hp/

√
α and hf <hp. If α

is on the order of unity (small and/or dilute pillars), these
conditions become equivalent (hf <hp). If α is large, we
saw that it varies as h2p/d

2, so that these conditions can be
written hf <d. Hence we expect h

∗
f to vary as min(hp, d),

which can be checked: as seen in figs. 2b and 3, the value
of h∗f can be extracted quite clearly from the data. We
plot in fig. 6 the variation of this “critical” thickness, as
a function of the post height: it is first proportional to
the pillar height hp, before saturating when hp becomes
comparable to the spacing d. Uncertainties on h∗f do not
allow us to be very precise in this limit.
In summary, this study shows that the dynamics of

drainage can be dramatically influenced by the presence
of roughness at a solid surface. We considered as a
model roughness disconnected bumps, which generates
capillary trapping at long time, and flow between the
structures before. The latter effect leads in particular to an
acceleration of the drainage as the final residual thickness
is approached. More generally, these findings suggest that
drainage should be sensitive to the roughness design. In
this study, the possibility for the liquid to flow between
the pillars was found to be crucial. But other kinds of
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roughness such as micro-holes (or micro honeycombs) at
the surface do not permit a continuous flow below the
free film, which should impact differently drainage. Hence
microstructures at a solid surface do not only modify the
kinetics of drainage; their design should also allow us to
tune the nature of these kinetics.

∗ ∗ ∗
We thank M. Reyssat for providing the textured

samples.
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