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Abstract In wide enough systems, plane Couette flow, the flow established between two
parallel plates translating in opposite directions, displays alternatively turbulent and laminar
oblique bands in a given range of Reynolds numbers R. We show that in periodic domains
that contain a few bands, for given values of R and size, the orientation and the wavelength of
this pattern can fluctuate in time. A procedure is defined to detect well-oriented episodes and
to determine the statistics of their lifetimes. The latter turn out to be distributed according to
exponentially decreasing laws. This statistics is interpreted in terms of an activated process
described by a Langevin equation whose deterministic part is a standard Landau model for
two interacting complex amplitudes whereas the noise arises from the turbulent background.

Keywords Fluid dynamics · Turbulence · Pattern formation · Jump process

1 Introduction

The main features of the transition to turbulence are well understood in systems prone to a
linear instability like convection where chaos emerges at the end of an instability cascade.
A much wilder transition is observed in wall-bounded shear flows for which the laminar and
turbulent regimes are both possible states at intermediate values of the Reynolds number
R, the natural control parameter, whereas no linear instability mechanism is effective. A di-
rect transition can take then place via the coexistence of laminar and turbulent domains in
physical space. Two emblematic cases are the pipe flow and plane Couette flow (PCF), the
simple shear flow developing between two parallel plates translating in opposite directions.
Both of them are stable against infinitesimal perturbations for all values of R and become
turbulent only provided sufficiently strong perturbations are present. In both cases, strong
hysteresis is observed and, upon decreasing R, the turbulent state can be maintained down to
a value Rg. Above Rg, turbulence remains localised in space, in the form of turbulent puffs
in pipe flow and turbulent patches in PCF. A striking property of PCF or counter-rotating
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cylindrical Couette flow (CCF) is the spatial organisation of turbulence in alternatively tur-
bulent and laminar oblique bands that takes place in large enough systems in a specific range
of Reynolds numbers [1, Chap. 7]. This regime was studied in depth at Saclay by Prigent et
al. [2]. It can be obtained by decreasing the Reynolds number continuously from featureless
turbulence below Rt, the Reynolds number above which the flow is uniformly turbulent, or
triggered from laminar flow by finite amplitude perturbations above Rg, the Reynolds num-
ber below which laminar flow is expected to prevail in the long time limit. A similar situation
is observed in pipe flow but things are complicated by the global downstream advection so
that the existence of a threshold Rt above which turbulence is uniform is still a debated mat-
ter. In contrast for PCF, the pattern is essentially time-independent and can be characterised
by two wavelengths λx and λz in the streamwise and spanwise direction, x and z respec-
tively,1 or equivalently by a wavevector k = (kx, kz) with kx,z = 2π/λx,z. From symmetry
considerations, two orientations are possible, corresponding to two possible combinations
(kx,±kz). Whereas a single orientation is present sufficiently far from Rt so that either mode
(kx,+kz) or mode (kx,−kz) is selected, patches of one or the other orientation have been
reported to fluctuate in space and time when R approaches Rt from below [2, Figs. 2 and 3].
The main features of the bifurcation diagram could then be accounted for at a phenomeno-
logical level by an approach in terms of Ginzburg–Landau equations subjected to random
noise featuring the small-scale turbulent background.

This patterning was reproduced by Duguet et al. [3] using fully resolved numerical sim-
ulations in an extended system of size comparable with that of the Saclay apparatus but
the computational load was so heavy that a statistical study of the upper transitional range
was inconceivable. Earlier, Barkley & Tuckerman [4] also succeeded in obtaining the bands
by means of fully resolved simulations with less computational burden but using narrow
elongated domains aligned with the pattern’s wavevector. By construction, the fluctuating
domain regime could not be obtained, whereas a re-entrant featureless turbulence regime,
called ‘intermittent’ was obtained closer to Rt.

In our previous work on this problem, we first showed that full numerical resolution
was not necessary to obtain realistic patterning but that a good account of the long range
streamwise correlation of velocity fluctuations was essential [5]. This next incited us to
consider reduced-resolution simulations in systems of sizes sufficient to contain at least an
elementary cell (λx,λz) of the pattern [6], thus avoiding the orientation constraint inherent
in the Barkley–Tuckerman approach. Here, we expand our previous work to focus on pattern
fluctuations in the upper part of the PCF’s bifurcation diagram when R approaches Rt from
below, taking the best possible use of the inescapable resolution lowering to perform long
duration simulations, so as to obtain meaningful statistics about the dynamics of this regime.

Systems considered in our numerical experiment, to be described in Sect. 2, produce
patterns with a few wavelengths. In the neighbourhood of Rt, fluctuations manifest them-
selves as orientation changes in time instead of the spatiotemporal evolution of well-ordered
patches. It turns out that episodes of well-formed pattern between two orientation changes
can be identified reliably, so that the lifetimes of such episodes can be measured and their av-
erage determined as a function of R. The Langevin approach initiated by Prigent et al. in [2]
was resumed in [6] as providing an appropriate framework to interpret our numerical results.
Orientation fluctuations were taken into account but their detailed statistical properties left
aside, which are the subject of the present paper.

1In the case of CCF, the pattern is time-independent in a frame that rotates at the mean angular velocity and
the axial (azimuthal) direction corresponds to the spanwise (streamwise) direction.
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In the context of pattern formation, the Langevin/Fokker–Planck approach has a long
history, dating back to the 1970’s when it was applied to convecting systems [7]. Noise
of thermal origin is however extremely weak so that the region of parameter space where
the system is sensitive to this noise is exceedingly narrow [8] and nontrivial effects can be
observed only in very specific conditions [9]. When applying the approach to the description
of the bifurcation from featureless turbulence to pattern in shear flows, Prigent et al. [2]
implicitly took for granted that the noise intensity was an adjustable parameter linked to
the turbulent background at R > Rt. Here we extend the analysis started in [6] within this
conceptual framework, the subject of Sect. 3, and analyse simulation results presented in
Sect. 2.4 in the light of this theory. We conclude in Sect. 4 by discussing how well this
approach is suited to describe mode competition and intermittent re-entrance of featureless
turbulence [4, 6] and, more generally, how the noisy temporal dynamics of coherent modes
can hint at the spatio-temporal nature of transitional wall-bounded flows and explain the
exponentially decreasing probability distributions of residence times or decay times often
observed in this field [12].

2 Conditions of the Numerical Experiment

2.1 Numerical Procedure

Direct numerical simulation (DNS) of the incompressible Navier–Stokes equations in the
geometry of PCF are performed using Gibson’s open source code CHANNELFLOW [10] that
assumes no-slip boundary conditions at the plates driving the flow and in-plane periodic
boundary conditions. The parallel plates producing the shear are placed at a distance 2h

from each other in the wall-normal direction y, they move at speeds ±U in the streamwise
direction x, z labelling the spanwise direction. The length unit is h, the velocity unit U , the
time unit h/U , and the Reynolds number R = Uh/ν, where ν is the kinematic viscosity of
the fluid. The problem is completely specified when the in-plane dimensions Lx and Lz of
the set-up are chosen. The perturbation to the laminar flow U = yx̂ is noted u, so that u2 is
the local Euclidean distance to the base flow squared. Periodic in-plane boundary conditions
allow the definition of the wave-vectors kx,z = 2πnx,z/Lx,z, where the wavenumbers nx,z

are integers. Without loss of generality, we can assume nx ≥ 0.
The resolution of the simulation is fixed by the number Ny of Chebyshev polynomials

used to represent the wall-normal dependence, and the numbers Nx,z of collocation points
used to evaluate the nonlinear terms in the pseudo-spectral scheme of integration of the
Navier–Stokes equations. The number of Fourier modes involved in the simulation is then
2Nx,z/3, owing to the 3/2-rule applied to de-aliase the velocity field. The computational
load necessary to obtain meaningful results in sufficiently wide domains with fully resolved
simulations is unrealistically heavy. Accordingly, we take advantage of our previous work
devoted to the validation of systematic under-resolution as a modelling strategy [5]. In that
work, we showed that qualitatively excellent and quantitatively acceptable results could be
obtained by taking Ny = 15 and Nx,z = 8Lx,z/3. The price to be paid for the resolution
lowering was apparently just a downward shift of the range [Rg,Rt] in which the bands
are obtained, but everything else was preserved, including wavelengths. Of course, as far
as resolution is concerned, the finest is the best on a strictly quantitative basis but we do
not expect that the observed trends and our conclusions be sensitive to our rules to fix Ny

and Nx,z.
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2.2 Orientation Fluctuations

In this article we consider domains able to contain a pattern with one or two elementary
cells, i.e. Lx,z = |nx,z|λx,z where nx = 1 or 2 and nz = ±1 or ±2. According to [2], in PCF
wavelength λx is found to be approximately equal to 110 over the whole range [Rg,Rt],
while wavelength λz varies as a function of R in the range [40, 85]. These observations
serve us to fix the size of the systems that we are going to consider below. As shown in
[6], the specificity of such systems is to convert the spatio-temporal evolution of fluctuat-
ing domains observed in the neighbourhood of Rt into the temporal evolution of coherent
patterns characterised by the amplitudes of the corresponding fundamental Fourier modes;
possible orientation changes are associated with changes of sign of the spanwise wavenum-
bers. Close enough to Rt, there is also some probability that featureless turbulence, the state
that prevails for R > Rt, be observed transiently, which is akin to the intermittent regime
identified in [4]. In contrast, in the lowest part of the transitional range, close to Rg, the
orientation remains frozen as expected for well-formed steady oblique bands. We first illus-
trate this phenomenon using snapshots of u2 in Figs. 1 and 2. The left and centre panels of
Fig. 1 display well-oriented patterns or ‘pure states’ showing the organised cohabitation of
laminar and turbulent flow; an example of defective pattern or ‘mixed state’ without much
spatial organisation is shown in the right panel. (Orientation defects between well-oriented
domains require wider systems to be clearly identified as such.) Figure 2 similarly displays
snapshots of u2 obtained in a narrower but longer system.

Typically, during long-lasting simulations at given Lx,z and R, the flow displays a pure
pattern for some time, then experiences a brief defective stage, and next recovers a pure state,
possibly with different orientation or/and wavelength, and so on. The spatial organisation of
the pattern is detected via the Fourier transform of the perturbation velocity field û. It turns
out that most of the information about the modulation is encoded in the amplitude of the
dominant wavenumber [2, 6, 11]. We consider time series of

m2(nx, nz, t) = 1
2

∫ +1

−1
|ûx(nx, y,nz, t)|2 dy, (1)

which thus characterises a flow pattern with wavelengths (λx,λz) = (Lx/nx,Lz/|nz|) and
orientation given by the sign of nz. In the present study, we focus on the amplitude of the

Fig. 1 (Color online) Snapshots of u2 in the plane y = −0.57 for R = 315 in a system of size
Lx × Lz = 128 × 84. From left to right: one band pure state with each of the two possible orientations
(nx = 1, nz = +1) or (nx = 1, nz = −1), two band pure state (nx = 1, nz = +2), and mixed or defective
pattern. Deep blue corresponds to laminar flow

Fig. 2 Snapshots of u2 in the plane y = −0.57 for R = 290 in a system of size Lx × Lz = 170 × 48. From
left to right: (nx = 1, nz = −1), (nx = 1, nz = +1), and (nx = 2, nz = +1)
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Fig. 3 Time series of m2(t) for several wave numbers nz = ±1,±2 for R = 315 in a system of size
Lx × Lz = 128 × 84

turbulence modulation in the flow and not on its phase, i.e. on the position of the pattern in
the system, which was shown to be a random function of time [6].

An example of such time series is displayed in Fig. 3. A pure pattern stage corresponds
to a single m(nx,nz) fluctuating around a non zero value, the other m(n′

x, n
′
z) remaining

negligible. For instance the pattern keeps wave-number nz = +2 from t = 3×103 to t = 104.
The defective stage corresponds to m(nx,nz) decaying to zero while another one m(n′

x, n
′
z)

grows. Wavenumbers (n′
x, n

′
z) may be different from (nx, nz), in which case there is an

effective change of the orientation if |n′
z| = |nz| or a change of wavelength (sometimes

combined with an orientation change) if |n′
z| %= |nz|. In Fig. 3, a change of orientation takes

place at time t = 4 × 104 (nz = −1 → +1), a change of wavelength at time t = 1.7 × 104

(nz = −2 → +1), the pattern with nz = +1 growing back from a defective stage at time
t = 4.3 × 104. Most of the time there is no ambiguity about the value of n involved so
that we shall use simplified notations, i.e. just m or m± instead of m(nx,±nz), as often as
possible.

Except very close to Rt, pure state intermissions last long and defective episodes are
short, so that series of lifetime Ti of well-oriented lapses can be defined from recording
simulations of duration sufficient to make reliable statistics.

2.3 Lifetime Computations

Orientation and wavelength fluctuations are best characterised by lifetimes distributions.
Beforehand, we have to define a systematic method to detect the beginning and the end of
pure pattern episodes from the m2 time series. This is done by using two thresholds: one, s1,
for the start of a pure pattern episode and the other, s2, for its termination, see Fig. 4 (top).
The fast growth of m2 makes it easy to choose s1 and the results are not much sensitive to
its exact value. In contrast, detecting the decay is more problematic. This will be discussed
in detail after the presentation of a typical result obtained by assuming that the difficulty has
been properly resolved.

For practical reasons, we use a byproduct of the cumulated probability density function
(PDF) Q:

Q(T ) = #{Ti ≥ T }
#{Ti}

= 1 − #{Ti ≤ T }
#{Ti}

.

Empirical distributions obtained in an experiment with Lx = 110 and Lz = 32 for R =
330 are displayed in Fig. 5. They are obtained from the time series, a small part of which
is shown in Fig. 4, distinguishing nz = ±1 from nz = ±2. Since, for symmetry reasons,
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Fig. 4 Time series of m2 for nz = ±1 at R = 330 (top) and R = 345 (bottom). The two horizontal lines
in the top panel locate threshold s1 (full line) and s2 (dashed line). Close to Rt , bottom panel, orientation
fluctuations are short-lived and much smaller, rendering the detection of well-oriented episodes more difficult

Fig. 5 Logarithm of Q (right)
for Lx × Lz = 128 × 84,
R = 315, computed with
s1 = 0.001, s2 = 0.005, for both
wave numbers |nz| = 1 and
|nz| = 2. We have about 40
events for |nz| = 1 and about 20
events for |nz| = 2

the two orientations are supposed to have identical distributions, we sum over the ± in
each case. The semi-logarithmic coordinates used to represent Q(T ) suggest exponentially
decreasing variations, which makes orientation changes look like deriving from a Poisson
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Fig. 6 Mean lifetimes functions of s1 given s2 (left) and of s2 given s1 (right). R = 315 and system size
Lx × Lz = 128 × 84, |nz| = 1

process. Assuming that they are indeed in the form exp(−T/〈T 〉), we can obtain the mean
lifetime 〈T 〉 from the plain arithmetic average of the lifetime series. 〈T 〉 can also be obtained
by fitting the empirical cumulated distribution against an exponential law or its logarithm
against a linear law. In addition to raw data, Fig. 5 displays the second kind of fits for |nz| = 1
and 2. These three different estimates are close to each other provided that the lifetime series
comprise sufficiently large numbers of events. An average of these three values will be used
to define the mean lifetime and the corresponding unbiased standard deviation will give an
estimate of the “error” for each lifetime series.

Let us now come to the problem of the sensitivity of Q(T ) to the value of the thresholds
s1 and s2 used to determine the lifetimes of the pure pattern episodes. In Fig. 6 (left) the
mean lifetime 〈T 〉 displays a clear plateau as a functions of s1. The width of this plateau
does not depend on s2 though its value depends on it. The existence of this plateau is easily
seen to be related to the fast growth of m when the pattern sets in: m always goes through
most of the values corresponding to the plateau in a very short time. In practice, for 10−3 ≤
s1 ≤ 1.5 × 10−3 the very same episodes are detected whatever the precise value of s1. That
the plateau value still depends on s2 just expresses that the duration of the detected episodes
are modified in the same way due to changes in the detection of their termination. Of course,
when s1 is taken too large, some less-well ordered episodes escape detection or are detected
too late, which artificially decreases the mean. On the other hand, if s1 is taken too small,
the “signal” gets lost in the “noise”: a large number of brief noisy excursions are detected as
relevant ordered episodes, again decreasing the mean.

The variation of the mean lifetime with s2 is completely different as seen in Fig. 6 (right).
Here, 〈T 〉 varies roughly linearly with s2 in a wide interval above the noise level (∼ 3×10−4,
see Fig. 4):

〈T 〉(s2) + a(1 − bs2).

Coefficient b = 1000 ± 100 does not vary significantly over the cases that we have consid-
ered. This dependence fully explains the change of plateau value in plots of 〈T 〉 as a function
of s1. Coefficient a, corresponding to 〈T 〉 extrapolated toward s2 = 0 however still depend
on R and the geometry. Henceforth, we define this extrapolated value as the relevant average
lifetime 〈T 〉, which will be supported by the theoretical considerations to be developed in
the next section.

The observed dependence of 〈T 〉 on s2 can be explained by the fact that the decay of
a pure pattern is much more gradual than its growth, which causes significant differences
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when the duration of an episode is measured, leading to a decrease of 〈T 〉 as s2 increases
since the termination of the episode is detected earlier. A second reason why the mean
lifetime increases as s2 decreases arises from the fact that some excursions are not counted
as decay events. In physical space, this corresponds to an irregular and slow disorganisation
of turbulence, contrasting with the fast installation of the pattern. In fact 〈T 〉 cannot be
obtained otherwise than by extrapolation of threshold s2 to zero, as will be discussed in
Sect. 3.3.

2.4 DNS Results

The two systems sizes, Lx ×Lz = 128×64 and 110×32, already considered in our previous
work [5, 6] are studied here over the whole range of Reynolds numbers where the pattern ex-
ists at the chosen numerical resolution, R ∈ [Rg,Rt] = [275,345]. Orientation fluctuations
are systematically found close enough to Rt, see Cases 1 & 2 below.

In addition, wavelength fluctuations can take place when the size of the system is too
far away from resonating with the pattern’s elementary cell λ

opt
x × λ

opt
z , where ‘opt’ means

‘optimal’, in a sense to be defined below in Sect. 3.1. Orientation and wavelength fluctua-
tions are observed at R = 315 for Lx = 128, Lz = 84 and 90, and for Lx = 110, Lz = 84,
meaning that both |nz| = 1 and |nz| = 2 are competitive for Lz = 84 or Lz = 90. In contrast,
lifetimes of single mode patterns are extremely long for Lz < 84 and Lz > 90, meaning that
Lz < 84 is optimal for |nz| = 1 and Lz > 90 is optimal pour |nz| = 2. Orientation and wave-
length fluctuations are similarly present in several other circumstances, at lower Reynolds
number R = 272 and R = 275 for Lx × Lz = 110 × 32, as well as at R = 290 for Lz = 48
and Lx = 80 or at R = 330 for Lx = 90, 140, and 150.

Case 1: Lx = 128, Lz = 84, R = 315, wavelength fluctuations Several experiments un-
der the same protocol have been performed, using different initial conditions. Integration
times ranged from 5 × 104 to 105 h/U . A large enough ensemble of lifetimes has been
sampled, both for |nz| = 1 and |nz| = 2, allowing us to compute the corresponding order
parameters M—the conditional time averages of m(t) as defined in (1)—with sufficient ac-
curacy. Snapshots corresponding to this aspect ratio are displayed in Fig. 1, a typical part
of the corresponding time series is shown in Fig. 3. For |nz| = 1 and |nz| = 2, we obtain
M1 = 0.033 ± 0.001 and M2 = 0.038 ± 0.001, respectively. From the lifetime distributions
in Fig. 5, we get τ1 = 8100 ± 200 and τ2 = 3800 ± 100. The fact that M1 < M2 is not sur-
prising and is understood in term of optimal wavelength (Sect. 3.1, λ

opt
z + 39 at R = 315

[6]). The reason why one has τ1 > τ2 is however not clear.

Case 2: Lx = 110, Lz = 32, variable R, orientation fluctuations A thorough account of
the behaviour of M and the re-entrance featureless turbulence has been given in [6]. Here,
lifetimes are computed for Reynolds number ranging from R = 325 to R = 340. Below
R = 325, the lifetimes are so long that a small number of events is observed despite the
length of time series used (> 2×105), which forbids the determination of τ as a meaningful
average (Fig. 10). Above R = 340, a clear separation of time scales is lacking, which now
forbids the definition of lifetimes of individual events, compare the two panels in Fig. 4.

Figure 7 displays the variation of the average lifetime τ with R, showing that it increases
by a factor of 10 as R decreases from R = 340, which is somewhat below Rt = 355, down
to R = 325 below which it is too long to be measured reliably. “Error bars” suggested by
up and down triangles in Fig. 7 correspond to the unbiased standard deviation of the three
estimates for τ mentioned earlier.
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Fig. 7 Mean lifetime τ as a
function of R for
Lx × Lz = 110 × 32 (log scale)

3 Conceptual Framework and Application to DNS Results

3.1 The Landau–Langevin Model

Prigent et al. proposed to consider the turbulent bands as resulting from a conventional
pattern formation problem described at lowest order, from symmetry arguments, by two
coupled cubic Ginzburg–Landau equations, one for each band orientation, further subjected
to noise featuring the turbulent background above Rt. The slowly varying part of the velocity
field component away from the laminar profile can be written as

ux = A+(x̃, z̃, t̃ )eikc
xx+ikc

zz + A−(x̃, z̃, t̃ )eikc
xx−kc

zz + cc,

where A± ∈ C are the amplitude fields accounting for the two modulation waves, and x̃, z̃

and t̃ are slow variables [1]. Then, following this approach, we assume

τ0∂t̃A± = (ε + ξ 2
x ∂

2
x̃x̃ + ξ 2

z ∂
2
z̃z̃)A± − g1|A±|2A± − g2|A∓|2A± + αζ±, (2)

the quantity ε = (Rt − R)/Rt measures the relative distance to the threshold2 Rt, τ0 is the
‘natural’ time scale for pattern formation, ξx,z are streamwise and spanwise correlation
lengths, g1 and g2 are the self-coupling and cross-coupling nonlinear coefficients, and α

the strength of the noise ζ± supposed to be a centred Gaussian process with unit variance.
The strength α of the noise is expected to grow smoothly with R, regardless of the existence
of the pattern since the local intensity of the turbulence is empirically not directly correlated
to the amplitude and phase of the modulation A±. The tilde variables describe the long-wave
modulations to an ideal pattern with critical wavelengths λc

x,z to which correspond critical
wavevectors kc

x,z = 2π/λc
x,z, the term critical referring to the most unstable wave vector near

R = Rt. The systems that we consider have periodic boundary conditions placed at distances
Lx,z. Fourier analysis then leads to characterise the pattern by wavevectors k = (kx, kz), with
kx,z = 2πnx,z/Lx,z. It is assumed that the wave numbers obtained during a given experiment
will be the integers that will be as close as possible of nc

x,z = Lx,z/λ
c
x,z. Furthermore, our

systems can accommodate a small number of cells of size (λx,λz) so their modes are well
isolated [1, Chap. 4]. Assuming that a single pair (nx,±nz) is involved, the partial differ-
ential equation (2) is turned into an ordinary differential equation for A(nx,±nz) simply

2The existence of a well defined threshold in this system is attested by the behaviour of the turbulent fraction
and spatially averaged kinetic energy which display a marked change of slope at Rt [6].
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denoted A± ≡ Ar
± + iAi

±, close enough to Rt[6]:

τ0
d
dt

A± = ε̃A± − g1|A±|2A± − g2|A∓|2A± + αζ±, (3)

where ε̃ = ε − ξ 2
x δk

2
x − ξ 2

z δk
2
z controlling the linear stability of these modes, is evaluated for

δkx,z = kx,z − kc
x,z with the relevant kx,z = 2πnx,z/Lx,z, as well as the nonlinear coefficients

g1,2 (∈ R because the pattern does not drift, at least in the absence of noise). Coefficient α

is the effective strength of the noise affecting the mode that we consider. Equation (3) can
be written as deriving from a potential:

τ0
d
dt

Ar,i
± = − ∂V

∂Ar,i
±

+ αζ±,

with

V = −1
2
ε̃
(
|A+|2 + |A−|2

)
+ 1

4
g1

(
|A+|4 + |A−|4

)
+ 1

2
g2|A+|2|A−|2. (4)

Usually, when making use of phenomenological equations such as (2), one relies on values
of critical wavevectors kc that are computed once and for all from some linear stability the-
ory and further introduced in the perturbation expansions solving the nonlinear wavelength
selection problem beyond the threshold [13]. Here the theory is not developed enough to
have such a definition and such an evaluation of nonlinearly selected ‘optimal’ wavevectors
far enough from threshold. Accordingly, in (3) we introduce values of ε̃ that do not make
reference to some explicit computation involving measured values of ε and ξx,z but values
that are just estimates consistent with the empirically determined optimal wavelengths. In
the same way, we keep the cubic Landau expressions (3), neglecting higher order terms
that would introduce too many little-constrained parameters, without deeper insight into the
problem.

The stable fixed points of the deterministic part of (3) were shown to correspond to the
permanent state of the pattern and the additive noise term seen to account for fluctuations
quite well by solving the corresponding Fokker–Planck equation [6]. The stationary proba-
bility distribution for the moduli |A±| = Am

± was obtained in the form:

+(Am
+,Am

−) = Z−1Am
+Am

− exp(−2V/α2), Z =
∫

Am
+Am

− exp(−2V/α2)dAm
+dAm

−. (5)

The time behaviour of Am
± is easily discussed by considering the shape of V within the

stochastic process framework. Two limiting cases can be identified, depending on whether ε̃

is O(1) or / 1. In the first case, excursions from the neighbourhood of the minima of V are
rare; the lifetime of an ordered episode can be defined as the average time necessary for the
system to go from the neighbourhood of a minimum to the potential’s saddle. It is expected
to increase with the height of the potential barrier, i.e. as parameter ε̃ grows, and to fall off
as α increases. The lack of symmetry between the growth and the decay of a pattern has
then a clear explanation when ε̃ is large: The growth corresponds to the system falling from
the neighbourhood of the saddle into one of the wells; even in the presence of noise, this
evolution is fast and mostly deterministic. In contrast, the decay corresponds to the system
slowly climbing toward the saddle against the deterministic flow, driven by the sole effect of
noise. In the opposite limit, when ε̃ approaches zero, the definition of a lifetime no longer
makes sense since the characteristic times for growth and decay become of the same order
of magnitude.
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3.2 Orientation Lifetimes from the Model

Orientation changes and associated lifetimes are analysed in terms of first passage time and
escape from metastable states [14]. The distribution of lifetimes is anticipated to be Pois-
sonian as expected from a jump process controlled by an activation “energy”. In a simplified
one-dimensional version of potential V [14, Chap. 11, Sects. 2, 6–7], if the well is deep
enough, within a parabolic approximation the mean escape time, the average time necessary
to go from a well to another, is given by

τ/τ0 = 2π
√

V ′′
w|V ′′

s | exp
(

2
Vs − Vw

α2

)
, (6)

where ‘w’ stands for ‘well’ and ‘s’ for ‘saddle’; Vw,s are the values of the potentials at the
corresponding points and V ′′

w,s the values of the second order derivatives of the potential
with respect to the variable at these points. The derivation of this formula shows that τ is
dominated by the time spent around the saddle. In our two dimensional system with potential
(4), at lowest order in α the coordinates of the well and saddle points are:

(Aw
±,Aw

∓) =
(√

ε̃/g1,0
)

and (As
+,As

−) =
(√

ε̃/(g1 + g2),
√

ε/(g1 + g2)
)

and the corresponding values of the potential:

Vw = −ε̃2/4g1 and Vs = −ε̃2/2(g1 + g2).

The second derivatives have to be replaced by the eigenvalues of the Hessian matrix of V
computed at these points:

Hw =
(

2ε̃ 0
0 ε̃(g2/g1 − 1)

)
and Hs = 2ε̃

g2 + g1

(
g1 g2

g2 g1

)
.

At point ‘w’, Hw is diagonal and the eigen-direction pointing to point ‘s’ has eigen-value
ε̃(g2/g1 − 1). At point ‘s’, Hs is diagonal in the basis {(1,1), (1,−1)} and has eigenvalues
{2ε̃,2ε̃(g1 − g2)/(g1 + g2)}. The unstable eigen-direction correspond to the second one
which is negative (g2 > g1). Inserting these values in (6), we obtain:

τ/τ0 = 2π
√

2
ε̃

√
g1(g1 + g2)

g2 − g1
exp

(
ε̃2

2α2g1

g2 − g1

g1 + g2

)
. (7)

In its exponential factor, this formula points out an “energy” scale ε̃2/g1 to be compared
to the characteristic noise energy α2 which play the role of the Boltzmann energy in ther-
mal problems. It also shows that, especially when g2 is larger but comparable to g1, the
noise energy has to remain small enough because the parabolic approximation which under-
lies the formula assumes sufficiently deep wells. The main difference between the one and
two dimensions cases are in the shape of the “energy landscape”, corrections are therefore
expected to be multiplicative and not depend on the value of ε̃.

3.3 Simulation of the Model

For the deterministic part of (3) we use a simple first-order implicit Euler algorithm, while
the additive noise αζ(t) is treated as a Gaussian random variable with standard deviation
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Fig. 8 Typical time series from model (3), for a set of parameters corresponding to the Navier–Stokes DNS,
ε̃ = 0.05, g1 = 60, g2 = 120, α = 0.002 [6]

Fig. 9 Mean lifetime τ , extracted from the model as a function of s1, for s2 = 0.0163, 0.0193, and 0.0225
(left) and as a function of s2 for several s1 ranging from 0.0784 to 0.1296 (right). ε̃ = 0.075, g1 = 1, g2 = 2,
α = 0.002

α
√

dt at each time step. The model is integrated over a range of ε̃, given g1, g2 (several
values), and α (assumed constant). The time series of |A±|2 displayed in Fig. 8 are indeed
reminiscent of those obtained by numerical integration of Navier–Stokes equations (Figs. 3
and 4): pure states at the bottom of the wells correspond to |A−|2 fluctuating around 0 and
|A+|2 away from 0, or the reverse. Large excursions can lead to a change of the dominant
orientation. These excursions are more likely to occur when ε̃ is decreased.

Lifetimes have been computed in the same way as for Fig. 6. The dependence of the
mean lifetimes on thresholds s1,2 is displayed in Fig. 9. A neat plateau is obtained for s1 ∈
[0.075,0.115] for different values of s2 (Fig. 9, left), which corresponds to the trajectory
getting away from the saddle. Extremes values of s1 lead to bad estimates of τ for the same
reasons as stated before. As to threshold s2, an orientation change has taken place when the
trajectory goes beyond the saddle, while a pure state corresponds to one amplitude large and
the other at the noise level. We have thus to detect the change from large to small for one
or the other amplitude. It is extremely difficult to detect the precise passage at the saddle,
since it is dominated by the time spent in that region, contribution from the two sides of the
saddle point having the same weight. On the contrary the passage from one state to another
leaves no doubt as to its definition. Therefore, we prefer to compute the mean first passage
time from one well to another, which is obtained in our simulation by the extrapolation at
s2 = 0. Approximating the curves in Fig. 9 (right) by linear functions τ = a(1 − bs2), one
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Fig. 10 log(τ ) as a function of ε̃
for g1 = 60, g2 = 120,
α̃ = 0.002; the model was
integrated over 105 time units

finds that the slope b depends on ε̃ and s1 only weakly; the value of τ retained is then
the one given by the extrapolation s2 = 0, i.e. coefficient a. Improving the definition of τ

with approximations better than the linear one has not been found necessary. The general
expression of the mean first passage time gives no hint as to the quantitative behaviour on
the distance to the second well s2, although it shows the same qualitative behaviour as seen
in Figs. 6 (right) and 9 (right). In Fig. 10 (semilog coordinates), the lifetime τ measured
in this way is compared to the asymptotic expression from the theory (7) as a function
of ε̃. It can be seen that the asymptotic formula is not valid for the smallest values of ε̃,
when the wells are not longer deep enough for the approximation to be valid, similarly to
what is found in the DNS close to Rt. The values given by this formula for small values of
ε̃, especially around and below the minimum it predicts at ε̃ = α

√
g1(g2 + g1)/(g2 − g1),

cannot be trusted. For large ε̃, the lifetime computed from the simulation saturates because
it becomes of the order of the total integration time so that only a few events smaller than
this total time can be recorded. Accordingly the long time tail of the distribution is badly
sampled with an under-representation of lifetimes larger than the average expected from the
theory. In Fig. 10, the numerical and the asymptotic estimates of the mean lifetimes are seen
to differ by a constant of order unity, which is attributed to the one-dimensional character of
the approximation.

3.4 Generalisation

This approach can be extended to wavelength fluctuations. When the size (Lx,Lz) of the
system is such that it ‘hesitates’ between two pairs of modes (nx,±nz) and (n′

x,±n′
z), we

introduce two supplementary amplitudes A(n′
x,±n′

z) that we denote B± for short and, ex-
tending notations straightforwardly with primes for quantities related to B±, we arrive at:

τ0
d
dt

A± = ε̃A± − g1|A±|2A± − g2|A±|2A± + g3(|B±|2 + |B∓|2)A± + αζ±, (8)

τ0
d
dt

B± = ε̃ ′B± − g′
1|B±|2B± − g′

2|B±|2B± + g′
3(|A±|2 + |A∓|2)B± + α′ζ ′

±, (9)

where ε̃ and ε̃ ′ as well as the nonlinear coupling constants g1,2,3, g′
1,2,3 and even the effective

noise intensities α, α′ may differ since they relate to pure patterns with different δkx,z =
kx,z − kc

x,z. A first guess would be to assume the primed and non-primed variables equal,
which would bring us immediately back to the previous approach with an effective potential,
wells, saddles, and potential barriers, leading to estimates for the different lifetimes involved.
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It is not clear how the case of turbulence re-entrance (the intermittent regime of [4])
would fit this framework but it is well described by a PDF with three peaks [6] corresponding
to a probability potential with three wells and thus hopefully amenable to a similar treatment
with a similar output.

These generalisations have not been worked out in detail numerically since they intro-
duces a discouragingly large number of parameters to be fitted against the experiments and
from which we would learn little, owing to their phenomenological basis. Only the case in-
volving a single pair of modes was examined in Sect. 3.3 above, mostly in order to validate
the procedure followed to determine lifetimes in Sect. 2.3.

4 Summary and Conclusion

In this paper, numerical simulations of the Navier–Stokes equation in plane Couette flow
configuration have been performed in a range of Reynolds numbers where the transition to
turbulence happens in the form of oblique bands. Systems with sizes fitting a few elemen-
tary cells λx × λz of the pattern have been considered. These sizes are much larger than the
minimal flow unit which allows the reduction of the transition problem to a temporal process
familiar to chaos theory [12]. Accordingly, the considered systems are able to display the
first manifestations of a genuinely spatiotemporal dynamics via patterning. Following the
patterns in time, we showed that they experience orientation and wavelength fluctuations in
the upper part of the range of transitional Reynolds numbers [Rg,Rt]. A systematic proce-
dure to detect the start and the termination of well-oriented episodes was defined, leading to
the observation of exponentially decreasing distributions for their lifetimes (Fig. 5).

A consistent interpretation scheme was then provided by adapting the noisy Ginzburg–
Landau model proposed in [2] to our case, transforming the original stochastic PDE into
a Landau–Langevin stochastic ODE. Besides supporting the procedure used to determine
lifetimes, the approach directly leads to the determination of probability distributions for
the patterned states from the shape of the potential obtained by solving the corresponding
Fokker–Planck equation, as already suggested in [2, Fig. 19]. The variation of the patterns’
mean lifetimes is thus linked to the relative distance to threshold and noise intensity through
an asymptotic formula involving the “energy” barrier between wells corresponding to the
different well-oriented states in competition. Ingredients in the relative distance to thresh-
old ε̃ which is a function of both the Reynolds number and the optimal wavelength, are
amply sufficient to explain most of the dependence of the mean lifetimes as functions of
R, Lx,z, and the spontaneous appearance of defects separating patches of well-oriented pat-
terns close enough to Rt in larger aspect-ratio systems as illustrated in Fig. 11 and seen in
the experiments [2].

In order to explain the occurrence of exponentially decreasing lifetime distributions, the
theory of dynamical systems appeals to the sensitivity to initial conditions of trajectories
visiting a homoclinic tangle [12]. Here, the modelling that fits well our observations implies
that exponential distributions arise from some jump random process [14]. As soon as the size
of the system is much larger that the minimal flow unit (for which the temporal behaviour

Fig. 11 Orientation defect spontaneously appearing in the flow for R = 340 in a domain of size
Lx × Lz = 660 × 48
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inherent in low dimensional dynamical systems is relevant), a spatiotemporal perspective
becomes in order, and the jumps in question can easily be associated to the local chaotic dy-
namics of pieces of streaks and streamwise vortices involved in the self sustaining process
of turbulence [15]. This local chaotic dynamics would then be responsible for the wander-
ing of the global system through some “energy” landscape with wells and saddles. With
system sizes of the order of the elementary pattern cell λx × λz, this wandering amounts
to orientation and/or wavelength changes. Extending these views to larger systems would
then explain the statistical properties of fluctuating laminar-turbulent patches observed in
the upper transitional range close enough to Rt [2].

Whereas the origin of the noise introduced in the description is understandable from
chaos at the local (microscopic) scale, it remains however to understand why the coexis-
tence of laminar and turbulent flow takes the form of oblique bands at the global (macro-
scopic) scale, i.e. to justify the Ginzburg–Landau approach from the first principles rather
than taking it as an educated phenomenological guess.

References

1. Manneville, P.: Instabilities, Chaos and Turbulence, 2nd edn. Imperial College Press (2010)
2. Prigent, A., Grégoire, G., Chaté, H., Dauchot, O.: Long-wavelength modulation of turbulent shear flow.

Physica D 174, 100–113 (2003)
3. Duguet, Y., Schlatter, P., Henningson, D.S.: Formation of turbulent patterns near the onset of transition

in plane Couette flow. J. Fluid Mech. 650, 119–129 (2010)
4. Barkley, D., Tuckerman, L.: Computational study of turbulent laminar patterns in Couette flow. Phys.

Rev. Lett. 94, 014502 (2005)
5. Manneville, P., Rolland, J.: On modelling transitional turbulent flows using under-resolved direct numer-

ical simulations. Theor. Comput. Fluid Dyn. doi:10.1007/s00162-010-0215-5. In press
6. Rolland, J., Manneville, P.: Ginzburg–Landau description of laminar-turbulent oblique bands in transi-

tional plane Couette flow. Eur. Phys. J. B. Submitted
7. Graham, R.: Hydrodynamics fluctuations near the convection instability. Phys. Rev. A 10, 1762–1784

(1974)
8. Hohenberg, P., Swift, J.: Effects of additive noise at the onset of Rayleigh-Bénard convection. Phys. Rev.

A 46, 4773–4785 (1992)
9. Scherer, M., Ahler, G., Hörner, F., Rehberg, I.: Deviation from linear theory for fluctuations below the

super-critical primary bifurcation to electroconvection. Phys. Rev. Lett. 85, 3754–3760 (2000)
10. Gibson, J.: http://www.channelflow.org/
11. Barkley, D., Dauchot, O., Tuckerman, L.: Statistical analysis of the transition to turbulent-laminar banded

patterns in plane Couette flow. J. Phys. Conf. Ser. 137, 012029 (2008)
12. Eckhardt, B., Faisst, H., Schmiegel, A., Schneider, T.M.: Dynamical systems and the transition to turbu-

lence in linearly stable shear flows. Philos. Trans. R. Soc. A 366, 1297–1315 (2008)
13. Cross, M.C., Hohenberg, P.C.: Rev. Mod. Phys. 65, 851–1112 (1993)
14. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1990)
15. Waleffe, F.: On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900 (1997)

Author's personal copy

http://dx.doi.org/10.1007/s00162-010-0215-5
http://www.channelflow.org/

	Pattern Fluctuations in Transitional Plane Couette Flow
	Abstract
	Introduction
	Conditions of the Numerical Experiment
	Numerical Procedure
	Orientation Fluctuations
	Lifetime Computations
	DNS Results
	Case 1: Lx=128, Lz=84, R=315, wavelength fluctuations
	Case 2: Lx=110, Lz=32, variable R, orientation fluctuations


	Conceptual Framework and Application to DNS Results
	The Landau-Langevin Model
	Orientation Lifetimes from the Model
	Simulation of the Model
	Generalisation

	Summary and Conclusion
	References


