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Subcritical dynamos in shear flows
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Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially
rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this
paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of
nonlinear transition to turbulence in non-rotating wall-bounded shear flows. To illustrate this idea, we describe somerecent
results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining
to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and
should be applicable to many astrophysical problems involving a shear flow and non-axisymmetric instabilities of toroidal
velocity or magnetic fields such as Kelvin-Helmoltz, MRI, Tayler or global magnetoshear instabilities. In the light of
several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHDdynamo
processes in high-Reynolds number shear flows could drive turbulent flows that would in turn generate an independent
small-scale dynamo.
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1 Introduction

1.1 Differential rotation, non-normality and
subcriticality

Differential rotation is a major ingredient of the physics of
astrophysical objects and plays a central role in dynamo the-
ory. From a local point of view (zooming in on a narrow
region of the flow), it can be decomposed into a global ro-
tation (Coriolis acceleration) and a shear flow (velocity gra-
dient). Both of these components are individually important
for dynamo theory. Let us focus on the shear component
of differential rotation and neglect global rotation for a mo-
ment. An important consequence of the presence of shear
is that it can induce a growth of velocity field fluctuations
(referred to in the hydrodynamic transition community as
the lift-up effect, see Sect. 2) or magnetic field fluctuations
(referred to in dynamo theory as theΩ effect for magnetic
fluctuations having no spatial dependence along the direc-
tion of the shear velocity). These amplification processes,
even though they result from linear terms in the equations,
do not lead to an exponential growth of fluctuations on long
timescales. Instead, velocity/magnetic perturbations grow
algebraically for a viscous/resistive timescale and then de-
cay if no other mechanism is present to sustain them. The
short-time dynamics associated with linear shear flow oper-
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ators is related mathematically to their non-normality (Tre-
fethen 1993 ; Schmid & Henningson 2000), which makes
it possible to combine several individually decaying linear
eigenvectors into a transiently growing structure that ulti-
mately has to decay viscously or resistively. The fact that
transient growth is possible in shear flows, combined with
the observation that linearly stable shear flows become nev-
ertheless turbulent at moderate values of the Reynolds num-
ber, has given rise to the concept of subcritical, or bypass
transition in hydrodynamics. The word subcriticality here
relates to the fact that transition in a linearly stable shear
flow is possible at finite values of the Reynolds number,
while the critical Reynolds number for the “linear bifurca-
tion” is infinity in such a flow. In this subcritical scenario,
fluctuations that are transiently amplified to finite amplitu-
des can become linearly unstable, leading to sustained tur-
bulence (or some form of complex nonlinearity in general,
see Baggett, Driscoll & Trefethen 1995) as a consequence
of the nonlinear saturation of the instability modes. Whether
bypass transition is possible or not is not completely obvi-
ous, however, because one has to ensure that the nonlinear-
ities that must come into play to obtain sustained activity
on long timescales can actually play such a role (Waleffe
1995a). It was shown by Hamilton, Kim & Waleffe (1995)
that subcritical transition is possible for non-rotating wall-
bounded shear flows.

In this paper, we aim at making use of the current knowl-
edge on subcriticality in shear flows to understand some as-
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pects of dynamo action in differentially rotating astrophys-
ical flows, thus we will also consider some effects due to
global rotation. In the framework of this particular study,
subcriticality will refer to the observation that the suste-
nance of a given field relies on the presence of nonlinear-
ity in the system, i.e. that if the system was to be linearized
around its backgroundsteady state, there would be no lin-
early unstable mode that could generate turbulence or mag-
netic fields permanently. This definition has the advantage
of making it clear that subcriticality is related to the dynamo
problem.

1.2 Subcriticality in accretion disks

In the first part of the paper (Sect. 2-3), we will mostly con-
centrate on two problems pertaining to the issue of turbulent
transport in accretion disks to illustrate subcriticalityin ro-
tating shear flows, which will enable us to make connexions
with different types of dynamo problems involving differ-
ential rotation (Sect. 4).

The first of these two problems is to understand the ori-
gin of turbulence in non-magnetized disks. There is cur-
rently no known hydrodynamic instability, either linear or
nonlinear, in the Keplerian shear flow regime representative
of the orbital dynamics of thin accretion disks, that could
maintain the vigorous turbulent state required for accretion
to take place. The second problem is to understand the sta-
tistical properties of turbulence in magnetized disks where
a natural candidate for the generation of turbulence is the
magneto-rotational instability (MRI, Velikhov 1959; Chan-
drasekhar 1960; Balbus & Hawley 1991). The existence of
a developed MRI turbulence state relies on the presence of
a sustained magnetic field within the disk. If the central ac-
creting object cannot provide an external field threading the
whole disk or if the disk resistivity is large enough (or equiv-
alently the disk cold enough) for fossil fields to decay on
short timescales in comparison to the disk lifetime, the dif-
ficult question of the origin of turbulence in disks directly
translates into the equally difficult question of the genera-
tion of magnetic fields - dynamo action - in these objects,
and its links with the MRI.

Let us first introduce the problem of transport innon-
magnetized disks or at least in cold and shielded regions of
disks where the fluid is not coupled to magnetic fields, as
in protoplanetary disks (e.g. Fromang, Terquem & Balbus
2002). The Rayleigh criterion tells us that a simple Keple-
rian shear flow is linearly stable to axisymmetric perturba-
tions from the hydrodynamical point of view, i.e. that turbu-
lence cannot be generated by a linear axisymmetric hydro-
dynamic instability in this flow. Angular momentum trans-
port in a non-magnetized disk therefore has to rely on afun-
damentally nonlinear hydrodynamic process. Hence, the ex-
istence of a subcritical transition to turbulence in linearly
stable rotating shear flows (particularly antiyclonic ones)
has been invoked for many years to explain the origin of tur-
bulence in this context. The main argument in favour of such
a transition finds its roots in the well-known experimental

evidence for transition to turbulence in non-rotating wall-
bounded shear flows (such as pipe flow) that are also known
to be linearly stable. This argument is further qualitatively
strengthened by the observed high sensitivity of shear flow
stability to initial conditions, which has to do with the pre-
viously mentioned non-normality of shear flow operators.
There is a long ongoing debate on whether or not subcriti-
cal nonlinear transition is possible in Rayleigh-stable shear
flows. A flavour of the experimental debate can be found
in Tillmark & Alfredsson (1996), Richard & Zahn (1999)
and Ji et al. (2006), while on the numerical and theoreti-
cal sides, we refer the reader to Hawley, Balbus & Winters
(1999), Longaretti (2002) and Lesur & Longaretti (2005). A
more exhaustive recent review of this problem can be found
in Rincon, Ogilvie & Cossu (2007a). One of the purposes
of the present paper is simply to point out the important
differences between the physics of subcritical transitionin
rotating and non-rotating shear flows in terms of transient
growth and nonlinear interactions.

The problem ofmagnetized disks is a priori a complete-
ly different one because of the existence of the MRI. In
the presence of a mean field threading the disk, the MRI
grows velocity and magnetic field perturbations with opti-
mally correlated radial and azimuthal components, provid-
ing a natural mechanism for angular momentum transport
even in three-dimensional saturated regimes (see Lesur &
Longaretti (2007) for a study of the efficiency of the process
in different magnetic Prandtl number regimes, though). The
problem here is that there are large uncertainties regarding
the physical conditions that pertain to different types and
even different regions of disks. It is in particular not obvi-
ous that all disks are threaded by a mean field originating
from the central accreting object or that a preexisting field
can stay in the disk for a period of time comparable to a disk
lifetime and sustain the MRI on this timescale. Is it possible
to obtain a sustained turbulent magnetized state in that case
? The recent discovery by Donati et al. (2005) that proto-
planetary disks can host their own magnetic field, at least in
their inner regions, indicates that this is a natural question to
ask. As mentioned earlier, answering this question requires
us to understand if (MHD) dynamo action is possible in a
Keplerian shear flow, which is a rather involved problem in
view of the current knowledge in dynamo theory. Let us try
to make this point more evident, and assume that there is
some undetermined form of dynamo action in a disk, which
makes magnetic field perturbations grow in time. Such fluc-
tuations are very likely to trigger the MRI very quickly (the
instability develops in weak-field regimes), showing the im-
brication of the dynamo process and the MRI. Besides, the
process by which MRI works is the magnetic braking of
orbiting fluid particles, a fundamentally dynamical process
that is not present in kinematic dynamos. Therefore, if dy-
namo action is present in the system, it must be afundamen-
tally nonlinear dynamo. To cite Hawley & Balbus (1992),
who first noticed that point, ”the use of a kinematic dynamo
model is inappropriate for an accretion disk [...] The tur-
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bulence is driven by the very forces [Lorentz forces] the
kinematic dynamo excludes from the outset”. Even though
this kind of dynamo looks fairly unusual, Brandenburg et al.
(1995), Stone et al. (1996) and Hawley, Gammie & Bal-
bus (1996) demonstrated its existence. In particular, Hawley
et al. (1996) compare the results of experiments in two and
three dimensions, with or without a Lorentz force term, to
illustrate very clearly the previous points. Some important
limitations of these simulations have however recently been
pointed out (Fromang & Papaloizou 2007a). If they do not
challenge the existence of the MRI dynamo process, at least
at large magnetic Prandtl numbers (Fromang et al. 2007b),
they do however question its efficiency and demonstrate that
how the MRI dynamo works remains a largely open ques-
tion that deserves further investigation.

1.3 Outline

The first goal of the present paper is to provide connexions
between the two forementioned hydrodynamic and MHD
problems, which are individually discussed in detail in Rin-
con et al. (2007a) and Rincon, Ogilvie & Proctor (2007b).
As will be shown in Sect. 2 and Sect. 3, this comparative
approach is motivated by several important similarities be-
tween the two problems, namely hardwired nonlinearity and
linear non-normality. In Sect. 2, we first discuss the dynami-
cal principles of transition in linearly stable shear flows and
show that this problem can be viewed as a nonlinear “hy-
drodynamic dynamo” problem analogous to an MHD dy-
namo problem. This allows us to point out the limits of
the analogies between nonlinear hydrodynamic instability
in anticyclonic Rayleigh-stable shear flows and non-rotating
wall-bounded shear flows and to question the existence of
a subcritical transition in Keplerian flows. We then make
use of similar methods to address the MRI dynamo problem
and to illustrate the concept of the nonlinear self-sustaining
MHD process (Sect. 3). We then move to the second ma-
jor goal of this paper, which is to show that the subcritical
dynamo concept is a very generic one that applies to many
types of shear flow problems. This is done in Sect. 4, where
we also discuss the relations between this dynamo model
and more standard mean-field models such as theαΩ dy-
namo. Finally, based on these results and recent numerical
results, notably simulations of MRI turbulence in the dy-
namo regime, we suggest a possible scenario for the MRI
dynamo at largeRe andRm involving small-scale dynamo
action (Sect. 5). The paper ends with a brief conclusion.

2 Hydrodynamic transition in shear flows

In this Section, we start by setting up a very simple hydro-
dynamic model problem, namely incompressible rotating
plane Couette flow, to show that subcritical hydrodynamic
transition to turbulence in some particular differentially ro-
tating flows can be analysed using dynamo arguments, i.e.
in terms of dynamical exchanges between “poloidal” and

Fig. 1 Geometry of rotating plane Couette flow.

“toroidal” components of velocity field fluctuations with va-
nishing spatial average. We then describe how transition
to turbulence is actually thought to work in non-rotating
shear flows that are linearly stable for all finite values of the
Reynolds numbers using this dynamo analogy1. We finally
build on these results to discuss the possibility of a simi-
lar hydrodynamic transition in linearly stable rotating shear
flows such as a Keplerian flow. The analysis performed here
also sets the scene for the MHD part of the paper and the
following discussion.

2.1 Incompressible rotating plane Couette flow

Incompressible rotating plane Couette flow, represented in
Fig. 1, is a local approximation of differentially rotating
flows such as those encountered in accretion disks. The flow
is characterized by a background velocity fieldU = Sy ex

with linear shearS driven by countermoving walls situated
at y = ±d and by a global, uniform in space, rotation vec-
torΩ = Ω ez. The Reynolds number for this flow is usually
defined in the transition literature as

Re =
Sd2

ν
(1)

whereν is the kinematic viscosity. We can also define a
rotation number,

RΩ = −
2Ω

S
, (2)

which is positive for cyclonic flows (shear flow vorticity
parallel toΩ) and negative for anticyclonic flows (shear
flow vorticity anti-parallel toΩ) and is related to a param-
eter commonly used in accretion disk theory to character-
ize differential rotation,q = −d lnΩ/d ln r, according to
RΩ = −2/q. A non-rotating flow hasRΩ = 0, a flow on
the Rayleigh line hasRΩ = −1 and a Keplerian flow has
RΩ = −4/3. The flow encounters an axisymmetric cen-
trifugal instability for−1 < RΩ < 0. Our aim is to high-
light the generic dynamo nature of this problem forRΩ = 0
andRΩ = −1 and its potential relevance to accretion disks

1 The term “dynamo” has already been used in a hydrodynamic context
to describe the generation of large-scale vorticity fluctuations by small-
scale helical turbulence (the AKA effect, see for instance Moiseev et al.
1988), which is a distinct phenomenon from what we describe in this paper.
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and stars, so we choose to refer to the streamwise direc-
tion x as being the toroidal direction and to the(y, z) plane
as being the poloidal plane. We further use the word ax-
isymmetric to qualifyx-independent perturbations (in the
accretion disk terminology,x corresponds to the azimuthal
direction,−y to the radial direction, andz to the vertical
direction). Denoting by an overbar an average overx, any
velocity field perturbation of the background flow is sepa-
rated into an axisymmetric part̄u and a non-axisymmetric
“wave” partu′,

u = ū + u
′ with ∇ · u = ∇ · ū = ∇ · u

′ = 0. (3)

Note that bothu andu
′ are chosen to have zero volume av-

erage, so that we have a form of dynamo problem for the
perturbations of the background Couette flow in the cen-
trifugally stable regimes. Usingd and1/S as space and time
units, the momentum equation for the axisymmetric toroidal
ūx and poloidal̄up components of the velocity field read

(∂t + ūp · ∇) ūx + (RΩ + 1)ūy =
1

Re
∆ūx + Fx, (4)

(∂t+ūp ·∇) ūp−RΩūx ey = −∇pp̄+
1

Re
∆ūp+Fp, (5)

where

F = −u′ · ∇u′ (6)

is the mean force associated with the non-axisymmetric part
of the flow andp is the pressure divided by the constant
density.ūp is a solenoidal two-dimensional velocity field
that can be written in terms of a streamfunctionψ(y, z, t)
with vanishing volume average:

ūp = ∇× (ψ ex) . (7)

The associated toroidal vorticity reads

ωx = −∆ψ. (8)

Taking the curl of Eq. (5) to eliminate eliminatēp, one ob-
tains

∂tūx −
∂(ψ, ūx)

∂(y, z)
= −(RΩ + 1)ūy +

1

Re
∆ūx + Fx , (9)

∂tωx −
∂(ψ, ωx)

∂(y, z)
= −RΩ∂zūx +

1

Re
∆ωx + ex · ∇ × F

(10)

where∂(, )/∂(, ) denotes the Jacobian. It can be seen that
bothūx andωx have linear source or sink terms proportional
to ūy and∂z ūx, and a fully nonlinear source or sink term
associated with the axisymmetric part of the advection term
F. This observation also stand for shear profiles different
from that of plane Couette flow.

2.2 Subcritical transition in non-rotating shear flows

Let us now specialize to interesting particular cases and first
concentrate on the non-rotating caseRΩ = 0. The phe-
nomenology of transition in non-rotating shear flows has
been a mystery since the end of the19th century and the
experiments by O. Reynolds (1883). For a long time, the
experimental observation that wall-bounded shear flows en-
counter transition to turbulence at modestRe values could
not be reconciled with theory, which could only predict the
absence of linear instability in many of these flows. There is
now some significant evidence that the transition is related
to a nonlinear mechanism christened the self-sustaining pro-
cess (SSP), which was first described in detail by Hamilton
et al. (1995). The actual complexity of this transition and its
sensitivity to initial conditions depends on the background
shear profile (e.g. plane Couette flow, plane Poiseuille flow,
pipe Hagen-Poiseuille flow or Blasius boundary layer) and
on the structure of the phase space of the corresponding dy-
namical system (i.e. the presence of fixed points, homoclinic
or heteroclinic orbits, etc.). Transition is currently best un-
derstood for plane Couette flow, which encouters a simple
saddle-node bifurcation (Rincon et al. 2007a; Wang, Gib-
son & Waleffe 2007; Viswanath 2007), while pipe Hagen-
Poiseuille flow, for instance, seems to encounter a complex
chaotic transition whose limits in parameter space are now
referred to as “the edge of chaos” (Schneider, Eckhardt &
Yorke 2006, 2007).

A nice way of describing the SSP is to think of it in
terms of subcritical “hydrodynamic dynamo”. We first note
that forRΩ = 0, only ūx has a linear “source” term. This
term is an hydrodynamic analogue of theΩ-effect of dy-
namo theory. It is actually called the lift-up effect in the
transition literature (Ellingsen & Palm 1975; Landahl 1980)
and is of course a purely axisymmetric effect which leads to
algebraic linear amplification of the toroidal velocity field.
However, as for theΩ-effect, this is only a transient effect,
for in the absence of a poloidal source term to regenerate
the poloidal velocity field, viscous damping ultimately kills
both poloidal and toroidal velocity fields on a viscous time
scale. As can be seen in Eq. (10) there is no linear poloidal
velocity source term in the absence of rotation, so that the
only way poloidal motions can be sustained is via the non-
linear interaction term∇× F, which is only non-vanishing
if the total flow as a non-axisymmetric part. This is clearly
a form of antidynamo theorem for non-rotating linearly sta-
ble hydrodynamic shear flows. Therefore, the dynamo ques-
tion is to ask how non-axisymmetry can emerge in such
a system, leading to a self-sustaining solution via nonlin-
ear feedback on poloidal motions. To answer this question,
one has to look at what the lift-up effect actually produces.
Starting with aO(1/Re) poloidal velocity field depend-
ing on y andz, the lift-up effect has the ability to gener-
ate on aO(Re) timescale a toroidal velocity field also de-
pending ony andz with anO(1) amplitude, comparable to
that of the background shear flow. There is a lot of experi-
mental evidence for this so-called “streaks” field (Hamilton
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et al. 1995). As this field is modulated inz, it is actually a
finite-amplitude shear flow that contains inflexion points in
that direction, and is therefore unstable to non-axisymmetric
Kelvin-Helmholtz type instabilities. Waleffe (1995b, 1997
1998) showed that the three-dimensional velocity field as-
sociated with these instabilities leads to aF term that can
regenerate the weak poloidal velocity field. In other words,
Reynolds stresses generated by the secondary instability in
its weakly nonlinear regime can close the dynamo loop. For
a givenRe value, it is possible to show that there is a contin-
uous family of self-sustained solutions with different aspect
ratio, i.e. different periodicity inx andz.

A very important requirement for the process to work is
that there must be a very good spatial overlap (correlation)
between the nonlinear interaction termF and the axisym-
metric poloidal velocity. The spatial shape of the feedback
is notably very sensitive to the geometry of the flow and to
the wavelength of the instability mode. A second important
remark is that the process is fully nonlinear and subcriti-
cal for two reasons. First, for a givenRe, a finite amplitude
O(1/Re) poloidal field is required to initiate the process.
Such an amplitude is of course extremely small at very large
Re but can never be taken infinitesimally small as would be
the case for a linear instability (Nagata (1990) described the
corresponding branch of nonlinear solutions - which had not
been described in terms of a SSP at that time - as a “bifur-
cation from infinity”). The second reason is that the feed-
back term is a fully nonlinear interaction term due to the
non-axisymmetric instability mode. To summarize the pro-
cess in terms of an initial value problem, let us enumerate
the three elements that are required to obtain a subcritical
“hydrodynamic dynamo” in a non-rotating shear flow:

1. linear transient amplification up toO(1) amplitudes of
an axisymmetric toroidal velocity field, from a seed but
finiteO(1/Re) axisymmetric poloidal velocity field,

2. non-axisymmetric linear shear instability of the finite-
amplitude,z-modulated axisymmetric toroidal velocity
field,

3. regeneration of the weak axisymmetric poloidal velocity
field by nonlinear self-interactions of the non-axisym-
metric instability mode.

An equivalent description of the SSP can be given in terms
of a coherent structure (Rincon et al. 2007a) which, for pla-
ne Couette flow, is a saddle-node fixed point in phase space.
The initial value problem formulation described above then
consists in following phase space trajectories sticking as
much as possible to the stable manifold of the fixed point
and approaching it closely before being ejected along its
unstable manifold, towards a turbulent attractor. A very nice
graphical representation of this process is given by Gibson,
Halcrow and Cvitanović (2008).

2.3 Subcritical transition in rotating shear flows

Is a subcritical hydrodynamic transition possible in linearly
stablerotating shear flows ? As mentioned in the introduc-
tion, the observation that their non-rotating linearly stable
counterparts become turbulent at modest values ofRe has
been used as an argument in favour of such a scenario for
a long time. Now that transition in non-rotating flows is
better understood in terms of the SSP, a natural question
to ask is whether a similar process can occur in rotating
shear flows. This question was addressed by Rincon et al.
(2007a). Here, we summarize the main points of this study
using the subcritical dynamo phenomenology. The starting
point is that the linearized non-rotating case has an inter-
esting linearly stable rotating counterpart, the Rayleigh-line
regimeRΩ = −1 (we note in passing that the Rayleigh-
line regime is similar to the Keplerian regime in the sense
that both regimes are anticyclonic and linearly stable. The
Rayleigh line is of course closer to the centrifugal instabil-
ity region). ForRΩ = −1, the linear source term in Eq. (9)
is exactly vanishing, but there is still a linear Coriolis ac-
celeration term in Eq. (10). From the linear point of view,
this means that the lift-up effect has an exact analog on the
Rayleigh line. This effect, christened the anti lift-up effect
by Antkowiak & Brancher (2007), has the ability to tran-
siently generate a finite-amplitude axisymmetric poloidal
velocity field from a seedO(1/Re) axisymmetric toroidal
velocity field. In other words, streaks now generate rolls.
The fact that such an axisymmetric linear transient amplifi-
cation effect is present on the Rayleigh line is certainly en-
couraging for the prospect of a rotating SSP, but the full pic-
ture requires nonlinearity to come into play. In that respect,
the Rayleigh line regime appears to be far less favourable
than the non-rotating case, for two important reasons. The
first one is that the presence of a finite-amplitude axisym-
metric poloidal flow on the Rayleigh line, unlike that of the
axisymmetric toroidal flow in the non-rotating case, causes
a strong poloidal nonlinear advection of the total axisym-
metric flow via the nonlinear terms after∂t in Eqs. (4)-(5)
as soon as the poloidal flow reaches a significant ampli-
tude by means of the anti lift-up effect. This renders the
axisymmetric part of the flow much more complex than in
the non-rotating case. The second reason is that the non-
axisymmetric instabilities of the resulting nonlinear axisym-
metric flow do not generate a nonlinear feedback that would
show a good spatial correlation with the seed streaks field.
These instabilities are actually quite different from those
encountered in the non-rotating case for now the axisym-
metric flow is dominated by its poloidal component instead
of its toroidal component which was unstable to shearing
instabilities in the non-rotating regime. Overall, we found
it impossible to proceed as in the non-rotating case to ob-
tain fully nonlinear three-dimensional steady solutions of
the fluid equations.

The current status regarding stability with respect toRΩ

in rotating plane Couette flow is depicted in Fig. 2. Sev-
eral comments on this figure are in order before we close
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the hydrodynamic Section. First, it is important to note that
subcritical solutions obtained in the non-rotating case can be
continued nonlinearly into the anticyclonic linearly unstable
regime, where they take on the form of nonlinear wavy Tay-
lor vortices (instabilities of the Taylor vortices that result
from the centrifugal instability in this regime). They can
also be continued into the cyclonic linearly stable regime
which is therefore nonlinearly unstable. A similar behaviour
cannot be found in the neighbourhood of the Rayleigh line,
demonstrating that a symmetry between the cyclonic regime
and its anticyclonic counterpart beyond the Rayleigh line
does not exist in three dimensions (the absence of this sym-
metry was also demonstrated by Lesur & Longaretti (2005)
using direct numerical simulations). The second comment
is that in the case of a general differential rotation profile
for whichRΩ is different from0 or −1, there is no lift-up
or anti lift-up effect anymore. In the Keplerian case, for in-
stance, only non-axisymmetric transient growth (also some-
times called swing amplification) is possible, which makes
it pretty much useless to think in terms of a poloidal and
toroidal description in that case. The only way the Keple-
rian regime could be related to the previous type of sub-
critical hydrodynamic dynamo would be to make a nonlin-
ear connexion with a SSP on the Rayleigh line which, as
we showed, probably does not exist. It therefore appears
that subcritical transition in anticyclonic shear flows, ifany,
has only very little to do with subcritical transition in non-
rotating or cyclonic shear flows. The possibility of a sub-
critical dynamo mechanism relying on instabilities of tran-
siently amplified non-axisymmetric structures remains open
but recent high-resolution simulations have not been able to
isolate such a physical process either (Shen, Stone & Gar-
diner 2006).

3 Subcritical MRI dynamo in Keplerian flow

We now move to the MHD problem of uncovering the phys-
ical processes that give rise to what is called MRI dynamo
action in Keplerian shear flows. For this purpose, we keep
our rotating plane Couette flow description, settingRΩ =
−4/3. This problem has much in common with the non-
rotating hydrodynamic problem, which makes it appealing
to attempt to apply the SSP phenomenology again. First, as
mentioned in the introduction, any MRI dynamo must be
intrinsically nonlinear, because the Lorentz force is manda-
tory for the MRI. Besides, since magnetic fields feel shear
but not Coriolis acceleration, it is possible to algebraically
(and transiently) amplify axisymmetric toroidal fields from
poloidal fields through theΩ effect in the same manner as
the amplification of streaks from rolls in the non-rotating
hydrodynamic problem (see Livermore & Jackson (2004)
for a discussion on non-normality in MHD). One might then
ask if the toroidal magnetic field encounters non-axisym-
metric instabilities such as an MRI and if the nonlinear in-
teractions of such instabilities have the ability to close the

Fig. 2 Stability diagram for rotating plane Couette flow for a
value ofRe in the domain of existence of the self-sustaining pro-
cess. The amplitude of the solutions in this diagram is somewhat
arbitrary but is intended to approximate the behaviour of the shear-
ing rate at the flow boundaries. The TV full line curve is for non-
linear axisymmetric Taylor Vortices arising in the linearly unstable
regime, the dashed WTV lines is for the three-dimensional Wavy
Taylor Vortices bifurcating from the axisymmetric TVs, andSSP
stands for the fixed point associated with the self-sustaining pro-
cess atRΩ = 0. This point can be obtained by direct continuation
of WTVs to RΩ = 0 and the corresponding branch of solutions
can be continued in the linearly stable cyclonic region (seeRincon
et al. (2007a) for further details and references).

dynamo loop by feeding back on the axisymmetric poloidal
field.

It is straightforward to show that the induction part of
the MHD rotating plane Couette flow problem takes on a
form very similar to the momentum equation for the non-
rotating hydrodynamic shear flow problem. For this pur-
pose, we introduce the magnetic Reynolds number

Rm =
Sd2

η
, (11)

whereη is the magnetic diffusivity, and we decompose the
magnetic fieldb in terms of an axisymmetric part̄b and a
non-axisymmetric wave partb′

b = b̄ + b
′ with ∇ · b = ∇ · b̄ = ∇ · b

′ = 0 . (12)

Note that both̄b andb
′ are chosen to have zero volume av-

erage, so that we are dealing with a genuine dynamo prob-
lem (no net magnetic flux is threading the domain). Sim-
ilarly to the hydrodynamic problem, we introduce a flux
functionχ(y, z, t) to describe the axisymmetric part of the
poloidal magnetic field̄bp

b̄p = ∇× (χex) . (13)

The induction equation forχ and for the axisymmetric to-
roidal component of the magnetic fieldb̄x reads

∂tb̄x− ex·∇×(ū × b̄) = b̄y+ ex·∇×E+
1

Rm
∆ bx , (14)

∂tχ−
∂ (ψ, χ)

∂ (y, z)
= Ex +

1

Rm
∆χ , (15)
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whereψ has been defined in Eq. (7), the first linear term on
the right hand side of Eq. (14) stands for magnetic induction
by the shear flow and

E = v′ × b′ (16)

is the axisymmetric part of the electromotive force (EMF)
generated by the nonlinear interaction between the wave
parts of the velocity and magnetic fields. It is straightfor-
ward to notice that Eqs. (14)-(15) share the most interesting
characteristics of Eqs. (9)-(10), namely linear non-normali-
ty in the toroidal part and nonlinear feedback of three-di-
mensional structures in the poloidal part. Taking once again
the point of view of an initial value formulation and start-
ing from an axisymmmetricO(1/Rm) poloidal magnetic
field (expressed in terms of an Alfvén velocity), an axisym-
metricO(1) toroidal field can be transiently generated on
a timescaleO(Rm) by theΩ effect. Rincon et al. (2007b)
showed (solving the full MHD equations, including a Lo-
rentz force in the momentum equation) that such a toroidal
field encounters a non-axisymmetric instability. There are
several instability modes with different symmetry proper-
ties which can be predicted from the symmetries imposed
on the axisymmetric fields. The important point is that for
some of these modes, nonlinear interactions give rise to a
toroidal EMF which axisymmetric projection has the ability
to regenerate the initial poloidal seed field, thereby leading
to dynamo action. We interpreted these instabilities in terms
of an MRI of the axisymmetric toroidal field: the axisym-
metric poloidal field here is too weak to be MRI-unstable
(only very large poloidal wavenumbers would be unstable,
and they are damped by viscous and resistive terms in our
dissipative set-up). Another indication is that the instabili-
ties are purely non-axisymmetric, which is in line with the
MRI instability growth rateγ obtained from the local dis-
persion relationγ ∼ k · VA where the Alfvén velocity
VA would be dominated by the toroidal field. Also, the
modes are spatially centred and symmetric or antisymmetric
with respect to the local extrema of the toroidal field in the
poloidal plane. Finally, we noticed that the presence of the
instability required an MRI unstable rotation to be present.

Overall, we found it possible to obtain nonlinear fixed
points in the same way as in the hydrodynamic problem,
but only for a very restricted range of low values ofRe.
In this regime, non-axisymmetric modes have real eigen-
values corresponding to purely imaginary frequencies (the
modes arise from a steady pitchfork bifurcation). The full
three-dimensional nonlinear solution that can be computed
from these modes therefore takes the form of a steady so-
lution (equivalently a fixed point). For larger values ofRe,
we observed collisions between pairs of real eigenvalues of
the instability modes, which turn into complex conjuguate
pairs (the corresponding modes subsequently arise from a
Hopf bifurcation). In such a situation, we expect nonlin-
ear travelling waves to be present instead of steady solu-
tions, similarly to what happens in the hydrodynamic prob-
lem for Hagen-Poiseuille flow (Wedin & Kerswell 2004)

or plane Poiseuille flow (Waleffe 2001). These travelling
waves can in principle be captured numerically exactly like
steady solutions (by performing a Galilean transformation
and adding the phase speed as an extra unknown in the
problem). In the present MHD problem, however, such a nu-
merical solution cannot be obtained easily because a sym-
metry used to decrease the computing costs is lost when
the mode eigenvalues turn into complex conjugate pairs.
Seeking coherent time-dependent solutions to the subcrit-
ical MRI dynamo problem using direct time-stepping tech-
niques therefore looks more promising than using contin-
uation techniques such as those described in Rincon et al.
(2007a,2007b). Such an investigation is currently underway
(Lesur & Ogilvie 2008).

Like the hydrodynamic self-sustaining process, the pro-
cess described above is genuinely nonlinear. First, a small
but finite-amplitude seed axisymmetric poloidal field is re-
quired to obtain a sufficiently large axisymmetric toroidal
field to trigger non-axisymmetric instabilities (but sufficien-
tly weak at the same time for an MRI to be possible). Be-
sides, two nonlinear terms, a Lorentz force and a fluctu-
ating EMF, are needed for the instability to develop and
for the feedback on the axisymmetric poloidal field to be
possible. Note that the Lorentz force is a nonlinear term
in that context because the axisymmetric toroidal field that
becomes MRI-unstable is part of the total magnetic field
perturbation (it has zero net-flux and would decay on a re-
sistive timescale without the three-dimensional instability
feedback). To summarize this self-sustaining MHD process
by means of an initial value description, let us restate the
three elements that are required to obtain a subcritical MRI
dynamo in a Keplerian shear flow:

1. linear transient amplification of an axisymmetric toroi-
dal magnetic field by theΩ effect acting on aO(1/Rm)
seed axisymmetric poloidal magnetic field,

2. non-axisymmetric linear instability (MRI) of the finite-
amplitude axisymmetric toroidal magnetic field,

3. regeneration of the seed axisymmetric poloidal magne-
tic field by nonlinear self-interactions of the non-axi-
symmetric instability mode.

As discussed just before, an equivalent description of this
SSP can be done in terms of steady or travelling coherent
structures (Rincon et al. 2007b). A tentative interpretation
of the role of such coherent structures in simulations of MRI
turbulence in zero net-flux set-ups is suggested in Sect. 5.

4 Connexions with other dynamo models

The phenomenology of the subcritical shear dynamo sce-
nario presented above is obviously not specific to Keplerian
shear flows. Dynamos models relying on non-axisymmetric
hydromagnetic instabilities in differentially rotating flows
have been thought for in the context of the geodynamo for
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instance (Fearn & Proctor 1983, 1984, 1987). In this Sec-
tion, we show that several recent dynamo models introduced
by Cline, Brummell & Cattaneo (2003), Spruit (2002) and
Miesch (2007a) that are relevant to astrophysics fit perfectly
into the subcritical dynamo concept. We then attempt to
compare the subcritical scenario with more standard dy-
namo models such as theαΩ dynamo and to provide some
connexions between these two views. Finally, we comment
briefly on another form of subcritical dynamo recently dis-
covered by Ponty et al. (2007).

4.1 Dynamos driven by non-axisymmetric instabilities

A fundamental ingredient in the subcritical dynamo loop
presented in the previous sections is the possibility of trig-
gering non-axisymmetric instabilities in the system. Work-
ing in the Keplerian regime allows for one such instability,
the MRI, to exist, while the subcritical hydrodynamic tran-
sition in non-rotating shear flows relies on a non-axisym-
metric instability triggered by a spatially modulated shear
flow profile. The interesting point is that there are many
other systems where non-axisymmetric MHD or hydrody-
namic instabilities are present. Here, we will focus on sev-
eral dynamo models that have recently been discussed in
the astrophysical literature (we will come back to the pre-
viously mentioned geodynamo model of Fearn & Proctor
(1984, 1987) in the next paragraph). An interesting example
is that of the shear-buoyancy dynamo discovered by Cline
et al. (2003) using direct numerical simulations (a typical
initial value problem), which can be summarized in the fol-
lowing way:

1. linear transient amplification of an axisymmetric toroi-
dal magnetic field by theΩ effect acting on a seed ax-
isymmetric poloidal magnetic field,

2. axisymmetric buoyancy instability of the toroidal field
inducing an axisymmetric poloidal flow,

3. linear transient amplification of an axisymmetric toroi-
dal velocity field from the axisymmetric poloidal flow
(thereby steepening the original shear),

4. non-axisymmetric linear instability (Kelvin-Helmholtz)
of the steeper axisymmetric toroidal velocity field,

5. regeneration of the seed axisymmetric poloidal magne-
tic field by nonlinear self-interactions of the non-axi-
symmetric instability mode.

This loop looks very similar to the subcritical dynamo loops
described earlier and indeed Cline et al. (2003) clearly no-
ticed that their dynamo was intrinsically nonlinear. Several
other elements in their paper further demonstrate that these
dynamos proceed in the same way. First, Cline et al. (2003)
mention a poloidal magnetic field threshold depending on
Rm under which no dynamo action is possible, very much

like in the Keplerian problem (in which the threshold am-
plitude scales like1/Rm) and in the non-rotating hydrody-
namic problem (a1/Re threshold amplitude is possible in
that case but this point is still a matter of debate though, see
Kreiss, Lundbladh & Henningson (1993), Baggett & Tre-
fethen (1997) and the experiments by Peixinho & Mullin
(2007)). Since the threshold is determined by the physics
of algebraic growth via theΩ effect, which is present in all
these problems, we suspect that an axisymmetric poloidal
magnetic field amplitude scaling like1/Rm is also required
in the shear-buoyancy case for the dynamo to be triggered.
Cline et al. (2003) also report both steady and cyclic regimes
depending on their parameters, which is in line with our pre-
vious argument regarding the possibility of having nonlin-
ear travelling waves in the largeRe regime of the Keplerian
problem. We finally note that an important reason why the
Cline et al. (2003) dynamo works is because they deal with
a non-rotating system, meaning that the poloidal velocity
field perturbations associated with the magnetic buoyancy
instability are getting wound up into strong toroidal velocity
field perturbations by the lift-up effect (step 3 of their pro-
cess). It is that toroidal velocity field that renders the total
shear profile unstable to non-axisymmetric Kelvin-Helm-
holtz instabilities, which in turn produce the feedback. As
mentioned in Sect. 2, it is not possible anymore to produce
a strong axisymmetric toroidal velocity field and the associ-
ated Kelvin-Helmholtz instability in the presence of a global
rotation rate comparable to the shearing rate. In such a rotat-
ing regime, their dynamo should therefore disappear unless
an extra non-axisymmetric physical mechanism kicks in.

Another problem which takes on the same form is that
of dynamo action in stellar radiation zones. Spruit (2002)
suggested the existence of a dynamo relying on the non-
axisymmetric Tayler (1973) - Pitts & Tayler (1985) insta-
bility of toroidal magnetic fields generated by theΩ effect.
This scenario seemed to be confirmed by numerical simu-
lations performed by Braithwaite (2006), but this view has
recently been challenged by Zahn, Brun & Mathis (2007)
and Gellert, Rüdiger & Elstner (2008) on the basis of di-
rect numerical simulations. Zahn et al. (2007) do observe
the amplification of an axisymmetric toroidal field from a
seed poloidal field via theΩ effect and the subsequent oc-
currence of a non-axisymmetric instability, exactly like in
the previous dynamo problems, but they fail to obtain a
significant feedback of the instability on the axisymmetric
poloidal field, whose fate is therefore resistive decay. The
critical point in the scenario is therefore how the feedback
is produced. Spruit (2002) and Braithwaite (2006) argued
that the feedback is done directly by an energy exchange
between the non-axisymmetric instability mode and either
the axisymmetric poloidal or toroidal field. This argument
has been criticized by Zahn et al. (2007), who pointed out
that the only way to obtain a feedback from anm = 1
component into anm = 0 component was through non-
linear interactions. So, the current problem to understand
whether this dynamo can operate is to determine whether
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such a regenerating nonlinear feedback is possible in the
system. Our experience with the MRI problem and the hy-
drodynamic problem is that this is extremely sensitive to
the spatial correlation between the nonlinear feedback term
and the original axisymmetric poloidal field. This correla-
tion is quite sensitive to the aspect ratio of the instability
mode, which depends on the poloidal localization of the
mode and its non-axisymmetric wavenumber. In the sim-
ulations by Zahn et al. (2007), the instability is of course
localized where the toroidal field is strong, i.e. in a very nar-
row zone of large differential rotation, which covers a small
poloidal area compared to the total poloidal area covered by
the poloidal magnetic field introduced originally. A more
favourable situation for the Spruit dynamo to be found (but
not necessarily a more realistic one from the astrophysical
point of view !) probably requires a large poloidal overlap
between the differential rotation zone and the axisymmet-
ric poloidal fied. This way, the resulting non-axisymmetric
instability of the toroidal field generated throught theΩ ef-
fect would probably cover a larger poloidal area and feed-
back more coherently on the axisymmetric poloidal mag-
netic field.

We finally briefly mention that another astrophysical sit-
uation in which a subcritical shear dynamo could be oper-
ating is that of the solar tachocline. In the model of Miesch
(2007a), the imposition of a latitudinal shear and the occur-
rence of non-axisymmetric global magnetoshear instabili-
ties (Miesch, Gilman & Dikpati 2007b) like the clamshell
instability provide all the necessary ingredients for sucha
dynamo.

4.2 αΩ and kinematic dynamos

There are clearly major differences between the subcritical
dynamo scenario and a mean-fieldαΩ dynamo scenario.
The first one is the absence of kinematic regime in the sub-
critical case (hence its name). The second one, which is
more qualitative, is that subcritical dynamos discovered so
far take on the form of three-dimensional structures that
are extremely coherent in both time and space, as shown
spectacularly by Cline et al. (2003), while mean-field the-
ory relies on a statistical description of the dynamo process.
Specific differences between theαΩ dynamo and the MRI
dynamo have also been pointed out by Hawley & Balbus
(1992) and Brandenburg et al. (1995).

So, is there a way to reconcile both views somehow ?
One can of course attempt to envision the nonlinear feed-
back of non-axisymmetric instability modes as some form
of mean-field back reaction on the poloidal magnetic field
(see for instance Zahn et al. (2007) and Gellert et al. (2008)
for the case of the Tayler instability). Cline et al. (2003)
however showed that the feedback process in their dynamo
loop could not be cast in the simple mathematical form of an
α term, so it is not clear currently whether one can actually
construct a standard mean-field model from a subcritical dy-
namo in general. A possible route towards a unified descrip-
tion is given by Moffatt (1970), who attempted to compute

anα from an ensemble of inertial waves. In his model, each
individual wave gives rise nonlinearly to a small average
EMF. A random ensemble of such waves can generate a
netα effect provided that the velocity field associated with
the waves lacks reflexional symmetry. Similarly, one can at-
tempt to calculate anα effect or at least a toroidal EMF
from a collection of non-axisymmetric instabilities, or to
solve simultaneously for an axisymmetric mean-field model
and a single-mode non-axisymmetric instability, taking the
EMF produced by the non-axisymmetric instability as an in-
put for the mean-field model. Such a so-called2 1

2
D model

was introduced in the context of the geodynamo by Fearn &
Proctor (1984, 1987). In their case, the non-axisymmetric
instability is a convective instability in a differentially rotat-
ing sphere, so once again all the ingredients for a subcritical
shear dynamo are present in this problem. They failed to
obtain dynamically consistent steady dynamo solutions us-
ing an iterative solver but Jones, Longbottom & Hollerbach
(1995), following the same idea, found time-dependent so-
lutions to the same problem using direct time-stepping.

We finally note that depending on the symmetries of the
problem, it is possible that some modes exert some destruc-
tive feedback instead of a regenerating one, so that the sub-
critical dynamo effect could disappear on average in some
cases. A way to avoid this kind of cancellation on aver-
age is to impose some form of global symmetry breaking
in the system, like a global rotation of the system. We note
however that a coherent dynamo process consisting of indi-
vidual events (like the buoyant rise of individual magnetic
flux tubes) does not require this kind of ingredient. For in-
stance, the recurrent but well-separated bursting events dur-
ing which turbulence gets generated all of a sudden in oth-
erwise quiescent shear flows (some form of time-dependent
“hydrodynamic dynamo”) have often been associated with
the hydrodynamic SSP (Waleffe 1997; Jimenez & Pinelli
1999; Jimenez & Simens 2001) which does not rely on any
form of imposed symmetry-breaking.

4.3 Subcritical dynamo in the Taylor-Green flow

Before we close this Section, we briefly discuss another type
of subcritical dynamo discovered recently by Ponty et al.
(2007) using a three-dimensional Taylor-Green forcing for
the velocity field. The fundamental difference between their
problem and the problem discussed here is that we do im-
pose a global shear while they only have local velocity gra-
dients in their flow. An important consequence of imposing
a global shear in the system is that the subcritical dynamo
branches bifurcate “from infinity” (Nagata 1990) while in
their problem, there is a real linear dynamo bifurcation with
a well-defined critical value forRm. Their dynamo is sub-
critical in the sense that finite-amplitude MHD solutions
exist forRm below its finite critical value. They associate
this hysterisis with a nonlinear Lorentz force effect, which
in this respect is quite similar to what occurs in the MRI
dynamo problem. It is possible that the presence of strong
local shear in their model is responsible for subcriticality,
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however the two types of subcritical dynamos look quite
distinct at the moment. To make another (far less rigorous)
analogy with hydrodynamic transition problems, their bi-
furcation diagram resembles that of the subcritical bifurca-
tion of Tollmien-Schlichting waves in plane Poiseuille flow
(Zahn et al. 1974 ; Herbert 1976 ; Orszag & Patera 1980),
which is a completely distinct phenomenon from the self-
sustaining process in the same flow (Waleffe 2001).

5 Subcritical shear dynamos and small-scale
dynamo action

A final point that is worth discussing is to what extent the
self-sustaining coherent dynamo structures described in this
paper are important to understand dynamo action in a highly
turbulent medium. It has been shown that the hydrodynamic
self-sustaining process is a cornerstone of transition to tur-
bulence in linearly stable shear flows and that this process
leaves an imprint on the statistical quantities (e.g. transport)
associated with the turbulent flow after the transition. As
discussed by Lesur et al. (2005), the hydrodynamic self-
sustaining process in a shearing box is a fundamentally lar-
ge-scale process that continuously extracts energy from the
shear (see their Fig. 9 and the corresponding text). In other
words, the SSP acts in the same way as a standard linear
instability from the turbulence point of view, by forcing the
system at large scales. That nonlinear instabilities in shear
flows extract energy from the shear in the same way as lin-
ear instabilities extract energy from a general free energy
source is further supported by inspection of the energy bud-
gets and of the behaviour of structure functions (including
those related to the forcing) in a turbulent flow driven by
a linear instability like turbulent convection (Rincon 2006)
and in a turbulent shear flow with no walls where the tran-
sition process is fundamentally subcritical (Casciola et al.
2003). The energy cascade clearly proceeds in a very simi-
lar way for both types of forcing.

We conjecture that self-sustaining MHD processes gen-
erated by subcritical shear dynamos are also confined to
large scales in the limit of largeRe, and that their main
role is to drive MHD turbulence continuously by extracting
energy from the shear. If this was to be true, then an impor-
tant consequence would be that small-scale dynamo action
should take place exactly in the same way in MRI turbu-
lence with zero net-flux and in turbulence driven by other
means (artificial forcing, thermal convection, MRI with net-
flux), provided that there is a sufficient scale separation be-
tween the forcing scales of the turbulence and the small-
scale dynamo scales. There are now some clear numerical
indications - including MRI dynamo simulations - that some
universality with respect to the forcing process exists forthe
small-scale dynamo atPm > 1. In this regime, the fore-
mentioned scale separation is easy to obtain, because the
small-scale dynamo relies on the viscous scale eddies (see
Zel’dovich et al. (1984) for theory and Schekochihin et al.
(2004) for an exhaustive numerical study). The numerical

results obtained by Schekochihin et al. (2005) for idealized
large-scale random forcing, by Christensen, Olson & Glatz-
maier (1999) and Cattaneo (2003) for convection and by
Fromang et al. (2007b) for a MRI dynamo set-up all show a
similar behaviour for the dynamo threshold in theRe−Rm
plane. The results presented by Fausto Cattaneo at the re-
cent Catania workshop on MHD also show that snapshots
taken from turbulent convection simulations and MRI dy-
namo simulations in a numerical Taylor-Couette experiment
at largeRe andRm are almost indistinguishable. The mag-
netic field maps atPm = 1 of Schekochihin et al. (2004)
and the ones by Fromang et al. (2007b) atPm = 2 (in the
isotropic plane of their simulation labeled(x, z) in their no-
tation, corresponding to(−y, z) here) also look very simi-
lar. Overall, these new results tend to support our conjecture
that there is a large-scale subcritical process involving the
MRI that drives turbulence, and that this turbulence in turn
operates as an independent small-scale dynamo at moderate
to largePm. We note in passing that the situation at low
Pm is more tricky since it is currently unknown whether
the small-scale dynamo in that regime has something to do
with the forcing scales of the turbulence or if it is universal
with respect to the forcing mechanism (Schekochihin et al.
2007).

An important final remark regarding the MRI dynamo
problem is that the estimate for MRI growth ratesγ ∼ VA ·

k predicts that even extremely small scales should be unsta-
ble to the MRI in the presence of very weak fields, casting
some doubt on the argument that the MRI dynamo could be
forced mostly at large scales in the limit of largeRe and
Rm. We note that the local MRI analysis, as any local anal-
ysis, is only valid when the scale of the background field is
far larger than that of the instability. In this respect, thepre-
vious growth rate estimate does not strictly apply at scales
1/k comparable to those of the strongly tangled fields ob-
served in MRI turbulence at moderate to largePm, thus
there might well be some cut-off scale in the MRI dynamo
problem below which forcing by the MRI becomes dynami-
cally negligible. Fig. 4 of Fromang et al. (2007b) shows that
the forcing of poloidal magnetic fields in their simulationsis
fairly large-scale and falls off before the viscous scales.The
numerics are unfortunately not yet asymptotic and there is
no published work on the MRI dynamo so far in which an
appreciable scale separation between forcing and dissipa-
tion exists. It is therefore likely that testing our conjecture
numerically and discriminating between different scenarios
will take a few more years.

6 Conclusions

In this paper, we discussed the concept of subcritical dy-
namo action in shear flows and applied it to the problems of
subcritical hydrodynamic transition and MRI dynamo ac-
tion in accretion disks. We further showed that the subcriti-
cal dynamo scenario is relevant to many hydrodynamic and
magnetohydrodynamic problems that involve two basic in-

c© xxxx WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (xxxx) 11

gredients, namely shear and non-axisymmetric instabilities,
and pointed out that the coherence of the process contrasts
with the statistical description on which standard mean-field
theory is based. We finally conjectured that coherent struc-
tures generated by subcritical dynamo action could be a
backbone of MHD turbulence in shear flows in the sense
that their main role would be to extract energy from the
shear to drive turbulence at large scales, thereby leaving
some room in wavenumber space for an independent small-
scale dynamo to proceed.

The whole picture is obviously not complete yet. There
might be a way to unify the statistical mean-field kinematic
picture and the coherent subcritical picture. There is a need
to understand further which role SSPs play in astrophysi-
cal objects such as accretion disks and stars. To this end,
there is a lot of work to do to relate the initial value problem
description of these processes to the phase space structure
of the associated dynamical systems. We have shown that a
description of subcritical MHD dynamos in terms of fixed
points is helpful to understand simple configurations. How-
ever, numerical evidence (Cline et al. 2003) suggests that a
fully chaotic behaviour can be obtained easily for subcriti-
cal MHD dynamos in more complex configurations. There-
fore, it might be necessary to describe these dynamo pro-
cesses in terms of more complicated phase space structures
than fixed points and to attempt to identify transition regions
in parameter space similar to the hydrodynamic “edge of
chaos” (Schneider et al. 2006, 2007). From what we have
learned so far, it is worth emphasizing that creating new
connexions between the shear flow and transition commu-
nity and the dynamo community would undoubtedly prove
extremely helpful to make some important progress on these
matters.
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