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Identifying generic physical mechanisms responsibleHergeneration of magnetic fields and turbulence in difféaéint
rotating flows is fundamental to understand the dynamicswbphysical objects such as accretion disks and starsisin t
paper, we discuss the concept of subcritical dynamo actidrita hydrodynamic analogue exemplified by the process of
nonlinear transition to turbulence in non-rotating wadiiinded shear flows. To illustrate this idea, we describe seoent
results on nonlinear hydrodynamic transition to turbuéeand nonlinear dynamo action in rotating shear flows pentgin

to the problem of turbulent angular momentum transport areton disks. We argue that this concept is very generic and
should be applicable to many astrophysical problems iimgla shear flow and non-axisymmetric instabilities of tdedi
velocity or magnetic fields such as Kelvin-Helmoltz, MRI,ylex or global magnetoshear instabilities. In the light of
several recent numerical results, we finally suggest thatlssly to a standard linear instability, subcritical MHIynamo
processes in high-Reynolds number shear flows could dritient flows that would in turn generate an independent
small-scale dynamo.
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1 Introduction ators is related mathematically to their non-normalitye(Tr
fethen 1993 ; Schmid & Henningson 2000), which makes

1.1 Differential rotation, non-normality and it possible to combine several individually decaying linea

subcriticality eigenvectors into a transiently growing structure that ult

mately has to decay viscously or resistively. The fact that
Differential rotation is a major ingredient of the physids otransient growth is possible in shear flows, combined with
astrophysical objects and plays a central role in dynamo th@ie observation that linearly stable shear flows become nev-
ory. From a local point of view (zooming in on a narrowgrtheless turbulent at moderate values of the Reynolds num-
region of the flow), it can be decomposed into a global rgser, has given rise to the concept of subcritical, or bypass
tation (Coriolis acceleration) and a shear flow (veloci®-gr transition in hydrodynamics. The word subcriticality here
dient). Both of these components are individually impadirtaielates to the fact that transition in a linearly stable shea
for dynamo theory. Let us focus on the shear componeffgw is possible at finite values of the Reynolds number,
of differential rotation and neglect global rotation for @m \yhile the critical Reynolds number for the “linear bifurca-
ment. An important consequence of the presence of sheg” is infinity in such a flow. In this subcritical scenario,
is that it can induce a growth of velocity field fluctuationsiyctuations that are transiently amplified to finite amplitu
(referred to in the hydrodynamic transition community ages can become linearly unstable, leading to sustained tur-
the lift-up effect, see Sect. 2) or magnetic field fluctuasionyylence (or some form of complex nonlinearity in general,
(referred to in dynamo theory as tkieeffect for magnetic see Baggett, Driscoll & Trefethen 1995) as a consequence
fluctuations having no spatial dependence along the diregthe nonlinear saturation of the instability modes. Wieth
tion of the shear velocity). These amplification processegypass transition is possible or not is not completely obvi-
even though they result from linear terms in the equationgys, however, because one has to ensure that the nonlinear-
do not lead to an exponential growth of fluctuations on longies that must come into play to obtain sustained activity
timescales. Instead, velocity/magnetic perturbatiomvgr on |ong timescales can actually play such a role (Waleffe
algebraically for a viscous/resistive timescale and then d1995a)_ It was shown by Hamilton, Kim & Waleffe (1995)

cay if no other mechanism is present to sustain them. Tigat subcritical transition is possible for non-rotatingliw
short-time dynamics associated with linear shear flow op&§punded shear flows.

In this paper, we aim at making use of the current knowl-
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edge on subcriticality in shear flows to understand some as-
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2 F. Rincon & G.I. Ogilvie & M.R.E. Proctor & C. Cossu: Subcciél dynamos in shear flows

pects of dynamo action in differentially rotating astrophy evidence for transition to turbulence in non-rotating wall
ical flows, thus we will also consider some effects due tbounded shear flows (such as pipe flow) that are also known
global rotation. In the framework of this particular studyto be linearly stable. This argument is further qualitdiive
subcriticality will refer to the observation that the sustestrengthened by the observed high sensitivity of shear flow
nance of a given field relies on the presence of nonlineatability to initial conditions, which has to do with the pre
ity in the system, i.e. that if the system was to be linearizedously mentioned non-normality of shear flow operators.
around its backgrounsteady state, there would be no lin- There is a long ongoing debate on whether or not subcriti-
early unstable mode that could generate turbulence or magd nonlinear transition is possible in Rayleigh-stablessh
netic fields permanently. This definition has the advantadlews. A flavour of the experimental debate can be found
of making it clear that subcriticality is related to the dyma in Tillmark & Alfredsson (1996), Richard & Zahn (1999)

problem. and Ji et al. (2006), while on the numerical and theoreti-
cal sides, we refer the reader to Hawley, Balbus & Winters
1.2 Subcriticality in accretion disks (1999), Longaretti (2002) and Lesur & Longaretti (2005). A

more exhaustive recent review of this problem can be found
In the first part of the paper (Sect. 2-3), we will mostly conin Rincon, Ogilvie & Cossu (2007a). One of the purposes
centrate on two problems pertaining to the issue of turliulegf the present paper is simply to point out the important
transport in accretion disks to illustrate subcriticalityro-  differences between the physics of subcritical transition

tating shear flows, which will enable us to make connexiongtating and non-rotating shear flows in terms of transient
with different types of dynamo problems involving differ-growth and nonlinear interactions.

ential rotation (Sect. 4).

The first of these two problems is to understand the ori- The problem ofnagnetized disksis a priori a complete-
gin of turbulence in non-magnetized disks. There is culy different one because of the existence of the MRI. In
rently no known hydrodynamic instability, either linear oithe presence of a mean field threading the disk, the MRI
nonlinear, in the Keplerian shear flow regime represergatigrows velocity and magnetic field perturbations with opti-
of the orbital dynamics of thin accretion disks, that coulehally correlated radial and azimuthal components, provid-
maintain the vigorous turbulent state required for acereti ing a natural mechanism for angular momentum transport
to take place. The second problem is to understand the sé&en in three-dimensional saturated regimes (see Lesur &
tistical properties of turbulence in magnetized disks ehetongaretti (2007) for a study of the efficiency of the process
a natural candidate for the generation of turbulence is tiredifferent magnetic Prandtl number regimes, though). The
magneto-rotational instability (MRI, Velikhov 1959; Chan problem here is that there are large uncertainties regardin
drasekhar 1960; Balbus & Hawley 1991). The existence tiie physical conditions that pertain to different types and
a developed MRI turbulence state relies on the presenceevken different regions of disks. It is in particular not cbvi
a sustained magnetic field within the disk. If the central asus that all disks are threaded by a mean field originating
creting object cannot provide an external field threadimg trom the central accreting object or that a preexisting field
whole disk or if the disk resistivity is large enough (or egui can stay in the disk for a period of time comparable to a disk
alently the disk cold enough) for fossil fields to decay otifetime and sustain the MRI on this timescale. Is it possibl
short timescales in comparison to the disk lifetime, the dito obtain a sustained turbulent magnetized state in that cas
ficult question of the origin of turbulence in disks directly? The recent discovery by Donati et al. (2005) that proto-
translates into the equally difficult question of the generglanetary disks can host their own magnetic field, at least in
tion of magnetic fields - dynamo action - in these objectsheir inner regions, indicates that this is a natural qoedt
and its links with the MRI. ask. As mentioned earlier, answering this question reguire

Let us first introduce the problem of transportrion-  us to understand if (MHD) dynamo action is possible in a
magnetized disks or at least in cold and shielded regions oKeplerian shear flow, which is a rather involved problem in
disks where the fluid is not coupled to magnetic fields, agew of the current knowledge in dynamo theory. Let us try
in protoplanetary disks (e.g. Fromang, Terquem & Balbus make this point more evident, and assume that there is
2002). The Rayleigh criterion tells us that a simple Keplesome undetermined form of dynamo action in a disk, which
rian shear flow is linearly stable to axisymmetric perturbanakes magnetic field perturbations grow in time. Such fluc-
tions from the hydrodynamical point of view, i.e. that turbutuations are very likely to trigger the MRI very quickly (the
lence cannot be generated by a linear axisymmetric hydiiastability develops in weak-field regimes), showing the im
dynamic instability in this flow. Angular momentum trans-brication of the dynamo process and the MRI. Besides, the
portin a non-magnetized disk therefore has to rely &ma process by which MRI works is the magnetic braking of
damentally nonlinear hydrodynamic process. Hence, the ex- orbiting fluid particles, a fundamentally dynamical praces
istence of a subcritical transition to turbulence in lihgar that is not present in kinematic dynamos. Therefore, if dy-
stable rotating shear flows (particularly antiyclonic gnesiamo action is presentin the system, it must handamen-
has been invoked for many years to explain the origin of tutally nonlinear dynamo. To cite Hawley & Balbus (1992),
bulence in this context. The main argument in favour of sualiho first noticed that point, "the use of a kinematic dynamo
a transition finds its roots in the well-known experimentaiodel is inappropriate for an accretion disk [...] The tur-
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bulence is driven by the very forces [Lorentz forces] the >
kinematic dynamo excludes from the outset”. Even though
this kind of dynamo looks fairly unusual, Brandenburg et al. @ Q — U

(1995), Stone et al. (1996) and Hawley, Gammie & Bal-
bus (1996) demonstrated its existence. In particular, Egawl
et al. (1996) compare the results of experiments in two and

three dimensions, with or without a Lorentz force term, to Y
illustrate very clearly the previous points. Some impattan —~— .
limitations of these simulations have however recentlynbee P

|

pointed out (Fromang & Papaloizou 2007a). If they do not
challenge the existence of the MRI dynamo process, at Iei@%_ 1 Geometry of rotating plane Couette flow.

at large magnetic Prandtl numbers (Fromang et al. 2007b),

they do however question its efficiency and demonstrate that

how the MRI dynamo works remains a largely open questoroidal’ components of velocity field fluctuations withva

tion that deserves further investigation. nishing spatial average. We then describe how transition
to turbulence is actually thought to work in non-rotating
1.3 Outline shear flows that are linearly stable for all finite values ef th

Reynolds numbers using this dynamo anafogye finally
The first goal of the present paper is to provide connexiofsiild on these results to discuss the possibility of a simi-
between the two forementioned hydrodynamic and MHI&r hydrodynamic transition in linearly stable rotatingeah
problems, which are individually discussed in detail in-Rinflows such as a Keplerian flow. The analysis performed here
con et al. (2007a) and Rincon, Ogilvie & Proctor (2007b)lso sets the scene for the MHD part of the paper and the
As will be shown in Sect. 2 and Sect. 3, this comparativiellowing discussion.
approach is motivated by several important similarities be
tween the two problems, namely hardwired nonlinearity ar@ 1
linear non-normality. In Sect. 2, we first discuss the dyramr

cal principles of transition in linearly stable shear flowsla |ncompressible rotating plane Couette flow, represented in
show that this problem can be viewed as a nonlinear *h¥sg. 1, is a local approximation of differentially rotating
drodynamic dynamo” problem analogous to an MHD dyfiows such as those encountered in accretion disks. The flow
namo problem. This allows us to point out the limits ofs characterized by a background velocity fi€ld= Sy e,

the analogies between nonlinear hydrodynamic instabilityith linear shearS driven by countermoving walls situated
in anticyclonic Rayleigh-stable shear flows and non-rotati aty — +d and by a global, uniform in space, rotation vec-
wall-bounded shear flows and to question the existence tof 2 = () e.. The Reynolds number for this flow is usually
a subcritical transition in Keplerian flows. We then makgefined in the transition literature as

use of similar methods to address the MRI dynamo problem

and to illustrate the concept of the nonlinear self-sustgin Re — S_dQ (1)
MHD process (Sect. 3). We then move to the second ma- v

jor goal of this paper, which is to show that the subcritica}pare , is the kinematic viscosity. We can also define a
dynamo concept is a very generic one that applies to MaYation number,

types of shear flow problems. This is done in Sect. 4, where 20

we also discuss the relations between this dynamo model Rq = g 2)

and more standard mean-field models such as\thaly-

namo. Finally, based on these results and recent numeri¢4)ich is positive for cyclonic flows (shear flow vorticity
results, notably simulations of MRI turbulence in the dyParallel to€2) and negative for anticyclonic flows (shear

namo regime, we suggest a possible scenario for the Mp@w vorticity anti-parallel to€2) and is related to a param-
dynamo at largéze and Rm involving small-scale dynamo eter commonly used in accretion disk theory to character-

Incompressible rotating plane Couette flow

action (Sect. 5). The paper ends with a brief conclusion. 2€ differential rotationg = —dIn/dInr, according to
Ro = —2/q. A non-rotating flow hasf?, = 0, a flow on
the Rayleigh line hagl, = —1 and a Keplerian flow has

2 Hydrodynamic transition in shear flows Rqo = —4/3. The flow encounters an axisymmetric cen-

trifugal instability for—1 < Ro < 0. Our aim is to high-
In this Section, we start by setting up a very simple hydrdight the generic dynamo nature of this problem fag = 0
dynamic model problem, namely incompressible rotatingndRo = —1 and its potential relevance to accretion disks
plane Couette flow, to show that subcritical hydrodynamie
transition to turbulence in some particular differentiat- tto describe the generation of large-scale vorticity flutitwes by small-

_tating flows can be_ analysed using dynamo arguments, Is€ale helical turbulence (the AKA effect, see for instanceiddev et al.
in terms of dynamical exchanges between “poloidal” anthgs), which is a distinct phenomenon from what we describikis paper.

1 The term “dynamo” has already been used in a hydrodynamitexbn
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and stars, so we choose to refer to the streamwise dir@?2 Subcritical transition in non-rotating shear flows

tion 2 as being the toroidal direction and to thg z) plane o _ _ _ _
as being the poloidal plane. We further use the word aket us now specialize to mtere.stlng particular cases asd fir
isymmetric to qualifyz-independent perturbations (in theconcentrate on the non-rotating cage = 0. The phe-
accretion disk terminology; corresponds to the azimuthal"omenology of transition in non-rotating shear flows has
direction, —y to the radial direction, and to the vertical Deen a mystery since the end of th&" century and the
direction). Denoting by an overbar an average oveany experiments by O. Reynolds (1883). For a long time, the

velocity field perturbation of the background flow is Sepaexperimental observation that wall-bounded shear flows en-
rated into an axisymmetric pait and a non-axisymmetric COUNter transition to turbulence at modgst values could

“wave” partu’, not be reconciled with theory, which could only predict the
absence of linear instability in many of these flows. There is
now some significant evidence that the transition is related

u=u+u with V-u=V-a=V.-u' =0. (3) toanonlinearmechanism christened the self-sustainiog pr
cess (SSP), which was first described in detail by Hamilton

Note that bothi andu’ are chosen to have zero volume avet al. (1995). The actual complexity of this transition atisd i

erage, so that we have a form of dynamo problem for theensitivity to initial conditions depends on the backgmbun

perturbations of the background Couette flow in the ceshear profile (e.g. plane Couette flow, plane Poiseuille flow,
trifugally stable regimes. Usingandl /.S as space and time pipe Hagen-Poiseuille flow or Blasius boundary layer) and
units, the momentum equation for the axisymmetric toroidaln the structure of the phase space of the corresponding dy-

i, and poloidala, components of the velocity field read namical system (i.e. the presence of fixed points, homaclini

1 or heteroclinic orbits, etc.). Transition is currently bas-

(O +1p - V) iy + (R + )i, = R_Aaz + F,, (4) derstood for plane Couette flow, which encouters a simple

€ saddle-node bifurcation (Rincon et al. 2007a; Wang, Gib-

1 son & Waleffe 2007; Viswanath 2007), while pipe Hagen-
(Or+10p-V)u, —Rotiz ey = —Vpp+ R—Aﬁp+Fp, (5) Poiseudille flow, for instance, seems to encounter a complex
€ chaotic transition whose limits in parameter space are now

where referred to as “the edge of chaos” (Schneider, Eckhardt &

Yorke 2006, 2007).

F=-u Vu (6) A nice way of describing the SSP is to think of it in

is the mean force associated with the non-axisymmetric pApf™s of subcritical “hydrodynamic dynamo”. We first note

of the flow andp is the pressure divided by the constanf1@t for o h:é) (()jnly u, has allinear “?0&22,’ tern;.dThis
density.u, is a solenoidal two-dimensional velocity field!®"™ 'S an hydrodynamic analogue of theefiect of dy-

that can be written in terms of a streamfunctiofy, z, ¢) namo _thec_>ry. It is actl_JaIIy called the lift-up effect in the
with vanishing volume average: transition literature (Ellingsen & Palm 1975; Landahl 1980

and is of course a purely axisymmetric effect which leads to
i, =V x (Ye,). (7) algebraic linear amplification of the toroidal velocity tel
However, as for thé)-effect, this is only a transient effect,
The associated toroidal vorticity reads for in the absence of a poloidal source term to regenerate
the poloidal velocity field, viscous damping ultimatelyl&il
Wy = —AYP. (8) both poloidal and toroidal velocity fields on a viscous time
scale. As can be seen in Eq. (10) there is no linear poloidal
velocity source term in the absence of rotation, so that the
only way poloidal motions can be sustained is via the non-
linear interaction ternV x F, which is only non-vanishing
if the total flow as a non-axisymmetric part. This is clearly
a form of antidynamo theorem for non-rotating linearly sta-
ble hydrodynamic shear flows. Therefore, the dynamo ques-
tion is to ask how non-axisymmetry can emerge in such
a system, leading to a self-sustaining solution via nonlin-
(10) ear feedback on poloidal motions. To answer this question,
one has to look at what the lift-up effect actually produces.
whered(,)/d(,) denotes the Jacobian. It can be seen th8tarting with aO(1/Re) poloidal velocity field depend-
bothu, andw, have linear source or sink terms proportionaihg ony and z, the lift-up effect has the ability to gener-
to u, andd.u,, and a fully nonlinear source or sink termate on aO(Re) timescale a toroidal velocity field also de-
associated with the axisymmetric part of the advection terpending ony andz with anO(1) amplitude, comparable to
F. This observation also stand for shear profiles differetitat of the background shear flow. There is a lot of experi-
from that of plane Couette flow. mental evidence for this so-called “streaks” field (Harmilto

Taking the curl of Eq. (5) to eliminate eliminage one ob-
tains

— 8(10,1_%) _ — 1 =
Ortly — m = —(Rq + 1)Uy + ﬁAum +F., (9)

E(’[ZJ7L'I) — 1
Oyw ) Rq0, 1, + Toe Wy +e, -V X

© xxxx WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (xxxx) 5

et al. 1995). As this field is modulated i it is actually a 2.3 Subcritical transition in rotating shear flows
finite-amplitude shear flow that contains inflexion points in N ) N -

that direction, and is therefore unstable to non-axisymimet IS @ subcritical hydrodynamic transition possible in linga
Kelvin-Helmholtz type instabilities. Waleffe (1995b, 109 Stablerotating shear flows ? As mentioned in the introduc-
1998) showed that the three-dimensional velocity field alion. the observation that their non-rotating linearlybita
sociated with these instabilities leads td&aerm that can Ccounterparts become turbulent at modest value8«has
regenerate the weak poloidal velocity field. In other word§€€n used as an argument in favour of such a scenario for
Reynolds stresses generated by the secondary instahility 1ong time. Now that transition in non-rotating flows is
its weakly nonlinear regime can close the dynamo loop. FE€tter understood in terms of the SSP, a natural question
a givenRe value, it is possible to show that there is a continl© ask is whether a similar process can occur in rotating

uous family of self-sustained solutions with differentesp Shear flows. This question was addressed by Rincon et al.
ratio, i.e. different periodicity in: and . (2007a). Here, we summarize the main points of this study

. . _using the subcritical dynamo phenomenology. The starting
A very important requirement for the process to work iggint is that the linearized non-rotating case has an inter-
that there must be a very good spatial overlap (correlatiogting linearly stable rotating counterpart, the Rayldigh
between the nonlinear interaction teand the axisym- regimeRg = —1 (we note in passing that the Rayleigh-
metric poloidal velocity. The spatial shape of the feedbagffe regime is similar to the Keplerian regime in the sense
is notably very sensitive to the geometry of the flow and tgh4¢ poth regimes are anticyclonic and linearly stable. The
the wavelength of the instability mode. A second importargayjeigh line is of course closer to the centrifugal indtabi

remark is that the process is fully nonlinear and subcritity region). ForRo = —1, the linear source term in Eq. (9)

cal for two reasons. First, for a givefe, a finite amplitude 5 exactly vanishing, but there is still a linear Coriolis ac

O(1/Re) poloidal field is required to initiate the processcg|eration term in Eq. (10). From the linear point of view,

Such an amplitude is of course extremely small at very larggis means that the lift-up effect has an exact analog on the

Re but can never be taken infinitesimally small as would bRaerigh line. This effect, christened the anti lift-upesft

the case for_a linear instability (Nagata (;990) de_scrihed thy Antkowiak & Brancher (2007), has the ability to tran-

corresponding branch of nonlinear solutions - which had ngfenily generate a finite-amplitude axisymmetric poloidal

been described in terms of a SSP at that time - as a *bifyfa|ocity field from a seed(1/Re) axisymmetric toroidal
cation from infinity”). The second reason is that the feedse|ocity field. In other words, streaks now generate rolls.
back term is a fully nonlinear interaction term due to th§pe fact that such an axisymmetric linear transient amplifi-
non-axisymmetric instability mode. To summarize the prasation effect is present on the Rayleigh line is certainly en
cess in terms of an initial value p_roblem, let us enume_r?‘ﬁ%uragingforthe prospect of a rotating SSP, but the full pic
the three elements that are required to obtain a subcritiggle requires nonlinearity to come into play. In that regpec

“hydrodynamic dynamo” in a non-rotating shear flow: e Rayleigh line regime appears to be far less favourable

than the non-rotating case, for two important reasons. The
) . o _ first one is that the presence of a finite-amplitude axisym-

1. linear transient amplification up t6(1) amplitudes of atric poloidal flow on the Rayleigh line, unlike that of the
an axisymmetric toroidal velocity field, from a seed buyoymmetric toroidal flow in the non-rotating case, causes
finite O(1/ Re) axisymmetric poloidal velocity field, 5 strong poloidal nonlinear advection of the total axisym-

) o ) . . metric flow via the nonlinear terms aftéy in Egs. (4)-(5)

2. non-axisymmetric linear shear instability of the finite¢ soon as the poloidal flow reaches a significant ampli-
amplitude z-modulated axisymmetric toroidal velocity e 1y means of the anti lift-up effect. This renders the
field, axisymmetric part of the flow much more complex than in

. ) ) , _the non-rotating case. The second reason is that the non-

3. regeneration of the weak axisymmetric poloidal Ve_loc't&xisymmetric instabilities of the resulting nonlinearsy-
field by nonlinear self-interactions of the non-axisyMpetric flow do not generate a nonlinear feedback that would
metric instability mode. show a good spatial correlation with the seed streaks field.

These instabilities are actually quite different from t#os

An equivalent description of the SSP can be given in tern@countered in the non-rotating case for now the axisym-

of a coherent structure (Rincon et al. 2007a) which, for planetric flow is dominated by its poloidal component instead

ne Couette flow, is a saddle-node fixed point in phase spagé.its toroidal component which was unstable to shearing

The initial value problem formulation described above theifistabilities in the non-rotating regime. Overall, we foun

consists in following phase space trajectories sticking dsimpossible to proceed as in the non-rotating case to ob-

much as possible to the stable manifold of the fixed poiitin fully nonlinear three-dimensional steady solutiofis o

and approaching it closely before being ejected along itge fluid equations.

unstable manifold, towards a turbulent attractor. A veogeni The current status regarding stability with resped®tp

graphical representation of this process is given by Gipsan rotating plane Couette flow is depicted in Fig. 2. Sev-

Halcrow and Cvitanovi¢ (2008). eral comments on this figure are in order before we close
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the hydrodynamic Section. First, it is important to note tha A Anticvelonic Cvelonic
subcritical solutions obtained in the non-rotating caselbm v Y
continued nonlinearly into the anticyclonic linearly usiste o

i here they take on the form of nonlinear wavy Tay- 2 wWIv
reglme{W er_e y_ <. . y lay = o | Linearly unstable
lor vortices (instabilities of the Taylor vortices that uéls & £ .

. . S . . g = Nonlinearly
from the centrifugal instability in this regime). They can £ 5 | unstable
also be continued into the cyclonic linearly stable regime~§ = f
which is therefore nonlinearly unstable. A similar behavio 3 5 JSSP
cannot be found in the neighbourhood of the Rayleigh line, y
demonstrating that a symmetry between the cyclonic regime | / >
and its anticyclonic counterpart beyond the Rayleigh line | R
does not exist in three dimensions (the absence of this sym- —-4/3 -1 0 @

metry was also demonstrated by Lesur & Longaretti (200%)g. 2  Stability diagram for rotating plane Couette flow for a
using direct numerical simulations). The second commeiue of Re in the domain of existence of the self-sustaining pro-
is that in the case of a general differential rotation profileess. The amplitude of the solutions in this diagram is sdmagw
for which Rg, is different from0 or —1, there is no lift-up arbitrary but is intended to approximate the behaviour efsthear-
or anti lift-up effect anymore. In the Keplerian case, for ining rate at the flow boundaries. The TV full line curve is fonno
stance, only non-axisymmetric transient growth (also som@near axisymmetric Taylor Vortices arising in the linganhstable
times called swing amplification) is possible, which makei§9ime, the dashed WTV lines is for the three-dimensionaly\a

it pretty much useless to think in terms of a poloidal anaaylor Vortices bifurcating from the axisymmetric TVs, a8&P

stands for the fixed point associated with the self-sustgipro-

toroidal description in that case. The only way the Keplec_ess afRo = 0. This point can be obtained by direct continuation

”a,r_] regime could b.e related to the previous type of S!"%T WTVs to Ro = 0 and the corresponding branch of solutions
critical hydrodynamic dynamo would be to make a nonlingan he continued in the linearly stable cyclonic region Rieeon
ear connexion with a SSP on the Rayleigh line which, &g al. (2007a) for further details and references).

we showed, probably does not exist. It therefore appears

that subcritical transition in anticyclonic shear flowsaify, _ i ) )
has only very little to do with subcritical transition in non dynamo loop by feeding back on the axisymmestric poloidal
rotating or cyclonic shear flows. The possibility of a subfi€ld- _ _ _ _

critical dynamo mechanism relying on instabilities of tran It is straightforward to show that the induction part of
siently amplified non-axisymmetric structures remaingppdn€ MHD rotating plane Couette flow problem takes on a
but recent high-resolution simulations have not been ablefPrm very similar to the momentum equation for the non-
isolate such a physical process either (Shen, Stone & G§ptating hydrodynamic shear flow problem. For this pur-

diner 2006). pose, we introduce the magnetic Reynolds number
2
Rm = 54 , (11)
n

3 Subcritical MRI dynamo in Keplerian flow  \yherey, is the magnetic diffusivity, and we decompose the
magnetic fieldb in terms of an axisymmetric patt and a

We now move to the MHD problem of uncovering the physhon-axisymmetric wave paly’

ical_ processes that give rise to what is_called MRI dynamo, _ o +b with V-b=V-b=V.b =0. (12)
action in Keplerian shear flows. For this purpose, we keep

our rotating plane Couette flow description, settiig = Note that bottb andb’ are chosen to have zero volume av-
—4/3. This problem has much in common with the nonerage, so that we are dealing with a genuine dynamo prob-
rotating hydrodynamic problem, which makes it appealingm (no net magnetic flux is threading the domain). Sim-
to attempt to apply the SSP phenomenology again. First, iéarly to the hydrodynamic problem, we introduce a flux
mentioned in the introduction, any MRI dynamo must b&unction(y, z,t) to describe the axisymmetric part of the
intrinsically nonlinear, because the Lorentz force is mandpoloidal magnetic fieldb,,

tory for the MRI. Besides, since magnetic fields feel shear b, = V x (ves) (13)
but not Coriolis acceleration, it is possible to algebriyca b X€z) -

(and transiently) amplify axisymmetric toroidal fieldsiino The induction equation fox and for the axisymmetric to-
poloidal fields through thé& effect in the same manner asroidal component of the magnetic figld reads

the amplification of streaks from rolls in the non-rotating

hydrodynamic problem (see Livermore & Jackson (2004) - 1 _

for a discussion on non-normality in MHD). One might then 0:bz — €,-V x (@ x b) = b, + em-VxE+R—mA by, (14)
ask if the toroidal magnetic field encounters non-axisym-

metric instabilities such as an MRI and if the nonlinear in- (Y, x)
teractions of such instabilities have the ability to cldse t Oix — d(y,z)

1
=B, +—Avy, 15
+ o AX (15)
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wherey has been defined in Eq. (7), the first linear term oar plane Poiseuille flow (Waleffe 2001). These travelling

the right hand side of Eq. (14) stands for magnetic inductiomaves can in principle be captured numerically exactly like

by the shear flow and steady solutions (by performing a Galilean transformation
and adding the phase speed as an extra unknown in the

E=v' xb (16) problem). Inthe present MHD problem, however, such a nu-

. . . ] merical solution cannot be obtained easily because a sym-
is the axisymmetric part of the electromotive force (EMFPnetry used to decrease the computing costs is lost when

generated by the nonlinear interaction between the way& mode eigenvalues turn into complex conjugate pairs.
parts of the velocity and magnetic fields. It is straightforSeeking coherent time-dependent solutions to the subcrit-
ward to notice that Egs. (14)-(15) share the most intergstif.5| MR| dynamo problem using direct time-stepping tech-
characteristics of Egs. (9)-(10), namely linear non-ndkma piques therefore looks more promising than using contin-
ty in the toroidal part and nonlinear feedback of three-dization techniques such as those described in Rincon et al.

mensional structures in the poloidal part. Taking onceragai>007a,2007b). Such an investigation is currently undgrwa
the point of view of an initial value formulation and start-(l_esur & Ogilvie 2008).

ing from an axisymmmetri€©(1/Rm) poloidal magnetic

) - g ; i Like the hydrodynamic self-sustaining process, the pro-
field (expressed in terms of an Alfvén velocity), an axisyMaess described above is genuinely nonlinear. First, a small

metric O(1) toroidal field can be transiently generated oR, ;¢ finjte_amplitude seed axisymmetric poloidal field is re-
a timescaleO(Rm) by the() effect. Rincon et al. (2007b) 4 ireq to obtain a sufficiently large axisymmetric toroidal

showed (solving the full MHD equations, including a Loig |4 to trigger non-axisymmetric instabilities (but suin-

rentz force in the momentum equation) that such a toroidﬁgl, weak at the same time for an MRI to be possible). Be-
field encounters a non-axisymmetric instability. There ar§yas two nonlinear terms. a Lorentz force and a fluctu-
several instability modes with different symmetry properéuing EMF, are needed for the instability to develop and

ties which can be predicted from the symmetries imposggy e feedback on the axisymmetric poloidal field to be
on the axisymmetric fields. '_I'he |n_1portanf[ pomt_ 1S that fOf)ossible. Note that the Lorentz force is a nonlinear term
some of these modes, nonlinear interactions give rise tq:fyat context because the axisymmetric toroidal field that

toroidal EMF which axisymmetric projection has the ability, o .omes MRI-unstable is part of the total magnetic field
to regenerate the initial poloidal seed field, thereby legdi perturbation (it has zero net-flux and would decay on a re-

to dynamo action. We interpreted these instabilities im®r gictive timescale without the three-dimensional instabil

of an MRI of the axisymmetric toroidal field: the axisym-foeqhack). To summarize this self-sustaining MHD process
metric poloidal field here is too weak to be MRI-unstabl%y means of an initial value description, let us restate the

(only very large poloidal wavenumbers would be unstablg, ee elements that are required to obtain a subcritical MRI
and they are damped by viscous and resistive terms in Wnamo in a Keplerian shear flow:

dissipative set-up). Another indication is that the ingtab

ties are purely non-axisymmetric, which is in line with the1. linear transient amplification of an axisymmetric toroi-

MRI instability growth ratey obtained from the local dis- dal magnetic field by th@ effect acting on @(1/Rm)

persion relationy ~ k - V4 where the Alfvén velocity  seed axisymmetric poloidal magnetic field,

V4 would be dominated by the toroidal field. Also, the

modes are spatially centred and symmetric or antisymmetrit non-axisymmetric linear instability (MRI) of the finite-

with respect to the local extrema of the toroidal field in the  amplitude axisymmetric toroidal magnetic field,

poloidal plane. Finally, we noticed that the presence of the

instability required an MRI unstable rotation to be present3. regeneration of the seed axisymmetric poloidal magne-
Overall, we found it possible to obtain nonlinear fixed tic field by nonlinear self-interactions of the non-axi-

points in the same way as in the hydrodynamic problem, symmetric instability mode.

but only for a very restricted range of low values &. As discussed just before, an equivalent description of this

In this regime, non-axisymmetric modes have real eigen; . .
g Y 9°%sp can be done in terms of steady or travelling coherent

values corresponding to purely imaginary frequencies (th?ructures (Rincon et al. 2007b). A tentative interpretati

modes arse from a ste_ady p|tchf_ork bifurcation). The furc?)f the role of such coherent structures in simulations of MRI
three-dimensional nonlinear solution that can be comput

d s : ;
from these modes therefore takes the form of a steady gg[bulence In zero net-flux set-ups is suggested in Sect. 5.

lution (equivalently a fixed point). For larger valuese#,

we observed collisions between pairs of real eigenvalues4f Connexions with other dynamo models

the instability modes, which turn into complex conjuguate

pairs (the corresponding modes subsequently arise fronThe phenomenology of the subcritical shear dynamo sce-
Hopf bifurcation). In such a situation, we expect nonlinnario presented above is obviously not specific to Keplerian
ear travelling waves to be present instead of steady sokhear flows. Dynamos models relying on non-axisymmetric
tions, similarly to what happens in the hydrodynamic prothhydromagnetic instabilities in differentially rotatingpii's

lem for Hagen-Poiseuille flow (Wedin & Kerswell 2004)have been thought for in the context of the geodynamo for
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instance (Fearn & Proctor 1983, 1984, 1987). In this Setike in the Keplerian problem (in which the threshold am-
tion, we show that several recent dynamo models introducplitude scales likd / Rm) and in the non-rotating hydrody-
by Cline, Brummell & Cattaneo (2003), Spruit (2002) andchamic problem (a / Re threshold amplitude is possible in
Miesch (2007a) that are relevant to astrophysics fit pdyfecthat case but this point is still a matter of debate though, se
into the subcritical dynamo concept. We then attempt tdreiss, Lundbladh & Henningson (1993), Baggett & Tre-
compare the subcritical scenario with more standard dfethen (1997) and the experiments by Peixinho & Mullin
namo models such as thd2 dynamo and to provide some (2007)). Since the threshold is determined by the physics
connexions between these two views. Finally, we commeot algebraic growth via th€ effect, which is present in all
briefly on another form of subcritical dynamo recently disthese problems, we suspect that an axisymmetric poloidal
covered by Ponty et al. (2007). magnetic field amplitude scaling like’ Rm is also required

in the shear-buoyancy case for the dynamo to be triggered.
Cline et al. (2003) also report both steady and cyclic regime
depending on their parameters, which is in line with our pre-
A fundamental ingredient in the subcritical dynamo loojyious argument regarding the possibility of having nonlin-
presented in the previous sections is the possibility gf tri €ar travelling waves in the largee regime of the Keplerian
gering non-axisymmetric instabilities in the system. WorkProblem. We finally note that an important reason why the
ing in the Keplerian regime allows for one such instabilityCline et al. (2003) dynamo works is because they deal with
the MRI, to exist, while the subcritical hydrodynamic tran2 non-rotating system, meaning that the poloidal velocity
sition in non-rotating shear flows relies on a non-axisynfield perturbations associated with the magnetic buoyancy
metric instability triggered by a spatially modulated shednstability are getting wound up into strong toroidal vetgpc
flow profile. The interesting point is that there are manfj€ld perturbations by the lift-up effect (step 3 of their pro
other systems where non_axisymmetric MHD or hydrody:eSS). It is that toroidal veIocity field that renders thatot
namic instabilities are present. Here, we will focus on sewhear profile unstable to non-axisymmetric Kelvin-Helm-
eral dynamo models that have recenﬂy been discussedhmltz inStabilitieS, which in turn prOdUCG the feedback. As
the astrophysical literature (we will come back to the prehentioned in Sect. 2, it is not possible anymore to produce
viously mentioned geodynamo model of Fearn & Proctct Strong axisymmetric toroidal velocity field and the associ
(1984, 1987) in the next paragraph). An interesting exampféed Kelvin-Helmholtz instability in the presence of a gibb

is that of the shear-buoyancy dynamo discovered by Clifietation rate comparable to the shearing rate. In such & rota
et al. (2003) using direct numerical simulations (a typicdnd regime, their dynamo should therefore disappear unless
initial value problem), which can be summarized in the folan extra non-axisymmetric physical mechanism kicks in.
lowing way:

4.1 Dynamos driven by non-axisymmetric instabilities

Another problem which takes on the same form is that

1. linear transient amplification of an axisymmetric toroi®f dynamo action in stellar radiation zones. Spruit (2002)

dal magnetic field by th€ effect acting on a seed ax-suggested the existence of a dynamo relying on the non-
isymmetric poloidal magnetic field axisymmetric Tayler (1973) - Pitts & Tayler (1985) insta-

bility of toroidal magnetic fields generated by theeffect.
2. axisymmetric buoyancy instability of the toroidal fieldT NiS scenario seemed to be confirmed by numerical simu-
inducing an axisymmetric poloidal flow, lations performed by Braithwaite (2006), but this view has
recently been challenged by Zahn, Brun & Mathis (2007)

3. linear transient amplification of an axisymmetric toroi@nd Gellert, Rudiger & Elstner (2008) on the basis of di-

dal velocity field from the axisymmetric poloidal flow rect numerical simulations. Zahn et al. (2007) do observe
(thereby steepening the original shear), the amplification of an axisymmetric toroidal field from a

seed poloidal field via th@ effect and the subsequent oc-

4. non-axisymmetric linear instability (Kelvin-Helmhp)t currence of a non-axisymmetric instability, exactly like i
of the steeper axisymmetric toroidal velocity field, ~ the previous dynamo problems, but they fail to obtain a
significant feedback of the instability on the axisymmetric
5. regeneration of the seed axisymmetric poloidal Iﬁnagngoloidal field, whose fate is therefore resistive decay. The
tic field by nonlinear self-interactions of the non-axicritical point in the scenario is therefore how the feedback
symmetric instability mode. is produced. Spruit (2002) and Braithwaite (2006) argued
that the feedback is done directly by an energy exchange
This loop looks very similar to the subcritical dynamo loopdetween the non-axisymmetric instability mode and either
described earlier and indeed Cline et al. (2003) clearly nthe axisymmetric poloidal or toroidal field. This argument
ticed that their dynamo was intrinsically nonlinear. Sever has been criticized by Zahn et al. (2007), who pointed out
other elements in their paper further demonstrate thaethebat the only way to obtain a feedback from an = 1
dynamos proceed in the same way. First, Cline et al. (2008@mponent into amn = 0 component was through non-
mention a poloidal magnetic field threshold depending dimear interactions. So, the current problem to understand
Rm under which no dynamo action is possible, very mucthether this dynamo can operate is to determine whether
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such a regenerating nonlinear feedback is possible in thea from an ensemble of inertial waves. In his model, each
system. Our experience with the MRI problem and the hyndividual wave gives rise nonlinearly to a small average
drodynamic problem is that this is extremely sensitive t&MF. A random ensemble of such waves can generate a
the spatial correlation between the nonlinear feedback tenet« effect provided that the velocity field associated with
and the original axisymmetric poloidal field. This correlathe waves lacks reflexional symmetry. Similarly, one can at-
tion is quite sensitive to the aspect ratio of the instapilittempt to calculate am effect or at least a toroidal EMF
mode, which depends on the poloidal localization of thtfom a collection of non-axisymmetric instabilities, or to
mode and its non-axisymmetric wavenumber. In the sinsolve simultaneously for an axisymmetric mean-field model
ulations by Zahn et al. (2007), the instability is of coursand a single-mode non-axisymmetric instability, taking th
localized where the toroidal field is strong, i.e. in a verynaEMF produced by the non-axisymmetric instability as an in-
row zone of large differential rotation, which covers a dmaput for the mean-field model. Such a so—cal?e}D model
poloidal area compared to the total poloidal area covered las introduced in the context of the geodynamo by Fearn &
the poloidal magnetic field introduced originally. A moreProctor (1984, 1987). In their case, the non-axisymmetric
favourable situation for the Spruit dynamo to be found (bunhstability is a convective instability in a differentigltotat-
not necessarily a more realistic one from the astrophysidal sphere, so once again all the ingredients for a sub&kitic
point of view !) probably requires a large poloidal overlaghear dynamo are present in this problem. They failed to
between the differential rotation zone and the axisymmatbtain dynamically consistent steady dynamo solutions us-
ric poloidal fied. This way, the resulting non-axisymmetriéing an iterative solver but Jones, Longbottom & Hollerbach
instability of the toroidal field generated throught theef-  (1995), following the same idea, found time-dependent so-
fect would probably cover a larger poloidal area and feedlstions to the same problem using direct time-stepping.
back more coherently on the axisymmetric poloidal mag- We finally note that depending on the symmetries of the
netic field. problem, it is possible that some modes exert some destruc-
We finally briefly mention that another astrophysical sittive feedback instead of a regenerating one, so that the sub-
uation in which a subcritical shear dynamo could be opecritical dynamo effect could disappear on average in some
ating is that of the solar tachocline. In the model of Mieschases. A way to avoid this kind of cancellation on aver-
(2007a), the imposition of a latitudinal shear and the occuage is to impose some form of global symmetry breaking
rence of non-axisymmetric global magnetoshear instabili the system, like a global rotation of the system. We note
ties (Miesch, Gilman & Dikpati 2007b) like the clamshellhowever that a coherent dynamo process consisting of indi-
instability provide all the necessary ingredients for sach vidual events (like the buoyant rise of individual magnetic

dynamo. flux tubes) does not require this kind of ingredient. For in-
stance, the recurrent but well-separated bursting evemts d
4.2 a2 and kinematic dynamos ing which turbulence gets generated all of a sudden in oth-

o __erwise quiescent shear flows (some form of time-dependent
There are clearly major dn‘ferenc.es between the subc!r|t|oq&]ydrodynamic dynamo”) have often been associated with
dynamo scenario and a mean-fiell dynamo scenario. the hydrodynamic SSP (Waleffe 1997; Jimenez & Pinelli

The first one is the absence of kinematic regime in the supg99: Jimenez & Simens 2001) which does not rely on any
critical case (hence its name). The second one, whichfisrm of imposed symmetry-breaking.

more qualitative, is that subcritical dynamos discoveied s
far take on the form of Fhree—dimensional structures thats o britical dynamo in the Taylor-Green flow
are extremely coherent in both time and space, as shown
spectacularly by Cline et al. (2003), while mean-field theBefore we close this Section, we briefly discuss another type
ory relies on a statistical description of the dynamo precesof subcritical dynamo discovered recently by Ponty et al.
Specific differences between thé€) dynamo and the MRI (2007) using a three-dimensional Taylor-Green forcing for
dynamo have also been pointed out by Hawley & Balbuke velocity field. The fundamental difference betweenrthei
(1992) and Brandenburg et al. (1995). problem and the problem discussed here is that we do im-
So, is there a way to reconcile both views somehow fose a global shear while they only have local velocity gra-
One can of course attempt to envision the nonlinear feedients in their flow. An important consequence of imposing
back of non-axisymmetric instability modes as some forra global shear in the system is that the subcritical dynamo
of mean-field back reaction on the poloidal magnetic fieldranches bifurcate “from infinity” (Nagata 1990) while in
(see for instance Zahn et al. (2007) and Gellert et al. (2008)eir problem, there is a real linear dynamo bifurcatiorhwit
for the case of the Tayler instability). Cline et al. (2003n well-defined critical value foRm. Their dynamo is sub-
however showed that the feedback process in their dynaruitical in the sense that finite-amplitude MHD solutions
loop could not be cast in the simple mathematical form of aexist for Rm below its finite critical value. They associate
« term, so it is not clear currently whether one can actuallyis hysterisis with a nonlinear Lorentz force effect, whic
construct a standard mean-field model from a subcritical dyr this respect is quite similar to what occurs in the MRI
namo in general. A possible route towards a unified descrigynamo problem. It is possible that the presence of strong
tion is given by Moffatt (1970), who attempted to computéocal shear in their model is responsible for subcritigalit
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however the two types of subcritical dynamos look quiteesults obtained by Schekochihin et al. (2005) for idedlize
distinct at the moment. To make another (far less rigorourge-scale random forcing, by Christensen, Olson & Glatz-
analogy with hydrodynamic transition problems, their bimaier (1999) and Cattaneo (2003) for convection and by
furcation diagram resembles that of the subcritical bidurc Fromang et al. (2007b) for a MRI dynamo set-up all show a
tion of Tollmien-Schlichting waves in plane Poiseuille flowsimilar behaviour for the dynamo threshold in tRe— Rm
(Zahn et al. 1974 ; Herbert 1976 ; Orszag & Patera 198(Q)lane. The results presented by Fausto Cattaneo at the re-
which is a completely distinct phenomenon from the seleent Catania workshop on MHD also show that snapshots
sustaining process in the same flow (Waleffe 2001). taken from turbulent convection simulations and MRI dy-
namo simulations in a numerical Taylor-Couette experiment
. at largeRe and Rm are almost indistinguishable. The mag-
S SUbC”t'C.al shear dynamos and small-scale netic field maps aPPm = 1 of Schekochihin et al. (2004)
dynamo action and the ones by Fromang et al. (2007bpPat = 2 (in the
isotropic plane of their simulation labeléd, =) in their no-
A final point that is worth discussing is to what extent theation, corresponding to—y, z) here) also look very simi-
self-sustaining coherent dynamo structures describddsin t|gy. Overall, these new results tend to support our conjectu
paper are importantto understand dynamo action in a highfyat there is a large-scale subcritical process involvirey t
turbulent medium. It has been shown that the hydrodynam\gr that drives turbulence, and that this turbulence in turn
self-sustaining process is a cornerstone of transitionno t gperates as an independent small-scale dynamo at moderate
bulence in linearly stable shear flows and that this Procegs|arge Pm. We note in passing that the situation at low
leaves an imprint on the statistical quantities (e.g. par$  py, is more tricky since it is currently unknown whether
associated W|th the turbulent ﬂOW after the transition. Aﬂ']e Sma”_scale dynamo in that regime has Something to do
discussed by Lesur et al. (2005), the hydrodynamic selfjith the forcing scales of the turbulence or if it is univérsa
sustaining process in a shearing box is a fundamentally Iggith respect to the forcing mechanism (Schekochihin et al.
ge-scale process that continuously extracts energy frem tf|007)_
shear (see their Fig. 9 and the corresponding text). In other An important final remark regarding the MRI dynamo

yvordsz _the SSP acts in the same way as a stand.ard "nﬁﬂﬁblem is that the estimate for MRI growth rates. V 4 -
instability from the turbulence point of view, by forcingeth } e gicts that even extremely small scales should be unsta-
system at large scales. That nonlme_ar instabilities |rza|sh_eo|e to the MRI in the presence of very weak fields, casting
flows extract energy from the shear in the same way as li5 e doubt on the argument that the MRI dynamo could be

. . X is, is only valid when the scale of the background field is
those related to the forcing) in a turbulent flow driven by, . larger than that of the instability. In this respect, tie-
a Iin_ear instability like turbulent_ convection (Rincon B)0 .\« growth rate estimate does not strictly apply at scales
a.n_d ina turbule;nt shear flow with no vyglls Where_the trarT/k comparable to those of the strongly tangled fields ob-
sition process is fundamentally subcritical (Casciolalet Aerved in MRI turbulence at moderate to largen, thus
2003). The energy cascade clearly proceeds in a very sifj{e e might well be some cut-off scale in the MRI dynamo
lar way for _bOth types of forcing. o problem below which forcing by the MRI becomes dynami-
We conjecture that self-sustaining MHD processes gega|ly negligible. Fig. 4 of Fromang et al. (2007b) shows that
erated by subcritical shear dynamos are also confined g forcing of poloidal magnetic fields in their simulatidas
large scales in the limit of larg&e, and that their main fajrly |arge-scale and falls off before the viscous scalée
role is to drive MHD turbulence continuously by extractingyymerics are unfortunately not yet asymptotic and there is
energy from the shear. If this was to be true, then an impagy, published work on the MRI dynamo so far in which an
tant consequence would be that small-scale dynamo actigfhreciable scale separation between forcing and dissipa-
should take place exactly in the same way in MRI turbyjo exists. It is therefore likely that testing our conjeet

lence with zero net-flux and in turbulence driven by oth&fymerically and discriminating between different scevgri
means (artificial forcing, thermal convection, MRI with net || take a few more years.

flux), provided that there is a sufficient scale separatien be

tween the forcing scales of the turbulence and the small-

scale dynamo scales. There are now some clear numerieal Conclusions

indications - including MRI dynamo simulations - that some

universality with respect to the forcing process existgtier In this paper, we discussed the concept of subcritical dy-
small-scale dynamo &@m > 1. In this regime, the fore- namo action in shear flows and applied it to the problems of
mentioned scale separation is easy to obtain, because shibcritical hydrodynamic transition and MRI dynamo ac-
small-scale dynamo relies on the viscous scale eddies ($ie@ in accretion disks. We further showed that the subcriti
Zel'dovich et al. (1984) for theory and Schekochihin et alcal dynamo scenario is relevant to many hydrodynamic and
(2004) for an exhaustive numerical study). The numericatagnetohydrodynamic problems that involve two basic in-
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gredients, namely shear and non-axisymmetric instadsliti Donati, J.-F., Paletou, F., Bouvier, J., Ferreira, J.: 2008ture,
and pointed out that the coherence of the process contrasts438, 466
with the statistical description on which standard mealut-fieEllingsen, T., Paim, E.: 1975, PhFI, 18, 487

theory is based. We finally conjectured that coherent strul'tz:@:m’ g' s" g:gg:g:' m s' E 1822’ ‘;FE'\SYI 1326?1718
tures generated by subcritical dynamo action could beéam’ D. R.. Proctor. M. R. E. 1987, GApFD, 38, 293

backbone of MHD turbulence in shear flows in the SeN$&omang, S., Papaloizou, J.: 2007a, A&A, 476, 1113

that their main role would be to extract energy from th@romang, S., Papaloizou, J., Lesur, G., Heinemann, T.: 2007
shear to drive turbulence at large scales, thereby leaving AgA, 476, 1123

some room in wavenumber space for an independent sm&temang, S., Terquem, C., Balbus, S. A.: 2002, MNRAS, 329, 18
scale dynamo to proceed. Gellert, M., Rudiger, G., Elstner, D.: 2008, A&A, 479, L33

. . . ibson, J. F., Halcrow, J., Cvitanovic, P.: 2008, accejiei-M
The whole picture is obviously not complete yet. Ther& [ar Xi v: 0705. 3957]

might be a way to unify the stat.i.f,tical _mean—field kinematiﬁam“ton’ 3. M., Kim. J.. Waleffe, F.: 1995, JFM, 287, 317
picture and the coherent subcritical picture. There is aineﬁawby, J.F., Balbus, S. A.: 1992, ApJ, 400, 595

to understand further which role SSPs play in astrophysiawley, J. F., Balbus, S. A., Winters, W. F.: 1999, ApJ, 518} 3
cal objects such as accretion disks and stars. To this erthwley, J. F., Gammie, C. F., Balbus, S. A.: 1996, ApJ, 460, 69
there is a lot of work to do to relate the initial value problentrerbert, T.: 1976, in: A. . van de Vooren, P. J. Zandbergeis.je
description of these processes to the phase space structuré>roc. Int. Conf. Numer. Methods Fluid Dyn., 235

of the associated dynamical systems. We have shown thafa-+ Burin, M. J., Schartman, E., Goodman, J.: 2006, Natur
description of subcritical MHD dynamos in terms of fixed 444, 343

) ) ; . . Jimenez, J., Pinelli, A.: 1999, JFM, 389, 335
points is helpful to understand simple configurations. HOWj;1che-' 3 Simens. M. P.- 2001. JEM. 2001, 81

ever, numerical evidence (Cline et al. 2003) suggests thajghes, C. A., Longbottom, A. W., Hollerbach, R.: 1995, PER|,
fully chaotic behaviour can be obtained easily for subcriti 119
cal MHD dynamos in more complex configurations. Therekreiss, G., Lundbladh, A., Henningson, D. S.: 1993, JFM,,270
fore, it might be necessary to describe these dynamo pro- 175
cesses in terms of more complicated phase space structih@¥lahl, M. T.: 1980, JFM, 98, 243
than fixed points and to attempt to identify transition regio L€Sur. G., Longaretti, P.-Y.: 2005, A&A, 444, 25
in parameter space similar to the hydrodynamic “edge I@esur, G., Longaretti, P-Y.: 2007, MNRAS, 378, 1471
. ! esur, G., Ogilvie, G.-l.: 2008, in preparation
chaos” (Schneider et al. 2006, 2007). From what we hay_g,ermore, P. Jackson, A.: 2004, PRSLA, 460, 1453
learned so far, it is worth emphasizing that creating newbngaretti, P.-Y.: 2002, ApJ, 576, 587
connexions between the shear flow and transition commMiesch, M. S.: 2007a, ApJ, 658, L131
nity and the dynamo community would undoubtedly prov#liesch, M. S., Gilman, P. A., Dikpati, M.: 2007b, ApJS, 16873

extremely helpful to make some important progress on thel@iseev, S. S., Rutkevich, P. B., Tur, A. V., Yanovskii, V. 1988,
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