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PACS 68.03.Cd — Surface tension and related phenomena
PACS 68.03.Fg — Evaporation and condensation of liquids

PACS 47.55.D- — Drops and bubbles

Abstract — A Leidenfrost drop confined between two hot plates is unstable, if large enough.
After a short delay to build a central vapor pocket, it forms a ring which rapidly expands and
eventually bursts. We analyze this sequence of instabilities theoretically, and show that the ring
size increases in a non-linear manner as a function of time, in agreement with experiments.

Copyright @ EPLA, 2015

Introduction. — Volatile liquids on sufficiently hot
plates are in the Leidenfrost state, levitating on a cushion
of their own vapor. Hence any change in atmospheric pres-
sure [1], substrate shape [2] or textures at its surface [3-6]
impacts the stability and behavior of Leidenfrost drops.
On smooth, flat surfaces, these drops are in a fully non-
wetting situation, and they do not boil because of the
absence of contact with the substrate. However, when
poured at a larger scale (centimetric, instead of millimet-
ric), liquids exhibit a kind of bubbling behavior, since
one chimney (or several, for even larger drops) appears
across the liquid, resulting from the rise of the subjacent
vapor [7-9].

Confining a Leidenfrost drop between two plates (in a
Hele-Shaw cell) promotes evaporation since vapor cush-
ions are then expected on both sides of the liquid [10].
It also allows a better control of the geometry of the
drop, the thickness of the drop being no longer set by
the capillary length. Here we show that after some delay,
a confined puddle evolves into a liquid ring which grows,
before spliting in disconnected droplets whose size is fixed
by the degree of confinement. While it has been sug-
gested that Leidenfrost drops could be used in microflu-
idics devices [1], the instability studied here limits the
maximum size of Leidenfrost liquids that one can confine.
More generally, this experiment confirms that these drops
have original behaviors compared to other non-wetting
drops, owing to the production of vapor [2,6]. A study of
Raufaste et al. [11], simultaneous to the present work, also
focused on this instability. As those authors injected liquid
directly inside the Hele-Shaw cell until a ring forms, drops
then are always at the onset of instability. We propose
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Fig. 1: (Colour on-line) (a) A large oxygen drop weakly trapped
with a magnet is confined by an horizontal glass plate placed
on spacers of thickness H < 2a. (b) When the drop is squeezed,
two vapor films of thickness h prevent contact with the plates.

here a slightly different set-up, allowing us to vary the
size of the drop for a given confinement.

Experiments. —

Set-up.  We use cryogenic liquids, in particular lig-
uid oxygen, of Leidenfrost temperature lower than room
temperature. Liquid oxygen is extracted from air, and
ice crystals make it milky, which provides both a good
contrast on a black background and a qualitative mea-
surement of the thickness of liquid by absorbance. Liquid
oxygen has a boiling temperature 7, = 90K, a viscos-
ity m = 0.19mPa-s, a density p, = 1140kg/m?, a
surface tension v = 13mN/m, and a capillary length

% ~ 1.1 mm. Since oxygen is paramagnetic, drops

can be trapped with a magnet [12] in order to control their
initial position. The magnetic field is weak, so that it does
not modify the drop’s shape and dynamics.

The substrates are 2mm thick glass plates, kept at
room temperature during experiments owing to their ther-
mal capacity. After a puddle is formed and trapped by
the magnet, another glass plate is placed on spacers of

a =
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Fig. 2: Top view of the sequence of instabilities: 1) the drop first slowly grows (images 1 to 6); ii) a hole nucleates in the center,
which forms a ring; iii) the ring expands (images 7 to 9) before iv) breaking into droplets (images 10 to 12). Here we have
H = 0.6 mm, the scale bar shows 1 cm and the interval between two snapshots is 14 ms.

height H, parallel to the first one. Since H is smaller
than the thickness 2a of the puddle, this protocol confines
the liquid between two “hot” surfaces, producing a vapor
layer next to each plate, as sketched in fig. 1(b) and estab-
lished by Celestini et al. [10]. The evolution of the drop is
recorded from the top with a high-speed camera at 5000
frames per second. If the drop is small, it keeps a shape
close to a disk, and its radius reduces due to evapora-
tion on long timescales (several seconds) [10]. In contrast,
a big drop is unstable and forms a fast growing ring, as
shown in fig. 2. We repeated the experiments with liquid
nitrogen (T, = 77K: n = 0.16 mPa-s, p;, = 807kg/m?
and v =9mN/m) and obtained similar results. While
Raufaste et al. [11] studied drops at the onset of instability,
we are able, thanks to our protocol, to observe the desta-
bilization of drops much larger than the capillary length,
with an initial diameter up to 12mm for each H. The
study of this sequence of instabilites, and more precisely
the dynamics of opening of the ring, is the main topic of
this article.

Ring formation and breaking. As shown in fig. 2
(movies 1-HO.4mm.avi, 2-HO.6mm.avi, 3-HO.6mm.avi,
4-H1.0mm.avi and 5-H1.3mm.avi are available in the
supplementary materiall), the destabilization of the drop
implies several steps:

A) First, the drop’s apparent surface area slowly in-
creases, and its center darkens, which corresponds to
a thinning of the liquid (images 1-6).

B) Then, a faster phenomenon occurs: the thin central
zone bursts in less than 10 ms, ¢.e., less than the in-
terval between frames 6 and 7 in fig. 2.

IInformation about the movies: the movies present the evolution
of various oxygen drops confined, from above. All movies are slowed
down 125 times and their scale is given by the movie frame size.
The corresponding spacing and scale of each movie are given by the
following table.

Movie number 1 2 3 4 5
H (mm) 0406061013
Frame size (cm) 2 5 4 5 3

15 /2 AB C D

Q<

(b)
2r

()

(mm)

(d)

Fig. 3: (Colour on-line) (a) Example of drop temporal evo-
lution: external radius D/2 = R + 2r (purple), internal ra-
dius R (red), and width 2r (blue) (H = 0.6mm). Dotted
lines show limits between stages of the instability. Schematics:
cross-section of the drop at the end of stage A (b), and at the
beginning of stage C (c); top view of the ring (d).

C) At this stage, the drop adopts a ring shape. The
radius of this ring quickly increases, while its width
decreases due to volume conservation (images 7-9).

D) Finally, the expanding ring breaks into several frag-
ments that expand further (images 10-12).

The instability of the ring is thus composed of several
successive instabilities. Namely, we first observe the desta-
bilization of the thickness of the drop (stage A), then the
formation and expansion of the ring (stages B and C) and
finally its fragmentation (stage D). The rings formed in
stages B and C are described by their mean internal ra-
dius R, and by the average width 2r of the corona, as
defined in fig. 3. These values can be estimated from two
area measurements, using image analysis: the surface area
Y ezt of the ring (or drop, in stage A), and the surface area
Y int of the hole when present (stages B and C). This leads
to a total diameter D = 2,/3.;/m, an internal radius
R = \/Yu/7 and a ring width 2r = D/2— R. This allows
us to distinguish the different stages of ring opening, as
shown in fig. 3. Again, we first observe the opening of the
central hole (stage B), a fast stage (less than 5ms) during

26002-p2
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Fig. 4: (Colour on-line) Stability diagram of confined Leiden-
frost drops, in terms of initial diameter D and confinement
H normalized by the capillary length a. Circles represent the
unstable drops studied throughout this work, and we only ob-
serve stable drops below both lines in this phase diagram. The
blue solid line shows the unconfined limit D. = \/éwa whereas
the dashed curve is obtained from numerical integration [10].
Squares are threshold measurements extracted from Celestini
et al. [10].

which the external radius D/2 remains constant. Mean-
while, the internal radius R grows at a constant velocity
of 1.5 £ 0.4m/s, before it slows down. Next, the ring ex-
pands (stage C): the external radius accelerates until it
reaches a constant velocity. Simultaneously, the internal
radius grows at approximately the same velocity, while the
width decreases due to volume conservation. This stage
lasts until the ring breaks, after which the system keeps
on growing by inertia (stage D).

Instability analysis. — We now analyze the sequence
of instabilities following chronological order.

A): Thinning stage. ~ When a drop is confined be-
tween two parallel plates, the liquid first migrates toward
the periphery, decreasing the central thickness (images
1-6 in fig. 2). When the drop is moderately confined
(H = a), the mechanism is similar to the instability ob-
served with a Leidenfrost puddle, where the light vapor
film can be unstable. As described by Taylor for hanging
films [13], the instability occurs when the system is large
enough: then the vapor pocket rises and eventually forms
a chimney across the drop [7,10]. This chimney releases
the vapor, and the hole closes by surface tension. More
recently, it was shown that holes appear above a mini-
mum radius D, = v/6ma ~ 7.7a, where a is the capillary
length [7,8]. For liquid oxygen with a ~ 1.1 mm, we ex-
pect D, = 8.3 mm, which compares to the minimum size
observed for unstable confined drops, as shown in fig. 4.
We can estimate the characteristic time this case as the
time needed for the destabilization of a vapor film of thick-
ness h ~ 100 ym and viscosity 7, ~ 1.4 1075Pa-s. As-
suming a Poiseuille flow for the vapor, this time scales
as 12ym,/p?g®h® [14], approximately 10 ms here, a value
comparable to the timescale of “spreading” in fig. 2.

We also noticed that the threshold size decreases for
H/a < 0.5 (fig. 4), in good agreement with the re-
sults obtained numerically and experimentally by Celestini

Fig. 5: (Colour on-line) Image sequence of the opening of
the central film (stage B) underlined by a dotted circle, for
H = 0.6 mm. The scale bar shows 5mm and the time interval
between snapshots is 0.6 ms.

et al. [10]. In this case of highly confined drops, the origin
of the instability is different: pressure rises in the gas film
due to the radial lubrication flow from evaporation. It
leads to inhomogeneous films, thinner at the center of the
drop [10].

B): Ring opening.  Above D., a vapor cavity grows
below the drop, and the resulting liquid film eventually
breaks and bursts (stage B). This explosion is illustrated
by the image sequence in fig. 5, where the hole in the film
is underlined by dotted circles.

As a remark, we can notice that a similar expansion
mechanism is observed in stages A and C, yet at very dif-
ferent velocities R (fig. 3(a)). The liquid repartition at
the end of stage A mostly differs from stage B by a lig-
uid film of surface area 27 R? (figs. 3(b) and (c)). Since it
costs energy to stretch this film, it makes the ring difficult
to expand, compared to the ring in stage C: if there is
no film at the center of the ring, the surface tension re-
sistance to expansion becomes much smaller, by a factor
scaling as % ~ 10. This explains why the fast expansion
(phase C) is triggered by the bursting of the central liquid
film (phase B).

Stage B begins with a rapid increase of the internal ra-
dius R at constant velocity while the external radius re-
mains constant (as shown in fig. 3). The bursting velocity
is high, and it barely changes with drop volume or confine-
ment: our measurements yield R=15+04 m/s, with no
visible correlation with D or H. This behavior is similar
to the one following the bursting of a soap film of thick-
ness 0, studied by Culick [15] who predicted a bursting

velocity:
R=,/—.
p1o

Using eq. (1), we can estimate 6 around 10 um. During the
free fall of large drops, the air flow also leads to the forma-
tion of liquid sheets [16]. Those films also break around
10 gm. For comparison, soap films are often thinner (typ-
ically 1 um) yet they are stabilized by surfactants.

We considered the film undisturbed away from the rim,
which explains that the external radius of the drop re-
mains constant in this stage. Moreover, the rim is much
lighter than the drop: at the beginning of stage B, the
volume of the central film scales as JR?, a small fraction
O0R/rH ~ 1% of the volume of the drop. Finally, the film
becomes thicker in the vicinity of the ring, which explains
that the opening velocity decreases at the end of stage

(1)
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Fig. 6: Image sequence of an expanding ring (stage C). We
have H = 0.6 mm, the scale bar corresponds to 1cm and the
time interval between photos is 7.2 ms.

B. Unlike Raufaste et al. [11], we do not find any corre-
lation between the opening velocity and the confinement.
However, the decrease of the velocity is similar to the one
they observed and predicted using a refined version of this
model assuming a linear profile of thickness instead of a
uniform film.

C): Ezxpanding ring.  After its formation, the ring ex-
pands, as shown in fig. 6: its radius R increases and its
width consequently decreases. This expansion of typical
velocity of 0.1 m/s is much faster than the initial growth
of the drop.

Several physical mechanisms can explain the resistance
to expansion. Firstly, stretching the ring produces an in-
ternal flow with viscous dissipation. Comparing the ra-
dial inertia of the ring pR2? to the viscous dissipation
miR/r? ~ mR/r leads to a Reynolds number Re =
ler/ m = 103, which allows us to neglect viscosity inside
the ring. Secondly, surface tension could stop expansion
and even close the ring, as observed with a liquid ring on
a bath [17] or in a standard Leidenfrost state [18]. The
Laplace pressure difference between inside and outside is
'y(R}H + %), hence scaling as v/R for large rings (r < R).
Comparing inertia to surface tension yields a Weber num-
ber We = pZRQR/'y, always larger than 100 for R > 1cm:
surface tension effects are smaller than inertia. Raufaste
et al. also studied the expansion dynamics and claimed
that it is driven by the inertia acquired by liquid during
the previous stage [11]. They measured a velocity scaling
as \/v/pH. Instead of a constant velocity, we measure
a small yet appreciable increase of velocity at the begin-
ning of stage C, and our typical velocities decrease more
strongly with H. Moreover, in our case, as already men-
tioned, the film is much lighter than the drop. Finally,
inertia alone cannot be responsible for the opening of the
ring: holes are also formed in standard Leidenfrost pud-
dles following processes similar to stage A and B, but they
close due to surface tension. This underlines the key role
of confinement, and suggests that expansion is driven by
the gas flowing to the central hole instead of inertia.

Since the glass temperature is much higher than the
boiling point of the liquid, vapor is produced and part of
it accumulates in the central pocket formed during the
preceding stages. The variation of the product of the
internal pressure by the volume of the pocket TR2H is
related to the injected mass by the ideal gas law. As-
suming that the difference between the pressure in the
pocket and the external one is constant, we deduce that

8
- bpgrptgpreetd i
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(a) (b)

Fig. 7: (Colour on-line) (a) Red arrows show the vapor flow
inward or outward, below and above the liquid: due to confine-
ment, vapor going inside the ring cannot escape and triggers
expansion. (b) Volume Q = 2 (R+7)[(2r — H)H +7H? /4] vs.
time t during stage C, for the experimental data of fig. 3. The
mean value, 2 = 38 ul,, is plotted with a dotted line.

the change of volume of the central pocket due to evapo-
ration drives the motion. We thus focus on the opening
law R(t), for r < R. On the other hand, the ring volume
Q =2n(R+r)2rH + (/4 — 1)H?] ~ rRH is assumed
to be constant during the short timescale of experiments,
which lasts approximately 100 ms, much smaller than the
characteristic timescale of evaporation, typically 10s. This
is consistent with the evolution of ) presented in fig. 7.
As usually assumed in a Leidenfrost state [7,10], the ther-
mal diffusion through a vapor film of thickness h controls
the evaporation of the drop, which yields the mass rate of
evaporation:

m ~ AATRr/hL, (2)
where AT ~ 200°C is the difference of temperature be-
tween the drop and its substrate, L = 210kJ/kg the latent
heat of oxygen and A = 0.018 W-m~!-K~! the thermal
conductivity in the gas. Conservation of mass for vapor
gives 1 ~ p, Rhu, where p, = 2.0 kg/m? is the vapor den-
sity and u its characteristic velocity. In a confined Leiden-
frost state, the pressure in the drop is fixed by the spacing
between the plates, and scales as v/H for h < H < a.
The gas flow thus results from a pressure gradient v/Hr:
assuming that the velocity of gas is given by a Poiseuille
flow, we deduce u ~ h2y/n,Hr, where 1, = 14puPa-s
is the vapor viscosity. From previous equations, we find
that the thickness of the gas layer is fixed by the width

H nv AAT

r of the ring and a characteristic length b = ,
Y pv L

according to
h ~ Vbr. (3)
If a constant fraction of the produced vapor feeds the gas
pocket, its mass grows as 1 ~ p, H RR, driving the expan-
sion of the ring. Together with these equations, we express
the liquid volume conservation, which yields the following
differential equation, for r < R:

AT [ Q
poL \ bH3’

Rl/QR ~

(4)

26002-p4
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Fig. 8: (Colour on-line) (a) From the data displayed in fig. 3, we
plot 1— (R/R0)3/2 as a function of to — ¢, for to = 113 ms. The
expansion of the ring (stage C) is asymptotically well described
by eq. (5). The characteristic time 7 can be deduced from the
linear fit (in red) (here, Texp = 42ms). (b) Texp as a function
of the theoretical value 7, expected from eq. (5), for liquid
oxygen and various spacings H (circles). The best linear fit
gives 0.7 for the slope. The black square corresponds to an
experiment with liquid nitrogen and H ~ 1.0mm while the
orange triangle is evaluated from data by Raufaste et al. [11]
on a water drop, with H &~ 1 mm and 2 ~ 85 uL.

where the right-hand side is constant. Denoting
R(t = tg) = Ry, we solve this equation for R(¢) and find

poL  [bH3R3
ATV T

F_t 2/3
R(t) = Ry (1 + 0) with 7
T
(5)

For a given drop, the horizontal surface of the ring rR
is fixed, and from Q ~ rRH and b < H2, we deduce
7 o H5*: the smaller the spacing H, the faster the ex-
pansion. In a general case, 7 depends on both H and
Q (different for each experiment), and one also needs to
specify to (or Rp) in order to compare eq. (5) to data.
It is tempting to choose the beginning of stage C, but it
is hard to determine precisely this time in experiments.
Since eq. (4) shows that the dynamics does not depend
on Ry, we rather choose for Ry the last available data
point, that is, the instant before the opening of the ring
(end of stage C), which also satisfies the limit r < R. In
fig. 8(a), we plot 1 — (R/Ry)*/? as a function of to — t,
and we obtain, as expected, a line passing through the
origin. From the slope of this line, we deduce the value of
7, and present in fig. 8(b) such measurements, showing a
good agreement with the value predicted by eq. (5). For
this estimation, we used the physical properties of gaseous
oxygen at —80°C, the mean temperature between boil-
ing point and glass temperature (20°C). From this plot,
the numerical factor in the expression of 7 (eq. (5)) is
found to be 0.7. The agreement between model and exper-
iments remains good for a confined drop of liquid nitrogen
(black square in fig. 8(b)). For comparison with an inertial
model, the typical velocity Ry/7 does not vary as H —1/2
but is rather coherent to the dependence as H /4 ex-
pected from our model. On the other hand, the temporal
evolution reported by Raufaste et al. [11] for a water drop

27, (mm)
oo
o o

0 0.5 1 1.5
H (mm)

Fig. 9: (Colour on-line) Ring width 2r. at the first rupture
(beginning of stage D) wvs. the spacing H. The fitting line’s
slope is 1.5.

is also in good agreement with our model: applying the
method described above on their data, we obtain a plot
similar to fig. 8(a) using Ry ~ 5.8 mm for ¢y ~ 20 ms. The
linear fit gives the value of 7y, ~ 18 ms (orange triangle
in fig. 8(b)).

D): Fragmentation of the ring.  As the ring expands,
its width decreases until the liquid thread becomes un-
stable and breaks up in several droplets (fig. 2). This is
a classical Rayleigh-Plateau instability, initially studied
for cylinders [19,20], but also valid for a liquid torus pro-
vided it is large enough [17,21-23]. A condition for torus
fragmentation is (R + r)/r > 2 [17,24], corresponding to
r < R, a condition always fulfilled in our experiments.
Despite the fragmentation of the liquid thread, the expan-
sion of the liquid continues, owing to the inertia acquired
in previous stages and to the low friction inherent to the
Leidenfrost state.

We focus on the first rupture of the ring, and measure
the mean width 2r. at which it breaks. Figure 9 shows
that rupture occurs when the width is proportional to the
thickness of the ring, fixed by the confinement spacing H.
More precisely, we found 2r. ~ 1.5H, close to the situation
where the section is circular and the liquid unconfined.
Indeed, the Rayleigh-Plateau instability might not develop
when liquid is squeezed, as reported for other kinds of
confinement [25]. At small thickness (H < 0.6mm), the
critical width is higher than this linear law (2r, > 1.5H).
Early ruptures occur for thin threads of fluctuating width,
which can locally produce fragmentation. Finally, with
this scaling, we can refine the law on 7 since we chose Ry
at the onset of stage D: assuming ) ~ RyH?, we deduce
7 oc H=%/4Q), in agreement with the observed influence of
the volume.

The driving mechanism of fragmentation is surface ten-
sion, and we can wonder whether the resistance is vis-
cous or inertial. We consider that the thread is locally
cylindrical (R > r) and thus neglect the effect of the
radius of curvature R on the fragmentation. The rele-
vant physical properties for a viscous instability are the
thread radius r, the surface tension v and the liquid vis-
cosity n;, with a corresponding viscous characteristic time
Ty ~ mr /7y, typically 10 us for our parameters. When iner-
tia resists the instability, the associated timescale becomes

26002-p5
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Ti ~ +/pir3/7y, whose value typically is 10ms. Since
Ty < T;, kinetics is set by inertia. It is worth noticing in
fig. 2 that the time interval between two consecutive rup-
tures is indeed comparable to this inertial characteristic
time.

Finally, we can compare this timescale to the typical
time needed to change the ring radius, that scales as
r/i ~ R/R ~ 7. In our experiments 7 > 7;: the fragmen-
tation is mostly unaffected by the expansion of the ring,
but studying the coupled effects would be interesting.

Conclusion. — The instability of large Leidenfrost
drops confined between two hot plates is usually initiated
by a Rayleigh-Taylor instability, as reported for regular
Leidenfrost puddles. It gathers the liquid on the edges of
the drop, leaving at the center a liquid film that bursts
when its thickness is typically 10 pm. A liquid ring forms
and grows due to its evaporation: the gas, trapped by
confinement, drives the expansion, decreasing the ring’s
width. When this width compares to the spacing, the
resulting torus is subjected to the Plateau-Rayleigh insta-
bility, so that it decays into multiple droplets.

In addition to setting the maximum size of a confined
Leidenfrost drop, this sequence of events is a beautiful
illustration of several classical instabilities of liquid inter-
faces arising here from the flow produced by evaporation.
Confinement is critical for triggering them: if the gas can
easily flow away (e.g., on a single plane), a Leidenfrost
ring is also unstable [18] but the other way around, since
it spontaneously closes, driven by surface tension!
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