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The instability of the surface of discontinuity separating two streams of immiscible 
constant-density fluids is studied experimentally and theoretically near onset when 
surface tension effects are significant. Following Thorpe’s original idea, a tube filled 
with two immiscible fluids is tilted at an angle and returned to its horizontal position 
to produce a nearly constant velocity difference between both streams that can be 
varied continuously across threshold. In order to control the wavenumber near onset, 
the flow is spatially forced by periodically distributing small obstacles on the upper side 
of the tank. When the kinematic viscosities of each fluid are nearly equal, ones observes 
two counter-propagating waves of equal amplitude, which cannot be explained from 
a vortex sheet model. A linear stability analysis of a density discontinuity embedded 
within a piecewise-linear velocity profile demonstrates that such waves are Holmboe 
modes associated with the diffusive layers above and below the interface. Good 
agreement is obtained between the measured and predicted values of the critical 
velocity difference, propagation velocity and growth factors of the waves. The 
instability analysis of the asymmetric velocity profile reveals that the breaking of 
reflectional symmetry gives rise to a single propagating wave near onset. When the 
kinematic viscosities of each fluid differ, the first destabilized wave is observed to 
propagate in the same direction as the less-viscous fluid, in agreement with the 
theoretical results, and the dominant direction of propagation can be manipulated by 
adjusting the viscosities accordingly. 

1. Introduction 
In this combined analytical and experimental study, the onset of the first instability 

at the interface between two statically stable fluids in relative shearing motion is 
examined when surface tension effects are significant. A qualitative and quantitative 
comparison is presented between the predictions of linear stability theory and 
experimental observations in a tilting tank apparatus. 

A shear layer is typically produced by bringing into contact two streams of the same 
constant-density fluid travelling at different streamwise velocities. In this simple 
configuration, the resulting velocity profile is known to be subjected to an inflexional 
instability mechanism, which gives rise to the formation of vortical structures or 
Kelvin-Helmholtz billows travelling at approximately the average velocity between the 
two streams (see Ho & Huerre 1984 for a review). If a statically stable continuous 
stratification is introduced, either by varying the temperature or, in the case of miscible 
fluids, the concentration of one of the constituents, two essentially different 
configurations must be distinguished. When the characteristic thicknesses of the 
density profile d: and velocity profile d,* are of the same order of magnitude, the 
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primary instability is the continuation of the Kelvin-Helmholtz instability so that 
above a critical value of the bulk Richardson number, the basic profile becomes stable 
(see, for instance, Maslowe & Kelly 1971 ; Maslowe & Thomson 1971 ; Hazel 1972). As 
first demonstrated by Holmboe (1962), the situation is somewhat more complex if the 
thicknesses dp* and d,* are such that dp* + d,*. When a density discontinuity is embedded 
within a piecewise-linear velocity profile, there may exist an additional pair of unstable 
travelling waves or Holmboe modes which have equal and opposite propagation speeds 
in a frame of reference moving at the average velocity between the two streams. 
Whereas Kelvin-Helmholtz modes are stationary in the same frame and are only 
unstable at low values of the Richardson number, travelling modes persist above the 
neutral boundary of the Kelvin-Helmholtz modes for all values of the Richardson 
number. These results have subsequently been corroborated by several linear stability 
analyses of continuous density and velocity profiles with sufficiently sharp density 
variations (Hazel 1972; Howard & Maslowe 1973; Smyth, Klaasen & Peltier 1988; 
Smyth & Peltier 1989,1990). The nonlinear two-dimensional development of Holmboe 
waves has also been investigated numerically by Smyth et al. (1988), and some of the 
three-dimensional linear instabilities which finite-amplitude Holmboe waves might be 
subjected to, have recently been documented by Smyth & Peltier (1991). 

Relatively few experimental investigations of the instabilities arising in stratified 
mixing layers have been undertaken (see, for instance, the survey of Maxworthy & 
Browand 1975), and most of them pertain to spatially evolving stratified shear layers 
generated downstream of a splitter plate. This configuration has been studied in 
particular by Scotti & Corcos (1972) and Delisi & Corcos (1973), in the case where dp* 
and d,* are of equal magnitude and the basic flow is only subjected to the 
Kelvin-Helmholtz instability. Experimental evidence for the existence of Holmboe 
waves was first reported in spatial mixing layers with d: 4 d,* by Browand & Winant 
(1973) and Koop & Browand (1979). The evolution of interfacial waves and their 
subsequent breakup at the crests were carefully documented. The present study follows 
the spirit of the combined analytical and experimental investigation of Kelvin- 
Helmholtz and Holmboe waves by Lawrence, Lasheras & Browand (1987), and 
Lawrence, Browand & Redekopp (1991). In these recent studies, the results derived 
from the temporal linear stability analysis of a broken-line velocity profile presenting 
a density discontinuity were compared with experimental observations in spatially 
evolving stratified mixing layers. Striking visualizations of the transition between the 
Kelvin-Helmholtz and Holmboe regimes were obtained but, according to these 
authors, the initial profile asymmetry behind the splitter plate made it difficult to carry 
out a detailed quantitative analysis of the dynamics of counter-propagating Holmboe 
waves. Following Reynolds original idea (1883), Thorpe (1968) ingeniously devised a 
temporal mixing-layer configuration by tilting at an angle a tank filled with either two 
immiscible fluids (Thorpe 1969), or a stably stratified fluid mixture (Thorpe 1973a, b). 
For the most part attention was focused on the evolution of Kelvin-Helmholtz billows 
in the case of continuous stratification with dp* z d,*. 

In the present investigation, we adopt the same experimental set-up as in Thorpe 
(1968), but we choose to concentrate exclusively on the spatio-temporal dynamics of 
the interface separating two immiscible fluids. Thus, in contrast to spatially developing 
mixing layers, the basic flow is uniform in the stream direction. Furthermore we only 
examine the initiation of unstable motion close to onset. As opposed to the earlier 
study of Pouliquen et al. (1992), the tilting tank is returned to its horizontal position 
to produce, beyond an initial accelerating phase, a nearly constant velocity difference 
across the interface which can be varied continuously above and below threshold. In 
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this flow regime, surface tension effects play a crucial role in determining the critical 
value of the velocity difference and they have to be included in any model of the 
resulting instability. The basic flow close to threshold is unstable to a continuous band 
of wavenumbers that may lead, in such a spatially extended system, to complex spatio- 
temporal regimes. A unique feature of the present experimental setup is the presence 
of periodic spatial forcing in the form of small obstacles distributed along one of the 
walls of the tube. As demonstrated in Pouliquen et al. (1992), this technique is very 
effective in locking the interface deformation to a particular wavenumber. In this 
manner, the response of the flow to a well-defined wavenumber can be analysed. 
Finally, the aspect ratio of the tube is chosen large enough that the instability is 
primarily two-dimensional, i.e. the interface elevation does not vary appreciably in the 
cross-stream direction and the three-dimensional instabilities described by Smyth & 
Peltier (1990, 1991) are quenched. As in Lawrence et al. (1991), the experimental 
observations and measurements are compared to the predictions of linear temporal 
instability analysis applied to a broken-line profile containing a sharp density interface. 
But, in contrast to this earlier investigation, surface tension effects are necessarily 
included. It should be emphasized that the slope discontinuities appearing in the 
piecewise-linear velocity profile do not lead to spurious instability characteristics when 
compared to continuous velocity distributions, as convincingly shown by Balsa (1987). 
The present theoretical analysis extends earlier results derived by Thorpe (1969) for 
symmetric velocity profiles. 

The paper is organized as follows. The experimental set-up and procedure are briefly 
presented in 92 and preliminary observations in 93. The combined theoretical- 
numerical study is described in detail in 94. For ease of presentation, the properties 
and predictions of the symmetric model ($94.1 and 4.2) and asymmetric model ($$4.3 
and 4.4) are examined separately. Finally, the main results of the study are summarized 
in 95. 

In what follows starred and unstarred quantities denote dimensional and non- 
dimensional variables respectively. 

2. Experimental set-up and procedure 
The experimental configuration of Thorpe (1968,1969, 1973 a, b)  has been chosen in 

order to generate a shear that is spatially uniform in the streamwise direction (figure 
1). As in Pouliquen et al. (1992), a cylindrical glass tube of circular cross-section which 
is 2 m long and 6 cm in diameter is filled with two immiscible fluids with respective 
viscosities ,uT and ,ut, and respective densities pT and p t  with pT > p t .  When the tank 
is tilted at an angle a(t*) from its initially horizontal position, the two fluid layers move 
in opposite directions with respective velocities U:(t*) and Uz(t*). In the present 
experiments different sets of fluids have been used. Set 1 is made up of water and of 
an equal mixture of silicon oil (47V2) and 1-2-3-4-tetrahydronaphtalene. Sets 2 and 3 
are made up of a mixture of kerosene and silicone oil V100, and a mixture of 80% 
alcohol and 20 % water. The physical properties of these fluid pairs are summarized in 
table 1. Viscosities are measured using a falling-ball-type viscosimeter, and surface 
tension is determined by the pendant drop method. In order to generate a shear layer 
with equal and opposite free-stream velocities U:(t*) = - UF(t*) = U*(t*), both fluid 
layers are chosen to be of equal depth throughout the investigation. 

In the study reported by Pouliquen et al. (1992), the inclination angle a was 
maintained at a constant value a,  in order to create a uniform accelerating shear. The 
resulting basic flow then became unstable at the critical time when the instantaneous 
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FIGURE 1. Experimental set-up: a tank filled with two fluids of density pT and p: is inclined at an 
angle a, and brought back to its horizontal position in a single rotation of the cam 0 < B < 2n. 

Fluid 

Surface 
Density Viscosity tension 
( g ~ m - ~ )  (cP) (mNm-l) /3 

[Water p; = 1.0 p1 - . 
Set 1 Equal mixture of silicone oil V2 and p,* = 0.92 p i  y* = 80 0.14 

p; = 0.848 pT = 2.1 1 

pT = 0.848 pT = 2.1 1 

1 1-2-3-4-tetrahydronaphtalene 
(Mixture of 80% alcohol and 20% water 

1 88% kerosene 

i 93 % kerosene 

Set 2 Mixture of 12% silicone oil VlOO and p,* = 0.796 p,* = 2.3 y* = 5.2 7 x 

Mixture of 80 % alcohol and 20 YO water 
Set 3 Mixture of 7 % silicone oil VlOO and p,* = 0.784 p,* = 1.6J y* = 5.3 -0.09 

TBLE 1. Physical properties of the fluids used in the experiments. The dimensionless asymmetry 
parameter /3 is defined by equation (1) 

velocity difference AU*(t*) = Uz(t*) - UT(t*) exceeded a critical value AU:. The rapid 
increase of AU*(t*) beyond the threshold value AU,* subsequently resulted in large 
interfacial deformations. In the present experiment, one seeks to produce a basic flow 
where the velocity difference can be conveniently maintained at a constant value AU: 
close to onset. Accordingly, the tube is initially tilted at an angle a, during an 
accelerating phase, to create a chosen velocity difference AU:, and it is then returned 
to its horizontal position a = 0 to keep AU* constant and equal to AU:. In this mode 
of operation, there is a clearly identifiable control parameter, namely AUZ, and it can 
be varied continuously across the threshold value A U,*. 

The time history a(t*) of the inclination angle is specified by means of a motor of 
angular velocity w*, which drives an eccentric cam as sketched in figure 1. With a full 
rotation of the cam, the angle a increases from zero, reaches its maximum value a, and 
then returns to zero. The corresponding velocity in each fluid layer is given by 

t* * * 
Uz*(t*) = - U?(t*) = U*(t*) = s, p1 e g *  sin (a(t*)) dt", 

+ P 2  

where g* denotes gravity. Noting that a is in fact a function of the rotation angle of 
the cam 0 which varies in the range 0 < 0 < 27c, one may write for the final velocity U: : 

u* =-- pT -p ig*  Jr sin (~(0) )  do. 
U * d + P Z  
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FIGURE 2. Interface deformation 2 s after the onset of instability. Fluid set 2, AZJ: = 16 cm s-', 
A; = 3.7 cm; note the location of the periodically distributed obstacles at the top boundary as 
indicated by the arrows. 

4 

1 

5 10 

x* (cm) 

FIGURE 3. Spati-temporal x*-t* diagram of interface deformation. Fluid set 1, AU: = 24 cm s-', 
A: = 5 cm; darker (lighter) regions indicate the crest (troughs) of the interface deformation. The 
tube is brought back to its horizontal position at t* = 1 s. 

Thus, one is able to control the final velocity difference AU; = 2U: between the 
fluid layers simply by varying the rotation rate of the motor w* .  A typical experimental 
run lasts 3-4 s. The duration of the experiment is limited by the hydraulic jumps which 
propagate towards the centre of the tube from the ends. 
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To visualize the interface, fluorescein dye is mixed with the heavier fluid and a laser 
sheet is created in the vertical plane containing the axis of the tube. The resulting 
pictures are recorded on film with a CCD movie camera. A typical photograph is 
shown on figure 2, where the interface appears as the boundary between the 
illuminated heavier fluid in the bottom part of the tube and the dark lighter fluid in the 
upper part. The interface elevation is easily determined by making use of image 
processing software on a Macintosh. It is accurately located as the point of maximum 
gradient on the grey scale. The resolution of the image processing is about 30 pixels per 
cm. The interface deformation can then be recorded and images are digitized in order 
to measure its position. The spatietemporal dynamics of the interface can be 
summarized on an x*-t* diagram as shown on figure 3. At each time step, the interface 
has been represented by a line along the x-axis, the grey level at each point being related 
to the corresponding elevation of the interface (white in a trough, black on a crest). The 
propagative nature of the interface deformation is clearly apparent, as discussed in the 
next section. 

As in Pouliquen et al. (1992) the flow is spatially forced at a specific wavelength 
by periodically placing 3 mm high metallic obstacles on the upper wall of the tube 
(figure 2). These are maintained in position with movable magnets distributed along 
the outer wall of the tube. Pouliquen et al. have established that when the forcing 
wavelength stays close to the natural wavelength of the instability, the interface 
response is locked, i.e. it is perfectly periodic at the forcing wavelength. In the present 
context this property of the flow is essential: a single wavelength can be isolated and 
its temporal dynamics observed close to onset. By forcing the flow at a fixed 
wavelength more complex spatietemporal behaviour is completely inhibited. 

3. Preliminary experimental observations 
The initial experiments were conducted with the first set of fluids (table 1). A typical 

spatietemporal x*-t* diagram for the elevation of the interface is displayed on figure 
3 when the velocity difference AU: is close to AU:. The interface, which is flat at 
t* = 0 s, is initially deformed into a stationary sinusoidal pattern at the forcing 
wavelength. This stationary growth process terminates at around t* = 1.4 s and it is 
followed by a propagating regime where the interface sustains travelling waves which 
move predominantly to the left in the same direction as the lower fluid. The 
fundamental wavelength does not seem to be affected by the propagation. However, 
significant changes are noticeable in the amplitude variations. The black pulses 
appearing on figure 3 for t* > 1.4 s seem to indicate temporally periodic amplitude 
modulations. A closer examination reveals that such modulations are due to the 
presence of a counter-propagating wave of smaller amplitude moving to the right in the 
same direction as the upper fluid layer. 

Two types of instability could lead to the deformation of the interface: the 
Tollmien-Schlichting and Kelvin-Helmholtz instabilities. The first one is of viscous 
type, and grows over viscous timescales, typically equal to the ratio of the square of the 
thickness of the boundary layer to the kinematic viscosity. In our experiments, this 
timescale is about 20 s and it is much larger than the characteristic time observed on 
figure 3 for the growth of the waves. The instability of interest here is actually of an 
inviscid nature, and belongs to the Kelvin-Helmholtz class. 

The simplest theoretical model one can think of to describe the initial evolution of 
the interface is the classical vortex sheet (Drazin & Reid 1981) separating two 
immiscible fluids of respective density pT and p; with pT > p,*, moving at constant and 
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opposite speeds, the velocity in each fluid being uniform. In the presence of surface 
tension, the sheet is found to be unstable to stationary disturbances above a critical 
value 

where y* is the surface tension coefficient. Thorpe (1969) obtained good quantitative 
agreement between experimental observations in accelerated flow and theoretical 
predictions based on the vortex sheet model for the threshold value AU,* and the 
initial growth rate c* of the perturbations. This result demonstrates that the presence 
of diffusive layers at the interface can indeed be neglected in the accelerating 
flow configuration. In the present nearly constant AU* case, the theoretical value 
AU,* = 0.185 m s-l for fluids of set 1 compares favourably with the experimental 
one AU,* = 0.195 m s-l, but the measured growth rate c* = 3.1 s-l is far below the 
theoretical value c* = 15.6 s-l. More crucially, the linear stability analysis of the 
vortex sheet completely fails to account for the observed propagative features. In order 
to include propagative effects, one must consider a more realistic velocity profile 
that is continuous at the interface. 

4. Linear stability analyses ; comparison with experiments 
The vortex sheet analysis is abandoned in favour of a continuous velocity model 

where the diffusive layers on either side of the interface are explicitly taken into 
account. Following Lawrence et aE. (1991), the basic flow sketched on figure 4 is 
introduced. Two streams of infinite height and respective densities pT and p,* (p: > p,*) 
and velocities - U* and U* are separated at y* = 0 by a density interface with surface 
tension y*. The diffusive layers of respective thicknesses d* and 6d* in the upper and 
lower fluids are modelled by a piecewise-linear velocity profile. The case 6 = 1 has been 
studied by Thorpe (1969). The fluid velocity at the interface is continuous and taken 
to be equal to a fraction PU* of the free-stream velocity U*. The dimensionless 
parameters 6 and P provide a measure of the asymmetry of the velocity profile. They 
can be related to the properties of each fluid by the following reasoning. If one assumes 
that the velocity profile is created through viscous diffusion by setting the two fluids 
into motion at time t* = 0, the characteristic thickness of the diffusive layers evolves 
according to the laws d* - (v,* t*)i and 6d* - (vT t*)i respectively, where vT and v,* 
denote the kinematic viscosities. Thus, 6 is simply given by 

6 = (v;/V,*y.  

Furthermore, imposing that the shear stress be continuous at the interface y* = 0 
provides the following relation between 6 and /3: 

The linear stability analysis is performed under the assumption that the basic flow is 
quasi-steady, i.e. it evolves on a diffusive timescale that is much longer than the 
characteristic timescale of the instability. Furthermore viscous effects arc included to 
properly define the velocity profile, as discussed above, but they are ignored in the 
perturbation analysis. In other words, one only considers the inviscid stability of the 
flow defined in figure 4. Dimensionless unstarred variables are introduced based on the 
free-stream velocity U*, the capillary length L* = (y*/[g*(p: -p,*)])i and the density 
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Y* 

X* 

FIGURE 4. Sketch of basic flow for the linear stability analysis of $4. 

scale ,oT +pz. The linear stability properties are then a function of four dimensionless 
parameters : 

the dimensionless thickness of the upper diffusion layer d = d * / L * ,  
the asymmetry parameter p, 
the density ratio p1 = p*/(p: +pz), 
the modified Richardson number J = (pT -p,*)g*L*/[@T +p;) U*'], which is the 

primary control parameter of the instability. Recall that the asymmetry parameter 6 is 
directly related to /3 through (1). 

The classical Richardson number is usually defined with respect to a typical 
lengthscale d* of the shear-layer velocity profile. Note that, in the present context, we 
have introduced instead the unconventional 'modified Richardson number' J based on 
the capillary lengthscale L*,  as in earlier studies of the vortex sheet model (Thorpe 
1969, p. 29). With such a choice of dimensionless parameters, the effect of the velocity 
difference AU* is contained in Jwhile the effect of finite thickness d* is confined to the 
parameter d. Thus, one may study the transition from the continuous velocity profile 
to the vortex sheet simply by letting d go to zero at a constant value of J.  

Small two-dimensional perturbations of the form @(y)  exp [ik(x - ct)] are governed 
by the Rayleigh equation 

d2U 1 
@ = 0, k2@--- 

dY2 dy2 U - c  
d2@ ~- 

where k is the real wavenumber and c the complex phase velocity. The unknown 
eigenfunction @ is subjected to the usual continuity of displacement conditions at 
y = d,  y = 0 and y = -ad, namely, 

@ y=-6d+ 

= 0. 
[ @ r = o +  = [ @ ]y=d+ = [ 

] u(v)-c y=o- u(y)-c y=d- u ( y ) - c  y=-ad- 

Continuity of pressure at y = d and y = - ad, and the jump in pressure due to surface 
tension acting on the interface y = 0 provide the additional conditions: 
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In what follows, we shall make the Boussinesq approximation : density variations 
will only be considered in the buoyancy term involving J on the right-hand side of (2). 
In all remaining terms, we shall set pT = p; so that p(y) = + on the left-hand side of (2). 
The assumption amounts to choosing p1 = f for the dimensionless density ratio. Note 
also that relation ( 1 )  between /3 and 8 then reduces to 

Solving the Rayleigh equation and imposing all jump conditions above and the usual 
exponential decays at y = & co then leads to the dispersion relation: 

c4+n3c3+n,c2+n,c+n0 = 0, 
where 

n3 = -2P, 

(4)  

with e, f, g and h denoting the following quantities: 

2(1-/3) kd 

(1 +PIZ 

g =  (:$ __- 1 )  exp (2kd) ,  h = - = e x ~  (2kd). 
1 -P 

The dispersion relation is a fourth-order polynomial in c, with coefficients depending 
on k and the control parameters d, P, and J.  In the following subsections, the cases of 
symmetric and asymmetric velocity profiles are separately examined. 

4.1. Symmetric velocity projile: theoretical results 
When p = 0, the fluid velocity at the interface is zero and, according to (3), 6 = 1.  In 
this situation, both fluids have identical kinematic viscosities and the velocity profile 
sketched on figure 4 is odd, with the same thickness for the diffusive layers in each fluid. 
The dispersion relation (4)  then reduces to the equation 

c4+n2c2+n0 = 0,  ( 5 )  

1 + k2  (e-zkd + 2kd- 1)' 
4k2d2 

, nn=J-  
1 + k2 e-4kd - (2kd- 1)2 

+ 4k2d2 k 
with n2 =-J- 

k 

The case of an interface with surface tension embedded within a symmetric velocity 
profile was originally studied by Thorpe (1969). The dispersion relation (5 )  is indeed 
identical to equation (2.33) of that paper. While Thorpe examined the influence of thin 

in F L M  266 
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FIGURE 7. Critical Richardson number J ,  as a function of thickness parameter d. 

diffusive layers on the critical values AU, and k,  of the velocity difference and 
wavenumber, we focus attention instead on the propagative or stationary nature of the 
unstable modes within the marginal stability curve and examine the transition from the 
continuous velocity profile to the vortex sheet in the limit d-t 0. 

As in all purely inviscid stability analyses, the eigenvalues appear in complex- 
conjugate pairs and the flow becomes unstable if one of the roots of (5) is complex. 
Furthermore, if c is a solution, - c is also a solution, as a result of the symmetry of the 
velocity profile. The temporal stability properties of the basic flow (k real, c complex) 
are summarized on figures 5,6 and 7, as a function of the two remaining dimensionless 
variables, namely the scaled thickness d and modified Richardson number J. For 
specific values of d, the various domains of instability are indicated by dotted and 
shaded regions in the (k,  J)-plane on figure 5.  The upper curve is the marginal stability 
boundary between the neutrally stable clear region where all four eigenvalues are real, 
and the unstable regions where all four eigenvalues are complex. In the dotted areas 
the eigenvalues are all purely imaginary and correspond to stationary modes, whereas 
in the shaded areas they are complex with non-zero real parts and correspond to 
propagating modes. When a particular path is followed in the (k,  J)-plane as specified 
on figure 5 ,  the eigenvalues move along curves in the complex (c,, c,)-plane as depicted 
on figure 6. Finally, the value of the critical modified Richardson number J, at the 
maximum of the marginal stability curve is plotted against the thickness parameter d 
on figure 7. 

The case d = 0 corresponds to the classical Kelvin-Helmholtz instability of the 
vortex sheet separating two uniform streams in the presence of surface tension (Drazin 
& Reid 1981). According to figure 5(a), the flow is neutrally stable when J > 0.5 and 
unstable when J < 0.5. Furthermore, all growing perturbations are stationary 
Kelvin-Helmholtz modes with c, = 0. When a diffusive layer of scaled thickness d = 0.1 
is introduced, as in figure 5(b) the first instability that appears at onset is no longer 
stationary but propagative with c, -+ 0. In continuously stratified shear flows where the 
density layer is much thinner than the velocity layer, such propagating disturbances 
have been well documented (Holmboe 1962; Hazel 1972; Browand & Winant 1973; 
Howard & Maslowe 1973; Smyth et al. 1988; Smyth & Peltier 1989, 1990, 1991; 
Lawrence et al. 1991). Following these authors, propagating perturbations of the 
interface are also referred to, in the present case, as Holmboe modes. It should be noted, 
however, that significant differences exist between the properties of Holmboe waves in 

10-2 
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FIGURE 8. Visualization of velocity profile in lower fluid. A vertical dye line is deposited immediately 
before tilting the tank and its subsequent deformation is recorded. The thickness Sd*(t*) is 
determined as the maximum slope thickness of the retrieved profile. Fluid set 2, AU: = 14 cm s-', 
A; = 3 cm, t* = 2.5 s. 

each situation. In a continuously stratified flow, Holmboe modes exist in a tongue- 
shaped region that extends to infinity in the wavenumber-Richardson-number plane 
and the critical value of the Richardson number is pushed to infinity. In the case of 
immiscible fluids that is of interest here, surface tension acts to dampen large 
wavenumbers and there is a well-defined value of the threshold 4. In both instances, 
stationary Kelvin-Helmholtz modes appear at small values of the control parameter 
(figure 6b). 

The transition between these two distinct modes of instability can be understood by 
following the migration of eigenvalues in the complex (c,, ci)-plane as the modified 
Richardson number J decreases from infinity along the vertical line k = 0.5 (figure 6b). 
For large J, all four eigenvalues lie on the real c,-axis. As the marginal stability 
boundary in figure 5 (b) is crossed, they collide two by two at a finite value of c, on the 
real axis to produce two complex-conjugate pairs of counter-propagating amplified 
and decaying Holmboe waves. Finally, as J crosses into the Kelvin-Helmholtz domain 
on figure 5(b), the four eigenvalues experience paired collisions again, but on the 
imaginary axis, to give rise to two sets of stationary amplified and decaying 
Kelvin-Helmholtz modes. The eigenvalues remain on the imaginary axis as J i s  further 
decreased to zero. 

The transition to the classical Kelvin-Helmholtz vortex sheet limit is made obvious 
by examining the qualitative changes taking place in the stability diagrams (figures 5 c, 
5b, 5a) and eigenvalue plots (figures 6c, 6b, 6a) as d is decreased to zero. The 
Kelvin-Helmholtz domain is seen to gradually increase in extent at the expense of the 
Holmboe domain until the marginal stability boundary coincides with the limiting 
curve of the Kelvin-Helmholtz region when d = 0 (figure 5a). Simultaneously, the 
collision points on the eigenvalue plots approach the origin as ddecreases to zero, until 
one obtains the limiting structure displayed on figure 6(a), in agreement with existing 
weakly nonlinear analyses of vortex sheets (Weissman 1979). Finally, one notes that 
the finite thickness of the shear layer tends to decrease the critical value of the modified 
Richardson number J as shown on figure 7. 

With a set of dimensionless parameters based on the capillary lengthscale L", we 
have been able to study both the vortex sheet and the continuous velocity profile, and 
to illustrate how propagative modes appear when diffusive layers at the interface are 
gradually introduced. 
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FIGURE 9. Stability diagram of piecewise-linear model in the (thickness d, Richardson number J)- 
plane at a fixed value of the dimensionless wavenumber k.  The clear and shaded regions are defined 
as in figure 5. (a) k = 1.3: 0, accelerating shear experiment, fluid set 1, a, = 15"; A, constant shear 
experiment, fluid set 1, AU: = 24 cm s - l  (J, = 0.28), A; = 5 em. (b) k = 0.54: 0, constant shear 
experiment, fluid set 2, AU: = 14 cm s-l (J, = 0.2), AU: = 12 cm s-l (J, = 0.27), A: = 3.7 cm. 

4.2. Symmetric velocity profile : comparison with experiments 
The experimental observations can be interpreted in the light of the previous 
theoretical results. In order to obtain a complete set of data, two experimental runs are 
carried out for each value of the velocity difference AUZ. In the first run, fluorescein 
dye is mixed in the bulk of the lower fluid to accurately record and measure the 
elevation of the interface. In the second run, a vertical line of fluorescein dye is 
produced in the lower fluid immediately before tilting the tube. From the subsequent 
deformation of the line during the course of the experiment, one can retrieve the 
instantaneous velocity - U*(t )  of the lower stream and the instantaneous thickness 
6d*(t)  of the corresponding velocity profile as illustrated on figure 8. Since the flow is 
spatially forced, the wavenumber k is kept constant and each experimental run is 
represented by a specific path in the (d,J)-plane as shown on figure 9. The dotted 
(shaded) areas on the figure identify regions of stationary (propagating) modes at a 
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FIGURE 10. Sketch of counter-propagating Holmboe waves and associated vortices. 

fixed value of k, as obtained from the stability analysis in the previous section. In the 
experimental run performed with fluid set 1 and corresponding to the x*-t* plot of 
figure 3 ,  the flow evolves along the curve marked with triangular symbols on figure 
9(a). As the tube is tilted at an angle a, and brought back to its horizontal position, 
the velocity difference AU* initially increases during an accelerating phase from zero 
to its nominal value AUZ = 2U: and subsequently remains nearly constant in time. 
Correspondingly, the instantaneous modified Richardson number J rapidly decreases 
from infinity to its nominal value J, = (p: -p;)/(p,* +p;)g*L*/UZ2 and remains 
nearly constant thereafter. During this process, diffusive layers are produced on either 
side of the interface that slowly grow in time. Thus the basic flow may be considered 
as quasi-steady beyond the initial accelerating phase. The wavenumber k and the 
modified Richardson number J are then constant and d is the only slowly time-varying 
parameter. As d becomes sufficiently large a switch from stationary Kelvin-Helmholtz 
modes to propagating Holmboe modes should be observed. As seen on figure 9 (a), the 
characteristics of the basic velocity profile represented by triangles initially lie in the 
Kelvin-Helmholtz domain and stationary perturbations are indeed observed on figure 
3 in the early portion of the run. At the critical time t* = 1.4 s, the basic flow crosses 
into the Holmboe region on figure 9(a)  and this is associated with a sudden bending 
of the rays on figure 3 giving rise to propagating Holmboe waves. A typical path 
followed in the accelerating shear case where the tube is kept tilted (Thorpe 1969; 
Pouliquen et al. 1992) is indicated by square symbols on figure 9(a). The accelerating 
flow leads to a very rapid decrease in J and relatively slow increase of the scaled 
thickness d. In contrast to the previous case, the flow therefore remains in the 
Kelvin-Helmholtz domain for the entire duration of the experiment. Stationary 
Kelvin-Helmholtz billows are then observed which can be very well described by a 
linear stability analysis of the temporally evolving vortex sheet (d = 0) as demonstrated 
by Thorpe (1969). 

A physical interpretation of the transition between Kelvin-Helmholtz and Holmboe 
modes has been proposed by Holmboe (1962) and documented by Lawrence et al. 
(1991) in terms of vorticity dynamics. When d + 0, the shear layers in each fluid give 
rise to two horizontal trains of corotating vortices above and below the interface. If J 
is sufficiently small, i.e. for strong shear or weak density differences, vortices on each 
side of the interface merge in pairs to form a stationary Kelvin-Helmholtz vortex. If 
J is too large however, the density discontinuity acts as a barrier to prevent merging 
and both arrays keep their identity, travelling at the local speed of the basic flow in each 
fluid. Two trains of counter-propagating Holmboe waves are then obtained as 
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FIGURE 11. Flow visualization of vortex train in lower fluid obtained by dropping fluorescein dye 
on the interface prior to tilting the tank. Holmboe wave regime. Fluid set 2, AU: = 12 cm s-’, 
hf = 3 cm, t* = 2 s. 

sketched on figure 10. The existence of vortical structures within each fluid can be 
verified experimentally by dropping fluorescein dye on the interface before tilting the 
tube (figure 11). As waves begin to propagate on the interface, dye is collected into 
‘beautiful’ vortices in the lower fluid, which travel at the same speed as one of the 
interfacial waves. A parallel array of vortices moving in the opposite direction also 
exists in this case in the upper layer, but it cannot be visualized with this technique since 
fluorescein dye does not mix with the upper fluid. 

In order to quantitatively compare the dynamics of the observed Holmboe waves 
with the results of the linear instability analysis presented in $4.1, it is first necessary 
to choose an appropriate pair of working fluids. As shown on figure 9 (a), a typical run 
with fluid set 1 leads to relatively rapid variations of the scaled thickness d and to an 
undesirable transition from the Kelvin-Helmholtz regime into the Holmboe regime. 
The properties of fluid set 2 were ‘ taylored’ to proceed directly from the stable domain 
into the Holmboe domain and to minimize variations of the scaled thickness d. As 
indicated in table 1, the viscosities of fluid set 2 are of the same order of magnitude as 
those of set 1 but the surface tension and asymmetry parameter /3 are much smaller. 
The capillary lengthscale L* is therefore smaller and the dimensionless thickness 
d = d*/L* larger. As seen from the curves marked with circles on figure 9(b), a typical 
run exhibits a direct transition to the Holmboe instability. Furthermore, the larger 
values of d lead to a lower value of J ,  (see figure 7) and consequently to a higher critical 
velocity difference A U,*. The first observable deformation of the interface therefore 
appears at a later stage in the experiment, when the thickness d* - (v,* t*)i experiences 
only mild variations. The quasi-steady approximation may then be expected to hold. 
Finally one notes from table 1 that fluid set 2 yields a very small value of the asymmetry 
parameter p so that the theoretical analysis of $4.1 is indeed relevant. 

As seen from figure 12, the resulting spatio-temporal diagram displays a striking 
chessboard pattern formed by the superposition of two counter-propagating Holmboe 
waves of equal amplitude. In contrast to the corresponding plot pertaining to fluid set 
1 (figure 3), propagating disturbances prevail right at the onset of the instability. 

In order to compare the experimental results with the linear instability analysis, a 
particular value of the slowly varying parameter d must be selected. In a typical 
experimental run with fluid set 2, d varies by less than 20% between the appearance 
of the first deformation and the end of the experiment. In the linear range, one may 
therefore consider d as approximately constant and equal to the value d, at the onset 
when the experimental path crosses the marginal stability curve in the (d, J)-plane on 
figure 9(b). But, as seen from figure 9(b), d, also changes from experimental run to 
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FIGURE 12. Spatio-temporal x*-t* diagram of the interface deformation. Fluid set 2 ,  AU: = 
14 cm s-l, A,* = 3.7 cm. The tube is brought back to its horizontal position at t* = 0.72 s. 

experimental run as the nominal value of the modified Richardson number J, is varied. 
In the range that has been explored 0.2 < J, < 0.4, which corresponds to the velocity 
differences 5 d AU* < 14 cm s-l, the maximum excursions of d, do not exceed 10%. 
For simplicity, d,* was therefore kept constant in the stability calculations, at the mean 
value d,* = 0.6 cm, which corresponds to a scaled thickness of the diffusion layer d, = 
1.9. Linear theory then gives a threshold value J ,  = 0.355 and a threshold wavenumber 
k, = 0.895. Comparison of these predictions with unforced experiments turns out to be 
difficult. Large fluctuations in the measured critical wavenumber k, and critical value 
J ,  of the control parameter are observed. The wavenumber k,  appears to fluctuate 
between 0.5 and 1 when J ,  varies from one experiment to another from 0.3 to 0.37. 
These fluctuations can be understood by following in the (k,J)-plane the path of the 
most amplified mode according to linear theory. Figure 13 reveals that, in the range of 
modified Richardson number that has been explored (0.2 < J < 0.4), the most 
amplified wavenumber k,, experiences wide variations, moving rapidly away from the 
critical value k,  when J decreases from its threshold value. This rapid shift of k,, away 
from k, explains the lack of a sharp natural wavelength selection mechanism to create 
a perfectly periodic deformation of the interface. Spatial forcing then appears to be 
essential in order to experimentally produce a periodic pattern, and to make 
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FIGURE 13. 0, Locus of the most amplified wavenumber k,, in the (k,J)-plane, d = 1.9. The 
clear, shaded and dotted regions are defined as in figure 5. 

quantitative comparisons with linear theory. In all the experimental runs with fluid set 
2 to be reported below, the flow is spatially forced at the wavelength A; = 3.7 cm that 
corresponds to a dimensionless wavenumber kf = 0.54. 

Theoretical predictions of the variations of the real and imaginary parts, c, and ci, 
of the complex phase velocity are shown on figure 14(a, b) as a function of modified 
Richardson number J. The corresponding experimental points indicated by circles are 
obtained in the following manner. A spatial Fourier transform is first applied to the 
interface elevation at each time step, every 0.08 s, and the time history of the complex 
Fourier amplitude A(t)  at the forcing wavenumber is extracted. The temporal 
variations of the amplitude IAl and phase q5 of the forcing wavenumber component A(t)  
are then obtained, as illustrated on figure 15(a). This procedure is equivalent to 
performing a sinusoidal fit of the interface deformation at the forcing wavenumber, 
IAl(t) representing the amplitude of the sine function and $(t)  its phase. The temporal 
Fourier transform of the complex amplitude A(t)  is then found to present well-defined 
peaks at the frequencies w and -w of each propagating wave. Half of the frequency 
spectrum is used to reconstruct the temporal signal of a single propagating wave as 
illustrated on figure 15(b, c). The slope of the phase then yields the phase velocity c, 
whereas the evolution of the amplitude provides a measure of the corresponding 
temporal growth rate from which the amplification factor ci may be extracted. Thus 
one is able to separate right- and left-running waves from the original signal. 

Satisfactory agreement is obtained between theory and experiment for the phase 
velocity and growth rate variations with J as shown on figure 14(a, b). Experimental 
points corresponding to right-moving (respectively left-moving) waves are indicated by 
circles (respectively squares). Error bars on the growth rate factor are essentially due 
to the image sampling frequency that is slightly too small compared to the characteristic 
evolution time of the instability. The small asymmetry observed between right- and 
left-propagating waves most likely arises from non-Boussinesq effects. Given all these 
uncertainties, the present results demonstrate that a simple theoretical analysis is 
capable of predicting the onset and the growth of the instability, as well as its 
propagative nature. Some of the limitations of the model are examined below. 

We recall that the linear instability analysis of $4.1 is purely inviscid. One should 
therefore discuss whether the effects of viscous dissipation on the development of the 
instability are indeed negligible. For fluid set 2, the Reynolds number Re, based on Uz 
and the quasi-stationary value dz of the thickness is, for a typical run, of order 
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FIGURE 14. Variations of (a) the real part c, and (b) imaginary part ct of the complex phase velocity 
as a function of the Richardson number J for symmetric velocity profile. The wavenumber is fixed 
at k = 0.54. Continuous curves, theoretical predictions; 0, experimental data points for right- 
moving wave; 0, experimental data points for left-moving wave. Fluid set 2, d = 1.9, /3 = 0. 

Re, = 120. Early calculations by Betchov & Szewczyk (1963) have indicated that 
viscous growth rates rapidly converge to corresponding inviscid values in the case of 
homogeneous mixing layers above a Reynolds number of the order of 50. Indeed the 
experimentally measured growth rates of Ho & Huang (1982) in a spatially developing 
homogeneous mixing layer at a Reynolds number of the order 38 (with the present 
choice of lengthscale and velocity scale) compare very favourably with inviscid stability 
calculations (figure 22 in Ho & Huang). It therefore appears legitimate to neglect 
viscous dissipation effects on the evolution of the waves, at least as a dominant 
approximation. One notes, however, that finite-Reynolds-number effects may have a 
subtle influence on the nature of the most amplified wave in continuously stratified 
mixing layers as demonstrated by Smyth & Peltier (1990). These authors have shown 
that the fastest growing wave can be three-dimensional below a Reynolds number of 
the order of 400. Unfortunately these results cannot be directly extrapolated to the 
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wavenumber component; (b)  amplitude and phase variations of left-running wave; (c) amplitude and 
phase variations of right-running wave. 

present discontinuous interface situation. All our visual observations indicate that the 
motion of the interface gives rise to wave fronts that are normal to the axis of the tube 
and no significant three-dimensional phenomena have been detected : the diameter of 
the tube is small enough that all three-dimensional disturbances are quenched. 
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In the linear stability analysis, it is assumed that the basic flow consists of two 
streams which are unbounded both in the horizontal and vertical directions. In the 
experiment, the thickness of each layer varies from a tube radius to zero in a direction 
parallel to the wavefronts. No significant three-dimensional distortion was induced by 
the finite geometry: the fluorescein dye line of figure 8 remains in the same vertical 
plane throughout the duration of the experiment. Lateral boundaries are also known 
to be stabilizing. According to Thorpe (1969, 92.2), the threshold of instability is the 
same as for the infinite-depth case when the thickness h* of each fluid layer exceeds 
3L*. This constraint corresponds in our case to a minimum height h* z 1 cm. Such a 
value is reached only near the contact line where the interface intersects the wall of the 
tube. 

4.3. Asymmetric velocity profile : theoretical results 
When the kinematic viscosities of each fluid are not the same (6 =+ l ) ,  the asymmetry 
parameter /3 is not zero and the velocity profile looses its symmetry. 

Odd powers of c in the dispersion relation (4) are no longer identically zero. 
Consequently, if c is a solution, - c is not a solution although eigenvalues still appear 
as complex-conjugate pairs in the complex (cT, c,)-plane. This partial breaking of 
symmetry implies that the properties of right- and left-running waves are no longer 
identical. The effect of /3 on the mode diagram in the (k ,  J)-plane is illustrated on figure 
16 for a finite value of d. Corresponding loci of the roots of (4) as J gradually decreases 
to zero on the vertical line k = 1 are displayed on figure 17. The most noteworthy 
difference between the symmetric profile p = 0 (figures 16a and 17a) and the 
asymmetric profile, for instance /3 = 0.03 (figures 16b and 17b), is the emergence of a 
domain with a single unstable propagating mode as indicated by the hatched regions 
on figure 16(b, c). As the marginal stability boundary is crossed from above, a single 
propagating mode becomes unstable when /3 + 0 (hatched band on figure 16b), 
whereas two counter-propagating Holmboe waves simultaneously become unstable 
when /3 = 0 (shaded region on figure 16a). As seen from figure 17(b), the propagation 
velocity c, of the first unstable wave to appear is negative, i.e. opposite to the fluid 
velocity /3 at the interface. According to ( 3 ) ,  the interface velocity /3 is in the same 
direction as the fluid velocity of the more viscous fluid (see also figure 4). We can 
therefore conclude that thefirst destabilized wave moves in the same direction as the less 
viscousfluid, where the diflusion layer is thinner. This last result appears to be a little 
surprising when compared to the conclusion reached by Lawrence et al. (1991) in the 
case of an asymmetrically sheared density interface without surface tension. These 
authors find that the first destabilized mode at a fixed wavenumber is associated with 
the thicker diffusion layer. However, a ‘unified’ criterion accounting for both flow 
situations takes the following form: the first destabilized wave moves in the same 
direction as the fluid that experiences the largest shear across the diffusion layer. 

As the modified Richardson number J is gradually decreased at  a finite value of /3 
(figure 17 b, c), a single collision of the real eigenvalues first takes place on the negative 
real axis which signals the appearance of a single unstable left-running wave. When J 
crosses into the shaded domain, the right-running wave also becomes unstable as two 
real eigenvalues collide on the positive real axis. In this range of modified Richardson 
numbers, there exists a pair of counter-propagating waves with unequal velocities c: 
and c;. According to (4), both velocities are related by 

c:+c; = in3 =-/I. 

For lower values of J ,  the right-running wave is stabilized as the corresponding 
complex-conjugate pair of eigenvalues experiences a final embrace on the real axis. 
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Increasing the asymmetry parameter /3 is seen to reduce the range of modified 
Richardson numbers in which the right-running wave is unstable. Thus, waves moving 
in the direction of the more viscous fluid are gradually stabilized as its viscosity is 
enhanced. Finally we note that left-running waves travelling in the same direction as 
the less viscous fluid are more and more unstable (larger ci) when J approaches zero, 
but their propagation velocity c, gradually decreases to zero. 

In the symmetric case ($4. l ) ,  one could distinguish unambiguously between 
Kelvin-Helmholtz modes defined by the stationary condition c, = 0 and Holmboe 
modes defined by the propagating condition c, =I= 0. Such a sharp distinction is no 
longer tenable when the symmetry of the basic velocity profile is broken @ =I= 0). A 
small non-zero value of /3 (figure 17b) is seen to eliminate the two collisions of 
eigenvalues taking place on the imaginary axis for /3 = 0 (figure 17a). As a result the 
Kelvin-Helmholtz domain (dotted area in figure 16a), in which the eigenvalues are 
purely imaginary, disappears in figure 16(b). In the strict sense, stationary waves are 
then obtained only in the limit J = 0. It can be concluded that the slightest asymmetry 
blurs the boundary between the Kelvin-Helmholtz and Holmboe regimes. We have 
therefore avoided the use of this terminology in this section. 

4.4. Asymmetric velocity profile: comparison with experiments 
The theoretical considerations outlined above indicate that small differences in the 
kinematic viscosities of the two fluids have subtle effects on the nature of the instability 
close to onset. In particular, the observed asymmetry between right- and left-running 
waves on the spatio-temporal diagram of figure 3 can now be understood. The 
properties of fluid set 1 listed in table 1 yield the value p = 0.20 of the asymmetry 
parameter and one should expect predominantly left-running waves moving in the 
same direction as the less-viscous water, in qualitative agreement with observations. 

The asymmetry parameter /3 of fluid set 2 can be controlled by adjusting the viscosity 
of the upper fluid through variations in the concentration of silicone oil VlOO in the 
mixture. Different x*-t* diagrams are then obtained as illustrated on figure 18. Figure 
18 (a) corresponds to a mixture of 7 YO silicone oil and 93 Yo kerosene (fluid set 3) so that 
/3 = -0.09 and predominantly right-moving waves are observed. When ,!3 = 0.007, 
with a mixture of 12 % silicone oil and 88 % kerosene fluid (fluid set 2), two counter- 
propagating waves of equal amplitude are generated (figure 18b). Finally, when the 
upper fluid is made of 20 YO silicone oil and 80 YO kerosene, /? = 0.14 and left-running 
waves are the only ones observed (figure 18 c). Thus, in agreement with the theoretical 
results of 94.3, the instability mechanism selects propagating waves moving in the same 
direction as the less-viscous fluid. Measured values of the phase velocity and growth 
factor for fluid set 3 and /3 = -0.09 are compared with the predictions of linear theory 
on figure 19(a, b). As in the symmetric case, satisfactory agreement is obtained between 
the theory and the experiments, therefore demonstrating that the effects of asymmetry 
are also well described by a simple theoretical model based on a piecewise-linear 
profile. 

5. Conclusions 
The interface separating two streams of immiscible fluids has been shown, from a 

linear stability analysis, to become unstable below a well-defined value of a modified 
Richardson number when surface tension effects are included. If the velocity profile is 
odd with respect to the location of the density discontinuity and the evolution of the 
perturbation is strictly inviscid, the problem is invariant under both space and time 
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reflections, x + - x and t --f - t. In this situation, as the modified Richardson number 
crosses through the threshold value from above, the onset of instability is signalled by 
one of two possible scenarii in the (cr, c,)-plane of the complex phase velocity c. If the 
thickness of the velocity profile is zero, i.e. in the vortex sheet limit, two real values of 
c collide at the origin to give rise to a single pair of stationary amplified and decaying 
Kelvin-Helmholtz modes. As soon as the thickness of the velocity profile becomes non- 
zero, this scenario becomes invalid. Instead, two sets of real values of c collide at finite 
and opposite values of the propagation velocity to give rise to two pairs of counter- 
propagating amplified and decaying Holmboe modes. Amplified and decaying 
stationary Kelvin-Helmholtz modes are only recovered at lower Richardson numbers. 
Experimental observations and measurements in a tilting tank apparatus with two 
fluids of approximately equal kinematic viscosities have shown that the threshold 
values of the velocity difference and wavenumber are reasonably well predicted by the 
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model. Furthermore, the onset of instability is characterized by the appearance of 
counter-propagating Holmboe waves with phase speeds and growth factors as 
predicted by the finite-thickness analysis. Thus, the generation of diffusive layers on 
either side of the interface drastically alters the qualitative nature of the instability. It 
is only in the accelerating shear flow configuration (constant values of the tilting angle), 
that one may hope to remain in a domain with negligible diffusive-layer thicknesses and 
to observe stationary Kelvin-Helmholtz perturbations. It is worth mentioning that 
counter-propagating waves have also been encountered near onset in other fluid 
systems displaying the reflectional symmetry x --f - x, for instance convecting layers of 
binary fluid mixtures (Kolodner et al. 1986; Surko & Kolodner 1987). In the latter case 
the disturbance field is strongly dissipative with no invariance under time reflections so 
that instability arises by simple crossing of two eigenvalue branches into the upper half- 
plane ci > 0 at symmetrically located points on the c,-axis. 

When the velocity profile displays some asymmetry, the reflectional invariance 
x --f - x is broken and the linear stability results indicate that only a single propagating 
wave appears at the critical value of the modified Richardson number. The 
unambiguous distinction between Kelvin-Helmholtz and Holmboe modes is then lost 
and, at very low modified Richardson numbers, one gradually approaches the limit of 
stationary Kelvin-Helmholtz disturbances. Experiments carried out in sets of fluids 
with different kinematic viscosities fully confirm these predictions qualitatively and 
quantitatively: the first destabilized wave moves in the same direction as the stream of 
less-viscous fluid. The dominant propagation direction or lack thereof can be 
manipulated by altering the respective fluid viscosities. It can be concluded from this 
study and the earlier investigation of Pouliquen et al. (1992) that Thorpe’s original set- 
up can be used to advantage in a spatially forced configuration to understand the 
spatio-temporal behaviour of Holmboe waves at a density discontinuity. 
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