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PACS 68.03.Cd – Surface tension and related phenomena
PACS 68.03.Kn – Dynamics (capillary waves)
PACS 67.25.dg – Transport, hydrodynamics, and superflow

Abstract – We discuss the evolution of the shape of viscous filaments (such as honey threads)
placed horizontally in the gravitational field. When attaching both ends of the filament to solid
walls, the center of the filament falls down. Hence, a catenary forms and extends as a function
of time, owing to gravity. However, it was noted by Koulakis et al. that a second shape roughly
consisting of three perpendicular pieces (evoking a flying trapeze) is sometimes observed. We try
here to understand the origin of this U-shape. We show in particular that its origin is independent
of the liquid viscosity, and fixed only by the geometric characteristics (length and radius) of the
(initial) filament.

Copyright c© EPLA, 2008

Viscous cylindrical filaments belong to everyday life: each
time we pour a liquid, viscous jets form and fall down,
and the characteristics of such jets have been the object
of many investigations [1]. Very naturally, the dynamics
of the Plateau-Rayleigh instability was described [2], as
well as the remarkable behaviors taking place when the
jet hits a solid (coiling) [3,4], or a bath of the same
oil (air entrainment) [5]. Here we discuss what happens
when attaching both ends of a viscous filament to solid
walls, so that the filament falls in the gravity field, yet
remaining stuck by its ends. As a result, a (kind of)
catenary shape quickly shows up, and gets stretched as
time goes on. Teichman and Mahadevan comprehensively
described the dynamics of this viscous catenary [6], and
scaling arguments were proposed by Brochard-Wyart and
de Gennes to capture the fall dynamics [7]. Experiments
performed by Koulakis et al. were found to agree very
convincingly with the predicted laws, for both the shape
of the filament and its dynamics [8]. However, the same
authors also observed that “thin” filaments may rather
adopt a kind of U-shape, with two (roughly) vertical parts
connected by a horizontal thread. Our aim here is to
understand the origin of this second shape and to describe
its main characteristics.
The experiment consists of placing a drop of viscous

liquid (silicone oils with a viscosity η between 1Pa s and
100Pa s, or honey with η= 5Pa s) between two parallel
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solid walls, one of them being mobile. Owing to a quick
lateral motion (the wall is screwed on a horizontal rod
which can be moved until it reaches a prescribed distance),
a filament of centimetric length L and millimetric diameter
D is created. This thread meets each wall with a meniscus,
which remains immobile during the experiments because
of the large viscosity of the liquids. The length L is defined
beyond menisci whose millimetre-size extension is anyway
always smaller than L. The filament is filmed with a
high-speed camera (Phantom V9), using backlighting
in order to improve contrast. Depending on the liquid
viscosity, the time scale for the thread’s evolution is
typically in the range 1–10 s, much larger than the time
needed for forming it (less than 100ms).
We report in fig. 1 two series of images showing the

evolution of such viscous threads as a function of time.
The thread is made of silicone oil (η= 10Pa s) drawn so
as to make a filament of (initial) length L= 25± 1mm.
In fig. 1(a), the diameter D at the middle of the thread
is 1.75± 0.05mm, thicker than in fig. 1(b) (D= 0.33±
0.05mm), where the thread is made from a much smaller
volume of liquid.
As observed by Koulakis et al. [8], the filament evolu-

tion depends on the filament diameter. A thick filament
generates a family of catenaries that elongate under the
action of gravity, but the diameter along each successive
catenary is roughly homogeneous (fig. 1(a)). Conversely,
a thin thread quickly takes a U-shape, where it is visible
that most of the liquid mass gets transferred towards the
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Fig. 1: Evolution of viscous threads hanging between two
walls. The threads are obtained by squeezing a drop of silicone
oil (viscosity η= 10Pa s) between the plates, which then are
separated by a centimetric distance. (a) The initial thread
length L and diameter D are 25mm and 1.75mm, respectively,
and the interval ∆t between two snapshots is 0.08 s. (b) L=
25mm and D= 0.33mm; ∆t= 0.32 s. The thinnest thread
adopts a U-shape, which basically stops at a small depth H0,
contrasting with the catenary of the first series. It eventually
breaks, which leads to two hanging disconnected pieces close
to the walls.

filament ends (fig. 1(b)). As a consequence of this thinning,
U-shaped filaments are observed to break systematically
before descending very low, contrasting with catenaries,
which fall down to depthsH much larger than L. The time
τb after which a filament breaks is typically one second in
most of our experiments.
This shape difference can be exemplified by looking

at the conformation of a sewing thread, on which fishing
plumbs are fixed, either regularly, or concentrated close
to the ends of the line, which is attached to solid walls
like the viscous threads. It is visible in fig. 2 that the
two mass distributions generate very different shapes,
similarly to what can be observed in fig. 1: either a
catenary for a homogeneous mass, or a U-shape for the
heterogeneous one. Looking at these shapes upside down
provides the profile of arches, and Gaud́ı similarly used
various irregular distributions of mass along ropes, in
order to design the openings in some of his architec-
tures [9–11]!

Fig. 2: Shape of a soft solid thread with either a homogeneous
distribution of mass (provided by a regular spacing of 10mm
between the millimetric plumbs fixed on it), or an non-
homogeneous one; in the second photo, the same number of
plumbs is localised close to the fiber ends (distance between
plumbs of 5mm). The distance between the attachment points
and the total length of the thread are 13 cm and 20 cm,
respectively.

Very generally, there is no ambiguity about the kind
of shape (either catenary or U) selected by the viscous
filaments, in particular because of the long horizontal
segment that only forms for the U-filament (fig. 1). It is
also possible to imagine other tests to distinguish both
shapes, as shown in fig. 3. After analyzing numerically the
images, we measure here the area A (marked with series
of lines in the figure) below the filament and compare it
to the surface area HL it occupies in space, as a function
of time. Evolutions are found to be different according
to the thread shape. On the one hand, the ratio A/HL
is roughly constant for a catenary (empty symbols), of
approximately 0.3. For a parabolic filament, we indeed
expect a constant ratio A/HL, equal to 1/3, which also
holds for a “young” catenary (H�L) whose shape is close
to a parabola. A more developed catenary (H ∼L) still
provides A/HL of approximately 0.3. On the other hand,
the U-shape (full symbols) implies a different behavior: the
ratio A/HL keeps on decreasing as a function of time, by a
factor higher than 2. For two vertical arms connected by a
horizontal segment, A should indeed vanish, but we never
reach this limit because the filament eventually breaks at
the time τb.
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Fig. 3: A criterion for distinguishing catenaries from U-shapes:
we calculate the surface area A below the hanging filament
(as defined in the insert) and compare it at different times
to the total surface area HL of the region occupied by the
filament. The data are obtained with threads of viscous silicone
oil (η= 10Pa s) of initial length L= 25mm. The diameter
is either D= 0.57mm (empty symbols) or D= 0.33mm (full
symbols). For the thick filament, the ratioA/HL remains nearly
constant, close to 0.3 (1/3 would be the value for a parabola
or for a catenary of small depth); conversely, the U-shape
is characterized by a decrease of A/HL, which would tend
towards 0 if the sides became straight. But the filament breaks
before, at a time denoted as τb.

We now discuss why a shape is selected by a given
filament. Assuming that viscosity is the main force oppos-
ing the gravitational descent of the liquid as proposed in
[6–8], we can first use scaling laws for deriving the dynam-
ics of the catenary, in the spirit of Brochard-Wyart and de
Gennes [7]. Along the vertical axis, the gravitational force
is ρΩg, where Ω∼LD2 is the volume of the filament.
The viscous resistance arises from the existence of axial
gradients (along the flow), since the free surfaces induce
a plug flow in the thread. Denoting s as the curvilinear
length along the filament, the viscous stress can be written
dimensionally as η(ds/dt)/s, which must be integrated
over the transverse surface area D2 of the liquid cylinder.
Once projected on the vertical direction, this force
scales as η(ds/dt)/sD2(H/L)≈ (ηD2/L3)H2(dH/dt)
(for H <L, we have s2 ≈ 4H2+L2, from which we
deduce the former identity). Balancing it with gravity,
we find a non-linear dependence for the kinetics of fall
H3 ∼ ρgL4t/η, in agreement with both experiments [8]
and previous models [6–8]. The characteristic time of
deformation τd for the catenary is obtained for H of order
L, which yields:

τd ∼ η/ρgL. (1)

For a centimetre-size thread and η= 10Pa s, this time
is expected to be around 0.1 s. Capillarity and inertia
might also oppose the motion, and it is instructive to
compare them with viscosity. A capillary number Ca is
built by comparing the viscous force (of the order of

η(ds/dt)/sD2, as seen above) with the capillary force γD
(derived below). Ca thus scales as η(ds/dt)D/γs, which
yields Ca of order 10 for elongational velocities ds/dt of
20 cm/s (see fig. 1(a)), threads of millimetric diameter and
centimetric length, and oil of surface tension γ = 20mN/m
and viscosity η= 10Pa s. On the other hand, denoting
ρ as the liquid density, the Reynolds number Re can
be defined as ρs(ds/dt)/η, of the order of 0.1 with the
same parameters as above. Hence viscosity dominates both
surface tension and inertia, which justifies a dynamics
dictated by a balance between gravity and viscosity.
In order to derive eq. (1), it was also assumed that the

thread thickness is constant along the curvilinear coordi-
nate. However, surface tension squeezes a liquid cylinder in
order to reduce its surface area, which generates an axial
flow along it. The surface energy of a cylindrical thread
scales as γDL, from which we deduce an axial capillary
force γD. The same result can be obtained by integrating
over the area D2 the Laplace pressure γ/D that drives
the liquid towards the thread ends. Viscosity resists
this motion. Since the velocity gradients are axial, as
emphasized earlier, the viscous stress is expected to scale
as ηV/L, which yields a force ηV D2/L. Balancing it with
the capillary driving force γD, we deduce a “drainage”
velocity V of the order of (γ/η) (L/D). The corresponding
drainage time τc ∼L/V can thus be written as

τc ∼ ηD/γ. (2)

For millimetric (thick) viscous jets (η= 10Pa s), τc is
approximately 1 s, but it can become smaller than the
deformation time τd given by eq. (1) if the jet becomes
either thin (small τc) or short (long τd). More generally,
the comparison between both these times should decide
the shape of the thread. In particular, the U-shape should
be privileged if τc < τd, that is:

LD< a2, (3)

where a is the capillary length (a= (γ/ρg)1/2), which
is 1.5mm for silicone oil and 2.2mm for honey. If the
criterion (3) is obeyed, capillary drainage is quicker
than sagging and the thickness of the jet is no longer
homogeneous as it falls. The mass redistribution towards
the edges leads to a U-shape, as shown in fig. 1(b).
Remarkably, the viscosity, which opposes both gravity
and capillary flows, does not enter this criterion, which is
found to be purely geometrical: the thread length and/or
diameter alone fix the shape.
We tested these ideas by monitoring the shape of viscous

threads of various geometries and viscosities (silicone
oils with η= 1, 10 and 100Pa s, and honey with
η= 5Pa s). We report our results in fig. 4, where each
data point corresponds to a different thread, and where
the symbols are empty or full for catenaries or U-shapes,
respectively.
For a fixed diameter (D/a≈ 0.4), short threads are

U-shaped while long ones form catenaries, as expected
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Fig. 4: Phase diagram for the shape of a viscous filament in the
field of gravity. We vary the length L and the diameter D of
the filament, and normalize them by the capillary length a.
Filaments are made of silicone oil of viscosity η= 1Pa s
(circles), 10Pa s (squares) and 100Pa s (diamonds), or honey
of viscosity η= 5Pa s (triangles). Each data point corresponds
to a filament, and its shape is indicated by a colour: black and
white symbols hold for U-shapes and catenaries, respectively.
The dotted line is a hyperbola (eq. (3)), of equation LD= 7a2.

from our discussion (eq. (3)). For a fixed length (L/a≈
8, for example), only thin filaments are U-shaped. As
predicted by eq. (3), a hyperbola (of equation D∼ 7a2/L,
and drawn in fig. 4 with a dotted line) separates convinc-
ingly both domains. We can notice that the critical length
Lc ∼ a2/D above which gravity effects dominate capillary
effects, has the same structure as the height of the capil-
lary rise in a tube of diameter D—which is similarly given
by a balance between capillarity and gravity, and also
(trivially) independent of viscosity.
U-filaments’ drainage is mainly horizontal, which gener-

ates a kind of conical shape, as sketched in fig. 5. These
cones fall, but not very low: unlike catenaries, the fall stops
at a depth H0, which we now discuss.
The stop of the fall indicates that surface tension,

which mainly acts in the direction of the cone, is able
to balance gravity. Projecting the surface force on the
vertical axis (for H0 <L), this balance can be written,
ρgLD2 ∼ γDH0/L, which immediately yields

H0 ∼L2D/a2. (4)

In the U-regime (eq. (3), LD< a2), H0 is indeed found
to be smaller than L. More quantitatively, we report in
fig. 6 the final depth H0 of U-filaments as a function of
the length L2D/a2 suggested by eq. (4). The shape of the
symbols indicates the nature of the liquids (as defined in
the previous figures), and both the initial length and the
thread diameter were varied: white symbols correspond to
L≈ 12mm, grey symbols to L≈ 25mm and black symbols
to L≈ 57mm. It is observed in fig. 6 that H0 increases

H 

D 

Ho 

Fig. 5: Evolution of a U-thread of initial length L and diameter
D. Capillary drainage first makes the thread profile conical;
then the cones (only the left one was represented) fall down,
owing to the action of gravity, and stop at a depth H0 s
observed in fig. 1(b), where they eventually break.

Fig. 6: Final depth H0 of U-filaments, as a function of
their geometry. Filaments are made of silicone oil of viscosity
η= 1Pa s (circles), 10Pa s (squares) and 100Pa s (diamonds),
or honey of viscosity η= 5Pa s (triangles). Their initial length
is L≈ 12mm (white symbols), L≈ 25mm (grey symbols) and
L≈ 57mm (black symbols). The depth is observed to scale
fairly well with the geometrical quantity DL2/a2, as expected
from eq. (4).

significantly with L, and also with D (which is varied
systematically, for a given L). The data are fairly well
described by a straight line passing through the origin, in
agreement with eq. (4). The slope, of the order of 0.08,
remains to be understood.
The same result can be derived from dynamical consid-

erations. As a cone fall on a distance H (fig. 5), its length
increases by a quantity HD/L, which implies a shear
velocity scaling as (dH/dt)D/L, and thus a shear rate
of (dH/dt)/L (because the cone distorts as it falls, the
dominant velocity gradients are across the diameter D).
The resulting viscous force [η(dH/dt)/L]D2 is balanced
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Fig. 7: Lifetime τb of viscous U-threads. At t= τb, the filament
spontaneously breaks, generally close to its middle, as seen in
the high-speed movies following the evolution of the thread or
in fig. 1(b). This time is plotted as a function of the quantity
τc ∼ ηD/γ, calculated for each thread. Different liquids are
used (same symbols as in fig. 4). τb is observed to be directly
proportional to τc, as indicated by the full line, of slope 1.

along the fall by the weight ρgLD2, which yields a fall
velocity (dH/dt) scaling as ρgL2/η. This regime is valid
only during the time τc, after which the liquid is drained.
Hence we expect the final depth H0 to be ρgL

2τc/η, which
(using eq. (2)) brings us back to eq. (4).
We can finally check that the extensional dissipation

(arising from axial gradients (dL/dt)/L) remains smaller
than the shear (dH/dt)/L in the cylinder considered
here: since we have (dL/dt)L∼ (dH/dt)H, the quantity
(dL/dt)/L is (dH/dt)/L times H/L, where the ratio
H/L indeed remains smaller than unity in the U-regime
(LD< a2).
As already emphasized, U-filaments thin and eventually

pinch off. The break time τb can be expected to be a
“Rayleigh time”, i.e. the time necessary for a viscous
cylinder to break into droplets owing to the action of
surface tension. Hence this time should be of the order
of the capillary time evaluated in eq. (2). In fig. 7, we
compare the measured τb with the calculated capillary
time τc ∼ ηD/γ.
The data are plotted in a log-log representation, in order

to make the variety of times explored clear (more than
two orders of magnitude). Whatever the liquid viscosity,
the data collapse on a straight line of slope 1 drawn with
a full line: the lifetime τb of the thread is found to be
approximately 7τc.
We could finally wonder whether transitions between

both shapes are possible as time goes by. We never
observed such transitions, which can be simply

understood. On the one hand, for U-filaments obey-
ing criterion (3), the thread diameter keeps on decreasing
while the total length is roughly constant (and close to
L), so that LD remains smaller than a2. On the other
hand, a catenary (LD> a2) gets thinner as time goes by,
as observed in fig. 1(a), so that the quantity LD∼Ω/D
keeps on increasing: the filament can conserve its shape
all along the fall. This also allows us to understand why
a (purely geometrical) static criterion can fix the shape,
which however sets dynamically.
It would be interesting to see how these ideas hold,

or not, for non-Newtonian fluids [12]. Since the viscous
resistance arises from elongational flows, extensional
viscosity is the fluid parameter that sets the dynamics
of the processes. For Newtonian fluids, it is just three
times the dynamic viscosity, which thus does not affect
any of our scaling laws. In contrast, extensional viscosity
can become extremely high for solutions of polymer or
concentrated soap, which should impact the shape and/or
the dynamics of the thread. The study of the thread
shape in this case is under progress.
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