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A global stability analysis of the boundary layer in the leading edge of a swept wing
is performed in the incompressible flow regime. It is demonstrated that the global
eigenfunctions display the features characterizing the local instability of the attachment
line, as in swept Hiemenz flow, and those of local cross-flow instabilities further
downstream along the wing. A continuous connection along the chordwise direction
is established between the two local eigenfunctions. An adjoint-based receptivity
analysis reveals that the global eigenfunction is most responsive to forcing applied
in the immediate vicinity of the attachment line. Furthermore, a sensitivity analysis
identifies the wavemaker at a location that is also very close to the attachment
line where the corresponding local instability analysis holds: the local cross-flow
instability further along the wing is merely fed by its attachment-line counterpart. As
a consequence, global mode calculations for the entire leading-edge region only need
to include attachment-line structures. The result additionally implies that effective
open-loop control strategies should focus on base-flow modifications in the region
where the local attachment-line instability prevails.
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1. Introduction

In this study a global receptivity and sensitivity analysis is performed for the
swept-wing leading-edge incompressible boundary layer. Most previous analyses have
been based on local models: the swept Hiemenz flow has been extensively used as a
representation for the attachment-line region, while the flow further downstream along
the wing has been modelled as a three-dimensional inflectional velocity profile. A
global analysis of the leading-edge region of a swept wing including the attachment
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line and an extended region downstream has been performed in the supersonic case
by Mack, Schmid & Sesterhenn (2008).

The local swept Hiemenz configuration describes the flow impinging on a flat plate
at a finite sweep angle. Its most unstable mode has been shown to be symmetric in
the chordwise direction with respect to the attachment line and to be characterized
by counter-rotating vortices lifting low-momentum fluid away from the wall region
and pushing high-momentum fluid towards the wall. Hall, Malik & Poll (1984) have
shown that this local model becomes linearly unstable above a critical value of sweep
Reynolds number to a Görtler–Hämmerlin-type mode displaying the same streamwise
structure as the base flow. This is in contrast to the two-dimensional unswept Hiemenz
stagnation flow which is linearly stable. Lin & Malik (1996) extended the work of
Hall et al. (1984) by computing several modes of the incompressible swept Hiemenz
flow using a Chebyshev spectral collocation method and regular polynomials of the
form {P(x) = xn, n = 0, 1, 2, . . .} in order to discretize the normal and chordwise
directions. They identified a branch of eigenvalues, all moving at approximately
the same phase speed cr = 0.35 in the spanwise direction. It was determined that
the Görtler–Hämmerlin mode already found by Hall et al. (1984) was the most
unstable. Less unstable modes presented spatially symmetric and antisymmetric
structures with respect to the attachment line. In a subsequent study, Lin & Malik
(1997) addressed the question of the leading-edge curvature by using a second-order
boundary layer approximation: increasing the leading-edge curvature was found to
have a stabilizing effect on the perturbations. Obrist & Schmid (2003a) recovered
similar results by replacing regular polynomials with Hermite polynomials. A richer
spectrum composed of several branches, continuous and discrete, was identified.
Direct numerical simulations for the swept Hiemenz flow have been performed by
Joslin (1995, 1996), while the short-time optimal growth has been the subject of the
work of Obrist & Schmid (2003b), Guégan, Schmid & Huerre (2006), Guégan (2007)
and Guégan, Huerre & Schmid (2007).

Local cross-flow instabilities prevail for flow configurations in which a three-
dimensional velocity profile with an inflection point is generated within the boundary
layer because of the non-alignment between the inviscid streamlines and the pressure
gradient. Such a velocity profile develops an unstable mode in the form of co-rotating
vortices aligned with the inviscid flow, in contrast to the swept Hiemenz flow
counter-rotating vortices aligned in the chordwise direction. This is widely understood
to be the main cause of transition in swept-wing boundary layers. Reviews of the
cross-flow instability mechanism are given by Reed & Saric (1989) and Saric, Reed
& White (2003). Comparison of theoretical and experimental results on cross-flow
instabilities has been conducted by Dagenhart & Saric (1999). These studies have
also established two families of cross-flow modes: stationary and travelling. Stationary
modes play an important role in roughness-induced transition and have been studied
extensively in investigations that are concerned with the influence of localized or
distributed surface roughness on the transition process. In contrast, travelling modes
account for the receptivity to external and unsteady disturbances. The prevalence or
dominance of either family of modes critically depends on the specific configuration,
as well as the details of the disturbance environment.

The first global analysis of the leading-edge region, including both the attachment-
line region and an extended region downstream where the cross-flow instability arises,
was performed by Mack et al. (2008) and Mack & Schmid (2011a,b). A stability
analysis of a supersonic flow impinging on a parabolic body at a finite sweep angle
was performed. A global spectrum consisting of boundary layer modes, acoustic
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modes and wavepacket modes was discovered. Additionally, these authors showed for
the first time a continuous connection between local attachment-line and cross-flow
instabilities, a feature already suggested but never proven by Hall & Seddougui
(1990) and Bertolotti (1999). This result was made possible by considering a domain
extending beyond the immediate attachment-line region.

The present study continues in the footsteps of the global modal approach
introduced by Mack et al. (2008), Mack (2009) and Mack & Schmid (2011a,b). The
incompressible flow around a Joukowski airfoil – instead of supersonic compressible
flow around a parabolic body – is analysed. A smaller leading-edge radius and sweep
angle are therefore considered in the present investigation. In contrast to previous
work, special emphasis will be placed on the receptivity and sensitivity analysis of
the most dangerous global mode.

In § 2 the governing equations and the theoretical framework underlying the
derivation and interpretation of the receptivity and sensitivity results are briefly
introduced. The results of the global analysis are presented in § 3 together with an
interpretation in terms of receptivity and sensitivity concepts.

2. Theoretical framework

The stability of the steady flow around the front part of a symmetric Joukowski
profile, as sketched in figure 1, is investigated. For simplification, the incompressible
spanwise-invariant time-dependent Navier–Stokes equations are described in compact
form by R(∂t, ∂x, ∂y, kz; Q) where kz is the spanwise wavenumber and Q =
{U, V, W, P}; the linearized analogue with additional forcing f is given by the
operator L (∂t, ∂x, ∂y, kz, Q̄) defined by

L q≡ ∂R

∂Q

∣∣∣∣
Q̄

q= f , (2.1)

where Q̄ = {Ū, V̄, W̄, P̄} denotes the steady spanwise-invariant (kz = 0) base-state
velocity components and pressure, and q= {u, v,w, p} their perturbation counterparts.
An explicit forcing f is assumed.

Our main objectives are to describe (i) the dynamics of small perturbations q to
a given steady base flow Q̄ and (ii) the receptivity of these perturbations to external
forcing and their sensitivity to structural changes in the governing equations (2.1),
e.g. changes in the base flow Q̄. Receptivity and sensitivity are the fundamental
concepts that need to be considered for any passive and active manipulation of the
flow.

It is convenient to describe the perturbations in Fourier space rather than in physical
space. Let ·̂ denote temporally Fourier-transformed quantities. For a full description
of the theoretical framework the reader is referred to the work of Giannetti &
Luchini (2003, 2007) and Marquet, Sipp & Jacquin (2008). Even though we can
formulate a receptivity and sensitivity analysis based on a wide range of output
measures, we choose the induced response amplitude Â in the least stable mode for
receptivity studies, and the least stable eigenvalue σ for sensitivity studies. In this
context, receptivity can be interpreted as the variation δÂ of the response amplitude
Â associated with a variation δf̂ in the forcing f̂ . Sensitivity can be interpreted as the
variation δσ of the eigenvalue σ associated with a change δL̂ in the structure of the
governing equations L̂ .
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FIGURE 1. Outline of the computational domains: the largest domain, extending beyond
the axes range, is used for the base-flow computations. Three domains, characterized by
the same extent in the direction normal to the profile but with different downstream
extents, are used for the computations of the eigenvalues and eigenvectors. An additional
domain (dashed) is used for the computation of the adjoint modes. The grid spacing is
kept unchanged in all computations, while the number of grid points adapts according to
the changes in the domain size.

According to the abovementioned studies receptivity is mathematically defined as

δÂ=−〈λ̂, δf̂ 〉, (2.2)

where λ̂ is the adjoint eigenvector, i.e. the eigenvector of L̂ + (the adjoint of L̂ )
obtained after defining a suitable inner product 〈·, ·〉, e.g. 〈a, b〉 = ∫ aHb dΩ . The
adjoint eigenvector arises in this formulation from the fact that, in a variational
formulation of the receptivity or sensitivity problem, the governing equations (2.1)
are enforced by Lagrange multipliers or adjoint variables. In a similar way, sensitivity
is defined as

δσ = 〈λ̂, δL̂ q̂〉, (2.3)

where q̂ is the direct eigenvector corresponding to λ̂.
The adjoint eigenfunction is used in the definition of receptivity (2.2) and sensitivity

(2.3) to identify the most receptive and sensitive regions in the physical domain:
according to the above definitions, a spatially localized perturbation δf̂ of the forcing
is more effective in changing the response amplitude where the adjoint field is the
largest; a localized perturbation δL̂ of the linear operator L̂ is most effective where
the pointwise product of the direct and adjoint fields is the largest. Giannetti &
Luchini (2007) name this latter region the wavemaker: if one interprets the term
δL̂ q̂ as a localized feedback forcing due to the perturbations in the operator, this is
the region where the strongest perturbations q̂ and the highest receptivity λ̂ line up
and most efficiently modify the flow field structure.

In short, we see that receptivity describes the response to additive changes to the
governing equations, modelling external sources of influence (such as free-stream
turbulence or wall roughness), while sensitivity describes the response to structural
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changes in the governing equations, modelling internal sources of influence (such as
base-flow modifications or changes in geometry). In either case, the adjoint variable
is instrumental in identifying receptive and sensitive regions of the flow.

3. Global modes, sensitivity and receptivity of the swept leading-edge region

In this section, the results of the global stability, sensitivity and receptivity analyses
are presented for the case of a swept-wing boundary layer in a domain extending
beyond the region of validity of the swept Hiemenz flow. These results are interpreted
in light of what has been discussed in the previous section. Attention is focused
on identifying the most receptive and sensitive regions governing the perturbation
dynamics in terms of changes in the response amplitude and complex eigenvalues
respectively.

A symmetric Joukowski profile with a dimensionless leading-edge radius r/C =
0.016, where C denotes the chord length, is considered. The extents of the
computational domains used in our analysis are presented in figure 1: eigenvalues
and eigenvectors are computed in three domains of different chordwise extent (small,
medium and large), while a fourth domain (dashed) is used in the computation of the
adjoint eigenfunctions. The mesh spacing, as shown in the grey inset of figure 3(d),
is kept unchanged for all domains: larger domains are meshed using a larger number
of mesh points.

The various Reynolds numbers commonly used in attachment-line boundary layer
analyses are

ReC = U∞ C
ν

, Rer = U∞r
ν
, Res = W∞δ

ν
, (3.1a−c)

where U∞ and W∞ are the chordwise and spanwise free-stream velocity components,
r is the leading-edge radius, δ=√ν/S is the viscous length scale, ν is the kinematic
viscosity and S=U∞/r is the strain rate at the attachment line for the inviscid flow
around a cylinder with radius equal to the leading-edge radius. Computations are
performed for a chord-based Reynolds number ReC = 106 and a sweep angle Λ= 45◦,
corresponding to an attachment-line radius-based Reynolds number Rer = 16 000 and
a sweep Reynolds number Res =√Rer tanΛ= 126.

For such parameter settings Lin & Malik (1996, 1997) and Obrist & Schmid
(2003a) determined that the local steady swept Hiemenz flow is linearly stable and
that instabilities arise beyond a critical sweep Reynolds number Res of approximately
600. Similarly, in the global stability analysis of Mack & Schmid (2011b) for the
supersonic flow regime a critical sweep Reynolds number Res of approximately 600
has been determined.

Maintaining the current sweep angle and leading-edge radius, a sweep Reynolds
number Res of 600 would correspond to a chord-based Reynolds number of ReC =
Re2

s C/r = 22.5× 106, which is beyond our numerical capabilities for the time being.
In spite of the fact that the Reynolds number under consideration is subcritical, it is
expected that the shape of the spectrum and the spatial structure of the eigenfunctions
will not change appreciably as the Reynolds number is changed from subcritical to
supercritical. As subsequently shown, comparison between the present results and the
literature corroborates this line of thought. It should also be remarked that transition
induced by cross-flow vortices is known to occur at much lower Reynolds numbers
than the critical one based on linear analysis: for example, the experimental results
of Dagenhart & Saric (1999) identify cross-flow vortices for chord-based Reynolds
numbers as low as ReC ≈ 2× 106.
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FIGURE 2. Eigenvalues for ReC = 106, kz = 4000 (λz/δ99 ' 4). The computed spectrum
consists of a single branch – solid black symbols – of modes travelling at roughly
the same phase speed −Im(σ/kz) ≈ 0.5 in the spanwise direction. The corresponding
eigenvectors present spatial structures that are alternatingly symmetric (S1, S2, . . .) and
antisymmetric (A1, A2, . . .) with respect to the attachment line when moving from the
least stable to the most stable mode. The eigenvalues have been computed for three
different domain sizes. For the large domain, only S1 and A1 are recovered. For the
mid-sized domain, S1, A1, S2 and A2 are captured, and for the small domain all seven
black eigenvalues are obtained. The grey open circles represent eigenvalues belonging to
the pseudo-spectrum.

Let λz and δ99 denote the spanwise wavelength and the spanwise boundary
layer thickness at the attachment line respectively. The spectrum of the linearized
Navier–Stokes operator (2.1) for a spanwise wavenumber kz = 4000 – corresponding
to λz/δ99 ' 4 – is computed for the three domains S, M and L of figure 1. A
second-order finite-difference scheme is employed for the numerical discretization of
the linearized operator on a conformally mapped boundary-fitted grid. The spectrum
is indicated with solid black symbols in figure 2. It is composed of a single branch
of eigenvalues characterized by a nearly constant phase speed of cr = 0.5. Inspection
of the eigenvectors reveals that modes with spatially symmetric (S1, S2, . . .) and
antisymmetric (A1, A2, . . .) structure with respect to the attachment line alternate
while moving from the least stable eigenvalue to more stable ones. This result is
consistent with the local findings of Lin & Malik (1996, 1997): in the unstable
parameter range these authors identified a single branch of constant phase speed
cr = 0.35 consisting of alternating symmetric and antisymmetric modes.

The computation for the large domain (L) yields only the S1 and A1 eigenvalues,
together with the pseudo-spectrum represented by the curved branch in grey open
circles right below A1. The mid-sized domain (M) yields all four eigenvalues from
S1 to A2, and its pseudo-spectrum is represented by the curved branch in grey
open circles below A2. Finally, the smallest domain returns all seven eigenvalues
S1 to S4, and its pseudo-spectrum lies below S4. For comparison, the eigenvalues
computed in the three domains are reported in table 1 with six decimal digits. The
digits differing from the values obtained for the small domain are underlined. It
can be seen that the least stable eigenvalue S1 is the same in all three domains.
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Small domain (S) Mid-sized domain (M) Large domain (L)
2049× 513a – 200b 4097× 513a – 100b 6145× 513a – 100b

S1 −232.212795− 2012.093989i −232.212795− 2012.093989i −232.212795− 2012.093989i
A1 −274.036727− 2003.162782i −274.036727− 2003.162782i −274.031158− 2003.163902i
S2 −315.544891− 1994.259873i −315.544891− 1994.259873i —
A2 −356.710140− 1985.385797i −356.710150− 1985.385780i —
S3 −397.505318− 1976.541365i — —
A3 −437.903326− 1967.724210i — —
S4 −477.978550− 1958.896547i — —

TABLE 1. Computed eigenvalues.
Digits that change with the domain size are underlined.

aNumber of mesh points in the chordwise and normal directions.
bDimension of the Krylov subspace used in the computation.

The A1 mode has the same value for the small-sized and mid-sized domains, but the
value obtained for the larger domain differs in the last four significant digits. The
same is repeated for the S2 and A2 modes when comparing the small-sized and the
mid-sized domains: the S2 eigenvalue matches well while A2 differs in the last two
significant digits. Counterintuitively, computations on larger domains return fewer
eigenvalues for numerical reasons. A Krylov–Schur iterative method is employed for
the eigenvalue computation in this work. Because of memory limitations, the increase
in the number of degrees of freedom – required to maintain a constant mesh spacing
– is not matched by an increase in the dimensionality of the Krylov subspace: 100
vectors have been used for both the mid-sized and large domains despite the fact
that the number of degrees of freedom increases by a factor of 1.5. For the small
domain, 200 vectors have been used. For numerical reasons, the more precise results
are obtained for the small domain where only a minor part of the flow structure is
resolved. Full details on the numerical approach are reported in Meneghello (2013).

The spectrum and the eigenvectors are now analysed in terms of local stability
considerations in an attempt to understand why the location of the eigenvalues in the
complex plane is not affected by the position of the outflow boundary. To this end,
figure 3 displays the direct and adjoint eigenvectors as well as the wavemaker for
the least stable S1 eigenvalue by both isocontours of the real part of the chordwise u
velocity component of the eigenvectors (figure 3a–c) and its cross-cuts in a frame of
reference defined by a curvilinear chordwise coordinate s, a wall normal coordinate n
and a spanwise coordinate z, expressed in thousandths of chord length.

Figure 3(a,d) represent the direct eigenvector covering the full computational
domain and growing exponentially towards the outflow boundary of the largest
domain. The outflow boundary for each domain is marked by vertical lines and
the letters S, M and L. Three regions displaying distinct spatial structures may be
identified along the chordwise s coordinate.

(i) Close to the attachment line, the eigenvector has a spatial shape corresponding
to the local attachment-line modes of swept Hiemenz flow as described in Lin
& Malik (1996). Counter-rotating vortices aligned in the chordwise direction lift
low-momentum flow from the wall and push high-momentum flow towards the
wall, generating alternating low- and high-chordwise-velocity streaks visible in
the z–n section on the left of figure 3(d). Lin & Malik (1996) and Mack et al.
(2008) identified similar features in their respectively local and global analyses
of swept Hiemenz flow and compressible leading-edge flow.
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FIGURE 3. Real part of the chordwise û component of the (a,d) direct and (b,e) adjoint
eigenvectors and (c, f ) wavemaker associated with the least stable S1 mode. Red and blue
in (a–c) denote positive and negative isocountours respectively; cross-sections are shown
in colour in (d–f ). In the centre panel of (d), the chordwise s-direction is compressed
and a logarithmic colour scale is used. S, M and L denote the outflow boundaries for
the three domains. The rectangle at the origin delimits half the domain shown in (e–f ).
The grey inset shows the numerical grid in a domain close to the outflow boundary with
identically scaled horizontal and vertical axes. The left and right panels of (d) display
spanwise-normal s–n sections close to the attachment line and in the crossflow region,
respectively (colour in linear scale). The direct eigenvector extends across the entire
computational domain and shows features characteristic of both attachment-line modes and
crossflow modes, as obtained by local analysis. The adjoint eigenvector and the wavemaker
are localised in a very small region extending only a few boundary layer thicknesses
across the attachment line. The spanwise δ99 boundary layer thickness is indicated by
dashed lines. Coordinates are in thousandths of the chord length C.
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FIGURE 4. Magnitude of the first six eigenvectors as a function of the chordwise
distance s. The eigenvectors have been normalized to unit energy density in the attachment
line. Vertical lines mark the outflow boundaries for the S, M and L domains. All
eigenvectors exhibit an initial algebraic growth in space, followed by an exponential decay
of the attachment-line structure, eventually giving way to an exponential growth of the
cross-flow-like structure. A connection between the two local stability structures is evident.

(ii) A transition region downstream of the attachment-line region shows a decrease in
the eigenvector of nearly 10 orders of magnitude, as can be seen in the cross-cut
presented in the central panel of figure 3(d) as well as in the magnified inset of
figure 3(a). After the decay of attachment-line features, cross-flow-vortex features
start to form just below the δ99 boundary layer thickness.

(iii) Downstream of the transition region, cross-flow vortices, aligned with the base
flow at an angle of 45◦ with respect to the chord, increase exponentially in
magnitude. In addition, streamwise-velocity streaks are no longer attached to the
wall; instead, they develop across the δ99 boundary layer thickness.

As first presented in Mack et al. (2008), it is remarkable to note the coexistence,
in the same eigenvector, of attachment-line features and cross-flow features, both of
which were previously identified in separate local analyses of distinct regions in the
boundary layer. Figure 4 displays the magnitude of the first six eigenvectors as a
function of the chordwise distance s: the continuous connection between the local
attachment line and the local cross-flow-vortex instability, the exponential decay of the
attachment-line structure in the chordwise direction by 10 orders of magnitude and
the subsequent exponential growth of the cross-flow-vortex structures is made even
clearer. Vertical lines mark the outflow boundary for the different domains. It has to
be recalled that the S1 and A1 modes are obtained in all domains, not only in the
largest one. The large spatial growth of the eigenfunctions displayed in figure 4 may
suggest the dominance of the A1 mode in the cross-flow region; it should, however,
be noted that the eigenfunctions have been normalized to attain unit energy density
in the attachment line. For a valid assessment of the relative prominence of the (least
stable) S1 or the A1 mode one has to account for their temporal decay rates as well
as their respective susceptibility to external noise sources.

The adjoint eigenvector shows a completely different picture: it is concentrated
very close to the attachment line. According to figure 3(e) the adjoint eigenvector is
negligible outside a very small region extending a few boundary layer thicknesses
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across the attachment line in the chordwise s direction. According to our definition of
receptivity given by (2.2), this is the most effective region to apply a control forcing
in order to modify the response amplitude Â. In other words, this same region
is most effective in promoting the exponential growth of cross-flow-like structures
further downstream. It should also be noted that undesirable forcing due to free-stream
turbulence would be most disruptive in this high-receptivity region.

In a similar manner the wavemaker – defined by (2.3) – covers a region localized
within a single boundary layer thickness which is even smaller than the region
covered by the adjoint mode: structural modifications δL̂ of the operator L̂ outside
this region have only negligible influence on the location of the eigenvalue S1. This
is true also for the structural modifications associated with the location of the outflow
boundary – or of the actual numerical implementation of the outflow boundary
condition, as shown by table 1.

The localization of the wavemaker in a surprisingly small region close to the
attachment line also implies that the local stability results obtained for swept Hiemenz
flow by Hall et al. (1984) and Lin & Malik (1996), possibly including curvature
corrections as in Lin & Malik (1997), still hold for the entire leading-edge region.
The relevance of previous local stability analyses has therefore been established:
the computed spectrum does not change as long as the region covered by the
adjoint eigenvector and the wavemaker is correctly represented. As can be seen from
figures 3(d) and 4, in the smaller computational domain, extending only 2.5 %
of chord downstream of the attachment line, none of the cross-flow instabilities are
accounted for and even the attachment-line instability is truncated close to the location
of maximum magnitude. The global eigenvalue is nonetheless correctly calculated.

Our spectral and adjoint analysis uncovered only travelling global structures with
support in the attachment line and the boundary layer downstream, and despite a
careful and methodical search, no stationary modes have been found. Recalling the
existence of two families of cross-flow modes (as discussed, e.g. in Dagenhart &
Saric (1999)), our study can only draw conclusions about the receptivity to travelling
modes, in which case we find a high and very localized receptivity in the vicinity
of the attachment line. The relative dominance of these two receptivity processes –
roughness induced via stationary modes or environmentally induced via travelling
modes – depends on the specific flow configuration and the characteristics of the
external disturbance environment.

The present results may have important implications in the development of effective
open-loop control strategies for instabilities in the leading-edge region of swept wings.
More specifically, while stationary leading-edge modes may be passively manipulated
by base-flow modifications further downstream, our analysis implies that the control of
travelling leading-edge structures is most effectively and efficiently accomplished by
actuators that are placed in a region extending only a few boundary layer thicknesses,
equivalent to a few thousandths of the chord length, across the attachment line. The
targeted manipulation of travelling cross-flow structures developing further downstream
would require far more control effort. Conversely, stationary cross-flow modes cannot
be controlled from the attachment line.
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