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Vortex-induced travelling waves along a cable
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Abstract

We investigate the vortex-induced vibrations (VIV) of a very slender cable subjected to a stationary uniform cross-flow,
using a travelling wave approach. A phenomenological model of the near wake based on van der Pol oscillators is developed
and tested in comparison with numerical simulations and experimental data. A selection criterion for vortex-induced waves
(VIW) is established: the fluid selects the frequency, according to Strouhal’s law, and the structure fixes the wavenumber, as
dictated by its dispersion relation.
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1. Introduction

Vortex-induced vibration (VIV) is a fluid-structure interaction phenomenon which affects several kinds of structures
subjected to wind or water currents. In the recent development of oil fields in deep ocean, cables and risers of large length-
to-diameter aspect ratio and complex geometry are used, and VIV remains a challenging problem. As the aspect ratio exceeds
103, vortex-induced motion may damp out before reaching the structure ends. Vandiver [1] and Moe et al. [2] discuss the
application of the infinite length structure model by defining a wave propagation parameter. Moreover, the particular boundary
conditions at the sea bed and at the sea surface, and the possible presence of intermediate buoyancy modules, make wave
transmission and reflection ineffective. Alexander [3] qualitatively observed propagating waves along a towed oceanographic
cable, which is a configuration very similar to that of a riser disconnected to the well head. Karniadakis et al. [4-6] discuss on
standing/travelling wave behavior of cables and beams depending on boundary conditions, simulating the flow field by DNS at
low Reynolds number.

Here we analyze the dynamics of very slender complex structures submitted to VIV using a travelling wave approach and
introducing the concept of vortex-induced wave (VIW). A phenomenological model of the near wake based on van der Pol
wake oscillators is used, allowing an analytical approach to the problem and overcoming the computational limits of flow-field
numerical model in describing high aspect ratio domains at high Reynolds number. Considering a cable of infinite length, a
selection criterion for VIW frequency and wavenumber is established by analytical arguments in Section 2, then validated by
numerical simulations and against DNS computations in Section 3, and by comparison to experiments in Section 4. Discussion
follows in Section 5.
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2. Model
2.1. Motion of the structure

Let us consider a very slender straight cable with diam&teand constant axial tensidfi, subject to a stationary and
uniform flow of free stream velocity/, Fig. 1. The dynamics of a such a structure experiencing VIV may be described by
a classical cable model [7,8]. We consider the structure dianietes a reference length scale and the Strouhal frequency
wf=2185U/D,S; being the Strouhal number, as a reference time scale. In the absence of fluid forces, the in-plane cross-flow
deflectiony(z, t) of the cable is described by the dimensionless wave equation

92y y\dy 9%
R ) _c 2 —0. 1
8t2+<§+,u)8t < 92 @

The dimensionless phase velocitycis= /T /m /(w ¢ D), where the mass per unit lengthincludes the quiescent fluid added
mass. The linear damping model distinguish the structural contribgtfoom the fluid added damping/u.. The coefficient

w= m/,oD2 is the mass ratio angd is a stall parameter derived considering the variation of the incident angle of the relative
flow for an oscillating structure [9-11].

2.2. \Wake dynamics

The near wake vortex street behind the structure is described by a phenomenological model. At each spanwise location, the
fluctuating nature of vortex shedding is modelled by a wake oscillator, Fig. 1. For a slender structure a continuous distribution
of wake oscillators, arranged along the structure axis, is applied. Following [12—-14], this model makes use of non-linear van
der Pol oscillators and reads

2
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The dimensionless variabigz, 1) describes any fluctuating variable of the near wake. It may be associated with the fluctuating
lift coefficient on the structure, as in most of the wake oscillator models in the literature since [15]. Since the vortex shedding
frequency is taken as the reference time scale, the basic angular frequency of the van der Pol oscillator is one. Note that for

0 < e« 1, Eqg. (2) is known to provide a stable quasi-harmonic oscillation of normalized ampljjugde? at the normalized
vortex shedding angular frequency of one.

2.3. Coupling

We now propose to couple the dynamics of the wake and of the structure, Egs. (1) and (2), as follows
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Fig. 1. Fluid—structure model: a very slender tensioned cable in stationary uniform flow.
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Here, the hydrodynamic actions on the structure are represented in three terms: (a) the quiescent added mass effect is directly
included in the mass ratip; (b) the damping associated to the flow is modelled by the added dampife) the fluctuating

force due to the wake dynamics is modelled by the right-hand side forcing term of Eq. (3). The transverse vortex force exerted
by the fluid on the structure is considered as a linear fluctuating lift. The wake vagiablthen interpreted as a normalized

lift coefficient, g =2C /CLo, WhereClq is the lift coefficient amplitude on a fixed structure experiencing vortex shedding.
Thus, the dimensionless fluid forcing term is expressediflgy whereM = CLO/(l@TZStz,lL) is a mass number. Conversely, the

action of the structure on the fluid near wake is considered as linear and purely inetigihg the scaling parameter. This is

shown to describe the main features of VIV phenomenology, such as Griffin plots and lock-in domains [16,19].

2.4. Parameters

The parameters of the structure equation (3) are directly defined by the specific properties of the physical system, namely
the mass ratiqe and the reduced dampirtg the parameteM depending only on the mass rajio For cylinders, we assume
S, = 0.2 in the sub-critical range, 300 R, < 1.5 x 10°, andC|, = 0.3 over a large range o, [9,17]. The only remaining
parameter to be determined is the fluid added damping coeffigiamhich has been directly related to the mean sectional drag
coefficient of the structure through= Cp /(47 S;) [9]. For oscillating cylinders, we assume here a constant drag coefficient
Cp =2.019,17], from which we deducg = 0.8.

The fluid equation (4) requires the knowledge of two parameteasid A. Their values are set by considering the effects
of an imposed motion of the structure on the local near wake dynamics. Experiments since [18] show that the lift force acting
on the structure, namely, is magnified by an imposed structure motipnThe fluid model is forced by a harmonic motion
of dimensionless amplitude, and unit angular frequency, = y, cogt), in perfect resonance condition with the Strouhal
frequency. Enforcing the hypothesis of harmonicity and frequency synchronization, the response of the wake oscillator is sought
in the formg = g, cosr + ), whereg, andy are time-independent amplitude and phase, respectively. Substituting in the fluid
model and considering only the main harmonic contribution of the non-linearities, elementary algebra yields the amplitude of
the transfer function of the wake oscillator. The lift magnification factor with respect to the case of a stationary structure
experiencing vortex shedding, = C;./CLo = g0 /2, then reads [16,19]

1/3 1/3 2
X 4 . A A

The combined parametdr/e may now be chosen by matching the model response (5) to experimental data of lift magnification
found in the literature. The value of /e = 40 is proposed from a least squares interpolation, Fig. 2. The respective values of
A ande may be derived separately from experimental considerations [16,19], but the value of the/eatsosufficient in the
present paper.
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Fig. 2. Lift magnificationK as a function of the imposed structure motion amplitugde—, model response (5) fitted to experimental data:
o, [18]; x, [20]; *, [21]; O, [22]; o, [17]. Model parametersA /e = 40.
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2.5. Wave dynamics

The dynamics of the system (3), (4) is now analyzed by searching for solutions in the form of harmonic travelling waves
V(@) = yo @8O0 (g 1) = g, dkiTOD, (6)

where the structure and fluid variables admit a common real angular frequesag a real wavenumbét, time-independent
real amplitudesy,, go» and a relative phasg. After substitution of (6) in system (3), (4), to the leading order in frequency,
elementary algebra yields
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where the diagonal ternizg andD are the dispersion relations of the structure and the fluid, respectively
Ds(w, k) = —w —I(;—i— >w+02k2=0, (8)
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Seeking for non-trivial neutral waves (eal, k real), the determinant of the coefficient matrix of the system (7) is set equal to
zero, leading to the non-linear dispersion relation of the coupled fluid—structure system

Drs(@,k; go) = Ds(@, )Df (@, k; go) + AMw? = 0. (10)

Setting the imaginary part of (10) equal to zero yields an equation for the wave ampjitudaich reads
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Fig. 3. Solution of the coupled system (3), (4): (a) - -, fluid and structure undamped dispersion relations; —, infiniteisets) (satisfying
Egs. (11), (12)s, wave of maximum amplitude. (b) Selection scheme for the couplé)(
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Setting the real part of (10) equal to zero leads to the a bi-cubic polynomiahefa function ok, namely
6 2,2 2 4 2,2 2 44 2,21 2 4,47 _
w —[1+2€k —C+y/w —AM]a) —[—ZCk +@C+y/w—c’k +AMck]a) —[ck]—O. (12)

Egs. (11), (12) are satisfied by infinite séis k; g,), as sketched in Fig. 3(a). For a structure of finite length, the selection of
particular values would be given by the boundary conditions. Here, for an infinite medium, a selection criterion needs to be
established: we consider here the wave of maximum wake and cable ampjijuadel y,, defined by the resonance condition

Re[Dg] = —w? + c?k?®=0,  Re[Dp]=—w?+1=0. (13)

These equations do not depend on the valuesasfd A and depend only on the mass-stiffness properties of the fluid—structure
model (34). They define the intersection of the undamped dispersion relations of the structure and the fluids, i) thiauge,
this defines the wave angular frequency and wavenumber, Fig. 3(b).

From a physical point of view, uneffective boundary conditions allow any couplé)(satisfying the structure dispersion
relation with no preference. The fluid is therefore able to select autonomously the Strouhal frequency and the synchronization
assumption allows the structure to fix the wavenumber, as dictated by its own dispersion relation. Roughly speaking, the fluid
is the only real source of the common VIW frequency, while the structure fixes the common wavenumber.

3. Numerical simulations

The selection criterion of VIW features based on the maximum wave amplitude, and thus considering the intersection of the
structure and fluid undamped dispersion relations, is now validated by numerical simulations. The dynamical system (3), (4) is
integrated by applying a standard centered finite difference method in time and space, using a second order accurate time-space
explicit scheme. We model a typical marine cable of mass yatiol.785 and constant phase velocity= 5, subjected to VIV
in the laminar regime. From DNS computationskat= 100 [4], we consides; = 0.16 andC| o = 0.34. Initial conditions are
chosen in order to model the onset of Bénard—von Karman vortex street as the stream flow is switched on from rest: random
noise of amplitude @0-3) is considered for the fluid, as a perturbation of the unstable fixed point for the spatially interacting
van der Pol oscillators, whereas a static rest position is assumed for the structure. In order to model a structure of infinite length,
absorbing boundary conditions are applied, using a mechanical impedance cordifi@n= +cdy/d; [7], whereas for the
fluid the regularity conditiorﬁ)zq/az2 =0 is set. As shown in the spatio—temporal evolution in Fig. 4, waves with the predicted
frequencyw = 1, wavenumbek = w/c = 0.2 and amplitudey, = 0.22 radiate throughout both spanwise boundaries, and a
source point appears in the domain. This confirms the selection of the VIW frequency by Strouhal’s law and the wavenumber
by the structure undamped dispersion relation.

Considering a portion of cable with periodic boundary conditions, the spatio—temporal evolution of the structure transverse
displacemeny(z, r) obtained by numerical simulations of the system (3), (4) is now compared to VIV numerical simulations,
where the entire flow field is computed by DNS [4], Fig. 5. In both results, the observed frequency is predicted by Strouhal’s
law, and the wavenumber of stationary and travelling waves is that resulting from the cable constant phase velacig2here
Moreover, the phenomenological model of the near wake used here is found able to describe stationary waves, travelling waves
and transients as observed by DNS computations in [4].

Fig. 4. Spatio—temporal evolution of the system (3), (4) showing vortex-induced travelling waves (VIW). Iso-lines of structure transverse
displacemeny = —0.25: 0.05: +0.25; - -,y < 0; —, y > 0.



204 M.L. Facchinetti et al. / European Journal of Mechanics B/Fluids 23 (2004) 199-208

T

\\\\“ il
N

INZ

(b)

Fig. 6. Experimental set-up.

4. Experiments
4.1, Set-up

The selection criterion of VIW features based on the maximum wave amplitude, considering the intersection of the structure
and fluid undamped dispersion relations, is now validated experimentally. A long flexible cable is towed in a water tank and
submitted to vortex shedding excitation, experiencing VIW, Fig. 6. A stationary digital video camera is aligned with the vertical
towing plane: the movie thus obtained is processed in order to correct for parallax and perspective aberration, yielding the
spatio—temporal evolution of the cable transverse displacemént,). The upper end of the cable is connected to a towing
carriage under the free surface to avoid any interface effect. The lower end is unrestrained in order to model a partially non-
reflecting boundary condition through the effect of vanishing tension. The cable has a mass gatidldd25 and an aspect
ratio of L/D = 250. The experiments are carried out at Reynolds number of the order of 100. A spatio—temporal evolution
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Fig. 7. VIW travelling downwards on a cable: experimental data of the spatio—temporal evolution of the cable transverse displasement

graph of the towed cable transverse displaceménts) shows definite evidence of VIW travelling downwards on the towed
cable, Fig. 7.

4.2. Model

According to [23,24], the vortex-induced motion of the towed cable may be considered as a transverse perturbation of the
stationary vertical towing equilibrium, Fig. 8. The bending argtesults from the balance of fluid and gravity forces, leading
to a spanwise linear variable tension in the cable, namely a constant inclination. Fluid forces are reduced to a diagfaice
a viscous frictionS7, which read [25,9]

1 1 )
Sy =5pWU cos9)2DCp,  Sr= EpUz sindr DCr, (14)
whereCp = 4.5 is the sectional drag coefficient of the vibrating cable [9] @pd= 0.083 is the surface friction coefficient [25].
Considering the apparent cable mass per unit length in wages 6 x 10-4 kg/m, the static equilibrium in the direction normal
to the cable yields the bending angle

-1+ V144G 1pDL, 2\2
72G s G: ——CDFr 5

coLo = (15)

me

(a) (b)

Fig. 8. (a) Cable motion: R, vertical towing plan of the static equilibrium; T, transverse plan of the VIW. (b) Cable static equilibrium in the
vertical towing plan.
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Fig. 9. (a) Inclination anglé as a function of the Froude numbg¥: o, experiments; —, Eq. (15). (b) Non-dimensional phase velagitgs a
function of the Froude numbdf, : o, experiments; —, Eq. (17).

whereF, = U/ /gL, is the Froude number and. is a reference length, taken &s = L /2. Measured angles are compared
to this model with reasonable agreement in Fig. 9(a). Moreover, the static equilibrium in the tangential direction provides the
constant tension gradient along the cable

dr 1pDL .
— =megD| COSH + —unCFFrzsm@ . (16)
dz 2 me
A dimensionless phase velocity may thus be predicted as
1 /1, dT\ L, 5 megLy
=——, Tr=—|—, = — 17
a=afZ 7 (dZ)D =" 17)

4.3. Wave features

The motion angular frequeney is measured at several spanwise locations along the cable, showing a uniform distribution,
Fig. 10(a). This means that the overall cable motion has a single harmonic component. Since the cable is bent in the vertical
towing plane at a constant angle the significant Strouhal number is derived from experiments by applying the cosine
relationship of Williamson [26],S; = w/2x D/ U cosf, and then compared to a universal(R.) curve [27], Fig. 10(b).
Measurements show a reasonable agreement to the general VIV phenomenology, supporting the main idea of the fluid role in
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Fig. 10. (a) Power Spectral Density (PSD) of the measured transverse cable displagem@gn{b) Strouhal numbesf as a function of the
Reynolds number,: o, experiments; —, relatio; = 0.2665— 1.018//R, [27].
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selecting the VIW angular frequency through Strouhal’s law. VIW are observed as the Reynolds number is above the threshold
R, ~ 50 according to [27]. The measured Strouhal number is an increasing function of the Reynolds number. Note here that the
cable bending angle is of abomy4, which is at the limits of theS; cosine relationship. The VIW phase velocity is measured

at half of the cable length and the comparison with the model is shown in Fig. 9(b), again with reasonable agreement. This
supports the main idea of the structure role in setting the VIW wavenumber, the angular frequency being fixed by Strouhal’s
law.

5. Conclusions

Vortex-induced waves (VIW) in very slender structures have been analyzed. A selection criterion for VIW frequency and
wavenumber has been established by analytical arguments, then validated against numerical simulations and experimental
data. The fluid selects the frequency, according to Strouhal’s law, then the structure fixes the wavenumber as dictated by its
dispersion relation. This approach has been validated in comparison with humerical simulations of the proposed model and
with experiments. Moreover, the coupled cable-van der Pol model is found to capture most of the key features observed in DNS
computations of such systems. The results on selection of frequency and wavenumber sketched in Fig. 3 may be easily extended
to the case of a more complex structure model, such as Euler—Bernoulli tensioned beams with non-linear effects, which would
modify the dispersion relation of the structure. The near wake vortex street is modelled by a continuous distribution of van der
Pol oscillators arranged along the structure extent. Oscillators are coupled each other via the structure motion only. Spanwise
interaction may also be included in order to model 3-D vortex shedding phenomena. Diffusion allows to model cellular vortex
shedding from a stationary structure in shear flow [13,14,28,19]. Stiffness is required to describe oblique shedding and wave
shocks by end effects at loR, from stationary structures in uniform flow [29,19]. Again, results on selection of frequency and
wavenumber may be extended by including these effects in the fluid dispersion relation [30,19].
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