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Turbulent patterns in wall-bounded flows: A Turing instability?
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Abstract – In their way to/from turbulence, plane wall-bounded flows display an interesting
transitional regime where laminar and turbulent oblique bands alternate, the origin of which
is still mysterious. In line with Barkley’s recent work about the pipe flow transition involving
reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform
Waleffe’s classical four-variable model of self-sustaining process into a reaction-diffusion model. We
show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless
turbulent regime becomes unstable against patterning as the result of a Turing instability.
A reduced two-variable model helps us to delineate the appropriate region of parameter space.
An intrinsic status is therefore given to the pattern’s wavelength for the first time. Virtues and
limitations of the model are discussed, calling for a microscopic support of the phenomenological
approach.

Copyright c© EPLA, 2012

The context. – Patterns are currently observed in
continuous media driven out of equilibrium [1], natural
convection being an emblematic case. Pattern forma-
tion is indeed often an obliged stage in the transition
to turbulence. In this respect, wall-bounded shear flows
are systems of great theoretical and practical interest.
Contrasting with bulk shear flows that become turbu-
lent at low Reynolds numbers1 in a progressive globally
supercritical way, wall-bounded flows may remain laminar
at pretty high Reynolds numbers under smooth enough
conditions but experience a direct, discontinuous transi-
tion to turbulence at moderate shear under large enough
perturbations, either natural or intentional. As a result
the transition is subcritical, with hysteresis in some range
of R called the transitional regime. When confinement
effects are weak enough, the transition to/from turbulence
leaves the realm of chaos theory to take on spatiotempo-
ral features. This hysteresis is then responsible for the
organized coexistence of laminar flow and turbulence in
spatially separated domains, the patterns of interest here.
In pipes driven by constant pressure head or mass

flux, the transitional regime involves chaotic puffs that
become turbulent slugs at higher R, see, e.g., [2] for recent
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1Comparing shear effects to viscous dissipation over some relevant

scale, the Reynolds number (R in the following) is the natural control
parameter.

results and references. In plane flows, turbulent spots of
limited extent [3] can develop to form bands, alternately
laminar and turbulent. By now, this phenomenon has
been observed in several systems, Taylor-Couette and
plane Couette flow [4–6], torsional Couette flow [7], plane
Poiseuille flow [8], etc. Being free of global downstream
advection plane Couette flow, with its pattern at rest in
the laboratory frame [6], remains the simplest example. In
all cases, a uniformly turbulent regime called featureless [5]
is observed whenR is sufficiently large. This occurs beyond
a threshold value called Rt, while below some global
stability threshold Rg, laminar flow is always recovered,
possibly only at the end of a long turbulent transient [9].
For plane Couette flow, defining R=Uh/ν, with ±U
the speeds of the counter-translating parallel plates, 2h
the gap between them, and ν the kinematic viscosity of
the sheared fluid, one finds Rg ≈ 325 and Rt ≈ 405–415
[6,9–11].
The featureless turbulent regime is well understood in

terms of the self-sustaining process (SSP) put forward
by Waleffe et al. [12] within the Minimal Flow Unit
(MFU) framework [13]. This mechanism was further stud-
ied by Waleffe in [14] where it was implemented as a
four-dimensional ordinary differential system here called
Wa97. On the other hand, the emergence of bands out
of featureless turbulence when R is decreased below Rt
has only received a phenomenological description in terms
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of amplitude equations [6]. A prior attempt by Hayot
and Pomeau [15] stayed unable to predict any nontriv-
ial modulation wavelength while pointing to its possible
physical origin. To our knowledge, the detailed mecha-
nism, however, remains unclear and, in particular, out of
reach of conventional stability analysis of Navier-Stokes
equations where turbulence is treated by simple closure
assumptions [16].
Recently Barkley introduced an interesting model in

which pipe flow is considered as an excitable medium
described by a reaction-diffusion system [17], convinc-
ingly accounting for the laminar-turbulent dynamics in
that case [2]. Its extension to plane Couette flow [18]
restores the built-in upstream/downstream symmetry but
involves additional phenomenological couplings. More-
over, the excitable character of the local dynamics biases
the role of laminar and turbulent states in favor of
the former, which is reasonable only for the laminar-to-
turbulent transition close to the lower threshold Rg. In
order to understand the origin of patterning close to upper
threshold Rt, one would rather want to give the feature-
less turbulent state a forefront role, while staying within
the reaction-diffusion framework put forward by Barkley.
We precisely take this option by considering Wa97 as an
appropriate starting point.
In this model, the turbulent state is featured by the
upper-branch fixed point which is stable when R is large
enough. We shall transform the original ordinary differen-
tial system into a partial differential system by making the
degrees of freedom depend also on a space coordinate x,
and letting them diffuse along that direction. DecreasingR
below a well-defined critical valueRT (to be identified with
the upper threshold Rt), we shall observe an instability of
the uniform state against a spatial modulation that will
be interpreted as a standard Turing process [1,19]. This
interpretation, giving an intrinsic meaning to the pattern’s
wavelength, will straightforwardly derive from a reduction
of the four-variable model to a two-variable model that can
be solved by hand. Implications (and limitations) of our
findings will be discussed next.

The model and some results. – Model Wa97 imple-
ments the SSP in the form d

dtY=F(Y;R) where Y is a
four-component array (M,U, V,W ), each variable having a
clear physical meaning. In a few words, turbulence results
from the interplay of the mean flow M and streamwise
vortices with amplitude V which generate perturbations
called streaks with amplitude U . The streaks are unsta-
ble against some perturbation W which regenerates the
vortices V further distorting M via U . Details can be
found in [14] to which we refer.
The very same mechanism operates in pipe flow. The

simplified model proposed by Barkley [17] involves only
two equations for two variables. The first variable, u,
strictly corresponds to the mean flow M , and the second
one, q, typifies the turbulence intensity, which can here
be identified with W . Barkley introduces a coordinate

x along the pipe and let variable q diffuse along x
through a term ∂xxq in its own governing equation.
The upstream/downstream symmetry is broken in the
equation for u through a term ∂xu. Global mass advection
at some speed U (not to be confused with our streak
variable) is added. It plays a cosmetic role in the pipe
case but is crucial to the head-to-tail coupling of two
otherwise identical models in the Couette case. Such a
difficulty is here avoided by letting variables in Wa97
diffuse symmetrically along a coordinate x in the direction
expected for the modulation of turbulence intensity (the
pseudo-spanwise coordinate z′ introduced by Barkley and
Tuckerman [10]):

∂tM +αMM =DM∂xxM +σMW
2−σUUV +αM , (1)

∂tU +αUU =DU∂xxU −σWW
2+σUMV, (2)

∂tV +αV V =DV ∂xxV +σVW
2, (3)

∂tW +αWW = DW∂xxW +σWUW −σMMW

−σV VW. (4)

By assumption the typical scale along x remains unspeci-
fied but has to be large when compared to the local scales
involved in the SSP. System (1)–(4) will be called “model
Wa97RD” with “RD” for “reaction-diffusion”.
As to the reaction part, the values of coefficients
{αY , σY } with Y =M , U , V , or W , explicitly given
in [14], are not interesting in themselves. It however
warrants to be noted that coefficients accounting for
viscous dissipation are in the form αY = κ2Y /R, where κY
is an effective wave vector associated with variable Y ,
and that nonlinearities in model (1)–(4) conserve the
energy defined as E = 12 (M

2+U2+V 2+W 2) in the same
way as the advection term in the Navier-Stokes equation
preserve the kinetic energy. For what follows, we only need
to know that the original system has two nontrivial fixed
points Y(±) in addition to the trivial fixed point M = 1,
U = V =W = 0 which corresponds to the linearly stable
laminar regime. With the parameters chosen by Waleffe,
the pair Y(±) exists for R!Rsn = 104.85, where subscript
“sn” stands for “saddle-node”. The so-called lower-branch
solution Y(−) is always unstable, while the upper-branch
solution Y(+) representing the turbulent regime is a focus,
stable for R!RH = 138.06 and unstable below (“H” for
“Hopf”).
Four diffusivities DY have been introduced, with
a priori different values. This number can be reduced to
three by appropriate rescaling of the space coordinate x,
i.e. by setting DM ≡ 1, but this still leaves us with three
independent parameters.
The stability of the featureless turbulent regime
Y(x, t)≡Y(+) against space-dependent infinitesimal
perturbations is analysed by inserting Y(x, t) =
Y(+)+ Ŷq exp(st+ iqx) in Wa97RD. An instability devel-
ops when the real part σ(q;R) of the complex growth
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rate s(q;R) = σ(q;R)± iω(q;R) is positive. The Turing
mechanism works when diffusivities of the “species” in
presence, here the velocity components, have sufficiently
different magnitudes [19]. It is characterized by ω≡ 0 and
thus generates a pattern termed stationary, with some
finite wavelength 2π/q belonging to an unstable band
0< qmin " qmax. The threshold conditions (RT, qc) are
defined by σ(qc;RT) = 0 and ∂qσ(qc;RT) = 0.
Before going further, we need an educated guess to fix

the value of the diffusivities, all other coefficients being
given, in order to check whether the Turing mechanism
gives a possible explanation to the laminar-turbulent band
formation. Noticing that M and W are the variables
closest to those considered by Barkley, before considering
the general case, we first examine what happens when
variables U and V are just enslaved to M and W , i.e.,
DU =DV = 0, a case which can be solved by hand.
Anticipating a Turing instability, recalling that

ω(q;R) = 0 for this mode and that perturbations near the
threshold are slow, σ(q;R)≈ 0, we eliminate variables U
and V adiabatically by assuming that ∂tU and ∂tV are
negligible when compared to all other terms in (2), (3)
with DU =DV = 0. This yields the effective system:

∂tM +αMM = ∂xxM +σMW
2+

σUσV σW
αUαV

W 4

−
σ2Uσ

2
V

αUα2V
MW 4+αM , (5)

∂tW +αWW = D∂xxW −σMMW −

(

σ2W
αU
+
σ2V
αV

)

W 3

+
σUσV σW
αUαV

MW 3, (6)

with D :=DW . By construction, system (5), (6) has the
same fixed points as (1)–(4) and preserve their stabil-
ity characteristics as long as no intrinsic frequency shows
up at threshold. So, the putative Turing mode is not
affected by the reduction. In contrast, the Hopf instabil-
ity threshold RH happens to be moved from 138.06 down
to R′H = 123.62. The standard approach [19] straightfor-
wardly gives the conditions thatD must fulfill for a Turing
instability to develop. The linearization of the system (5),
(6) around the fixed point Y(+) for pertubation modes in
the form Ŷq exp(st+ iqx) yields an eigenvalue problem:

(s− gMM + q
2)M̂ − gMW Ŵ = 0 , (7)

−gWMM̂ +(s− gWW +Dq
2)Ŵ = 0 , (8)

where coefficients gY Y ′ are easily obtained by explicit
computation. The characteristic equation of this system
is a quadratic polynomial in s with coefficients depending
on q2. The uniform state “q= 0” must be stable, which
imposes

gMM + gWW < 0 , gMMgWW − gMW gWM > 0 , (9)
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Fig. 1: (Color online) As R is decreased at given D, Wa97RD
experiences a Turing instability for R!RT given by the curve,
with critical wave vector qc, the value of which is indicated
for D= 0.05, 0.10, 0.15. RT =RH = 138.06 at D= 0.1744 with
qc = 0.6971.

When q $= 0, the sum of the roots Σ= gMM + gWW −
(1+D)q2 remains negative, which forbids any oscillatory
instability. A stationary instability then develops when the
product of the roots

Π=Dq4− (DgMM + gWW )q
2+ gMMgWW − gMW gWM

(10)

is negative at given D> 0 for some real value of q, hence
q2 > 0, which implies DgMM + gWW > 0. The condition
that Π(q2) = 0 has one or two roots reads

g2WWD
2+2(2gMW gWM − gMMgWW )D+ g

2
WW ! 0 ,

(11)
which is a condition on D at given gY Y ′ . The equality
corresponds to the double root at threshold, q2 = q2c , hence
the additional relation dΠ/d(q2) = 0,

2Dq2c =DgMM + gWW . (12)

Figure 1 displays the result of the threshold conditions
{RT, D} for Wa97RD as a curve in the (R,D)-plane, the
control parameter R being hidden in the expressions of
the coefficients. The curve itself is obtained from the
reduction (5), (6), which is legitimate since the Turing
mode is stationary, but the unstable domain has been
limited to its left by the true condition R>RH, instead
of the approximate condition R>R′H stemming from (9).
The diffusivities of the two competing “species” have thus
to be sufficiently different, that is D smaller than the criti-
cal value computed from condition (11); see also sect. 14.3
in [19]. So, for systemWa97RD withDM=1,DU=DV =0,
and DW :=D< 0.1744, a Turing instability develops at
some threshold RT >RH and is thus encountered first
as R is progressively decreased from large values. RT
is seen to increase rapidly as D decreases, being larger
than 200 for D< 0.05. Figure 2 with D= 0.15, slightly
smaller than the limiting value, further illustrates the
linear stage by displaying the real part of the growth rate
σ(q;R) for different values of R. Two branches appear,
the one at small q, with ω(q;R) $= 0 not shown, is easily
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Fig. 2: (Color online) Growth rate σ of perturbations to the
upper-branch fixed point of model Wa97RD as a function of
q for D= 0.15 and several values of R around the threshold
RT = 143.4.

identified as arising from the Hopf bifurcation present in
the original model. In contrast, the branch at large q
is stationary, ω(q;R)≡ 0, and corresponds to a standard
Turing instability: the critical conditions for that example
are RT % 143.4 and qc % 0.74.
A systematic numerical resolution of the full four-

dimensional problem generalizing system (7), (8) has been
performed for relative diffusivities DY /DM , Y =U, V,W ,
in the form an, with a= 100.2 and n∈ [−15, 15], thus
spanning the range [0.001, 1000] regularly on a logarithmic
scale, DM = 1 fixing the scale for coordinate x. The
existence of the Turing instability appears quite robust,
as understood from fig. 3 which displays some significant
results in the case DY " 1. It appears that variables M
and U on the one hand, V and W on the other hand,
play on different grounds, and that the diffusivities of
variables in one group have to be significantly different
from the diffusivities of the variables in the other group
for the Turing mode to be relevant. These features are
illustrated in the two panels of the figure that display
isolines RT =RH in (DY , DY ′)-planes for the set of DY ′′
considered. In this representation, the Turing instability
preempts the Hopf instability at givenDY ′′ when the point
corresponding to the values of DY and DY ′ of interest
are in the lower left corner of the panel, below the line
labelled by DY ′′ . Panel (a) relative to variables DV and
DW shows that, whatever DU , there is no Turing mode if
DW > 0.1744 andDV > 0.0320 and that the largerDU , the
smaller the unstable domain. Clearly, the unstable domain
extrapolates to a well defined region of the (DV , DW )-
plane, when DU → 0, which is consistent with the results
shown in fig. 1 dedicated to DU =DV = 0. Panel (b)
again illustrates the conditionDV < 0.0320 but now shows
that there can be an instability for DU = 1 (=DM ) if
DW < 0.0158. In the following we shall consider DU =
DM = 1 and DV =DW :=D, in which case D< 0.0100
is necessary for the Turing instability to develop. When
DU > 1, a qualitatively similar situation holds, which is
easier to analyze by scaling x using DU rather than DM :
the instability is again found when DV,W are small enough

Fig. 3: (Color online) Turing unstable domains in parameter
space (DY , DY ′) for different values of DY ′′ : (a) in the
(DV , DW )-plane for several values of DU ; (b) in the (DU , DV )-
plane for several values of DW . a= 10

0.2
≈ 1.5849 so that

a−15 = 10−3.

and the limit DM → 0 behaves like the limit DU → 0
in the previous case. Quantitative differences, however,
remain because eqs. (1) and (2) are of course not freely
exchangable.
The fate of modulations for R<RT is also of inter-

est. Here, solutions to the full time-dependent nonlinear
problem (1)–(4) have been obtained by numerical simula-
tion in a domain of length L= 50, using Neumann bound-
ary conditions and a standard finite-difference approach,
second order in space and time, dealing with the diffu-
sion term implicitly by a Crank-Nicolson scheme and the
nonlinear interactions explicitly by an Adams-Bashforth
scheme [20]. Small periodic perturbations around the
upper-branch fixed point were introduced with a given
integer number of cosine arcs, allowing us to vary the wave
vector per steps δq= π/L. The solutions were obtained
first for R= 140, and next the branches by continuation.
Results are presented in the form of a bifurcation diagram
relating the Reynolds number to the amplitude of the
steady-state solution defined as the distance to laminar
flow: ∆=L−1

∫

[(1−M)2+U2+V 2+W 2] dx.
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Fig. 4: (Color online) Bifurcation diagram of model Wa97RD
for DM = 1, DU =DV = 0, and DW =D= 0.15 . Quantity ∆
is given as a function of R for all wave vectors q accessible at
steady state in a domain of length L= 50, as indicated in the
legend.

In the present work, we mainly consider two extreme
cases: the one solvable by hand at the linear stage,
DU =DV = 0, and another one with DU =DM large (= 1)
and DV =DW small (= 0.004). The bifurcation diagram
corresponding to DU=DV =0 and DW :=D=0.15
is shown in fig. 4. Besides the amplitude of the non-
modulated solutions, the figure displays the amplitudes
of steady-state solutions with various spatial periods as
functions of the Reynolds number R (see footnote 2). The
bundle of branches displayed in the figure corresponds
to the whole set of equilibrium solutions emerging from
initial conditions constructed as described above. Each
branch is disconnected from the upper-branch base state,
and each is terminated by two saddle-node bifurcations,
one at the high-R end where the modulated state returns
to the featureless state, and one at the low-R end where
it decays towards the laminar state (∆≡ 0). Remarkably
enough, nonlinear modulated states can be followed not
only below RH but also well below Rsn, when the original
model has lost its nontrivial solutions. This is a possibly
surprising but quite nontrivial effect of the introduction
of large-scale space dependence when passing from Wa97
to Wa97RD.
In some cases, when the wave vector is large, the upper

end point corresponds to a bifurcation toward a solution
with a smaller wave vector, closer to the center of the
unstable wave vector interval, as expected for an Eckhaus
instability [1]. In this respect, long-wavelength solutions
(q small) are much more robust than short-wavelength
ones (q large): we have not been able to find equilibrium
solutions with q close to the upper bound of the unstable
wave vector range (fig. 2), here for q > 0.8168, while

2In fact, these branches could also be reached directly even for
R<RH provided that the initial condition be prepared sufficiently
close to the upper-branch fixed point. This is because the Turing
mode has a larger growth rate and develops faster than the Hopf
mode so that it saturates before the system has a chance to decay
via the uniform time-oscillating subcritical mode [14,21]. See fig. 2.
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Fig. 5: (Color online) (a) Profile of a stable saturated solution
with wave vector q= 0.6283 at R= 135 for DU =DV = 0, and
DW = 0.15. (b) Typical profile of the pulse solution at large
DU =DM and small DV =DW for R= 135.

solutions with q close to the lower bound, here q= 0.4398,
could easily be observed down to very low values of R.
Figure 5(a) displays a typical solution obtained at

steady state for D= 0.15 and R= 135 (<RH). The lami-
nar state corresponding toM = 1 and (U, V,W )≡ (0, 0, 0),
the laminar-turbulent alternation is easily identified with
turbulent (laminar) bands associated to the minima
(maxima) of M and the maxima (minima) of U, V,W .
Diffusion implies smooth variations of M and W , while
the more strongly anharmonic dependence of U and V ,
reaching very low levels inside the laminar regions, is
due to their enslaving to M and W through nonlinear
expressions [14].
The interplay between diffusion and nonlinearity is not a

trivial matter since, when considering our second extreme
case, DU =DM = 1 and DV =DW = 0.004, following the
same protocol as above, we obtain solutions that are
rapidly driven toward a similar manifold of periodic states,
with comparable amplitudes, but any of these states
is only a long-lived transient toward the pulse solution
illustrated in fig. 5(b) after a cascade of instabilities
progressively reducing the number of oscillation periods.
This pulse solution is systematically obtained whatever
the wavelength of the initial condition. It is stable over
a very wide range of R: as R is decreased it is observed
down to R≈ 112, below which it decays to the laminar
state, whereas, upon increasing R, it stays localized up
to about R= 400, above which it expands, triggering the
invasion of the upper-branch featureless state.

Discussion. – Up to now, the emergence of laminar-
turbulent patterns in transitional wall-bounded flows has
not receive any clear-cut explanation [16]. Elaborating
on ideas put forward by Barkley [17,18] who interprets
the laminar-to-turbulent transition in physical space as
the result of excitatory-refractory behavior common in
reaction-diffusion processes [19], we have shown that a
model introduced by Waleffe [14] to describe the local
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sustainment of turbulence, once appropriately converted
into a reaction-diffusion system, could account for the
development of a pattern similar to what is observed
experimentally in plane Couette flow at the turbulent-
to-laminar transition [6]. This understanding in terms of
a Turing instability of the featureless turbulent regime
(figs. 1 and 2) points to a possible generic origin of the
phenomenon, and accordingly could also apply in other
similar situations [7,8]: provided that large-scale perturba-
tions evolve on sufficiently different spatiotemporal scales,
as a result of effective diffusivities of sufficiently differ-
ent magnitudes, we have shown that infinitesimal modu-
lations of the turbulence intensity around the featureless
state, here represented by the upper-branch fixed point
of Waleffe’s model, end in a nontrivial patterning in the
transitional range.
Let us first note that the transformation of a local

model of SSP into a reaction-diffusion system via the
phenomenological introduction of effective diffusion terms
is not as arbitrary as it might seem since it aims at
accounting for large-scale modulations of the SSP intensity
in much the same way as the eddy viscosity helps us in
managing the effects of turbulent fluctuations on the mean
flow in the standard turbulence theory.
Next, several features retrieved from experiments are

satisfactorily rendered within the model as it stands. The
grouping of variables relevant to the SSP mechanism in
two distinct sets, {M,U} and {V,W}, was not obvious
in advance, nor the ordering of the diffusivities (fig. 3),
though this property is in line with longer coherence
lengths for the mean flow M and streaks U , than for the
streamwise vortices V and the streak instability mode W ,
as expected from observations [22].
At the nonlinear stage, results are less satisfactory

since the instability was found discontinuous at RT while
its seems to be continuous in experiments [6]. The fact
that, in all cases, nonlinear solutions can be found at
values of R where the featureless state is unstable against
uniform modes (R<RH) and, in some cases, well below
Rsn (fig. 4), is however a strong indication that large-scale
spatiotemporal couplings profoundly modify the small-
scale picture gained using the MFU assumption [14], e.g.,
the search for invariant temporal solutions within the
framework of dynamical systems theory [23].
Despite the appealing features of the Turing instability

concept, and especially the internal nature of the pattern-
ing mechanism, viz. eq. (12) fixing the critical wavelength,
the weak point of our approach lies in its phenomeno-
logical nature, implying an indeterminate direction for
the space coordinate and an arbitrary scale along that
direction. In view of the prediction of quantitative prop-
erties of the pattern, orientation and wavelength, some
support of the reaction-diffusion formalism has thus to be
gained from a more ab initio (microscopic) approach. An
extension of previous Galerkin modeling [24] combined

to filtering able to separate large and small scales and
its adaptation to other cases of great interest for applica-
tions [5,7,8] is under development in this purpose.
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