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We proceed to a reanalysis of time series of the Earth Orientation Parameters available from IERS [4]
using Takens’ time-delay embedding technique [5]. Focusing on intermediate time scales rather than short
ones as done in [3], we extract oscillations corresponding to Chandler wobble by singular-value decomposition
[7] of the time-series of the Celestial Ephemeris Pole position (PMX,PMY) on the period 1890-2000. A =
phase-shift of the osciilation around 1930 is pointed out explicitly. A similar study of the length-of-day time
series shows strong correlation with indices measuring the strength of the ENSO phenomenon on the period
1962-1999 [23]. Differences between the dynamical systems approach and conventional signal analyses are

emphasized.
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1 Intreduction

Phase-space reconstruction techniques developed in
the theory of low-dimensional deterministic dynam-
ical systems are now currently used as signal pro-
cessing tools (1, 2]. In the present paper, following
V. Fréde's seminal work [3], we consider data series
of the fluctuations of the Earth’s orientation param-
eters (EOP in the following) and take them as an
interesting case study in this framework.

The EOP can be measured with precision since
the end of the XIX*" Century and even more so with
the development of spatial techniques. A better un-
derstanding of EOP variations has much interest
from both theoretical (origin of fluctuations) and
applied (improvement of positioning} viewpoints.
Ormnginal data are available from the International
Earth Rotation Service (IERS) at Paris observatory
[4]. They describe the fine details of the rotation of
the Earth about its axis. As a matter of fact, like
any solid object rotating around an axis that is not

rigorously along one of its inertia axes, the Earth
experiences a nutation , L.e. a motion of the direc-
tion of the relevant inertia axis in an absolute frame
or, equivalently, an apparent motion of the rotation
axis in a body-fixed reference frame. A large part
of this motion is accessible to astronomical compu-
tation but a part remains that turns out to be not
fully regular. In the same way, once computable
corrections linked to tide effects on the equatorial
bulge have been subtracted, the length of the day
(LOD in the following) also fluctuates around its
average value.

In the following section we present the data to
be studied in little more detail. The next section
is devoted to a sketchy description of the tools we
shall make use of, Takens’ time delay technique [5]
rooting new approaches to data processing, and fil-
tering by singular value decomposition [6, 7]. In
her PhD work, V. Fréde focused her attention on
the high frequency dynamics of the EOP (from days
to months). In particular, from phase-space recon-
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structions she attempted to characterize the pre-
dictability of the time series, and to correlate it
with the El Nifio climatic oscillation at a qualitative
level. By contrast, we shall consider fluctuations on
inter-annual time scales, for which we believe that
the techniques used are even more effective. We
shall study first, §4, the motion of the pole axis
and more specifically the oscillation known as the
Chandler wobble , and next, §5, the LOD variations
showing quantitative correlation with the climatic
oscillation mentioned above. While not trying to
substitute ourselves to specialists of the different
scientific disciplines concerned, astronomy, geodesy,
geophysics, or climatology, in the final section we
shall discuss —perhaps too naively-— what can be
learned from the abstract approaches deriving from
dynamical systems theory.

2 The Earth’s orientation
parameters (EOP)

As a matter of principle, the kinematics of the Earth
should be described in an inertial frame linked to the
stars, defined by convention as the International Ce-
lestial Reference System (ICRS). All measurements
performed on Earth are however rather expressed in
a geocentric frame linked to its solid crust, the Inter-
national Terrestrial Reference System (ITRS). One
of its axes defines the IERS Reference Pole (IRP)
while another one helps us specifying the JERS Ref-
erence Meridian (IRM). In order to be able to ac-
count for the kinematics of the Earth’s rotation (8],
one must know how to pass from one reference frame
to the other. Theoretically, the orientation of a
frame rigidly linked to an arbitrarily shaped solid
depends on three parameters, e.g. FEuler’s angles.
From the astronomical point of view, the Earth
rotates around a conventional reference axis that
defines a pole called the Celestial Ephemeris Pole
(CEP). The motion of the CEP is determined from
its coordinates PMX and PMY in a frame linked
to the IRP. The third parameter is a longitude that
permanently grows with time and will be related to
the length of the day (LOD).

Considering an average Earth supposed to be a

solid of invariable shape, one can account for the
motion of the CEP of astronomical origin by means
of precession-nutation models. This mation is due
to gravitational effects of other celestial bodies on
the equatorial bulge induced by centrifugal forces.
Models predict a motion that can be subtracted
from the observations but measurements are suf-
ficiently precise that irregular residual deviations
show up. (In fact, models are imperfect and two
tiny quasi-periodic empirical corrections 41 and de
must be introduced, corresponding to systematic
longitude and obliquity shifts of the CEP’s position.
They will be neglected in the following.)

The interpretation of the fact that the CEP expe-
riences motions not predicted by the astronomical
precession-nutation theory stems from the observa-
tion that, at time scales of interest, the Earth is a
deformable body made of a solid part with complex
interior and two fluid parts, the oceans and the at-
mosphere. Inertia parameters of the solid part may
slightly vary as its shape changes, while the fluid
envelopes permanently exchange angular momen-
tum with it. Earthquakes, interactions between the
Earth’s core and mantle, underground water and
glacier motions have similar effects. All this gener-
ates fluctuations of the CEP position (PMX,PMY)
and also of the instantaneous rotation rate to be
examined later.

Besides seasonal components, annual and sub-
annual, the CEP orientation fluctuations contains
an important contribution called Chandler wobble
(CW in the following, for a recent overview see
19]). This contribution corresponds to a free nu-
tation motion, the period of which should be 305.5
days if the Earth were a rigid revolution ellipsoid as
assumed by Euler who first predicted this motion.
In fact the Earth’s elasticity lengthens the period
to about 433 days and its internal viscosity damps
the motion with a characteristic time in the range
30-70 years that is more difficult to estimate. At
any rate, the oscillation should have disappeared if
it were not permanently excited. Different mecha-
nisms have been advocated for this excitation, see
[10] for a recent contribution concluding that, at
least in the last 20 years, the pressure fluctuations
at the bottom of the oceans are responsible for a
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large part of it.

In addition to these orientation fluctuations, the
Farth also experiences variations of its instanta-
neous rotation rate. The universal time UTL is the
time derived from the rotation of the Earth that,
by definition, completes one turn in 24 hours, i.e.
it give the instantaneous direction of the reference
meridian (IMR) and is different from the uniformly
flowing sidereal or ‘absolute’ time as given by, e.g.,
an atomic clock. From the difference between UT'1
and the sidereal time one derives the length of the
day (LOD). In addition to the secular slowing down
due to the loss of angular momentum by viscous
friction, LOD variations also contain a computable
multi-periodic contribution linked to tide effects.
Once they have been subtracted, what remains is
the result of fluctuations of the torque exerted by
the other components of the planet (atmosphere,
ocean, core) on the solid crust to which the IRM
is linked. These fluctuations are present on a wide
range of time scales. The origins of the shortest are
meteorological or seismic. At the scale of months,
regular seasonal climatic variations should certainly
be invoked. Here we shall be interested in inter-
annual variability most likely also linked to climatic
processes such as the celebrated ‘El Nifio-Southern
Oscillation’ (ENSO) phenomenon [11].

3 Time-delay signal processing

Takens’ time delay technique. Within the
framework of dynamical systems theory most sig-
nal processing methods derive from Takens’ method
of time delays [5]. This method assumes that
the physical system of interest, mathematically de-
scribed by some {unknown) continuous time differ-
ential dynamical system %X = F(X) in its (un-
known) phase space X of (unknown) dimension
d, produces a discrete time series Wy = W(t;),
k= 0,1,2,..., by sampling of some observable
W(t) = W(X(t)) at regularly spaced times #;, = kr.
The system is then represented in a space Y = R%
by discrete trajectory points Yi, £ =0,1,2,... with
sub-series of d. consecutive measurements as coor-

dinates:
Yi = Wi, Werr, - Wapao—1) (1)

where the prime indicates transposition to fit with
the convention of denoting vectors as column ar-
rays. From a theoretical point of view, mathemat-
ical embedding theorems guarantee the faithfulness
of this representation provided that the dimension
de is taken large enough (see [12] for a review).
But these theorems hold in the ideal case of noise-
less data and do not solve the empirical problems
of finding the most appropriate sampling time 7
and choosing the embedding dimension most effi-
ciently. Prescriptions for v have been given, e.g.
take the value giving the first relative minimum of
the mutual information between delayed coordi-
nates W{t) and W (i + 7} [13]. Strategies have also
been developed to go beyond the simple trial-and-
error method that consist of increasing d. up to the
point where stable results are obtained, the false
near-neighbor method is one such strategy [14]. Dy-
namical information can then be extracted from the
reconstruction, e.g. Lyapunov exponents and frac-
tal dimensions; see [1, 2] for details and concrete
implementations.

Using singular value decomposition (SVD).
In practice, the canonical basis of space Y is not
optimal in the sense that a circular permutation of
the axes leaves the reconstruction invariant. It may
thus be interesting to turn to a different basis bet-
ter correlated to the data in the least-square sense.
This is done by considering the correlation between
a given reconstructed vector state Yy and an arbi-
trary test vector Z, measured by the square of the
scalar product Y -Z and minimizing the quantity

> (YeZ)? 2)

where n, = ny — dg, ne being the total number of
measurements and n, the number of reconstructed
vectors. This directly leads [6] to an eigen-value
problem for the covariance matrix R, with coeffi-
cients

1 &
Rnm' = Rt = =~ > Wirm 1 Wiim-1,

V k=1

Nonlinear Phenomena in Complex Systems Vol. 4, No. 1, 2001



P. Manneville: Time-Delay Study of Earth Orientation Parameters . .. 97

for example: Ry = (l/nv) ZEV:I W;?, Rjo = Roy =
(1/ny) 35, WiWiy1, etc. This symmetric matrix,
definite and positive by construction, can thus be di-
agonalized. Its spectrum can be ordered by decreas-
ing values, the largest ones corresponding to that
part of the motion containing most of the variance
of the signal. It can be shown [6] that the searched
spectrum is nothing but the square of the singu-
lar spectrum obtained from the singular value de-
composition (SVD) of the ‘trajectory matrix’ with
coefficients Ty = Wingm—1, which is routinely
achieved by efficient algorithms. Furthermore, the
eigen-vectors of the covariance matrix form an or-
thogonal basis of the de-dimensional reconstruction
space Y on which trajectories can be projected. A
feature of the decomposition, to be illustrated later,
is the presence of quasi-degenerated pairs of eigen-
values with associated wave-vectors out of phase by
m/2 when the signal hides a possibly strong, but
modulated or even intermittent, periodic compo-
nent at some frequency [7], which opens the possibil-
ity of selective reconstruction, i.e. adaptive filtering.
Though the system can be further studied in the so-
selected eigen-subspaces [6], it is often interesting to
recompose the filtered signal in the canonical basis,
that is to say, to write it back as a time series (i.e.
to find the trajectory matrix corresponding to the
filtered principal components), which can be done
approximately in the least-square sense, as shown
in [7].

Hilbert transform and demodulation. As will
happen to be the case here, it is often useful to ex-
tract the amplitude and the phase of signals display-
ing strong periodicities. This can be done elegantly
by constructing the analytic signal We(¢t) = W(t)+
iWy () associated to the given real signal W(t).
The imaginary part W, (¢) is constructed to be out
of phase by /2 with W by means of the Hilbert
transform: W, (w) = —(1/m)P [ dw'W (') /(w —
w'), where F(w) is the Fourier transform of F (¢)
and P denotes the Cauchy principal part of the in-
tegral [15]. The instantaneous amplitude and phase
of the signal are then given by the modulus and
the argument of Wc(t) = [W(¢)| explid(t)], the in-
stantaneous frequency being obtained by differenti-

ating the phase with respect to time. Concretely,
the Fourier transform of W, is obtained from that
of W by canceling all its negative frequency compo-
nents.

4 CEP motion and the Chandler
wobble

The PMX and PMY time series, available from the
IERS as file CO1 [16], contains 2181 data pieces sam-
pling the period 01/01/1890-01/01/1999 at a rate of
20 values per year. Conventionally, the coordinates
(PMX,PMY)} of the CEP are determined in a frame

- centered at the IRP, its x axis along the reference

meridian, its y axis along meridian W90. In order
to recover a direct frame, in the following we study
the time series of PMX and —PMY, as displayed
without any treatment in the two upper panels of
figure 1. The trend visible on the figure is likely due
to slow geophysical processes. Instead of removing
it by subtracting a sliding average, we prefer fitting
a polynomial to the raw data, as if the drift was
due to some slow but deterministic dynamics that
could be represented by the first terms of its Taylor
expansion [17]. After subtraction of the trend one
gets the data displayed in the two bottom panels of
figure 1 that will serve in the following.

Results of a Fourier analysis of the detrended
complex time series Z = X 4 4Y are displayed in
figure 2. The annual period is clearly identified in
the two top panels as corresponding to the sharp
intense peak at n = -+109 and the smaller one at
n = —109. The Chandler wobble is consistent with
the wide peak around n ~ 92.

In practice, since the periods of annual and sub-
annual regular fluctuations are known exactly, it
turns out to be preferable to eliminate the cor-
responding signal components by least square fit-
ting the coefficients of few terms of an appropriate
Fourier series [17]. The control Fourier spectrum
shown in the bottom panel of figure 2 suggests that
the result, displayed as a time series in figure 3, is
satisfactory in that there seems to remain no trace
of the beat between the annual and Chandler fre-
quencies visible in figure 1.
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FIG. 1. Time series of the CEP coordinates X = PMX
and Y = —PMY. Top: Raw data with indication of the
trend. Bottom: detrended data.
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FIG. 2. Fourier spectrum P(f,) = |Zn|? of detrended
time series of Z = X 4+ iY (fn = n/T in years™!,
T = 109). Top: complete spectrum. Middle: zoom on
the central part pointing out the annual and Chandler
contribution to the spectrum. Bottom: control spectrum
after removal of annual Fourier modes.
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FIG. 3. Time series of detrended X and Y after subtrac-
tion of the periodic annual fluctuation.

Let us now study the cleaned time series by the
methods briefly described in the previous section.
The period of the Chandler wobble is close to 433
days. In order to take a window width (embed-
ding dimension) in resonance with this duration we
have taken d. = 95, that is to say very nearly 4
periods (4 x 20 x 433/365 ~ 94.9). As seen in fig-
ure 4, two singular values representing 86-87% of
the variance of the signal emerge from a somewhat
undifferentiated background. Furthermore the sin-
gular spectra corresponding to coordinates X and
Y are essentially identical. The eigen-vectors ob-
tained from the analysis of the X series and corre-
sponding to these two eigen-values are displayed in
figure 5. As expected in case of a signal close to
periodic and a window length commensurate with
the approximate period [7}, these two vectors dis-
play 4 periods of nearly sinusoidal oscillations out
of phase by m/2 with each other (the latter fact
can be checked by comparing one of them with
the Hilbert transform of the other). Performing
the same work on the Y series one obtain two
new eigen-vectors that turn out to fulfill the rela-
tions Vi) = 1B and B = — ) (quan-
titatively, denoting the Euclidean norm as || ||z,
one has ||[ViX) — Vo®|o/IVi®|2 and V2t +
Vi) |2/ |[V2" |l2 both less than 2%). All this con-
firms that X and Y are two components of a single
periodic (but modulated) behavior best studied in
the complex plane Z = X +1iY.

Filtering the series by keeping the principal
components corresponding to the two first vectors
(X1.2,¥1.2) or on the contrary to all other vectors
(X3.95, Y3.95) and recomposing the time series as in
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FIG. 4. Head of the spectrum o2 of the covariance

matrix with embedding dimension d, = 95 (solid and
dashed lines for X and Y, respectively).

FIG. 5. The two first eigen-vectors issued fromn the anal-
ysis of the X time series.

[7] yields the signals illustrated in figure 6. Fourier
analysis further shows that except for a small con-
tribution at modes close to —109 originating from a
slight modulation of fluctuations at annual and sub-
annual periods (that could not be eliminated by a
procedure adapted to a strictly periodic signal), the
spectrum of the residue, principal components 3 to
95, is essentially featureless. This strongly suggests
that all the variability associated with the Chan-
dler wobble has been properly extracted and is to
be found in components (1-2). Figure 7 displays the
corresponding reconstructed trajectory in the com-
plex plane Z = X9 + iY7.9, clearly understood as
describing a nearly sinusoidal oscillation of variable
amplitude and phase, ready for quantitative char-
acterization.

The amplitude of the wobble can first be esti-
mated as a function of time from the modulus of Z.
This is done in figure 8 (top) where it can be seen
that small, intermittent and fast fluctuations are su-
perimposed on a large, smooth and slow variation.
Further examination of the fast fluctuations shows
that they are essentially made of spells of harmon-
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FIG. 6. Recomposed times series. Top: nontrivial
Chandler component (X|_9 and Y7.9). Bottom: residue

(X3-95, Y3.95).

ics of the basic frequency. In the bottom panel of
the same figure the amplitudes of the oscillations
of X192 and Yi.p, taken separately, are plotted as
obtained from the modulus of the analytic signals
X¢ and Y, derived by means of the Hilbert trans-
form. While they seem to envelope the variation of
|Z|, these amplitudes show no trace of the previous
fast oscillations [18]. As can be understood from a
simple calculation, all this arises because the two
signals X3 o and Y7.9 are nearly but not rigorously
out of phase by x/2.

One may note that the amplitude of the Chandler
wobble is particularly small on the interval [1925-
1940], with two large humps before and after this
period. A small amplitude oscillation with period
of the order of 10 years seems to be superimposed
on the large amplitude modulation. This oscillation
can be made objective by a SVD of the |Z| time
series, the results of which will not be presented
here since they do not bring more than what can be
guessed from visual inspection.

Let us now examine the variations of ¢ = arg(Z2)
which are directly related to those of the oscillation
period. As can be guessed from figure 7, ¢ indeed
increases regularly, which is further illustrated in
figure 9 (top) where a linear growth ¢g = wpt, with
wp = 27 /Ty, Ty = 433 days, has been subtracted.
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FIG. 8. Top: recomposed time series of |Z|. Bot-
tom: Moduli of analytic signals | X,| (solid line} and |Y|
(dashes) derived from Xy.9 and Y1_ using the Hilbert
transform,
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FIG. 9. Top: Argument of Z = X1.¢ +iY].5. Bottom:
Arguments of X, (solid line) and ¥, (dashes). All are
corrected from a regular phase-winding corresponding to
a period 433 days, which helps one pointing out a phase
jump of order 7 around 1930.

This suggests a phase jump of the order of 7 in
the period [1922,1942], precisely when the ampli-
tude was small. This feature is also present on the
plots, figure 9, of the arguments of the analytical
signals X. and Y; which are again free of fast os-
cillation spells affecting Z. The instantaneous rota-
tion rate of the Chandler wobble has been cbtained
from the time series of §[arg(X.) + arg(Yc)] by dif-
ferentiation after smoothing it over twenty succes-
sive points. Figure 10 displays the corresponding
period expressed in days, to be compared with the
reference value of 433 days.

5 Length of day (LOD)

The data. The LOD time series is contained in
the IERS file C04 [19]. At the time of the study
this series started on the 1st of January 1962 and
ended on the 4th of July 2000, i.e. 14065 data val-
ues. The raw time series is displayed in figure 11
(top panel). The LOD fluctuations contain a quasi-
periodic component of astronomic origin due to tide
effects that can be computed explicitly by means of
a model [20]. The corrected time series is displayed
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FIG. 10. Instantaneous Chandler period derived from
the arguments of the analytic signals X (solid line) and

Y (dash-dotted line). The horizontal line corresponds to
433 days.

in figure 11 (middle panel) and the Fourier spectra
of the raw and corrected time series displayed in fig-
ure 12 show that the tide model is nearly perfect in
suppressing the related time dependence. The slow
modulation remaining in the corrected time series
is eliminated by filtering out its first Fourier coeffi-
cients, which yields the series presented in the bot-
tom panel of figure 11 that serves to the subsequent
study. It is clearly dominated by a strong seasonal
(annual and sub-annual) component already obvi-
ous in the Fourier spectra. Here we will rather be
interested in the inter-annual variability.

The ENSO phenomenon. The principle of an-
gular momentum conservation tells us that the pro-
cesses immediately susceptible to modify the length
of the day originate from the friction of air and wa-
ter masses in zonal metion on the surface of the solid
Earth. These motions take place on variable time
scales from few days (meteorology) to several years
(climate). In the range of one year or more, the
ENSO (acronym of El Nifio-Southern Oscillation)
phenomenon is one of the most studied. This recur-
rent major climatic anomaly, developing primarily
in the inter-tropical Pacific Ocean, manifests itself
as a profound modification of wind regimes and heat
exchanges producing an eastward motion of large
warm water masses, hence a good candidate to in-
fluence LOD variations. Warm (El Nifio) and cold
(La Nifia) episodes alternate with a period varying
between 2 and 7 years. Catastrophes at regional
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FIG. 11. LOD time series. Top: raw data. Middle: after
subtraction of tide effects. Bottom: after filtering of very
low frequencies.
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FIG. 12. Fourier spectra of the LOD time series before
(left) and after (right) subtraction of tide effects com-
puted according to [20].
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and global scales are associated with the most in-
tense El Nino episodes, such as those of 1982-83 or
1997-98 [11]. _

One of the motivations of V. Fréde’s work was
the search for a trace of these strong anomalies in
the variation of local Lyapunov exponents that mea-
sure the predictability of the system {21]. To this
‘local’ deterministic point of view we shall prefer
a more ‘global’ statistical approach resting on the
correlations between the LOD fluctuations and the
amplitude of the ENSO cycle. The intensity of this
phenomenon is measured by means of several indices
that are exploited to predict the short-term risks re-
lated to it [22]. Here we have used two indices. The
first one is produced by the Japan Meteorological
Agency (JMA) as a 5-month sliding average of the
see-surface temperature anomaly of that portion of
the Pacific Ocean comprised between parallels 4°S
and 4°N, and meridians 150°W and 90°W. It is com-
puted from detailed observational data since 1949
but has been estimated from month averages since
1868 {23, a). The second one, combining several
different measurements, is the Multivariate ENSO
Index (MEI) produced by K. Wolter at the NOOA
Climate Diagnostic Center. It covers the contem-
porary period since 1950 {23, b].

ENSO-LOD correlation. To fit with the fact
that ENSO indices are given as monthly sampled
time series we first perform a monthly average of the
LOD data. We restrict ourselves to the considera-
tion of the period starting January 1962 and ending
November 1999 that corresponds to data available
at the beginning of our study, i.e. 455 data pieces.

The seasonal component has been extracted by
proceeding to a singular spectrum analysis of a
time-delay reconstruction with embedding dimen-
sion d, = 36 that corresponds to exactly 3 years
of measurements. The spectrum of the covariance
matrix is presented in figure 13. It displays two
pairs of quasi-degenerated eigen-values that strictly
correspond to the expected seasonal contribution to
the signal as understood from the aspect of the as-
sociated eigen-vectors shown in figure 14 (top). The
corresponding recomposed time series is illustrated
in figure 15 (top). Next, two pairs of eigen-value

1 1 1 L 1

0 5 10 15 20 25 ac 35

FIG. 13. Spectrum of the covariance matrix of the LOD
time series with embedding dimension d. = 36, with in-
dication of the grouping of eigen-values corresponding to
the seasonal modulation (1-4), to a non-trivial compo-
nent (5-8), and to the residue (3-36).

FIG. 14. Eigen-vectors associated with the seasonal vari-
ation (eigen-values 1-4) and the nontrivial component
(eigen-values 5-8).

appear in the spectrum, slightly detached from a
relatively uniform background interpreted as resid-
ual ‘noise’.

Eigen-vectors associated with eigen-values & to
8 are displayed in figure 14 (bottom). The corre-
sponding recomposed time series, hereafter called
nontrivial, is shown in the middle panel of figure 15,
whereas the remaining signal, recomposed from the
eigen-space spanned by vectors 9 to 36, is illustrated
in the bottom panel. Fourier analysis of the lat-
ter component suggest to consider this as high fre-
quency white noise. [A similar study with embed-
ding dimension twice as large (d, = 72) gives identi-
cal results: the seasonal component is still obtained
from the four first eigen-values. The same nontriv-
ial component is obtained by recomposition on the
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FIG. 15. Reconstructed time series corresponding to the
seasonal modulation (principal components 1-4, top),
the nontrivial signal (5-8, middle) and the residue {9
36, bottom).

space spanned by the six next eigen-vectors {(5-10).]

Visual inspection of figure 16 suggests strong cor-
relation between the nontrivial component of the
so filtered signal and the ENSO indices JMA and
MEI at least for the the period 1962.5-1971, the
most intense El Nifio events (1982-83 and 1997-98)
and the 1988—89 La Nifia event. This can be put
on a quantitative footing by computing normalized
cross-correlation between them. We obtain 0.511 for
the first index and 0.465 for the second (the cross

correlation between the two indices is 0.917). These

coefficients increase up to 0.531 and 0.495 if the 9
first and last data pieces are dropped, which can
be understood as the consequence of spurious end
effects in the treatment. The result can even be
improved up to 0.543 by a shift of the recomposed
time series with respect to the JMA index by one
step, the correlation with the MEI remaining con-
stant in the same operation. By contrast the cross-
correlation decreases markedly when time series are
shifted in one or the other direction by more than
one step, which means that the postulated effect is
essentially in phase with the suspected cause. In the
same way, the correlation decreases as soon as one
tries to reconstruct the nontrivial part of the LOD
time series by adding the contribution of other prin-

4 T T T T T T v

JMA, and MEI

normalized LODs—s’

L L
1965 1970 1975 1980 1985 1980 1995 2000

FIG. 16. Correlation between the nontrivial part of
the LOD time series extracted by SVD (thick line) and
ENSO indices JMA and MEI (thin decorated lines).

cipal components or else by removing one of those
that have been taken into account in the analysis.
So the performed recomposition, using eigen-vectors
b to 8, achieves some sort of optimum.

6 Discussion

In this work we have analyzed the inter-annual fluc-
tuations of the Earth orientation parameters using
techniques derived from the Takens time-delay re-
construction method developed within the frame-
work of the theory of low dimensional dynamical
systems. This signal processing exercise explores a
range of time scales different from that considered
originally by V. Fréde [3] who was rather interested
in qualitative aspects of high frequency components
of the Chandler wobble and LOD fluctuations and
focused primarily on predictability problems via the
determination of local Lyapunov exponents. We be-
lieve that our quantitative results, are at least as
convincing as hers, and thus could be of compa-
rable interest to specialists in geodesy or climate
dynamics.

In practice, we have been using only the small
part of the signal processing techniques based on
Takens phase space reconstruction method that
makes use of singular value decomposition [6]. Fo-
cusing our attention on a specific range of time
scales dominated by strong periodicities, we had
to worry neither about the optimal sampling time
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nor about the most appropriate embedding dimen-
sion. These problems become important when deal-
ing with the determination of nonlinear models for
prediction purposes, which rather concerns the non-
linear evolution of an autonomous system. By con-
trast, here the studied signal is essentially the re-
sponse of a ‘simple’ mechanical system, a spinning-
top, to some ‘external’ non-stationary forcing. The
system is indeed governed by a known set of dif-
ferential equations equivalent to those for a linear
oscillator with (hopefully) known resonance param-
eters, so that the inversion problem is manageable,
which leaves us with the question of identifying the
sources of the nontrivial behavior.

In this respect, in addition to a demonstration
of feasibility of this kind of approach, we believe
that we have obtained some novel and significant
information (though we have not scanned the liter-
ature sufficiently systematically)}. In particular, we
have explicitly shown that the phase of the Chan-
dler wobble has changed by 7 around 1930, at a time
when the amplitude of the wobble was particularly
small. In the same time our approach, especially
in figure 10 displaying the instantaneous Earth ro-
tation rate, leads to question the interpretation of
its evolution in the relevant frequency range as a
linear superposition of several Fourier components.
Such an interpretation would be meaningful if these
components were to have fixed phase relations that
could be freely superposed. On the contrary, here
they should have well defined, temporally evolving,
phase relations conspiring to build an observed vari-
ation which is rather reminiscent of phase defects of
driven nonlinear oscillators. '

Concerning the LOD data, we have also quan-
titatively established a strong correlation between
its inter-annual variability and the climatic indices
measuring the intensity of the ENSO phenomenon.
Heuristically, this is satisfactory but the correla-
tion does not explains all the variability. So the
question is raised of which phenomena of compa-
rable strength —and possibly of similar origin—
could explain the remaining part of the variability.
{Another explanation to the lack of full correlation
could be that the least-square approximation un-
derlying the SVD step would imply a pinning of

the reconstructed time series on its own most in-

‘tense events and a smooth oscillatory interpolation

in-between, so that the discrepancies would rather
be an artifact of the method.) Another gquestion
to which we have no answer —but it might be ob-
vious to climate specialists— is the reason why, to
within not more than one month, the LOD response
is strictly in phase with the ENSO triggering, as
monitored by the chosen indices and at least for the
most intense events (and this, by contrast, cannot
be an artifact of the method}). '

To conclude, our treatment of the data presents
itself as a preliminary step before attacking the in-
verse problem of determining the geophysical contri-
butions to the forcing from the observed time series.
The analysis might have its own bias but it suggests
that, in the time-scale range considered, the search
for a linear superposition of independent processes,
implicit in the conventional Fourier-based filtering,
is somewhat misleading in view of the evidence of
features typical of noisy, low dimensional, dissipa-
tive dynamical systems. The outlines of an inter-
esting program for future work are therefore drawn
but, unfortunately, this program lies somewhat be-
yond our field of competence and will thus be left
to specialists.

Enlightening discussions with Vairie Fréde and the
participation of Pegpy Cenac to early developments of
this work are deeply acknowledged.
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