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Drag reduction, from bending to pruning
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Abstract – Most plants and benthic organisms have evolved efficient reconfiguration mechanisms
to resist flow-induced loads. These mechanisms can be divided into bending, in which plants
reduce their sail area through elastic deformation, and pruning, in which the loads are decreased
through partial breakage of the structure. In this letter, we show by using idealized models that
these two mechanisms or, in fact, any combination of the two, yield comparable relative reduction
in the drag experienced by terrestrial and aquatic vegetation.
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Introduction. – A major mechanical constraint on
terrestrial plants and benthic organisms results from ex-
ternal fluid flows. To resist large flow-induced loads, plants
have evolved two types of adaptability. The first one
is a long time-scale adaptability, where the flow induces
shape modifications of the plants [1,2]. The second one
may occur on long or short time-scales and involves time-
reversible geometrical changes. This latter mechanism,
known as “reconfiguration” [3,4], can itself be divided into
two distinct mechanisms: bending and pruning.

In bending, also known as elastic reconfiguration, the
body deforms significantly under the flow forces, thereby
reducing its drag compared to that of a non-deformable
body [5]. Over the past decade, several experimental, the-
oretical and numerical studies have provided a good un-
derstanding of this mechanism [6–10]. Alternatively, in
pruning, the sail area is reduced by breaking parts of the
plant structure, as may be observed in trees [11,12]. Like
bending, pruning leads to significant drag reduction. The
parts of the plant removed by flow-induced pruning can be
either small twigs or major branches. However, to ensure
the survival of the organism and the long-time reversibility
of this type of reconfiguration, breakage should be local-
ized away from the base of the structure [11].

The deformation that an organism can withstand be-
fore eventually breaking can be assessed by comparing two
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7343 - 13453 Marseille, France; e-mail: diego.lopez@univ-amu.fr

material properties: Young’s modulus or modulus of elas-
ticity, E, and the yield stress or strength σc. The former
is the ratio between stress σ and strain ǫ in the material,
while the latter characterizes the stress at breakage. The
dimensionless number formed out of these two quantities,
εc = σc/E, is simply the strain at breakage, or critical
strain. Physically, a low value of εc means that break-
age will occur at small deformations. As seen in fig. 1,
the critical strain, εc, can differ by several orders of mag-
nitude in organic materials. Yet, terrestrial and benthic
organisms are generally submitted to similar flow-induced
loads. One may thus wonder how different values of εc

may affect their mechanical response and their ability to
survive in intense flows. The asymptotic limits of brittle
materials and highly deformable materials were addressed
in previous papers [9,11]. The novelty of the present work
is to unify these two approaches within a common frame-
work and to propose a modeling approach valid for any
value of the critical strain εc.

In this work, we explore, using idealized systems, how
the critical strain may select different plant reconfigura-
tion strategies (i.e. bending, pruning, or a combination of
both). We show that these different strategies lead to com-
parable drag reductions. In the next section, we present
the model for plants and reconfiguration. The results on
reconfiguration are then presented first for a single tapered
beam, and then for the case of a bundle of tapered beams.
Finally, a discussion and conclusion are given in the last
section.
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Fig. 1: (Colour on-line) Typical orders of magnitude of Young’s
modulus and strength in plants and benthic organisms. For
crops, the shaded area is centered on values from [13,14]. For
trees, this area corresponds to the envelope of multiple data
points extracted from [15–20]. The values for corals are esti-
mated from measures on mineral materials like gypsum [21].

Model for plant reconfiguration. – Plants, and
more generally slender organisms under flow, are mod-
eled here as cantilever tapered beams, whose width, a,
and thickness, h, vary as

a(s) = a0 (s/s1)
α

, h(s) = a0 (s/s1)
β

, (1)

where s is the coordinate along the beam axis measured
from top (s = s0) to bottom (s = s1), and α, β are slender-
ness exponents [22]. Here, α characterizes the frontal area
and, as such, plays a significant role in the experienced
drag. Its influence on the stress distribution is however
limited, and so is its impact on the reconfiguration pro-
cess. Hence, in the following, we present results obtained
for α = −β. This corresponds to constant cross-sectional
area, i.e. Leonardo’s rule [12,23], but we have checked that
the conclusions of this Letter remain valid in the general
case (α �= −β).

The case β = 0 corresponds to a single-beam plant,
with homogeneous width and thickness (e.g. cereal crop,
fig. 2(a)). When β > 0, the tapered beam represents a
ramified system (fig. 2(b)): the thickness, h, corresponds
to the local branch diameter, and the width, a, to the
diameter multiplied by the number of branches at that
height [22]. The width thus corresponds to the total area
facing the flow, or the sail area, thereby neglecting any
shading between branches and the effect of branch orien-
tation. To investigate the impact of branch orientation on
our results, we finally consider a “bundle” made of several
tapered beams of different orientations (fig. 2(c)).

These tapered beams are assumed to lie in a uniform
cross-flow of velocity U (fig. 3) such that flow-induced
loads (force per unit length), F, resulting from pressure
drag read

F(s) = F n, with F =
1

2
ρCDa [U sin θ]2 , (2)

where ρ is the fluid density, θ(s) is the local beam orienta-
tion, and CD is the drag coefficient, taken to be 1 without
loss of generality [4].

Fig. 2: Typical plant geometries and corresponding models:
(a) beam (no ramifications) [14,24]; (b) tapered beam (rami-
fications, no branch orientation) [12,22]; (c) bundle of tapered
beams (ramifications and branch orientation) [25].

Fig. 3: (Colour on-line) Tapered beam and notations.

Considering the high slenderness of this geometry, beam
theory can be used to derive the deflection and stress state
along the beam axis (fig. 3(b)). Noting Ft and Fn the
tangential and normal components of the internal force,
respectively, I the beam’s second moment of inertia, and
E its Young’s modulus, the Euler-Bernoulli beam equation
yields

F ′

n + θ′Ft + F = 0, (3)

F ′

t − θ′Fn = 0, (4)

(EIθ′)′ + Fn = 0, (5)

where primes stand for differentiation with respect to
s [26]. Equations (3)–(5) describe the evolution of inter-
nal forces and torques along s, and are solved numeri-
cally using a shooting method with a clamped boundary
condition at the base, i.e. θ(s1) = π/2, and free bound-
ary conditions at the top, i.e. Ft(s0) = Fn(s0) = 0 and
θ′(s0) = 0 (torque-free condition). The total drag is ob-
tained by projecting the internal elastic force evaluated at
the base (s = s1) along the flow direction. In the case
of the tapered-beam bundle, the total drag is obtained by
summing the different beams’ contributions. Finally, drag
and velocity are normalized so that the drag is 1 when the
flow velocity is 1 in the absence of reconfiguration.

In this problem, tangential forces are negligible com-
pared to the normal ones. We therefore focus only
on breakage due to bending, and neglect the contribu-
tion of compressive and tensile strains induced by the
wind [27]. In each cross-section, the bending stresses
are maximum at the surface of the beam, being com-
pressive (respectively, extensive) on the downstream side
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(respectively, upstream side). The maximum stress is
σmax = Eθ′h/2 [27], and we assume that breakage oc-
curs when and where σmax = σc. Following a breaking
event, the broken part is removed, and s0 updated [11].

Reconfiguration of a tapered beam. –

Asymptotic limits. Before studying the reconfigura-
tion of a single tapered beam for arbitrary values of εc, it
is worth investigating two asymptotic limits: brittle mate-
rials, εc ≪ 1 for which breakage occurs before any signif-
icant bending, and highly deformable materials, εc ≫ 1,
which essentially never break.

In the classical limit of an elastic material without
breaking, εc ≫ 1, a common behavior is generally ob-
served [10]: for large deformations of the structure, drag
increases as U4/3, a significant reduction from the U2 scal-
ing obtained for a rigid structure. This exponent can be
obtained considering that the original length scale of the
structure does not contribute to the drag when the beam
is significantly deformed through bending. In the present
problem, this consideration also implies that tapering does
not affect the drag either. The 4/3 exponent is then de-
rived directly by scaling analysis, as there are only four
physical quantities in the problem, namely the bending
rigidity, the drag per unit width, the fluid density and
the flow velocity [9]. This drag reduction is consistent
with experimental data on many plant species, aquatic or
aerial [10]. We thus expect that, in the limit of large crit-
ical strain, εc ≫ 1, drag will vary as U4/3 for all β if the
flow velocity is large enough.

The limit of a brittle beam, εc ≪ 1, was considered in
ref. [11]. Two different behaviors were identified depend-
ing on the value of β. If β < 1, the flow-induced stress is
always maximum at the base, and breaking will systemat-
ically occur there. Drag increases as U2 before breaking
occurs. When β > 1, breaking occurs at an intermediate
level, resulting in a succession of breaking events as the
flow velocity is increased. The corresponding drag shows
sudden reductions, at the breaking events, separated by
increases in drag that are quadratic with velocity. This
step-by-step process was described as flow-induced prun-
ing, and is relevant for complex tree geometries.

General case. In the general case, when both bending
and pruning are involved, it should be noted that flow-
induced loads are predominantly exerted on the upper part
of the structure (since a(s) diverges as s → 0). As a
consequence, the cut-off length s0 plays a role in scaling
the flow-induced loads. In branching structures such as
trees, the ratio s0/s1 is given by the relative length of the
last branches, and can safely be estimated within 10−3 <
s0/s1 < 10−1 for most organic branched structures [28].
In the following, we consider a typical value of this ratio
s0/s1 = 10−2.

We now investigate the reconfiguration through bending
and pruning of a single tapered beam when the flow veloc-
ity is gradually increased. We focus here on the case β > 1
for which intermediate breaking events (i.e. pruning) are

Fig. 4: Evolution of the normalized drag as a function of the
flow velocity, for a tapered beam (β = 3/2): (a) pruning re-
configuration, εc = 10−3; (b) bending and pruning, εc = 10−2;
(c) bending reconfiguration, εc = 10−1. The drag evolution in
the absence of reconfiguration is shown as a thin line; beam
topologies are sketched for different flow velocities.

possible. A typical value is β = 3/2 as proposed by McMa-
hon and Kronauer [28] based on the principle of elastic
similarity in trees (the case β < 1 will be discussed below).

Figure 4 shows the computed drag on a tapered beam as
the flow velocity is increased. Three values of the critical
strain are considered: εc = 10−3, 10−2, and 10−1. Re-
gardless of εc, drag is significantly reduced in comparison
with a rigid body. Also, despite fundamental differences in
the reconfiguration mechanisms, the resulting magnitude
of drag reduction is comparable. At low critical strain,
εc = 10−3, little bending occurs, and reconfiguration is
essentially due to pruning (fig. 4(a)). This case is rep-
resentative of fragile materials for which εc ≪ 1. Con-
versely, at large critical strain, εc = 10−1, reconfiguration
is essentially driven by bending, until pruning eventually
occurs through a single breaking event, at the base of the
structure (fig. 4(c)). This regime is reminiscent of highly
deformable materials, εc ≫ 1, except that the finite value
of εc selects a flow velocity at which the structure breaks.
Before breaking occurs, the asymptotic bending regime of
drag reduction described above is found, where drag varies
as U4/3. In the intermediate case, εc = 10−2, reconfigura-
tion and drag reduction are achieved through first bending
and then pruning (fig. 4(b)).

Reconfiguration of a bundle of tapered beams.

– From the reconfiguration of a single tapered beam, we
see that both bending and pruning yield important and
comparable drag reductions. To assess the importance of
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Fig. 5: Evolution of the normalized drag as a function of the
flow velocity, for a radial bundle of tapered beams (β = 3/2):
(a) εc = 10−3, (b) εc = 10−2 and (c) εc = 10−1. The drag
evolution in the absence of reconfiguration is shown as a thin
line, and the bundle topologies are sketched for different recon-
figured states.

branch orientations, we now model the reconfiguration of
a bundle of such beams (fig. 2(c)). This geometry is in-
spired from the poroelastic system of ref. [25], where the
authors considered the purely elastic case. It can be seen
as a model for bushes or tree crowns, as each beam can
itself be interpreted as a ramified branch. Although shad-
ing by upstream beams is likely to impact the total drag,
ref. [25] showed that accounting for an associated pres-
sure loss did not modify significantly the reconfiguration
laws. For simplicity, we present here the worst case sce-
nario, where shading effects are neglected and each beam
experiences the same flow velocity.

Figure 5 shows the evolution of the drag on the bun-
dle geometry when flow velocity is increased. Depending
on the value of εc, the topology of the reconfiguration
is quite different. For low critical strain, εc = 10−3,
breakage propagates from the center of the bundle to its
periphery. For high critical strain, εc = 10−1, break-
age propagates downstream. For moderate critical strain,
εc = 10−2, the behavior is a combination of these two
propagative scenarios, leading to non-trivial reconfigura-
tion patterns. Yet, these different scenarios share similar
trends in the drag reduction, and the existence of a bound
on the experienced drag (at fixed εc) can be identified.
Although this bound depends on the value of εc, this de-
pendence is mostly due to the normalization chosen rather
than a biological property. This confirms the results ob-
tained for a single beam, suggesting that different values
of the critical strain, and hence different reconfiguration

strategies, provide the structure with similar abilities to
survive under extreme flows. Furthermore, regardless of
the reconfiguration mechanism, the combination of iden-
tical elements with different orientations appears as a
powerful mean for maintaining the drag bounded as flow
velocity increases.

Additionally, the shape after reconfiguration of the
present bundle shares some similarities with flag trees,
a morphology observed on some species of trees grow-
ing in extreme winds. For these trees, it has been rec-
ognized that abrasion plays a central role in determining
the shape, by removing upstream branches [29]. Using our
bundle model for large critical strains typical of growing
wood, we see that the upwind-facing branches would be
the first to break (fig. 5(c)). This would result in a tree
with most branches oriented downwind similarly to flag
trees. Such hypothesis could be validated by coupling the
present model with a tree growth model.

Discussion and conclusion. – Using model geome-
tries, we have shown how different reconfiguration strate-
gies (bending, pruning, or a combination of both) ensure
drag reduction and survival under important fluid flows.
Starting from the observation that critical strains mea-
sured in nature vary by several orders of magnitude, we
have focused on the effect of this mechanical parameter
on reconfiguration. We have shown that the evolution of
drag with flow velocity is similar for any value of the crit-
ical strain. In particular, taking into account the variety
of branch orientations, as a model of ramified plants, the
drag appears bounded for a given critical strain. Such
a remarkable property could balance efficiently the high
biological cost of pruning.

In this work, we focused on the reduction of flow-
induced drag associated with different mechanisms, re-
gardless of the biological cost for the plant. The cost
of reconfiguration is difficult to define in a unique way.
Flow-induced pruning is indeed expensive due to the im-
portant loss of biomass, whereas bending seems cost-free.
However, a branch breakage results in a permanent drag
reduction, as opposed to bending, where successive elas-
tic deformations yield fatigue and growth modifications.
Additionally, pruning helps removing weaker parts of the
plant, and is therefore part of the growth process aiming
at developing more resistant structures.

The results shown above were obtained for a slender-
ness exponent β larger than 1. For beam-like plants (i.e.
without tapering, β ≈ 0), such as cereal crops and many
annual plants, there can only be a single breaking event at
the base since β < 1. This scenario is also true for young
trees that do not have enough branching levels for branch
breakage to occur [11]. In this case, reconfiguration relies
only on bending, and the corresponding drag curves are
reduced to that computed at the highest critical strain,
εc = 0.1, in figs. 4 and 5. Note that, because β does
not influence how drag scales with velocity in these highly
bent regimes, these curves also represent the case β < 1.
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Table 1: Typical survival strategy to resist large flow-induced
loads and corresponding value of the critical strain εc for dif-
ferent natural structures.

Structure Strategy εc

Corals [21] base breakage 10−4

and reattachment
Trees [15,16,20]
branches bending/ 10−2

pruning and regrowth
twigs bending 10−1

Crops [14] bending 10−1

When β < 1, pruning is not a possible reconfiguration
mechanism. It suggests that low critical strain is not favor-
able in that case. This is consistent with the observations:
crops are indeed annual plants whose critical strain is high,
and young trees have different mechanical properties than
old trees, with more flexible branches and smaller Young’s
moduli [16]. For instance, in the young walnut tree ana-
lyzed in [30], β was lower than 1, β ≈ 0.82, and Young’s
modulus was lower than that of older trees, suggesting a
possible higher value of the critical strain. This benefi-
cial property could result from an evolutionary process,
as proposed for perennial kelp [31]. The particular case of
stony corals is also noteworthy, as they have a very low
critical strain, εc ≈ 10−4. Their geometry, where the sec-
tions of branches are similar to that of the trunk, suggests
that breakage will occur at their base [21,32,33]. How-
ever, these particular organisms are capable of reattach-
ment after breakage, thus ensuring their survival through
breakage and dispersal. This is also a common mecha-
nism for asexual reproduction in some terrestrial plants
like Salix [15,21]. This ability to reattach can be seen as
the ultimate survival strategy when neither bending nor
pruning work.

Hence slender organisms subjected to flow may survive
to extreme loading, regardless of the critical strain of the
material they are made of, by one mechanism or another,
or a combination of them (table 1). This result suggests
that the choice of either reconfiguration mechanism is not
driven by survival issues, but probably related to other
plant functionalities. This allows a large variety of states
of living materials and geometries to exist in such envi-
ronments, as is commonly observed [6,16]. More generally,
these drag reduction strategies through shape changes may
be seen as one of the posture controls of plants, in reaction
to an abiotic stress, see, for instance, in [1,34].
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