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Selection criteria for self-excited global modes in doubly infinite one-dimensional do-
mains are examined in the context of the linearized Ginzburg-Landau equation with
slowly varying coefficients. Following Lynn & Keller {1970}, uniformly valid approx-
imations are sought in the complex plane in a region containing all relevant turning
points. A mapping transformation is introduced to reduce the original Ginzburg-
Landau equation to an exactly solvable comparison equation which qualitatively
preserves the geometry of the Stokes line network. The specific case of two turn-
ing points with counted multiplicity is analysed in detail, particular attention being
paid to the allowable configurations of the Stokes line network. It is shown that all
global modes are either of type-1, with two simple turning points connected by a
common Stokes line, or of type-2, with a single double-turning point. Explicit ap-
proximations are derived in both instances, for the global frequencies and associated
eigenfunctions. It is argued, on geometrical grounds, that type-1 global modes may,
in principle, be more unstable than type-2 global modes. This paper is a continuation
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and extension of the earlier study of Chomaz, Huerre & Redekopp (1991), where only
type-2 global modes were investigated via a local WKBJ approximation scheme.

1. Introduction

Several classes of spatially developing shear flows are known to exhibit, under certain
flow conditions, self-sustained oscillations: the near field large-scale dynamics become
effectively tuned at a specific intrinsic frequency, the associated spatio-temporal dis-
tribution of fluctuations defining a global mode of the flow. The main objective of the
present study is the systematic derivation of global frequency selection criteria in the
context of the linearized Ginzburg-Landau model equation with varying coefficients.
It should be viewed as a continuation and extension of the analysis presented in
Chomaz et al. (1991} for the same model problem.

Some of the underlying physical motivation and key stability concepts are now
briefly recalled. The reader is referred to the recent surveys by Huerre & Monkewitz
{1990) and Monkewitz (1990) for extensive discussions on theoretical and experi-
mental aspects of global mode evolution in shear flows. The onset of the Kdrman
vortex street in the flow behind a bluff cylindrical body probably constitutes the
primary example of transition to a global mode regime: as the Reynolds number
exceeds a critical value, the wake develops limit cycle oscillations that arise via a
Hopf bifurcation, as documented extensively by Mathis ef ol (1984), Hannemann
& Oertel (1989), Karniadakis & Triantafyllou (1989) and Strykowski & Sreenivasan
(1990), among others. Current research on wake flow stability is compiled in a book
of proceedings by Eckelmann et al. (1993). As shown in the experiments of Sreeni-
vasan ef al. (1989) and Monkewitz ef al. (1990), a similar phenomenon takes place in
the near field region of jets, when the jet density is gradually decreased below that
of the surrounding medium. Beyond a critical density ratio, the evolution of vortical
structures becomes highly repeatable in the first few diameters downstream and fre-
quency spectra collapse into discrete peaks as one would expect in the presence of
a global mode. As a last example, one should mention the ingenious experiments of
Strykowski & Niccum (1991) which conclusively demonstrate the existence of global
modes in counterflow mixing layers for sufficiently high velocity ratios. The occur-
rence of intrinsic oscillations therefore appears to be ubiquitous in many spatially
developing shear flows.

From a stability point of view, the most elementary approach consists in entirely
neglecting the spatial development of the medium: if the basic flow is assumed to
be uniform in the propagation direction, the stability properties of normal modes
exp{(i(kz — wt)} are completely described by a dispersion relation D[k,w| = 0 be-
tween wavenumber k and frequency w. The ability of perturbations to grow in time at
the source, in response to a localized impulse, is characterized by the absolute growth
rate wo; = Imwg, where the complex absolute frequency wy = w(ko) is defined by
the usual group velocity condition

dw
i ko) = 0.

If woi < 0, any temporally amplified perturbation leaves its source and the medium
is said to be convectively unstable. If wy; > 0, there exist perturbations that will
grow in sifu at the source and the medium is said to be absolutely unstable, A more
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comprehensive account of these concepts may be found, for instance, in Bers (1983)
as well as in the previously quoted survey articles.

Most basic flows of interest are spatially non-uniform in the propagation direction
z as a result of viscous diffusion or boundary effects. The previous notion can then
be taken to apply locally in x, as long as the non-uniformities of the medium are
small over a typical wavelength of the instability. Thus the non-parallelism of the
flow is characterized by a slow space scale X = ex, where ¢ is a small parameter
of the same order of magnitude as the scaled non-uniformities. Decomposition into
local normal modes leads to a dispersion relation of the form

Dlk,w; X|=0. (1.1)

The flow is then defined to be locally stable, convectively unstable or absolutely un-
stable at a given station X in the same manner as for the uniform case. The entire
medium is therefore partitioned into different domains, according to the local nature
of the instability. One can then attempt to establish a link between the experimen-
tally observed global response of the flow and the calculated streamwise distribution
of local stability properties, in particular the extent of different regions of convective
and absolute instability. Such an approach has effectively been implemented for sev-
eral classes of spatially developing flows, among them wakes (Koch 1985; Monkewitz
1988; Hannemann & Qertel 1989; Schér & Smith 1993), low-density jets (Monkewitz
& Sohn 1988; Monkewitz ef al. 1990) and counterflow mixing layers (Strykowski &
Niccum 1991). In all three cases, there are ranges of control parameter, i.e. Reynolds
number, density or velocity ratio, in which the basic state is convectively unsta-
ble everywhere. Such flows are known to behave primarily as spatial amplifiers of
external noise: if forcing is turned off they return to the basic state and are there-
fore globally stable. In other parameter ranges, global intrinsic oscillations are found
to develop concurrently with the appearance of a sufficiently large pocket of local
absolute instability.

In order to introduce global model concepts, dispersion relation (1.1) is formally
rewritten in physical space as a partial differential equation

o .0

D -i i X ) ¥z, tie) =0, 1.2
(lﬁxlé‘t ) {(z,t;€) (1.2)
for the perturbation field ¥({z,t;¢). Following Huerre & Monkewitz (1990) and
Chomaz et al. {1991), a global mode is then defined as a solution of (1.2) which
is temporally harmonic, of complex frequency w, and satisfies, say, exponential de-
cay conditions at X = Foo. Upon making the substitution

ia — Wy
in (1.2), the determination of global modes is effectively reduced to an eigenvalue
problem in the propagation direction X. Our present understanding of the global
mode problem has often relied on the study of the Ginzburg-Landau equation with
varying coeflicients as a simple model for the operator D in (1.2). Global instability
concepts appear to have first been introduced by Drazin (1974a) for a particular ver-
sion of the linearized Ginzburg-Landau equation containing no advection term and
with purely real coefficients. The model therefore exhibited reflectional symmetry
and attention was restricted to real turning point configurations. In the purely one-
dimensional context, Chomaz et al. (1988) demonstrated at an early stage, through
a combined analytical and numerical approach, that a necessary condition for global
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instability is the existence of a region of local absolute instability of finite extent.
Hunt (1995) has further shown that this condition is indeed not sufficient: for an
ad-hoc Ginzburg-Landau model, the basic state can be made absolutely unstable
everywhere while the medium remains globally stable. Following the seminal studies
of Gent (1974), Gent & Leach (1976), Soward & Jones (1983), Pierrehumbert (1984)
and Koch (1985), Chomaz et al. (1991) investigated global frequency selection on
the Ginzburg-Landau model on a doubly infinite domain. As in the present case, the
primary objective was the derivation of a criterion expressing the global frequencies
wy solely in terms of the properties of the local dispersion relation (1.1). The global
mode structure along the propagation direction was sought in the form of wkBJ
expansions satisfying appropriate exponential decay conditions at X = +oo and
X = —oq, respectively. The ability to construct an analytic eigenfunction with such
prescribed WKBJ expansions led to definite constraints on the configuration of Stokes
lines associated with each turning point in the complex X plane. Thus, it was possi-
ble to prove, albeit incompletely as we shall see, that global growth rates wgi = Imuw,
cannot exceed the maximum absolute growth rate w§'?* on the real X-axis. A convec-
tively unstable medium is therefore necessarily globally stable. Furthermore, under
specific assumptions regarding the nature of the turning points and the properties of
the complex function wo{X), the wkBJ approximations near X = 400 and X = —oo
could be matched to an inner turning point solution for only a discrete collection of
global frequencies w,, . At leading order in ¢, all global frequencies were found to be
determined by the value wy, = wp(X;) of the absolute frequency at the saddle point
X5 such that
Cle
qx (Xs)=0.

Hunt & Crighton (1991) have recently devised an elegant procedure to calculate ex-
actly the Green function of the Ginzburg-Landau equation with varying coefficients.
For quadratic variations of wo(X), the long-time behaviour of the Green function is
shown to reduce to the most unstable global mode of leading-order global mode fre-
quency ws. This result fully confirms that the frequency selection criterion of Chomasz
et al. (1991) is indeed causal and naturally emerges from the impulse response.

It should be emphasized that several real fluid flow configurations have already
been analysed from the global mode point of view: the Kelvin—-Helmholtz instability
of a vortex sheet of varying strength in the spanwise direction (Drazin 1974b), the
Taylor vortex problem between two eccentric rotating cylinders (DiPrima & Stuart
1972) or between two concentric spheres (Soward & Jones 1983), baroclinic insta-
bilities in geophysical flows (Gent 1974; Gent & Leach 1976; Pierrehumbert 1984;
Bar-Sever & Merkine 1988), unsteady viscous flow in a curved pipe (Papageorghiou
1987), thin-disc dynamo models (Soward 1992) and, most recently, spatially devel-
oping shear flows (Monkewitz ef ol 1993). In this regard, the combined experimental
and theoretical study of Gent & Leach (1976) strikingly demonstrated that global
modes can be observed in baroclinically unstable flow in an eccentrically mounted
differentially heated rotating annulus. The present study is further motivated by the
fact that, in many of these investigations, the Ginzburg-Landau model with varying
coefficients rationally arises as the leading-order governing equation in the turning
point region.

The primary goal of this work is to examine anew the global frequency selection
criterion derived in Chomaz et al. (1991) by resorting to a different formulation,
namely the method of uniform approximations. This approach, which has been in-
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troduced and developed by Langer (1949), McKelvey (1955), Lynn & Keller (1970)
and Anyanwu & Keller (1975) among others, relies on the following idea: one seeks
to determine approximations to the global mode structure that remain uniformly
valid in the entire domain of interest including all relevant turning points as well
as the boundaries X = +oc. Through an appropriate transformation applied to the
dependent and independent variables, the original problem is reduced to a so-called
comparison equation that can be solved exactly. All the art of the method resides
in the careful selection of a mapping which preserves the topological properties of
the initial Stokes line network. The global frequencies are directly obtained from the
known solutions of the comparison equation, and the associated spatial eigenfunc-
tions are expressed in terms of a single uniformly valid approximation.

The paper is organized in the following manner. The global mode problem for
the Ginzburg-Landau model is stated in §2, together with essential definitions and
properties of turning points and Stokes lines. In order for a global mode to exist, the
corresponding Stokes line network should be restricted to specific configurations as
demonstrated in §3. Unfortunately these necessary conditions only lead to exclude
a small set Ay of Stokes lines from consideration. The general method of uniform
approximations in the version proposed by Lynn & Keller (1970) is outlined in §4 for
an arbitrary number of turning peints. The bulk of the study is presented in §5 for
the specific case of two turning points. The properties of the transformation leading
to the comparison equation are first analysed in detail. In particular, it is argued
in §5b that the Stokes sectors containing X = +oc and X = —oo, respectively,
cannot be contiguous for large |X| if w is to give rise to a global frequency. Upon
solving the comparison equation in the mapped domain, global modes are then shown
(85 ¢ and d) to fall within only two classes: type-1 modes correspond to two simple
turning points connected by a Stokes line and type-2 modes to a double-turning point.
The resulting extended frequency selection criteria are discussed and interpreted
geometrically in §5e. In closing, we summarize the main conclusions of the study
and compare them with available numerical and experimental evidence.

2. Basic formulation

As in Chomaz et al. (1991), complex scalar fluctuations ¥(z,t) around a given
basic state are assumed to be governed by the linearized Ginzburg-Landau equation

8 1 ” 9
[1& + -Q-Wkk(X)@ — lwkk(X)kO(X)%

- (;u)kk(X)kg(X) + wO(X)>] Uz, t;e) =0, {2.1)

where the independent variables ¢ and & designate time and the propagation direc-
tion, respectively. To mimic the non-parallel nature of spatially developing flows, the
properties of the underlying basic state are assumed to be functions of a slow space
variable X = ez, where ¢ is a small parameter characterizing the inhomogeneities of
the medium. The complex analytic functions wye(X), ko{X) and wo(X) appearing
in (2.1) fully specify the nature of the local dispersion relation at each station X, as
discussed below following equation {2.5).

The Ginzburg-Landau equation with constant coefficients is ubiquitous in numer-
ous analytical studies of hydrodynamic instabilities close to threshold. It is also one of
the simplest generic models for the study of pattern formation in nonlinear systems,
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as recently reviewed by Newell et al (1993). In fact, this model arises frequently in
the literature on quantum mechanics (Pokrovskii & Khalatnikov 1961) to describe
bound states in potential-well problems and it is well established that immersion
in the complex plane is necessary to correctly handle terms that are exponentially
small with respect to each other. In the present context, it can be argued that equa-
tion (2.1) displays the minimum structure necessary for the existence of a global
mode on the infinite interval, namely two spatial branches & (X;w) and k= (X;w)
(see equation (2.6)). Finally, the presence of a first-order space derivative in (2.1)
ensures that the local reflection symmetry £ — —z has been broken, as in most open
flow configurations with a dominant advection direction.

Model equation (2.1) being invariant under arbitrary time translations ¢ — ¢ +
const., it is legitimate to seek solutions of the form

Lp(x:t;g) = zb(X;w,E)e_i“’t, (2'2)

where w is a complex frequency. The spatial distribution function 4 (X;w,€) is then
governed by the second-order differential equation

1 9% ]
|:(.U‘ =+ E(ﬂkk(X)@ — lw;ck(X)kg(X)%

- (%wkk(X)kS(X) " WO(X))J W(Xiwe)=0.  (23)

The assumed time-harmonic fluctuation (2.2) defines a global mode solution if
(X, w,e) satisfies (2.3) subject to the boundary conditions
XLII;IEIOO’U.') =0 (2.4)
This typically constitutes an eigenvalue problem whereby solutions are obtained only
for specific complex eigenvalues, i.e. global frequencies w,, and associated eigenfunc-
tions (X ;wg,€). It is expected that, for arbitrary initial conditions, only the most
unstable global mode with the largest growth rate wy ; will prevail for large time. The
main objective of the present study is then the prediction of the most unstable global
frequency and associated spatial distribution as given from linear stability analysis.
The local dispersion relation associated with equation (2.1) is readily derived by
performing the substitutions

a . .
2 ik, g
One obtains a single temporal mode given by
w=uwo(X)+ %wkk(X)(k — ko(X))2. (2.5)

The frequency w is seen to be a simple quadratic function of wavenumber k. The form
of (2.1) in physical space simply reflects the nature of the local dispersion relation in
Fourier space. Note in particular that k = ko(X) satisfies dw/3k(k, X) = 0. As shown
in the next section, ky{X) is indeed the local absolute wavenumber and wo(X) the
corresponding local absolute frequency. In order to enforce causality, we shall assume
throughout that sufficiently large wavenumbers are damped, i.e. wi i{X) < 0 for all
X real, and that wi(X) is non-zero in the entire complex X plane.

As seen from (2.5), there exist for each value of the frequency w two local spatial
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branches given hy

w — wp(X)
w‘kk(X) ,

where it is understood that a specific choice has been made for the branch cut of the
square root, for instance the principal value.

In the case of a slowly varying medium, £ <« 1, it is possible to directly relate
the global solutions of {2.3)-(2.4) to the local dispersion relation (2.5) by means
of wkBJ approximations. It is well established (see, for example, Bender & Orszag
1978; Wasow 1985) that, at each point distinct from a turning point, the two WKBJ
approximations

EE (X w) = ko(X) £ 4/2 (2.6)

. pX
AT (X w,€) exp (;f ki(s;w)ds),

are asymptotic representations when & — 0, of two independent solutions of {2.3).
The amplitudes A* (X ;w, €) may be expanded in powers of ¢ and each successive term
computed recursively. The global mode of frequency w, is then locally approximated
in different regions of the complex X plane by either

. X
AT(X;wg, g) exp (;f kt(s;wy) ds) ,

or
i X
A (X wg,e)exp (Ef k™ {s;wg) ds) .

We recall that a given approximation is said to be subdominant (resp. dominant)
when it is exponentially small {resp. large) with respect to the other approximation.
Furthermore, WkBJ approximations usually break down in the neighbourhood of
turning points in the complex X plane which, for each frequency w, are defined by
the relation

EHXw) = k™ (X;w). (2.7}
Equivalently, according to (2.6), turning points are given, for each w, by the roots of
we(X) =w. (2.8)

In other words, there is a direct relationship, via the transformation w — X =
wg 1(m), between the frequency w and the location of the turning points in the com-
plex X plane. The order m of a given turning point is, by definition, equal to the
multiplicity of the corresponding root of (2.7) or (2.8). Thus, a simple turning point
(m = 1) is a simple root of (2.8). Similarly a double-turning point (m = 2) corre-
sponds to a double root of {2.8) such that

dwo _,

dX
It is important to summarize some of the standard results pertaining to the be-
haviour of WKBJ approximations in the vicinity of turning points. The reader is
referred to Bender & Orszag (1978) for a more comprehensive presentation in a gen-
eral context and to Chomaz et al (1991) for more details concerning the present
Ginzburg-Landau model. To each turning point X;, one may asscciate a specific
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) W
region (-) region (+)
- ?\ ’

Figure 1. Illustrative sketch of typical Stokes line network.

network of Stokes lines issuing from it and defined by

Im { X[k+(s;w) — k (s;w)] ds} — 0, (2.9)

X1

equivalently, according to (2.6),

. w — wo(s) _
“{m{j;‘:1 QW ds} =0. (2.10)

The above definition implies that both wkBJ approximations become of equal order
of magnitude on Stokes lines. In general, a given WKBJ approximation may change
from subdominant to dominant or vice-versa as successive Stokes lines are crossed
on a closed curve encircling the turning point X;. It can readily be demonstrated
that (m+2) Stokes lines radiate from a turning point of order m, the angle between
consecutive Stokes lines at X, being 27/(m + 2). Thus it can be concluded that
turning points and Stokes lines form a network which partitions the complex X
plane into sectors, as illustrated on figure 1.

It is generally impossible to obtain a uniformly valid wkBJ approximation to a
solution in a domain that is larger than a single sector delimited by consecutive Stokes
lines. However, there is an important exception: when a solution is asymptotic to a
WKBJ approximation that is subdominant in one sector, that same approximation
remains valid in the neighbouring sectors where it is then dominant (Bender &
Orszag 1978; Wasow 1985). In other words, a WKBJ approximation remains valid
beyond the Stokes lines defining the subdominant region. This interesting property
yields necessary conditions to be satisfied by the Stokes line network of a global
mode, as shown by Chomaz et al. (1991). These conditions are examined in the next
section.

3. Necessary conditions for the existence of global modes

It is convenient to introduce a few definitions pertaining to dispersion rela-
tion (2.5). Since we have assumed wy,;(X) < 0 for all X real, the local temporal
growth rate wi(k; X'} admits at each location X a finite maximum w; max{X) over all
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Figure 2. Imaginary part of the spatial branches & (X;w) and k™ (X; w) versus the real location
X: at a fixed complex value of w: (a), (b), wi > wimax, both branches have an imaginary part
of constant sign for all X;; {c}, (d), wimax{o0) < w;y € wins., both branches have an imaginary
part of constant sign for |X.| sufficiently large. As shown in the text, the only permissible

configurations are those sketched in (b) and (d).

real wavenumbers given by

|k (X)|?
T () k3 i(X). (3.1)

As seen by inspection of (3.1), the local maximum growth rate w; ;,.x (X) is necessarily
larger than wg;{X) at the same location:

Wy 1(X) ‘-<-. Wi max(X - (32)

Furthermore, let wfipx  and wif™ denote the respective maxima of wi max(X) and

1,max
wo,i(X) over all X real and w; max(oo) be the larger of the two limiting values taken
by wimax(X) at X = +oo and X = —oo. By construction, the following inequalities
hold:

Wimax(X) = max w;(k; X) = wo,{X) -

max max max
wl,max(oo) £ wi,max’ wﬂl “<\ wi,max'

According to the above definitions, when w; > w!32% | there is no solution w of the

dispersion relation with k real for all X real. In other words, when w; > wihoe, the
two spatial branches k7 (X;w) and &~ (X;w) cannot cross the k,-axis for all X real
(figure 2a,b).

This necessarily means that the branches &t and k= are either located on the
same side of the k.-axis (figure 2a) or on opposite sides (figure 2b). As w; decreases
within the range wimax(00) < wy € w™¥ | the relative positions of k7 {X;w) and

f,max!

k= (X;w) with respect to the real k-axis are unchanged for |X| sufliciently large,
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\ X,

region (-) region (+)

X, (@)

Figure 3. Stokes line network with a single first-order turning point. No global modes.

as sketched on figures 2¢,d. Configurations of the type shown on figures 2a and ¢
are clearly not admissible: both WKBJ approximations are exponentially decaying at
X = 400, as required by the boundary conditions (2.4), but they grow exponentially
at X = —o0. It can therefore be concluded that, in order to obtain global solutions of
growth rate larger than w; max(00), the spatial branches kt (X;w) end k(X ;w) should
necessarily be located on opposite sides of the k,-axis, at least for | X| sufficiently large,
as illustrated in figures 2b and d. Note that in such a case, ko(X} is the colliding
point of both branches &+ and k=~ located on opposite sides of the k;-axis for w; >
Wi max (X ): k(X)) is truly the local absolute wavenumber and wo{X) = w(ke(X); X)
the corresponding local absolute frequency as defined in Bers (1983).

The above result has important consequences regarding the nature of the Stokes
line network associated with equation {2.3). It implies that Stokes lines cannot be
asymptotic to the X -axis when w; > wjmax(c0). If they were, it would require,
according to definition (2.9}, that Im[k"(X;w) — k&~ (X;w)] — 0, as X — oo, but
this situation has just been excluded in the previous paragraph (see also figure 2),
which proves the statement. Since Stokes lines are not asymptotic to X, regions (+)
and (=), delimited by Stokes lines and containing the X, -aris near +00 and —oo (see
figure 1), are unambiguously defined for any w; > wimax(00). Furthermore, regions
{+) and (—) cannot flip from one side of a Stokes line to the other for large | X| as
long as w; > wj max(00)-

The allowable configurations of spatial branches sketched on figures 2b, d also imply
the following property: when w; > w; max{00), one spatial branch is necessarily ampli-
fied for sufficiently large | X| along the X -axis while the other branch is damped, i.e.
subdominant. Thus, in order to enforce the boundary conditions at infinity, e global
mode must be represented by subdominant WKBJ approzimations in both regions (+)
and (—).

Since the subdominant WKBJ approximation in, say, region (—) becomes dominant
as a Stokes line delimiting region (—) is crossed, we immediately deduce that regions
(+) and (=) cannot be contiguous if a global mode solution is to be obtained. For
instance, in the single first-order turning point geometry depicted on figure 3, regions
(+) and (—) are always neighbours and no global modes can be found.

By contrast, when two simple turning points are present there exist Stokes line
configurations that definitely cannot sustain a global mode, as in figure 4a, and
others that may sustain one, ag in fipures 4b—d.

The Stokes line network evolves from one configuration to another as w varies. We
shall assume that the number of turning points (with counted multiplicity) remains

Phil. Trans. R. Soc. Lond. A (1996)



Linear global modes in spatially developing media 179

(e) #)
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\ \ X2 ((D)
region (-} region (-) region (+)
0 X 0 X
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X, (w) /
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region (=) \ @ region (-) \ region (+}
0 Xs () Xr 0 Xl (®) Xr
/ X, (w)
d

Figure 4. Typical Stokes line networks with two turning points: (a) two simple turning points, no
global modes; (b) two simple turning points, global mode a prior: possible; (¢) one double-turning
point, global mode & priori possible; (d) two simple turning points, global mode a priori possible.

constant in the process. The frequencies that can be excluded from consideration on
the basis of the above necessary condition then constitute a set Ag in the complex
w plane which can be sucecinctly analysed. In the case of one simple turning point,
we have concluded that no global modes can be found so that Ay coincides with the
entire w plane. In the case of two simple turning points X;(w) and Xs(w), or one
double-turning point X,, the set Ay corresponds to w values such that a Stokes line
connects X;(w) and X»{w) and separates (+) and (—) regions, as in figure 4a. The
ensemble Ay is then a subset of a larger set A defined by the single condition that
Xi(w) and X;(w) are connected by a Stokes line. For future reference, we call A; the
complement of Ay in A, The set A, corresponds to w values such that the Stokes
line network is as illustrated on figures 4c,d. According to definition (2.9) for the
Stokes lines, the set A is defined by

Xalw)
flw)=TIm {f kt(s;w) — &k (5;w)] ds} =0 (3.3)
Xi(w)

The vanishing of the functional f(w) is exceptional: it generally defines A as a curve
or set of curves in the complex w plane. The subset Ag of A is then even smaller.
As the number of turning points increases, the dimension of Ay decreases since
additional conditions of type (3.3) have to be enforced. In fact, the measure of 4,
becomes zero as soon as the number of turning points exceeds two: the necessary
condition based on the argument that (4) and (—) regions cannot be contiguous
then becomes hopelessly inefficient in excluding regions of the complex w plane as
possible global frequencies.

The above reasoning solely relies on the use of local WKBJ approximations to
represent the spatial distribution of the eigenmodes and to derive necessary existence
conditions. The global structure of the Stokes line network in the complex X plane is
not incorporated in these local approximations. Such an approach is clearly adequate
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to reach a conclusion as long as the local behaviour around a single turning point
provides information regarding the global behaviour of the solution for all X. This
is effectively the case for the single turning point configuration of figure 3 and the
two turning-point configuration of figure 4a. In both instances, (+) and {—) regions
are connected through a single turning point and the behaviour of the solutions in
each of these regions is directly related to the local wkBJ approximations around
only that turning point. The necessary condition for the existence of a global mode
is then identical to that of a function that must be analytic at the turning point
with given local subdominant wkB) approximations in regions (4+) and (—). Such a
simple reasoning fails for other configurations, such as those in figure 4d, when it is
necessary to relate several local wKkBJ approximations pertaining to distant turning
points X (w) and X,(w). The local analysis is even more problematic for general
Stokes line networks of the kind displayed in figure 1 and involving many turning
points.

In order to deal with distant turning-point configurations, we prefer to resort to
anocther method based on the derivation of approximations that are uniformly valid
in a much wider domain containing all turning points and associated Stokes lines
between region {+) and (—). The main steps of this approach are introduced in the
next section.

4. General methodology

The principle of the method of uniform approximations was first outlined by
Langer (1949). Subsequent developments and refinements have been introduced by
many authors including McKelvey (1955} and Lynn & Keller (1970) among oth-
ers. We shall follow the general treatment of Lynn & Keller (1970) for a class of
second-order differential equations with ;i turning points.

Under the change of dependent variable
X

w(X;“"’E) = Cb(X;UJ,E) exp (i

- ko(s) ds), Xp arbitrary constant, (4.1)
Xe

equation (2.3) is transformed into the normalized equation for ¢:

2 %9

X2

where the varying coefficients Ry(X;w)} and Ry (X), introduced by Lynn & Keller
(1970), take the particular form

200 4 (Ro(X;w) + R (X))o = 0, (4.2)

w — wo(X)
wkk(X) ’
Ri(X) = ikox (X). (4.30)

A uniform approximation to the solutions of (4.2) is given by equation (LK 1.3) of

Lynn & Keller (1970). In terms of the original dependent variable ¢, this uniform
approximation reduces to

Xiw (X w
Y(X;w,e) = {B(X;w,g)V [%} + MU X, )V [%]}

Ro(X;w) = (T (Xsw) -k~ (X;w)]* =2 (4.30)

X exp (é ) ko(s) ds) . (4.4)

Xo
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The functions B(X;w,<) and C(X;w,e) admit the following expansions in powers
ofe,as e — 0

B(X,w,e)= iB;(X;w)El, (4.5a)
=0
C(X;w,e) = icl(x;w)g’. (4.5b)

{

Il

0

Turning points of (4.2) correspond to zeros of Ry{X;w) given by (4.3a), i.e. to roots
of (2.7) or equivalently (2.8), as discussed in §2.

When g turning points with counted multiplicity are present, the function V(£)
appearing in (4.4) satisfies the so-called comparison equation

I
VI(E) + ( > mlw, 6)5"‘) V(e =0, (4.6)
m=0
where the (u + 1) coefficients ~,,,{w, £) admit expansions in powers of € given by
A, €) = gm0/ (132) nymp(w)sf’. (4.7)
p=0

Note that only two of the parameters 7y,,, for instance v (w, £) and ~(w, ), can be
assigned arbitrary values. All other v, are then linear combinations of y; and ..
The conformal mapping

X = n(X;w) /e 42 (4.8)

is chosen so as to transform the normalized equation (4.2) into the comparison equa-
tion (4.6) at leading order in ¢. It is found to satisfy
X

/W(X;w) _ Z#: Vg (W)s™ ds = / v Rolr;w)dr, {4.9)

m=0 X

where the arbitrarily chosen constant 7y defines the image of X under the mapping,.
Once the p+1 coefficients 7, (w) have been determined, the above equation implic-
itly defines the change of independent variable X — n(X;w). Note that, according
to (4.9}, turning points of the original equation (4.2), given by Ro(X;w) = 0, equiv-
alently wy(X) = w, are mapped into turning points of comparison equation (4.6),
given by Z’;:D Ymp (W)™ = 0. Furthermore, Stokes line networks issuing from each
turning peint in the X plane are mapped into Stokes line networks of the correspond-
ing image turning point in the n plane. The branches of the square roots appearing
in (4.9) may be specified arbitrarily, provided that the branch cuts of the right- and
left-hand side square roots are mapped onto each other.

The reader is referred to Lynn & Keller (1970) for a comprehensive discussion of
the recursive algorithm leading to the determination of the coefficients 7, (w) and
the functions Bi{X;w) and C;(X;w}. In the present study, we are only interested in
turning points that directly influence the structure of the global mode on the real
line, i.e. those with Stokes lines crossing the X -axis. In this case, approximation
(4.4} is known to be uniformly valid in a domain of the complex X plane containing
these p turning points.

There remains to specify the eigenvalue problem to be solved in the transformed
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n plane. Boundary conditions on V[n{X;w)/e?/¢#+?)] have to be applied in regions
n(+;w) and n(—;w), which are the images of regions (+) and (—) under the mapping
X +— n(X;w). The properties of WKBJ approximations near infinity derived in §3
can be transposed from the X plane into the n plane. Recall first that, among the
two branches A+ {X;w) and £~(X;w) defined in (2.6}, one must necessarily have a
positive imaginary part and the other a negative one as X — Zoc. In view of relation
{(4.3a), Im /Ry(X;w) = Im[k*t(X;w) — &~ (X;w)|, and this behaviour implies that
Im +/Ro(X;w) does not tend to zero as X — +oo. Consequently, the integral on the
right-hand side of (4.9) is necessarily divergent when X — too, which guarantees
that |n(X;w)| — oo as X — Foo. Thus, points at infinity in the (+) and (=) regions
are mapped into points at infinity in the n(+;w) and n(—;w) regions.

According to the form of equation {4.6), two independent solutions V(£) can be
chosen to be exponentially increasing and decreasing, respectively, near infinity in the
7{+;w) and n(—;w) regions. When such solutions are substituted into approxima-
tion (4.4), they necessarily give rise to amplified and decaying solutions, respectively,
near X = o0, since the WKBJ approximations of ¥ do exhibit this behaviour. It fol-
lows that the exponential factor exp{(i/e) [ ;‘; ko(s}ds} and the functions B{X;w,«)
and C(X;w,¢) do not alter the growing or decaying nature of the solutions near in-
finity. It can therefore be concluded that the original eigenvalue problem is mapped
into a new eigenvalue problem in the # plane whereby V(£) should satisfy comparison
equation (4.6) and be exponentially small in regions n(+;w) and n(—;w) as [n] — oc.
This is a necessary and sufficient condition for the existence of global modes.

It should be stressed that global modes on the real X-axis do not automatically
map into eigenfunctions of the comparison equation for V on the real n-axis. The
regions 7{+;w) and 7{—;w) do not always contain the real n-axis as |n| tends to
infinity. It is therefore essential to accurately locate the n{+;w) and n(—; w) domains
before proceeding to a formal solution of the problem. Otherwise incorrect results
might be obtained (see §5b for details).

It is generally difficult to implement the method of uniform approximations when
more than two turning points are involved. The solutions of the comparison equa-
tion (4.6) are then not well documented although some partial results have been
derived in particular situations (Sibuya 1975). In the next section, the above formu-
lation is applied to the determination of all global modes when two turning points
with counted multiplicity (two simple turning points or one double-turning point)
are present.

5. Global modes with two turning points
It is assumed that only two simple turning points X;(w) and X,(w), possibly
degenerating into a single double-turning point at X, are involved in the selection
of giobal mode frequencies.
(a) Mapping and comparison equation
When p = 2, the formal solution (4.4) reduces to

$(Xw,0) = {B(X;w,e)v ["7(};‘”)] (XY [n()\i:; w)]}

X exp (g/xjjkg(s)ds). (5.1)
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When y = 2, comparison equation (4.6) involves only three coefficients vy, v, and
43, only one of which is independent. According to Lynn & Kellel (1970), one may,

without loss of generality, set v{w,e) = 0 and vo{w,e) = —1, the only unknown
parameter being v(w, £). Equation (4.6) therefore reduces to
V(&) + [volw,e) - 3£°IV(E) = 0. (5.2)
As in {4.7), the coefficient vo(w,€) can be expanded in powers of € to read
o<
Yow,e) =& 1> 0, (w)e?. (5.3)
p=0

It is convenient to express the leading-order approximation 4, (w) in terms of a new
parameter 7 (w) such that

Yoo (w) = i (w). (5.4)
Equation (5.2), together with exponential decay conditions at infinity in the
n(+;w) and 7n{—;w) regions, defines the new eigenvalue problem in the complex
n plane in terms of the unknown eigenvalues vy(w,&) and unknown eigenfunctions
v(e).
In view of the above expressions for ~q,(w), 1{w, ) and ~v(w, ), and defini-
tion (4.3a) for Ro(X;w), relation (4.9) reduces to

/n(x * /7 (w) — s%ds = 2/ 1/2 wwk:;i'()r (5.5)

This relation implicitly defines the mapping X — n(X;w) for each value of w. As
stated in the previous section, the turning points X;(w) and Xs(w), which satisfy
wo{X) = w, should be transformed into turning peints 7 (w) and —m(w) of com-
parison equation {5.2}. Consequently, if one chooses m {w) = 7[X1{w); w|, one should
also have —m (w) = n[X2{w);w|. According to (5.5), these relations imply that

~m(w) Xa{w)
[ ’ VrEw) - s?ds = zf RN P 1G9 (5.6)
m () Xy (w) wkk(X

This identity remains valid when the right-hand side integral is evaluated along any
path I' joining both turning points X;{w)} and X,(w), provided that the image path
n(I";w) is chosen to calculate the left-hand side integral. When a specific choice of
branch is made for the square root on the left-hand side, the integral can readily be

calculated to yield
" 1/2
=2 f 2% dx , (5.7)
X1(w) wir{X)

It is possible to obtain a more convenient expression for # (w) that is independent
of the labelling of the turning points X;(w) and X,(w). The branch points of the
square root in (5.7) satisfy wo{X) = w and therefore coincide with the turning points
Xi{w) and X,(w). If the branch cut is chosen to lie between X;{w) and Xz(w),
equation {5.7) can also be written as

1/2
m (w) _2{2wj£ ww:o (X) X} , (5.8)

FPhil. Trans., R. Soc. Lond. A (1996)



184 S. Le Dizés and others

where the contour € encircles both turning points. As soon as the orientation of the
contour is fixed, for instance counterclockwise, the definition of 1, (w) only depends
on the selected branch of the square roots. Four determinations of m(w) are possi-
ble, which can be deduced from each other by successive multiplicationst by ei**/2,
k=1,2,3. It is only the constraint #[X;(w); w] = m{w) which allows one to obtain
a unique representation of n(X;w) from equation (5.5). The uniform approxima-
tion (5.1) must remain invariant when we change from one determination for 7, (w)
to another. Thus, one should respect the following substitutions:

m{w) = e* i (w),

n(X;w) — 529 X;w), (5.9)
Yolw,e) +— eF yp(w, 2).

According to expressions (A 3a,b) listed in Appendix A, the functions B{X;w,¢)
and C(X;w,¢£) are both multiplied by the same constant factor under the above
substitutions. Without loss of generality, this factor may be taken equal to unity.

The Stokes lines in the complex 7 plane can explicitly be obtained from the ana-
lytical form

Lo,
g[m (w) - 772]

of the leading-order coefficient muitiplying V' (£) in comparison equation (5.2). Stokes
lines issuing from each turning point 7 (w) and —m, {(w) are, respectively, given by

)
Im { / S @) — 82 ds} —0. (5.10)
+ap {w) '

Among the four possible determinations of 1, (w) solutions of (5.8), one is bound to
lie in the quarter plane gw < argn < 2m. When 1 (w) is restricted in this manner,
Stokes lines may take one of the three characteristic configurations represented on
figure 5.

The configuration with distinct Stokes line networks for each turning point {fig-
ure 5a) is generic. Configurations with one Stokes line joining both turning points
(figure 5b) or with one double-turning point (figure 5¢) are exceptional. The Stokes
line networks pertaining to determinations of #, (w) falling in the other three quad-
rants of the complex n plane may be generated by simple rotations of angle %im,
k =1,2,3. It should be emphasized that the Stokes line network in the complex 7
plane is solely a function of the single complex parameter 7, (w) defined in (5.8), as
seen from the Stokes line equation (5.10). Recall also that Stokes lines in the complex
X plane and 7 plane are mapped into each other when (X ;w) is a solution of (5.5).

In order to completely define the eigenvalue problem in the complex n plane,
there remains to locate the n{+;w) and #(—;w) regions where exponential decay
boundary conditions at infinity have to be applied. This issue is examined in the
next subsection.

i Note that the branch of
g% = wo(X)
wik (X)
in (5.8) is not necessarily the same as on the right-hand side of (5.5). The branch may change from one

equation to the other depending on specific features of the mapping X — 5{X;w), which may or may
not conserve sense of rotation.
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N

Figure 5. Possible Stokes line networks with two turning points in the complex 7 plane. The pa-
rameter n (w) is restricted to lie in the quarter plane 3m < arg#n < 2m: (a) generic configuration,
no common Stokes line joins both turning points; (b) 1 (w} on positive n.-axis, Stokes line joins
both turning points; (¢} m(w) = 0, double-turning point. Other configurations are generated by
rotations of angle %k'rr, k=123

(b) ‘Dynamics’ of the n{+;w) and n(—;w) regions

It has been argued in §3 that regions (+) and (—) containing the X,-axis near
400 and —oo are well defined and cannot flip from one side of a Stokes line to the
other as long as w is maintained within the domain w; > wi max(00). This property is
preserved under the conformal transformation X — n(X;w): the relative positions
of n(+;w) and n{—;w) in the complex 7 plane do not change when w; > wj max{00).
More specifically, variations of w should lead, in the present context, to displacements
of 7 {w) within the specified guarter plane %'JT < argn < 2m. If m{w) happens to
cross one of the boundary lines argn = %‘R’ or argn = 2w, a rotation of angle %k’ﬂ'
must be applied to keep m (w) within the prescribed quadrant, and 5(X;w) should
be changed according to the rules defined in (5.9). This results in an abrupt rotation
of the whole Stokes line network in the complex # plane which nonetheless preserves
the relative positions of n(+;w) and n(—;w).

It is now possible to add on the Stokes line networks sketched on figure 5 all possible
configurations taken by the regions n{+;w) and 7{—;w) . According to the comments
following lemma 2 in Chomaz et al (1991), the real axis crosses a single Stokes
line connected to each turning point when w; > wg{™ only once. Thus, when w; >
woi ¥, permissible configurations (+) and (—) regions in the complex X plane are as
sketched on figure 6. Note in particular that for w;, > wpi™, configurations of the form
sketched on figures 4c¢ and d, where the real axis crosses two connected Stokes lines
cannot exist, although they may arise for lower values of w; as seen below. Possible
locations of the corresponding regions n{+;w) and n{—;w) in the complex 7 plane
are listed on figure 7. Note that on all configurations shown on figures Te, d, n(+;w)
and 7(—;w) are contiguous regions in the limit of large ||. This feature, initially
valid for w; > wy™, persists for all wi > wjmax(00) and a solution of comparison
equation (5.2) that is initially subdominant in n(+;w) will become dominant in

7{—;w). Consequently, comparison equation (5.2) has no eigenfunctions satisfying
the required boundary conditions. It can be concluded that configurations of the n
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{a) &)
X
\ X, (o)
region {-) region (-) region (+)
0 X, 0 X
/ X, (@) / X, (@)

{c) {d)

X, (®)

X, ()
X, () region (+} region (-) region (+)

)
TN TN

Figure 6. Stokes line networks in the complex X plane when w; > wi'?™*. (a} and (b) may
potentially evolve into global mode configurations with varying w while (c) and (d) never do.

region (-)

plane shown on figure Tc, d, together with their preimages in the X plane sketched on
figures 6c,d, do not correspond to global frequencies and never evolve to global mode
configurations as w varies in the range w; > Wi max(00). By contrast, in the two cases
described on figures 7a, b, regions 7(+;w) and n(—;w) are not contiguous for large
|| and they will remain so as long as w; > wj max(00). Preimage configurations in
the X plane illustrated on figures 6a, b may therefore evolve as w varies to give rise
to global modes.

(¢) General global mode solutions

It has proved convenient until now to restrict 7;(w) to a particular quadrant of
the complex 7 plane in order to identify all possible configurations of the Stokes
line network and associated regions n{+;w) and n{—;w) . This convention has led us
to exclude some configurations but it is ill-fitted to effectively solve the eigenvalue
problem pertaining to comparison equation {5.2). As observed in §5b, the Stokes line
network, as well as regions n(+; w)} and n(—;w), evolve discontinuously with respect
to w as 1y (w) reaches the quarterplane boundaries. In the following analysis, 1, (w) is
no longer confined to a particular sector but it is selected so that n(+;w) containst
the real n-axis for large 7.

In contrast with the situation prevailing in § 54, the determination 7(X;w) of the
mapping remains unchanged and the Stokes line network then evolves continuously

T Note that it is always possible to do so. The region n(+; ) has been shown in the previous subsection
never to coincide with, say, the central domain Sp between both turning points indicated on figures 7b, d.
Hence, the preimage configuration displayed on figure 8 has already been excluded. Furthermore, if
n{+;w) does not initially contain the n.-axis for large 7, a rotation of appropriate angle %kﬂ' will correct
the situation.
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as w varies in the domain w; > wj max(00). Finally, the eigenvalue vy(w, ) appearing
in the comparison equation also stays continuous with respect to w.

Recall that the only remaining configurations in the complex X plane which may
evolve into global modes with varying w are those illustrated on figures 6a,b. Fol-
lowing the procedure just outlined above, the regions n(-;w) and n(—;w) are always
taken to correspond asymptotically for large || to the sectors

n{+;w) i —im < argn < l71'; (5.11a)
n{—jw): f7r < argy < (5.118)

Exponential decay conditions at infinity are always enforced within these sectors as
long as w; > wi max(00). Solutions of comparison equation (5.2}, that are exponen-
tially small in both regions n(+;w) and n(—;w), are expressible in terms of Hermite
polynomials of order n as follows:

Va(€) = Hey (e €14, (5.12)
and corresponding eigenvalues are given by
Yolwg, (€)se] = n+ 3. (5.13)

Any function wg, (¢) satisfying the above functional relationship is a global fre-
quency of the problem. Of primary interest is the derivation of a systematic approx-
imation scheme for wg, (¢) in the re%lme e < 1. In the sequel, it is assumed that
we, {€) reaches a well defined limit wgn as ¢ — 0. According to expansion (5.3) and
definition (5.4), the leading-order approximation to vyo|wg, (€), €] is then

(0) (0)

ol (0.l = 2288) o) - k) | o) (5.14)

In order for these estimates to be consistent with eigenvalue relation (5.13), the
integers n should be chosen such that n(e} = O(1/e) in the limit € — 0, i.e. n(e)
should satisfy

lirr{l) en{e) = m, (5.15)
with the real number m given by
Yo (W) = W) =m, mz=0. (5.16)

Note that the function 1 (w) has explicitly been defined in (5.8).
Higher order approximations to the global frequencies wy, (€) can be sought in the
form

(1)
o T (5.17)

Upon substitution into the eigenvalue relation (0.13) and identification of terms of
order unity, one obtains the equation for the first-order correction wg,’:

)
We, = Wy + gw

3g£0 (wgi)) (1) + Yo, (“*’(D,)) [n + % —m/fel, (5.18)

where the first-order term g, (W) is exphcltly given in (A1) and (A2) of Ap-
pendix A. Relation (5.18) is valid as long as n + 3 — m/e = O(1) and

Bn

8’700 (0)
05 () #0.
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\ NG X, (w}

region (-) o v/region +) X

X,()

Figure 8. Example of Stokes line network in the complex X plane such that n(+;w) coincides
with Sy of figures 75, d.

{a) (&)

region 1 (-0 region N{ +;0®) region n(—;0®) region n{ +;0©)
gH g’l gﬂ gll

n,

N, o) (@)

Figure 9. Stokes line networks in the complex n plane giving rise to global frequencies satisfying
(5.16): (5.19): (a), m > 0, two simple turning points located at % (wg,)) =+2./m (m (wé?,))
chosen non-negative on the figure); (b), m = 0, one double-turning point at the origin.

global frequency, the Stokes line network in the X plane is either type-1 or type-2,
as indicated in figures 10a, b.

The reverse proposition is also true: if, for a given value w®, the Stokes line net-
work is either of type-1 or type-2, w{? is, at leading order in ¢, a global frequency of
the problem. To prove this statement, we simply note that, if one of the configura-
tions depicted in figures 10a, b prevails in the X plane for a given frequency w'®, the
transformation X — n(X;w!®) can be selected so as to map (+) into 5(+; w®) con-
taining the real n-axis. The original Stokes lines in the X plane are then necessarily
transformed into one of the Stokes line networks in the complex 7 plane shown on
figures 9a, . Such situations are known to give rise to eigenvalues with leading-order
approximation w{?. Successive terms in the expansion (5.3) of the function o (w'®, €)
can be evaluated. For instance, the leading-order term o, (w!®) is calculated with
the help of (5.4) and (5.8). Higher order corrections «o, (w'®),... are given by ex-
pressions such as (A1) or (A 2) in Appendix A. Thus, higher order contributions to
the global frequency expansion wy, (€) = w® + ew,{;i} + ... can readily be generated
by making use of recursion formulae analogous to (5.14). A global frequency has
therefore been obtained.

Note that type-1 and type-2 global frequencies correspond to the set A; in the
complex w plane introduced in §3 (compare type-1 and type-2 Stokes line configu-
rations sketched in figures 10a, b with those displayed on figures 4c,d and used to
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(a) )

region (-) region (=)

vy /‘ X,

w©®
&n ) region (+) region (+)

{e) (d)

region (—)\

]
X, ((ng" )/
0

X, (

region {+)

X, /0/ X,

Figure 10. Stokes line networks in the complex X plane giving rise to global frequencies satis-
fying (5.16). They are transformed into the networks of the 7 plane, shown on figure 9, under
the conformal mapping X +— p(X;w"): (&), m > 0, two simple turning points at X; (wéii)) and
X2 (wé?l)); type-1 configuration; (b}, m = 0, one double-turning point at the origin, type-2 con-
figuration; (c), type-1 configuration with ‘untwisted’ Stokes lines; (d)} type-2 configuration with
‘untwisted’ Stokes lines (see discussion following equation {5.37) in the text).

define the set A). For future reference, in §5 e, we recall that the set A is by defini-
tion included in the curve or set of curves A defined by condition {3.3) and it is the
complement in A of the set Ay of frequencies excluded by the necessary condition
invoked in §3. Condition (3.3) is then satisfied by all leading-order global requencies
wé{,? and using expressions (2.6), (5.8) and (5.16}), it also reads

Im[vo, (wgl})] = 0. (5.19)

Note that this relation could have been directly deduced from relation (5.16).

In closing this discussion, it should be emphasized that the present analysis is
restricted to global frequencies satisfying w; > wi max(00). If w; € wimax(00), an
essential step in the argumentation breaks down: we are unable to guarantee that
regions n(+;w) and 7{—;w) necessarily need to be non-contiguous at infinity in order
to give rise to a global mode (§58).

A detailed evaluation of the global mode frequencies and eigenfunctions is under-
taken in the following subsection for type-1 and type-2 configurations.

{d) Global mode classification
(1) Global modes with two simple turning points (type-1)

It is assumed that the Stokes line network is composed of two first-order turning
points X, (wé—?) and X, (wg(?l)) connected by a common Stokes line and that regions (+)
and (-} are not contiguous, as in figure 10a. According to the results of the previous
subsection, the global frequencies wg, (¢) admit expansions of the form (5.17) when
€ < 1. The O(1) term wé“ is given by (5.16) with m defined in (5.15) and »;(w) in
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(5.8). It can be concluded that wg(;?,) is a root of the equation

()
wg,, — wol(X)
e d X =m, >0 3.20
(.{Jkk X) m, m H ( )
where the branch cut of the square root joins both turning points X (wg,,} } and
X2 (wf(;n)) as specified in the comments preceding (5.8). Equivalently, the eigenvalue
relation for the global frequencies wy, (g} is, at leading order in ¢, given by
. wg) wp(X)
2me Io: wkk(X)

Equation (5.20) dictates that the branch of the square root in the integrand should

be the one to yield a positive value of the integral. The function n? (wg,],)} is therefore
uniquely defined. Thus, among the four determinations of the mapping function
m{X;w) initially possible {(see (5.9)), only two remain, say n(X;w) and —n{X;w).
Although both give the same eigenvalue relation {5.20), only one of them is such
that region 7(+;w) contains the positive real axis as specified in §35c.

From knowledge of ng), one can deduce the first-order conectlon wé") satisfying
{5.18). The function ~g, (W) is equal to (5.20) and o, (wi) is defined in (A 2) of

Appendix A so that one obtains

aX =n+ 5 +0Q) (5.21)

1 m € |/ Ro(X;0l)

wl=|n+--—-
jé‘ 4 RU(X;Wg(?,))
o | nwh)) - P(X;0®)

&n 2 &

-1

f (5.22)
mxd%%m)

Recall that Ry(X;w) and R {X) are defined in (4.3 @, b). The branch of the square
root in the above integrands is the same as in (5.20).

It is worthwhile to notice the peculiar behaviour of the approximation scheme for
type-1 global modes as ¢ tends to zero. According to (5.15), at a given real positive
value of m, the expansion of wg, (¢) refers to larger and larger values of the mode
index n as € — 0. The function n{¢) may for instance be defined as an integer distant
by an amount ny from the integer part of m/e, i.e.

n(e) =IP(m/e) +ng; ne=0,+1,+2,... (5.23)

where IP(m/e) denotes the integer part of m/e. The integer ny may be seen as a
local index. Each value of ng defines a global mode of leading order frequency wg,)l If
the variations of n are given by (5.23), condition (5.15) is satisfied, but the quantity
n{e) —m/e appearing in (5.18) and (5.22) fluctuates between ng and ngt+lase — 0.
Thus, the first-order correction wg. effectively oscillates between two limiting values
with decreasing £, while remaining of order unity.

As discussed in §5e (see figure 12a, in particular), it may very well happen that
the curve A defined by (5.19) along which all global frequencies lie, exhibits a local
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LY

Figure 11. Domains in the complex n plane where the uniform approximation (5.24) of type-1
global eigenfunctions can be simplified: Hatched region, near a single turning point, approxima-
tion is given by expression (5.25) or (B 11); shaded region, near Stokes line, approximation is
given by expression {5.26) or (B12); elsewhere, approximation is given by expression (5.27) or

(B 10).

maximum in the complex w plane at a particular value wl satisfying (5.20). In this
case, one necessarily has
0
Im [ '700( gn)] =0

and, according to {5.18), the first-order correction wg“) has an imaginary part that is
independent of n at a fixed value of ¢, as long as n ~ m/e. The expansion must be
pursued to O(e?) in order to catch growth rate variations lm wén between the locally
most. unstable global modes. This behaviour is entirely consistent with simple scaling
arguments: all global frequencies along the curve A; are separated by a distance O(e)
around wg?l , as given by (5.22), but, around a locally parabolic maximum, such a
configuration only leads to O(c?) variations in the growth rate.

We now proceed to the calculation of the eigenfunctions along the real X-axis. The
spatial shape of type-1 global modes is given by the uniform approximation (5.1) with
the expression (5.12) for V(£). This spatial shape can be computed either for a given
global frequency wy, (¢) or for a given mode index n(e) since both are related through
(5.13). Note however that the first two terms w’ and w{, given by relations {5.20)
and {5.22), are sufficient to perfectly define the mode index n{c). Keeping only the
leading-order terms in expansions (4.5 a, b) for B{X;w,¢) and C(X; w, ), the uniform
approximation (5.1) at a given frequency w,, (€} can be written as

$Xi0g6) = { (BulXii) = 300X )Co(Xi,) ) oy | 25520

+veCo(X; w, Hep o [W(X;\/?(E))] }

con(FE5 o (! rgoa), o2

where By(X;w) and Cp(X;w) are given by (A 3a,b). This apploxlmatlon is valid in

the entire compiex X plane including both turning points X3 (wg“ yand X, (wg?l)).
It is also possible to deduce from (5.1) alternate expressions for the global mode

eigenfunctions that remain uniformly valid only in specific subdomains of the complex
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X plane. We recall that the index n(g) varies as m/e when £ — 0, where m is defined
in (5.16) or (5.20). Thus, the behaviour of He,y(n//€) appearing in V,(n//€) and
in (5.24) is highly singular since both the argument and the index become infinite
as € — 0. As shown in Appendix B, it is possible to derive explicit asymptotic
approximations for V(. (n/v/€) and V, (E) (n/+/£) by applying the method of steepest
descent to the integral representation of Hermite polynomials. The final results are
summarized and discussed below.

Three distinct approximations are obtamed dependlng on the location of X with
respect to both turning points X, (wg“) and Xg(wgn) ) and to the Stokes line that
connects them. The different subdomains are represented in the complex 7 plane in
figure 11.

Within discs of radius O(2/?) around each turning point da (w>) = +2/m in
the complex 7 plane (hatched areas in figure 11), the global mode eigenfunction is
approximated by

5 2/3
Y(X ;W €) ~ oV 2m(£1)" (6 )(n/ e Aj (2\/5”1) (n(X;wgn) + 1)

€ 2/m
m[3  n(X5we,) 7 (Xiw,)
“"P( ?[f Jm T am
: X
X exp (1 ko(s) d.s), (5.25)
£ Xo

where Ai{z) denotes the usual Airy function. Correspondingly, in the complex X
plane, the above result constitutes a valid apprommatlon in c1rcular neighbourhoods
of radius O(¢2/3) around each turning point X, (Wg[i ) and Xg(wgn ). If, for instance,
X (wé?,)) is mapped into +m (wé")) the upper sign in (5.25) pertains to the approxi-
mation near X {w{> ) and the lower sign to the approximation near Xg(wé?,)).

Within a strip of width O(e) surrounding the Stokes line joining both turning
points (shaded region in figure 11), the global mode approximation becomes

7 /2
n+vnP—dm| |n+ /7" —4dm :
2V VP —dm

x exp(i@) exp (_415 (2m + HM))

7 1/2
n—ynt-4dm| |n—n*—4m
N VP —4m

x exp(—16) exp (‘417: (2m ~ WM)) }

x% (%})_1/2 exp G /XX ko(s) ds). (5.26)

Elsewhere in the complex n or X plane the global mode admits a uniform expansion

’l/‘)(X,wgn,E) ~

+
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given by
n /2 ,
a |n+ /7t —4m N+ /12 —4m 1 dn 172 )
W)~ 5 2/ S —dm ox) ©vio)
e —4am

wcexp (=g (2m -+ 0y =m) o (£

The branch cut of the square IOOt m the above formulae is fixed on the segment
joining both turning peints 4+, (wgn } = £2+/m and the branch is chosen such that

“lr < arg (m) < ir, when — im < arg(n) <}

We recall that ap and Xy are arbitrary constants which can eventually be set by a
normalization condition and that the positive number m defined as n; (wén ) is also
given by (5.20). The phase function @ = O(X;w”) in (5.26) and (5.27) is specified
in (A4).

Note that the uniformity of approximation (5.24) has been lost during this addi-
tional asymptotic expansion process and that the final results (5.25)-(5.27) are only
local approximations. Near each turning point, the global mode approximation, given
by (5.25), is an Airy-type solution. This result is not surprising in view of the fact
that Airy functions generally appear in local one-turning-peint analysis. Far away
from the turning points, the global mode is given by (5.26) or (5.27). As discussed in
Appendix B, these expressions are nothing but leading-order WKBJ approximations.
One can indeed demonstrate that equation (5.26) is the sum of two WKBJ contribu-
tions built with the branches k% and &~ defined in (2.6). In the region where (5.26)
is valid, i.e. near the Stokes line that connects the two turning points, both wkBJ
approximations are of the same order of magnitude. It is then obvious that both must
contribute to the eigenfunction. Far away from this Stokes line, approximation (5.27)
consisting of a single wkBJ contribution must be used. Tt can readily be verified that
the wkBJ approximation (5.27) is subdominant in regions (+) and (—) of the com-
plex X plane and dominant in the other Stokes sectors. This feature is consistent
with the necessary global mode existence condition obtained in § 3 and with the fact
that wkBJ approximations defined as subdominant in the (+) and (—) subdomains
remain valid in the adjacent Stokes sectors where they become dominant.

b
ko(s) ds). {5.27)

Xo

(ii) Global modes with & double-turning point (type-2)

If the Stokes line network involves a double-turning point X, as in figure 105,
the results of Chomaz et al. (1991) and Monkewitz et al. (1993) are formally recov-
ered. The procedure is briefly outlined below, particular attention being given to the
correct choice of branches in the multiple-valued functions appearing at successive
orders. Since X is a double-turning point, one has X;(w,) = Xa{(ws) for a particular
frequency ws. In other words, X is, by definition, a double root of equation (2.8), as
discussed in §2. It is therefore located at a saddle point of wo{X) such that

wo{Xs) = ws, (5.284)
j—{‘;(ﬁ(xs) = 0. (5.28 b)

Note that the selection of type-2 global frequencies only relies on the local existence
of a saddle point X of wy(X) in the complex X plane. By contrast, type-1 global
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frequencies are selected on the basis of an integral (5.20) involving wo(X ) and wi (X)
over an extended domain in the complex X plane.

The image of X, is the double-turning point n;(w;} = 0 in the complex 7 plane,
as illustrated in figure 9b. This property leads to a simple expression for the leading-
order mapping function 7(X;w,, (¢)): when 1, = 0, equation (5.5) reduces to

NX;we, (£)) = (X we) + er(Xjwe, (€)),  with r(X;w,, (£)) = O(1), (5.29)

where

(X ws) = 2 [ f (5.30)

dr]
Wek ?‘)
In the present case, the square root function is analytic everywhere since, near X,
wo(r) — ws ~ lwoxx (r—X,)%. As before the branch is chosen so that 7](+ ws) con-
tains the positive real n-axis, i.e. for < argn < —1r when X is in region {+).
Provided that m = 0, 1elation (5.16) for the leadlng order global frequencies is
identically satisfied since 1{ws) = 0. Higher order appr0x1mat10ns to wy, (€) are
generated by assuming an expansion of the form (5.17) with wgﬂ) = ws. The first-order
correction wé}l) is given by (5.18). When 7(X;w,) takes the form (5.30), expression

(A 2) for g, (ws) can be calculated explicitly to yield

ox | Wik
W) = —= , 5.31
701( 5) 9 waxx ( )
where the superscript ‘s’ indicates evaluation at the saddle point X,.

The following simple reasoning ensures that the square root appearing in (5.31) is
interpreted correctly. The determination chosen for /w}, /wjy y should correspond
to the branch selected for the mapping n(X;w;) in (5.30). A Taylor expansion of this
relation in the immediate vicinity of X, vields

s /4
) Wox x
i)~ (4825 |7 x - x, (5.32)

Kk
According to the rule stated in connection with (5.30), the sector n(+;w;) in the
vicinity of the origin, delimited by —im < argn < 7w, should map into the (+)
sector close to X,. As implied by (5.32), this sector is bounded by the straight lines

T 1 wkk T 1 Wiy
— — 4+ -arg o Sarg(X — Xo) € — +sargy [ ——. (5.33)
4 2 Wox x 4 2 Wox x
The branch of the square root in (5.31) should therefore be such that }arg
VWi /wixx denotes a direction around X, that points into region (+) or (-) of
the complex X plane.

The expression for (3vyq, /Ow){ws) reduces to

8 s
o) = o [ (5:34)
w Wik { Yoxx
where the square root is defined in the manner discussed above. The unknown ¢ = +1

has been added to account for the fact that (5.31) and (5.34) do not necessarily
correspond to the same definition of the square root. Its value needs to be chosen
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so that the branches in (0vg,/0w)(ws) and ~o,(w;) are the same. Unfortunately,
unlike type-1 configurations, the leading-order equation for the frequency reduces to
Yoo {ws) = 0: it is satisfied for both branches and a conclusion cannot be reached. We
therefore leave ¢ temporarily undetermined and appeal to a different reasoning in
order to settle this point, as discussed below.

Upon substituting the expressions (5.31) and (5.34) into (5.18), the first-order

. 1) .
correction wé") is found to be

s s s Wy
wi) = [_Ekﬂxwkk +(n+ Pk =X, (5.35)
kk
where
Whx x
Whi

is interpreted as

-1
5
Wik
W ’
DX X

which is defined in the sentence following (5.33}. According to this result, wg, (£)
moves away rom w, as the mode index n increases, so that the type-2 Stokes line
network (figure 10b) must gradually evolve into a type-1 configuration {figure 10a)
with two distinct turning points X [w,, (¢)] and Xa[w,, (¢)]. The expansion of the
definition wo[X;(wy,(€))] = wg,(€),7 = 1,2, around X, leads to the leading-order
approximation

1 s o 2 (M)
swoxx (X — Xs) W &,

whereby the separation distance between X; and X; can be estimated as
2 Wf(zl} 2
[(Xa(wg, ) — Xi(wg, )]* = 8—"—¢ + O(e?). (5.36)
Wox x
As n increases, the two turning points move away from each other along a line of
angle %arg[w,(;) [wix x], which, from (5.35), can be estimated as

1 5
—argls —fk"
2 Wox x

for sufficiently large n. In order to give rise to a type-1 configuration (figure 10a),
this angle must lie within the sector (1) specified in (5.33) or the directly opposite
sector (—). The value ¢ = 1 must therefore be selected. It can be concluded that
type-2 global frequencies form a discrete set given by

Wy (€) ~ws +¢€

S

— Skaxwhs + (0 + By [ 22X | 4 0(?), (5.37)
Wi

where the square root is defined as in {5.35}). It should be emphasized that in the
configuration of figure 10d, this definition is equivalent to the selection of the square
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I!|>_

Figure 13. Example of domain reduction to a two-turning-point problem. The regions (+) and
() are transferred in the neighbourhood of the saddle point X of wy(X) to the regions delimited
by Stokes lines containing the points — A and + A, respectively.

doubly infinite. It is then found that type-2 global frequencies remain formally given
by {5.37), the cross-stream structure being ‘slaved’ to the streamwise evolution of
the fluctuations. Note, however, that, in contrast with (5.37), the global frequency
expansion (6.1) of Monkewitz et al. (1993) contains one additional frequency shift
edw® associated with non-parallel flow effects. A similar term could have been ob-
tained in the context of the Ginzburg—Landau model by postulating the existence
of O(e) correction terms in the statement (2.1} of the problem. No comparable two-
dimensional study of type-1 global modes has yet been undertaken and it remains
to be determined whether type-1 eigenrelation (5.21) stays unchanged.

Experimental and numerical validations of the above global frequency selection
criteria have been scarce and, for the most part, limited to testing the type-2 saddle
point criterion of Chomaz et al. {1991). There is so far no evidence that type-1 global
modes might dominate the dynamics of a specific spatially developing shear flow, but
such structures have not actively been looked for. We therefore restrict the discussion
to the validation of the type-2 criterion with the underlying provisional assumption
that type-1 global modes are less unstable (figure 12b). It should also be emphasized
that the present results as well as those of Monkewitz et al. {1993) rely heavily on
a weak inhomogeneity assumption that may not always be strictly satisfied. Some
caution must therefore be exercised when applying the frequency selection criterion
to shear flows such as wakes at low Reynolds numbers.

The numerical simulations of Hannemann & Oertel (1989) clearly demonstrate
that, in the case of the wake behind a plate of thickness h, the computed global
frequency is nearly equal to the absolute frequency taken at the location z/h = 1. As
discussed in Monkewitz et al. (1993), the absolute frequency wo(X) exhibits a saddle
point close to that location and the present type-2 saddle point criterion is then in
good agreement with numerical observations. Note also that the computed global
frequency is very close to the absolute frequency at the transition point between
absolute and convective instability (Koch’s (1985) criterion). More recently, Schir
& Smith (1993) have numerically investigated the flow behind a vertical circular
cylinder in the shallow-water wave regime. At a critical value of the Froude number,
the wake is observed to undergo a transition to large-scale Kdrmén vortex shedding.
When all nonlinear terms in the numerical code are turned off, the wake beats at
a global frequency wy =~ 0.17 + 0.045i. Local stability calculations performed on
the unstable basic state then indicate the presence of a broad region of absolute
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instability behind the obstacle. The function wy(X) can be estimated from a parabolic
fit near the maximum absolute growth rate and application of criterion (5.28 a, b)
leads to the prediction w; =~ 0.19 + 0.040i, which compares very favourably with
the computed value. Note, however, that, when all nonlinearities are restored, the
observed Strouhal frequency becomes w, =2 0.27, which is noticeably different from
the predicted value. A similar approach has been applied by Huerre & Monkewitz
(1990) to estimate the frequency of the preferred mode in two-dimensional jets from
experimental data. As in the preceding case, the reconstruction of wy(X) from a
parabolic fit leads to wg 2= 0.225 to be compared with the measured value w, =~ 0.25.

The above validation procedure can only be viewed as preliminary. A more thor-
ough implementation of the frequency selection criteria requires a careful analytic
continuation of the iocal quantities wo(X), ko(X), etc. from the real X-axis into
the complex X plane. Unfortunately, the number, location and structure of turning
points are very sensitive to slight changes in the numerical or experimental data
on the real X-axis. This sensitivity becomes particularly acute when turning points
that are implicated in the global mode structure, i.e. those with at least one Stokes
line crossing the real X-axis, are located far into the complex X plane. It is then
practically impossible to determine how many turning points are involved and their
respective locations. In the favourable case where a saddle point X, lies close to the
real axis, one might envision reducing the physical domain of interest on the real
axis to a finite segment around Xg, say |X| < A, as shown on figure 13.

The {+) and () regions could then be defined as those containing X = A and
X = —A, respectively, and a subdominant solution could be built on the finite
interval as long as no other turning point is involved.

In the experiments on wakes, low-density jets and counterflow mixing layers al-
luded to in the introduction, global modes are isolated and seem to set in via a Hopf
bifurcation, the modal amplitude being governed by a Landau equation close to on-
set, to a very good degree of approximation. Preliminary studies of weakly nonlinear
effects for type-2 global modes have been undertaken by Chomaz et al. {1990) and
Le Dizeés et al. (1993) in the context of the present Ginzburg-Landau model. The
results indicate that the Landau equation has a severely restricted range of valid-
ity in the limit of weak spatial non-uniformities, unless restrictive assumptions are
made concerning the location of the saddle point X;. In such a case, one may further
include the cross-stream structure and extend the weakly nonlinear analysis to two-
dimensional spatially developing flows in the viscous critical layer regime (Le Dizes
et al. 1991).

The authors thank P. G. Drazin for drawing their attention to early pertinent work on global
modes. They are grateful to M. Pesenson for many helpful discussions. They are also indebted to
Colonel Buck Danny and Major Sonny Tucson for their useful comments on the final manuscript.

This investigation was supported by the Direction des Recherches, Etudes et Techniques
of the French Ministry of Defense under Grants # 90-040 and 92-098 {S.L.D., P.H., J.M.C.),
by SNECMA (S.L.D.}, by the US Office of Naval Research under Grant # N00014-90-J-1313
(8.L.D., P.AM.} and by AFOSR under Grant # F49620-92-1-0471 (P.A.M.). The Laboratoire
d'Hydrodynamique (LadHyX) is part of URA 317 of the CNRS.

Appendix A. Some analytical results for the two-turning-point
problem

In the following, a few analytical results pertaining to the two-turning-point prob-
lem are extracted from the earlier study by Lynn & Keller (1970). The functions
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Ro(X;w) and R,(X) that repeatedly appear in the expressions below, have been
defined in (4.3a,b) in terms of the local dispersion relation characteristics.
The first-order term -y, {w) in expansion (5.3) is given by (LK 6.21) as follows:

/Xz(w) R] (X)/\/ RO(X;LU') dX
Yo.(@) = = , (A1)

] 1V Ro(X;50) /[ w) — (X ;)] dX

X1 (w)

where the integration path joining X, (w) to X;{w) should avoid crossing the branch
cut of the square root and be identical for both integrals. With the use of a closed
contour ' encireling both turning points, this expression can be rewritten as

§CR1(X)/VRD(X§UJ)dX (A2)
$o 4/ Ro(X;w) /[ (w) — (X w)] X

The leading-order terms Bp(X;w) and Cp(X;w) in expansions (4.5a,b) for
B(X;w,¢) and C'(X;w, ) are given by expressions (LK 3.10) and (LK 3.11) as

'701({"‘") =

—1/2
Bo(X;w) = ap [g—;()(;w)] cos O(X;w), (A3a)
1/2
ColXiw) =an | S| (R0 s O(Xse), (A3
with @(X;w) defined by (LK 6.20) as
AL R(X) e ()R (Xw)
o= [, RP(Xiw) | @) —1(Xiw) ] @B

Note that function @(X;w) satisfies @(X;{w),w) = O(X3(w),w) = 0 by the defini-
tion of 7o, (w).

Appendix B. Type-1 global eigenfunctions

In this appendix, the uniform approximation (5.24) for type-1 global modes is re-
duced by deriving, when ¢ — 0, appropriate asymptotic expansions of He,.)(n//€)
and He;(e)(n/ v/€). The underlying idea is to seek further approximations for the
fanctions Vi,(¢y(n/v¢€) and V., (n/+/¢) defined in (5.12), in the limit &€ — 0, bearing
in mind that n(e) ~ m/e. For this purpose, it is convenient to evaluate the Hermite
polynomials He,()(n/y/€) by applying the method of the steepest descent to their
integral representation. The results are then substituted into (5.1) to generate local
approximations for the global mode eigenfunctions in different regions of the complex
X plane.

The integral representation of He,(z) given in Bender & Orszag (1978, p. 574)

reads
2 z2/2 e —r2/2 _n
He,(z) = — e r*cos{rr — nw /2) dr,
a
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+oc
Hen(ﬂ'} Jje f e " /2 n na: inmw/2 dr. (B 1)

Upon substituting (B 1) into (5.12), one obtains

1 2 —inm 2m ntl/2 —p2 & +eo n—(m/e
e = 2o [ s [ oo
—oc
m

equivalently

2 2 nt1/2 oo 9
Ve (n/ve) = \/7 inn/2 [?m] e‘”zf(“)/m %ﬂ mr pn(mfe)

X exp (-? [(T - \;g_m)ﬁ - 1m~D dr.

These expressions can be recast into the following compact form:

Vi) (1/ V/E) = CIV I (en'/042), (B2a)
: 2m 2
U — (r) lﬂ/2|/_ {n+1) (n) -0/ (4c}
V(E)(n/\/‘g) Gs € e Is (??) 2\/—15 (ﬁ';| € 3 (sz)
with
+co o m
1w = [ e (7 i) dn (B3a)
oo I3
1 9 ) Im {n+1)/2
(n) _ =, )2 —inmj2 | 200
C} 2\/ﬂe [5 ] , (B3b)
; 2
flrmn) = (r~ \/;_m) —lnr. (B3c)

The behaviour of the integral Is(n)(n) when £ — 0 can be determined by applying
the method of steepest descent to the function f(r;n), the variations of the factors
appearing in front of the exponentials being negligible when n — m/e < m/e. As
explained in standard text books (Bender & Orszag 1978, ch. 6), the principle of
the method consists in deforming the contour of integration into lines Im[f(r;7)] =
const. which are also steepest-descent paths of Re[f(r;#n)], and searching for the
saddle point(s) r(n) where Re[f(r;n)] reaches a minimum on that path. The main
contribution to the integral as e — 0 is then found to arise from the neighbourhood
of the saddle points r(%) satisfying the condition

O (vlmyim) = 0.

In the present case, expression (B 3¢) tells us that the function f{r;n) admits only
two saddle points, given by
1 117 +iv/n? — 4m
r(n) = (B4)
2v/2m
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approximation is obtained as

1
? exp (—E(2m +ny/n? — 4m))

+ 7 ¢ —4m n 7 —4dm 2
NG VI~ 4m
® exp (-—:—E(Zm—n\/nz—élm))}

—-1/2 . X
g)”() exp(; kg(s)ds). (B12)

< 20 (

V2 Xo
We note that equation {B12) can be written as the superposition ¥+ + ¥~ of two
distinct COIltI‘lbuthIlS 1,0* and ¢~, which can be constructed from (5.1) by substi-
tuting e +(n) and 1 (n) defined in (B5) into the expressions {B2a,b) for V
and V’. The resulting functions ¥ (X;wy, , €) and ¥~ (X;w,, ,£) take the form of lo-
cal wkBJ approximations pertaining to spatial branches &+ (X, w,, ) and k™ (X;w,, },

respectively. When the condition I{™" (m)/ Ig”)_(n) = O(1), equivalently
n
Re{ (s (i) = S~ ()} =T | | Vin=w | =0,
2/m

is fulfilled, both approximations ¥* and ¥~ become of the same order of mag-
nitude, as one would expect on a Stokes line. Furthermore, one can easily show
that Re[f{r*(n);n)] — Re[f(r~(n);n)] > 0 in regions n{+;wg,) and n(—;wg,), pro-
vided that the square root is defined according to (B6). Approximation (B 10} for
(X wg,, ) then coincides with ¥ {X;w,, , £) ini regions 7(+; wy, ) and #(—; w,, ) and
it is therefore subdominant. Following classical properties of the Stokes phenomenon,
this subdominant WKBJ approximation remains valid in neighbouring sectors of the
complex 7 plane where it now becomes dominant.

Appendix C. Type-2 global eigenfunctions

This appendix is concerned with the reduction of uniform approximation (5.38)
obtained for type-2 global modes.

Note first that when n(X;wg, ) = O(y/€), i.e. when X is close to the double-turning
point X, and satisfies | X — X = O(+/2), two simplifications immediately occur: the
second term in (5.38) becomes negligible with respect to the first and expression
(A3a,b) for Bo(X;wy,) reduces to

6 ~-1/2
BO('X’wgn) (aX (X wgn)) E

@ being O(/e) when |X — X;| = O(y/e). If, in addition, (5.29) is used to replace
N(X;wg,) by its leading-order approximation n(X;ws), expression (5.38) may be
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written as

xexp( 1 ()ZE En ) xp( / kg(s)cls) (C1)

Note that n(X;wg,) has not been replaced by n(X;ws) in the exponent of (C1)
becanse the O(e) correction induces an (1) amplitude correction as shown below.

When 9(X;wg,) > %, i.e. when X is at a distance larger than O(\/£) from
the double-turning point X, the second term in (5.38) is no longer negligible but
nevertheless the expression of V(n/1/¢) can be simplified. When n(X;w,,) > /e,
using again (5.29), one can immediately show that

. . . 2(x.
n(X:wg,.) N_T](X:ws)Hen (X ws) exp 1 (qugn) )
Ve 2V Ve de
Expression (5.38) is then written as
(X5 wy)
Ve

xexp( U (}‘;E b )) (gf}:kg(s)ds). (C2)

The expression within braces takes a simpler form if one appeals to the relation

V}

n

P(X;w,,€) ~ Hep [ } {Bo(X;ws) — 50(X;ws)Co( X ws)}

i J
in(X;w) 53 (Xi) = 20/FalX;w,),

obtained by differentiating (5.30) with respect to X, and if expressions (A 3a, b) for
Bo(X;w) and Co(X; w) are invoked. The intermediate result then reads

on

—1/2
BX(X wb)) exp(iG{X;w;)).

{Bo(X;ws) = 51(X;ws)ColX;we) } = e (

It therefore follows that

o) oo (DL060) e, [TE8)] cappiocien

X exp (_n?(Xng)) exp (é /XX kg(s)ds). (C3)

Recall that @(X;w;) is given by (A4) in Appendix A and satisfies &(X,;w,) = 0.
Approximation (C3) expanded near X, then gives exactly the same result as (C1)
for the global mode in the region |X — X,| = O(y/¢). Thus, (C3) remains valid for
all X and can be considered as & uniform leading-order approximation.

It remains to evaluate the exponential factor of exp(—n?(X;w,, )/4e) when ¢ —
0. Using expansion (5.17) for w,,, n*(X;w,,) can be approximated by its Taylor
expansion around w; to give
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Both n(X;w,) and wé}‘) have already been caiculated as (5.30) and (5.35), respectively.
An expression for (9(n?)/0w)(X;w,) has not yet been obtained and its computation
requires a little algebra, as outlined in the rest of this appendix.

An expression involving (9n/0w)(X;w) is generated by differentiating (5.5) with
respect to w:

on . 20 V. 2 3(7?%) X ds
%(X,w)\/ﬁ (X5w) ~ni(w) + D (w)/m W

_ o fx 1 wirlr) g, (C5)

xo Wrk(T) V 2(wo(r) — w)

This functional equation is independent of the definitions chosen for the various
square roots, provided that the branches of the square roots appearing on the left-
hand side of (C5) are the images of those on the right-hand side through the mapping
X n(X;w). However, the contour of integration should not cross any branch cut. A
convenient selection of X, and of the integration path may have to be made in order
to have that property satisfied. At the value w = ws, the first term of (C5) reduces
to 2(8(n%)/0w)(X;ws). In addition, n(w,) is zero and, according to relations (5.4)
and (5.34) withs =1, (8 (nf)/aw)(ws) is equal to

5
4 Wi
S 3 -
Wik V Woxx

One may then obtain from (C5) the following expression:

2 X 7?(X we)
2wy = [ wni(r e “. o
Ow Xo Wik(T) 2(‘*’0(7') wkk ‘“’oxx

The second integral has voluntarily not been replaced by a logarithmic function
because its value varies according to the number of complete 27 rotations made by
the contour of integration around the origin. To get a single-valued expression for
that integral, a branch cut issuing from the origin should be selected in the n plane,
the contour of integration in the n plane being required not to cross it. The contour
of integration in the X plane for the first integral in (C6) is the preimage of the
previous contour through the mapping X — 5(X;w,) and it suffers from similar
restrictions. The first integral taken separately, is also multivalued and depends on
the number of rotations completed around X,. Since the integration path from 7 to
77 in the second integral is the image by X — n(X;w,) of the integration path from
Xp to X in the first integral, the sum of both integrals is, therefore, single-valued.
Finally, in view of the relation

( ) m (w) 1 X1{w) wkk("")
o @ [ N T =2 [ e e &

valid for any w including ws, the function (8(s*)/w)(X;w,) defined by (C6) can be
continuously extended to X; as

U PN

W (X5 ws) =0.
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