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We present here a simple analytical model for self-oscillations in nanoelectromechanical systems.
We show that a field emission self-oscillator can be described by a lumped electrical circuit and that
this approach is generalizable to other electromechanical oscillator devices. The analytical model is
supported by dynamical simulations where the electrostatic parameters are obtained by finite
element computations. © 2010 American Institute of Physics. �doi:10.1063/1.3396191�

Nanoelectromechanical systems �NEMS�1 are under ex-
tensive research owing to their potential for radio frequency
communication and highly sensitive sensors. This research,
before becoming applicable, will have to cope with several
major issues such as crosstalk. Since the work of Ref. 2, an
intriguing class of NEMS has been experimentally demon-
strated that could circumvent this drawback by nanoactive
feedback. In contrast to quartz-oscillatorlike architecture,3

there is no need for macroscopic external active circuit since
the nanodevice itself is placed in a self-oscillating regime.
This concept was first theoretically proposed for NEMS by
Gorelik et al.4 in the specific case of the charge shuttle and
is now observed in a large variety of experimental
configurations.2,5–9 Although the work of Ref. 2 reaches
qualitative agreement between experiment and modeling of
the self-oscillation phenomenon, it lacks simple arguments
about the origin of the instability. Here, we derive a simple
linearized model and an equivalent purely electrical circuit
that helps one getting further insight on the way to design
and scale down such an oscillator. This model is then vali-
dated by dynamical and finite element simulations. The idea
exposed in this article, with minor adaptations, could be use-
ful for other experimental geometries.

In a typical experiment, a nanowire �NW� or nanotube
with resistance RNW is attached to a tungsten tip in front of
an anode connected to the ground �Fig. 1�a��. The tip is at a
negative dc voltage −Vdc from the ground; electrons are
emitted from the apex of the nanowire by field emission and
collected by the anode. The NW starts to oscillates sponta-
neously in the transverse direction when Vdc is larger than
some voltage threshold. This system can be modeled by two
coupled differential equations �see Eqs. �1� and �2� in Ref.
2�: first, a mechanical equation that can be linearized as fol-
lows:

ẍ +
�0

Q
ẋ + �0

2x = HŪU , �1�

where x is the transverse displacement of the apex of the NW
compared to the equilibrium position �taken positive when
the NW approaches the anode�, 2��0 the resonance fre-
quency of the mechanical oscillator, Q the quality factor, and
H a positive parameter characterizing the actuation strength

by electrostatic forces between the wire and the anode. These
parameters are supposed to be relatively constant in the

range of interest. Ū is the dc voltage between the NW and

the anode and U the ac voltage. Ū is not equal to Vdc as a
result of the voltage drop through the nanowire. The linear-

ized force is the product of U and Ū because the electrostatic
force is proportional to the square of the total voltage. Sec-
ond, the linearized electrical equation reads the following:

� �IFN

�U
+

1

RNW
�U + CU̇ = −

�IFN

�x
x − C�Ūẋ , �2�

where C is the capacitance between the NW and the anode,

C� its derivative with respect to position, and IFN�U+ Ū ;x�
the field emission current described by the Fowler–Nordheim

�FN� equation IFN=A�U+ Ū�2�2 exp�−B / �U+ Ū���. The x
dependence of IFN comes from the field enhancement factor
�.

An important point to notice is that the field emission
characteristics depends on two inputs, the apex voltage and
its position, in the same way as a transistor or a vacuum tube,
but the role of the gate or grid is played by the spatial degree
of freedom x. A simple equivalent electrical circuit is shown
in Fig. 1�b�. The electromechanical resonator is represented
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FIG. 1. �Color online� �a� Schematic of the experimental configuration and
�b� schematic of the equivalent purely electrical circuit of the self-oscillation
of the nanoelectromechanical system of Ref. 2.
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by a series RLC circuit in parallel with the capacitor C of Eq.
�2�. In this well-known analogy, the motional current through

the RLC circuit is imot=C�Ūẋ and the passive components

are the motional inductance Lm=1 / �HŪ2C��, the motional

resistance Rm=�0 / �QHŪ2C�� and the motional capacitance

Cm=HŪ2C� /�0
2. The voltage across the motional capaci-

tance is proportional to x and can be used as the gate voltage
of an equivalent transistor delivering the same field emission

current for a given x and U+ Ū. The transconductance of

such transistor is ��IFN /�x�HŪ /�0
2. It brings the gain neces-

sary to sustain the self-oscillation regime and acts as a feed-
back loop.

The main parameter of the self-oscillating circuit is the
driving dc voltage above which the system spontaneously
generates the ac signal. In the following, we derive a simple
analytical formula giving the self-oscillation condition. If the
nanowire resistance RNW is smaller than the field emission
resistance ��IFN /�U�−1, to first order the voltage at the apex

Ū is Vdc and there is no self-oscillation. We consider the
opposite case RNW� ��IFN /�U�−1 because it gives a simpler
formula �the general case can be calculated straightforwardly
by the same method�. However, when the nanowire resis-
tance gets larger more power is dissipated in heating instead
of sustaining the oscillation, so that it might seem optimal to
keep RNW larger than the field emission resistance by less
than an order of magnitude. A single differential equation of
the full electromechanical system can be obtained by com-
bining Eqs. �1� and �2�, as follows:

�x� + ẍ�1 +
�0�

Q
� + ẋ��0

Q
+ HŪ2�

� ln C

�x
+ �0

2��
+ x��0

2 + HŪ2� ln �

�x
� = 0, �3�

where �=C��IFN /�U�−1 is the discharge time constant of the
electrical circuit. According to the Routh–Hurwitz criterion
this dynamical system is stable when the following:

HŪ2�� � ln �

�x
−

� ln C

�x
�1 +

�0�

Q
��

−
�0�

Q
�1

�
+ ��0

2 +
�0

Q
� � 0. �4�

From this inequality, since C and � increase with x, only the
variation in � with x favors the self-oscillation regime and
we can distinguish between two categories of terms that pre-
vent from reaching it: �i� the variation in the capacitance
with x and �ii� the relative value of � and �0

−1. The latter can
be minimized for �0�	1 as long as Q�1 �our nanowire
resonators10 routinely reach Q�105�. In these conditions, the
geometry of the device should be such that � ln�� /C� /�x
�0 to have a chance to observe self-oscillations. Finally the
threshold dc voltage at the apex for self-oscillation is the
following:

Ūso =
�0


QH � ln��/C�/�x
, �5�

and the threshold dc voltage of the power supply is Vso
dc

= Ūso+RNWIFN�Ūso ,��.

In order to check the different hypotheses made, we per-
formed numerical simulations and determined the electro-
static force, capacitance and field enhancement factor by
finite element methods �FEM�. The sample is a straight
10 �m long nanowire of radius 100 nm attached to a metal-
lic conical tip in front of a metallic plate perpendicular to the
axis of the tip. The nanowire is initially tilted by 20° com-
pared to the cone axis. The sole degree of freedom of the
nanowire is this angle that can decrease due the attractive
electrostatic force between the wire and the metallic plate.
The distance between the tip end and the plate is 60 �m.
The mechanical restoring force is taken from the calculated
rigidity of a clamped free beam with a Young modulus of
400 GPa and density of 3200 kg /m3, Q=104 and RNW
=1010 	. Further details about the simulations and a more
refined mechanical model can be found in Ref. 11. We first
simulated the spatial variation in C and � and verified that
� ln�� /C� /�x�0 for a wide range of angles around 20°, and
established that H is changing by less than 15%. The dimen-
sionless differential equations were then rewritten, their ei-
genvalues computed, and the sign of their real part 
 scruti-
nized. The real part defines the growth rate of the mode and
the solution, which is proportional to exp�
t�, decay to zero
when it is negative, so that the system is stable. On the con-
trary, 
�0 makes the system unstable and leads it into a
stable self-oscillating regime thanks to nonlinear saturating
terms. The oscillation amplitude gets larger as 
 increases.
Finally, we determined stability maps giving the parameter
regions where 
 is positive and self-oscillations possible.

Figure 2 represents the stability map of the system for
different applied dc voltages v=Vdc /Vref and different dimen-
sionless intrinsic frequencies r=�0�. Vref=400 V is the volt-
age above which RNW stops being negligible when compared
to the field emission resistance. One can point out that �i�
there is no self-oscillation for v�1, �ii� self-oscillations are
easier at higher v �the growth rate is larger and the instability
region wider�. This validates the statement that for optimal
self-oscillations RNW needs to be bigger than the field emis-
sion resistance �the field emission current increases exponen-
tially with v, so that the field emission resistance is smaller
for higher v�. This figure also clearly demonstrates that self-
oscillations are obtained at easiest for r	1.

We also calculated the stability map for various quality
factors. Equation �5� that determines the boundary between
the stable region and the self-oscillation region is in rela-
tively good agreement with the results of numerical simula-
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FIG. 2. �Color online� Stability map of a nanowire during field emission for
Q=10 000 and different normalized voltages v and dimensionless intrinsic
frequencies r.
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tions for high voltage, i.e., when �IFN /�U�1 /RNW. This
confirms the validity of the above analytical derivation.
Equation �5� shows that, as for any other NEMS device,
keeping good performance �in this case by maintaining the
operating voltage low� at the nanoscale and high frequency
requires an improvement of the capacitive coupling and the
quality factor. Finally a simple scaling calculation shows that
r decreases like the inverse of the apex-anode distance.
Downscaling thus helps one to reach the regime where r
	1. If this term become too small, or if the resistance of the
nanowire or nanotube saturates in the ballistic regime, the
device can still be operated with the help of an additional
constant resistance between the dc power supply and RNW.

In conclusion, using an electrical equivalent circuit, we
showed that the origin of self-oscillations in field emission
NEMS can be understood in terms of motional capacitance
and spatial variation in the field emission current in a feed-
back loop. An equation was derived to determine the thresh-

old voltage for self-oscillation and its output confirmed by
numerical and FEM simulations �Fig. 3�. We expect that our
simple model will demystify the mechanism responsible for
self-oscillation in field emission NEMS, as it appears that it
can be understood with simple classical electrical passive
components and one transistor. It appears then that geom-
etries like the one of Ref. 6 where the self-oscillation mecha-
nism is not yet clearly identified are indeed very similar to
ours and may be understood within the same framework.
This work opens up perspectives for the control and fabrica-
tion of low power nano-oscillators for time base and ac gen-
erators applications.
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FIG. 3. �Color online� Stability map of a nanowire during field emission for
a dimensionless frequency r=5 and different normalized voltages v and Q.
The solid line represents the self-oscillation threshold determined using
Eq. �5�.
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