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Abstract

We simulate the nonlinear behaviour of a cantilevered nanowire in field emis-
sion to understand and exploit the self-oscillations experimentally observed
in this NanoElectroMechanical System. The original coupling taking place
in this oscillator is predicted with a low-dimensional model consisting of a
bi-articulated cantilevered beam flowing electrons and immersed in an elec-
trostatic environment. We propose a simple model to set up the qualitative
nonlinear governing equations of the system and also highlight the elaborate
equilibrium between the electrostatic field, the nanowire motion and the elec-
tric field emission current. A linear stability analysis of the nonlinear static
fixed points aims at determining the instability threshold as a function of the
applied DC voltage. It is found that instability is mostly due to the competi-
tion between the field emission current dependence on the nanowire position
and the voltage. As a consequence, the emergence of flutter requires specific
external conditions such as an initial angular imperfection, a strong mechani-
cal Q factor or a high electrical resistance. Finally, a direct integration of the
nonlinear governing equations confirms the presence of high-frequency self-
oscillations, i.e. the possibility of DC/AC conversion in this autonomous
electromechanical device.
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Nomenclature

Kinematics

D Diameter of the nanowire
L Length of the nanowire
q1, q2 Absolute angular displacements
θ1, θ2 Angular displacements around the tilting position
ψ Initial angular tilting of the nanowire

Electrostatics

C, c Electrical capacitance and its dimensionless form
Cref Electrical capacitance when q1 = q2 = 0
E, e Electric field and its dimensionless form
F Electrostatic force applied on the nanowire
M1A, M2A, M2B Moments of the electrostatic forces about the two artic-

ulations A and B
m1A, m2A, m2B Dimensionless forms of the electrostatic moments
U, u Electric potential and its dimensionless form
S Boundary of the electrostatic problem
β, b Field enhancement factor and its dimensionless form
βref Field enhancement factor when q1 = q2 = 0

Mechanics

ak Rotational stiffness ratio of the interconnected springs
µ Viscous damping of the interconnected dampers
kA, kB Rotational stiffnesses of the interconnected springs
m Nanowire mass per unit length
Q Dimensionless mechanical quality factor
τ Dimensionless time scale
ϕ

1
, ϕ

2
Shapes of the first and second mechanical mode

ω Reference frequency of the oscillating nanowire
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Electricity

Ic Capacitor current
Ie, ie Field emission current and its dimensionless form
H, G, h, g Fowler-Nordheim empirical constants and dimensionless

forms
R Nanowire electrical resistance
r Ratio between electrical and mechanical time scales
U , u Voltage at the nanowire tip and its dimensionless form
V , v Applied DC voltage and its dimensionless form
Uref Field emission voltage reference
ϕ

3
Electrical mode shape

1. Introduction

Nanoelectromechanical Systems (NEMS) based on mechanical resonances
of nanostructures, such as nanotubes or nanowires, are drawing interest from
both technical and scientific communities [1]. Their extremely small dimen-
sions make them highly sensitive to external electrostatic perturbations and,
due to their outstanding mechanical properties such as strong Young mod-
ulus or high quality factor Q, [2], their mechanical response can exceed the
quality of electrical signals from purely electronic devices. As well, NEMS
oscillators have been proposed for use in ultrasensible mass detection [3] or
radio frequency for wireless communication [4].

Among the great variety of these nanocomponents, NEMS based on singly
clamped cantilevers in field emission (FE) configuration have recently proven
original capabilities [5]. In this FE configuration, a nanotube or nanowire
is connected to the cathode and a DC voltage V is applied between the
cathode and an anode positioned in the vicinity of the nanostructure (Figure
1). For a voltage Uref , the electric field at the nanowire apex, enhanced by
its tip effect, becomes sufficient to extract electrons by tunneling effect. This
quantum process results in a field emission DC current depending on the
applied voltage V , [6].

One of the originality when using cantilevered nanostructures as field
emitters is that their extreme mechanical sensitivity reveals dependence of
the FE current on the position of the emitter. The new NEMS applications
in this configuration take advantage of this original coupling between the
emitted current and the position of the emitter apex in its environment.
One can also mention that this configuration is well adapted for mechanical
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studies on nanotubes and nanowires, as the resulting patterns of the emitted
electrons give a direct projection of the apex motion on a phosphor screen
(Figure 1). This allows investigations of linear and nonlinear behaviour of
nanocantilevers [7, 8].

Figure 1: Experimental settings : nanowire in field emission

A particularly interesting application recently shown by Ayari et al. [9],
using highly resistive nanowires, has been the observation of self-oscillations
resulting from the electromechanical interactions between the electrical and
mechanical properties of the cantilever. They showed that above a crit-
ical DC voltage, the nanostructure starts to oscillate resulting in an AC
field emission current. The realization of an AC current generator at the
nanoscale simply commanded by a DC voltage has interesting potentialities
in autonomous nanosystems such as smart dust applications. From a theoret-
ical point of view, this system exemplifies an original coupling that appears
at the nanoscale between mechanical behaviour, electrostatic environment
and FE properties.

The present paper proposes nonlinear simulations to predict nonlinear
statics and dynamics of a nanowire in field emission. Inspired by the fluid-
structure interaction formalism for modelling the instability of slender struc-
tures in axial flow [10, 11], we describe a discrete model to understand and
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also make the most of the physical phenomena involved in this original na-
noelectromechanical system. Based on the first investigations by Ayari et
al. [9], we extend their model to a rigorous geometrically nonlinear one with
richer kinematics. The electrostatic problem, the mechanical behaviour and
the field emission influence are successively discussed. This work provides a
first qualitative model of a cantilevered nanowire in field emission but can
also be extended to the modelling of vibrating nanostructures so far mainly
based on linear beam theory [12].

In Section 2, we set up the general governing equations of a bi-articulated
nanowire in field emission, which is expected to be a suitable low-dimensional
model to compute qualitative results. The electrostatic environment of the
nanostructure governs the applied electrostatic forces and some essential elec-
trical properties respectively required to set up the coupled mechanical and
electrical models. The complete dimensionless nonlinear formulation of the
discrete system is given at the end of the section. We then specify the
parameters of the model related to the physical problem for further compu-
tations. The chosen kinematics leading to a low-dimensional governing equa-
tion, many discrete electromechanical parameters are determined through ex-
perimental observations of the continuous system. The remaining unknown
quantities are obtained by computing the electrostatic problem. In Section 4,
we perform the numerical simulation of a nanowire in field emission. We con-
firm the possibility of self-oscillations around the system static equilibrium.
An explanation of the physical phenomenon responsible for the instability
is suggested in appendix. A parametric study of the NEMS linear stability
allows us determining the electrical and mechanical parameters leading to
self-oscillations. Finally, implicit time integration is performed to simulate
the limit cycles and the output AC signal of the nanodevice at the instability
threshold.

2. Fully nonlinear model of a nanowire in field emission

In order to set up the governing equations of the nanowire in field emis-
sion, one needs first to sort out the strong connections between the different
physical problems contained in the system, i.e. the electrostatic, the mechan-
ical and the electrical ones. In the following, after choosing an appropriate
kinematics, we show how to compute the electrostatic problem giving us the
required variables to study further the dynamics of our nanoemitter. Indeed,
once this done, the nanowire motion and its electrical equilibrium are com-

5



pletely defined at any instant t and the dimensionless governing equations of
the electromechanical system can then be given.

2.1. Kinematics

The diagram in Figure 2.a illustrates the kinematics chosen to model the
dynamical behaviour of a cantilevered nanowire with length L and diameter
D in the field emission setup presented in Figure 1. The geometrical con-
figuration of the oscillating nanowire is described at any instant t by two
generalised coordinates q1 and q2 such that

q1 (t) = θ1 (t) + ψ,

q2 (t) = θ2 (t) + ψ
(1)

where the constant ψ is the initial angle made by the nanowire with the
z axis considered as the symmetrical FE configuration. Indeed, nanowires
being electrostatically glued on the tungsten tip, their initial positions are
generally not symmetrical [7].

(a) Kinematics of the nanowire (b) Sketch of the electrostatic problem

Figure 2: Cantilevered bi-articulated nanowire immersed in electrostatic field

Note that simulations of articulated models have been widely used as an aid
in the study of their continuous flexible counterparts in the field of dynam-
ics [10]. In accordance with the physical problem and the purpose of the
paper, this two degrees-of-freedom model is expected to be sufficient to cap-
ture the essential dynamical features of the continuous system (geometrical
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nonlinearities, instability mechanism, self-oscillations). Furthermore, since
most of the methods for analysing nonlinear systems are practicable only
for low-dimensional systems, we follow the tendency to study a simplified
discretization of the continuous system.

2.2. Electrostatic Model

In the field emission configuration (Figure 1), the applied DC voltage V
leads to an electrical potential difference U between the nanowire and the
Ultra High Vacuum environment. Thereby, external electrostatic forces will
act on the two segments of our bi-articulated nanostructure which behaves as
one armature of a capacitor. According to the FE configuration (dimensions
involved, Ultra High Vacuum chamber experiments), we consider that elec-
trostatic interactions are an order of magnitude larger than other physical
phenomenon such as gravitational or Van der Waals forces, or Casimir and
thermal effects. Electrostatic considerations are accordingly the only ones
taken in account.
The electrostatic problem consists in the determination of the electric poten-
tial field U in the vacuum domain under boundary conditions [13]. Under the
assumptions of static potentials and no electrical charges inside the domain
[14], this electrostatic problem can be reduced to the Laplace equation

∆U = 0. (2)

The unique solution of the Laplace’s equation must satisfy the Dirichlet
boundary conditions imposed by the physical situation sketched in the Figure
2.b: A constant potential U0 is imposed on the base S0, the metallic structure
composed of the tungsten tip support and the nanowire. The top surface S1

is raised to a potential U1 in order to simulate the voltage U = U1 − U0

between the nanowire apex and its environment. Finally, we impose a lin-
ear evolution between U0 and U1 on the lateral face S2. Boundaries S1 and
S2 are choosen far enough from the nanowire to fulfil the hypothesis of a
semi-infinite dielectric medium.
Once the electric potential U is defined in the whole domain, the electric field
is easily deduced [13] according to

E = −∇U. (3)

Under the classical requirement that the electric field be everywhere per-
pendicular to the surface of the conductor, the electrostatic forces can be
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computed from the field at the surface of the nanowire following

F =
1

2
ǫ0SE. (E, n) (4)

where ǫ0 = 8.85×10−12 F/m is the permittivity of vacuum and n is the outer
normal vector of the nanowire surface S. From an electrical point of view,
the capacity between the nanowire and its environment derives simply [13]
from the electric field E following

C =

∫

S
2ǫ0E.ndS

U1 − U0

. (5)

A last electrical variable provided by the electrostatic problem is the field
enhancement factor β illustrating the nanowire tip effect and involved in the
expression of the FE current. Here, β is the ratio between the electric field
magnitude at the emitter apex and the electrical potential difference U and
reads

β =
E (W ) .n

U1 − U0

(6)

where W is the point at the nanowire very end considered to be the emission
surface (Figure 2.b). The boundary value problem (2) is related to the geo-
metrical configuration of the frontier S0. According to the chosen kinematics,
all the electrostatic quantities depicted in this part depend on the nanowire
motion, characterized by the generalised coordinates q1 and q2. Moreover
the electrostatic forces F depend on potential difference U and may also
be written as F (q1, q2, U). The electrical quantities C and β actually do
not dependent on U since they are expressed in the form −∇U/U and read
C (q1, q2) and β (q1, q2).

2.3. Mechanical Model

We may now introduce the equations governing the motion of the cantilevered
nanowire in field emission. The diagram in Figure 3.a illustrates the mechan-
ical properties of the discrete model: m is the nanowire mass per unit length,
the constants k1 and k2 are the rotational stiffnesses of the rotational springs
while µ characterizes the viscous damping applied to the angular velocities q̇1
and q̇2. The quantities F 1 and F 2 are the resultants of the electrostatic forces
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F respectively on the first and second bar. They are defined by the previ-
ous electrostatic problem and also depend on the mechanical and electrical
variables q1, q2 and U .

(a) Mechanical contribution (b) Electric contribution

Figure 3: Sketches of the NanoElectroMechanical System

In order to express the governing equations directly in terms of the chosen
generalised coordinates, we use the Lagrangian Formalism. The system being
nonconservative due to friction and electrostatic forces, we use the virtual

power principle. The kinetic energy of the nanowire is naturally expressed in
terms of the generalised coordinates q1 (t) and q2 (t) as

T =
1

2
m

[

L3

6
q̇2
1 +

L3

24
q̇2
2 +

L3

8
q̇1q̇2 cos (q1 − q2)

]

. (7)

By introducing the two geometrically admissible angular velocities δq̇1 and
δq̇2, the virtual power of acceleration quantities is simply obtained from the
Lagrange formulae

A (δq̇j) =

[

d

dt

(

∂T
∂q̇j

)

− ∂T

∂qj

]

δq̇j for j = 1, 2. (8)

We now express the virtual power done by the external forces for the virtual
angular velocities δq̇j. We distinguish then between three contributions done
respectively by the restoring elastic moments of the rotational springs Pe1,
the restoring torque of viscous dampers Pe2 and the electrostatic forces Pe3.
They read
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Pe1 = −k1 (q1 − ψ) δq̇1 − k2 (q1 − q2) δq̇1 − k2 (q2 − q1) δq̇2, (9a)

Pe2 = −cq̇1δq̇1 − cq̇2δq̇2, (9b)

Pe3 = (M1A + M2A) δq̇1 + M2Bδq̇2. (9c)

According to our kinematics, the virtual power Pe3 is expressed in terms
of the moment of the electrostatic forces about the two articulations which
depend on the variables q1, q2 and U . While M1A and M2A are respectively
the torques of the resultants F 1 and F 2 about the first articulation A, M2B

is the moment of F 2 about the second articulation B.
Finally, the principle of virtual power A (δq̇i) = Pe (δq̇i)+Pi (δq̇i) for each vir-
tual variations δq̇i leads to the nonconservative Lagrange’s equations. Given
that Pi (δq̇i) = 0 in our system, the nonlinear governing equations of the
initially tilded bi-articulated nanowire read

1

6
mL3q̈1 +

1

16
mL3q̈2 cos (q1 − q2) +

1

16
mL3q̇2

2 sin (q1 − q2)

+ µq̇1 + k1 (q1 − ψ) + k2 (q1 − q2) − M1A − M2A = 0, (10a)

1

24
mL3q̈2 +

1

16
mL3q̈1 cos (q1 − q2) −

1

16
mL3q̇2

1 sin (q1 − q2)

+ µq̇2 + k2 (q2 − q1) − M2B = 0, (10b)

where M1A, M2A and M2B depend on the generalised coordinates q1, q2 and
the electrical voltage U . Equations (10a,10b) define the mechanical model.

2.4. Electrical model

In field emission configuration, the electrons extraction leads to a FE
current Ie (t) flowing inside the conducting nanowire. As a consequence, the
voltage U between the cantilevered nanostructure and its environment gov-
erning the electrostatic moments is not only given by the applied DC voltage
V , [9]. Actually, the voltage U (t) is determinated by the experimental phys-
ical constraints, coming down to the electrical circuit sketched in Figure 3.b
where notably, V is the applied DC voltage, R the nanowire resistivity, C the
nanowire capacitance, Ic (t) the capacitor current and Ie (t) the FE current.
As for the mechanical governing equation, the differential equation of the
electrical circuit is obtained through the Lagrangian formalism. Considering
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the charge q3 flowing inside the circuit as a generalised coordinate, so that
q̇3 = I is simply the electric current, the electric power done for the virtual
current δq̇3 is noted

Pel = −V δq̇3 +RIδq̇3 + Uδq̇3. (11)

From this point, it is more convenient to express Pel in term of U (t) involved
in the mechanical equation (10) through the electrostatic moments. Accord-
ing to Kirchhoff’s current law, the electric current flowing in the nanowire
reads I = Ic + Ie where Ic and Ie are given by

Ic (q1, q2, U) =
d (CU)

dt
= CU̇ + U

(

∂C

∂q1
q̇1 +

∂C

∂q2
q̇2

)

, (12a)

Ie (q1, q2, U) = Hβ2U2e−G/βU . (12b)

The capacitor current Ic is given by (12a) where the second term is due to
the dependence of the capacitance on the nanowire position pointed out in
the previous section. The current Ie is given by the field emission theory [6]
and equation (12b) is the Fowler-Nordheim formula where constants H and
G are empirical and the field enhancement factor β is defined by the previous
electrostatic problem. For the cantilevered nanoemitter in field emission, Ie
and Ic depend not only on the voltage U but on the nanowire position q1 and
q2 through the electrostatic variables β and C.
Finally, replacing the relations (12) in the virtual electric power (11) and
applying the virtual power principle for each virtual variations δq̇3 which is
simply Pel = 0, we obtain

RCU̇ +RU

(

∂C

∂q1
q̇1 +

∂C

∂q2
q̇2

)

+RHβ2U2e−G/βU + U − V = 0. (13)

where C and β depend on q1, q2 according to the previous electrostatic re-
lations (5) and (6). This nonlinear equation governs the voltage U (t) which
is the third generalised coordinates necessary to define the configuration of
our electromechanical system at each time t.

2.5. Dimensionless form

The dimensionless electrical potential u = (U − U0) / (U1 − U0) is ob-
tained by computing the Laplace equation
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∆u = 0 (14)

with the Dirichlet boundary conditions such as u = 0 on the base S0, u = 1
on the top surface S1 and so that a linear evolution between 0 and 1 is
imposed on the lateral face S2 (Figure 2.b). The dimensionless electrical
field e is the opposite gradient of u. The electrostatic moments resulting
from the dimensionless electrostatic problem are noted M0 and only depend
on the generalised coordinates q1 and q2. Let Uref be the reference voltage
above which the Fe current Ie given by (12b) is no more negligible. We
introduce the constants Cref and βref which are respectively the capacitance
and amplification factor of the nanostructure in its symmetrical position
(q1, q2) = (0, 0). Using ω =

√

k1/mL3 as a reference frequency for the
mechanical oscillator, we define the dimensionless variables:

τ = ωt, Q =

√
k1mL3

c
, u =

U

Uref

, ak =
k2

k1

, r = ωRCref ,

h = RHβ2
refUref , g =

−G
βrefUref

, ie = hb2u2eg/bu,

m = M0

U2
ref

k1

, c =
C

Cref

, b =
β

βref

. (15)

In particular, Q is the nanowire quality factor and r the ratio between the
electrical and mechanical time constants. The quantity ie is the dimensionless
form of the FE current Ie and m is the dimensionless electrostatic moment.
After simple calculations, equations (10) and (13) may be re-written in di-
mensionless form as

q̈1 +
3

8
q̈2 cos (q1 − q2) +

3

8
q̇2
2 sin (q1 − q2) +

6

Q
q̇1 + 6 (q1 − ψ)

+ 6ak (q1 − q2) − 6 [m1A + m2A]u2 = 0, (16a)

q̈2 +
3

2
q̈1 cos (q1 − q2) −

3

2
q̇2
1 sin (q1 − q2)

+
24

Q
q̇2 + 24ak (q2 − q1) − 24m2Bu

2 = 0, (16b)

12



rcu̇ + ru (c,1q̇1 + c,2q̇2) + hb2u2eg/bu + u − v = 0 (16c)

where c,j = ∂c/∂qj for j = 1, 2. Equations (16) are the nonlinear dimen-
sionless governing equations of a cantileverd bi-articulated nanowire in field
emission. The dynamic behaviour of this NanoElectroMechanical System is
determined by computing unknown generalised coordinates q1, q2 and u at
any time t knowing that all the other quantities are defined. Indeed, variables
m1A (q1, q2), m2A (q1, q2), m2B (q1, q2), c (q1, q2) and b (q1, q2), responsible for
the electromechanical interactions, are determined after solving the indepen-
dent dimensionless electrostatic problem (14). As for the remaining electrical
or mechanical parameters, they are directly derived from experimental data
and presented in the following section.

3. Values of parameters

In this section, the mechanical and electrical model parameters are defined
in order to simulate and study the self-oscillations of a nanowire in field
emission. It will also specify the order of magnitude of the involved physical
quantities.

3.1. Electromechanical parameters

The dimensions and the material properties of the investigated nanostruc-
tures are completely given by the vapor-solid growth mechanism of the sili-
con carbide (SiC) nanowires. According to their typical experimental aspect
ratio, we assume a length L = 10 µm and a circular cross section with
diameter D = 200 nm (giving a area moment of inertia In = πD4/64).
The nanowire material being almost equivalent to pure carbon, the den-
sity is ρ = 3200 kg/m3 and leads to a mass per unit length expressed as
m = ρπ (D/2)2 = 1 × 10−10 kg. Young’s modulus E is determined by field
emission [7] and is taken as E = 400 GPa. At room temperature and in
an Ultra High Vacuum chamber, the mechanical quality factor of a singly
clamped nanowire can reach 160000 [2]. In our simulations, we prefer a
smaller less exceptional Q = 20000. The Fowler-Nordheim constants intro-
duced in (12b) are experimentally found as H = 2.73 × 10−24 Am2V−2 and
G = 4.4145 × 1010 mV−1 [9]. Finally, the SiC nanowires are highly resistive
and their electrical resistance can be taken as R = 1010 Ω.
Coming back to the discrete model determined in the previous section, one
has to adapt the given experimental quantities to the actual parameters nec-
essary in the governing equation (16). The electric constants R, H and G
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can directly be used in the model, and the same is true for the mechanical
parameters L or Q. However, the springs stiffnesses and the rigid bars mass
have to model the mechanical behaviour of the continuous structure charac-
terized by E, In and its mass. Because of our low-dimensional discretization,
we will not capture all dynamical experimental features. In this paper, we
assume the mass per unit length m to be equal to the experimental one. In
order to keep a good static model, we impose that the static deflection of the
cantilevered nanowire under an end load F0 is equivalent for the continuous
and its discrete counterpart. According to [15], it comes simply

F0L
3

3EI
=
L

2

F0L

k1

+
L

2

F0L

2k2

. (17)

In order to ensure consistency in the dynamic model, we constrain the ratio
between the natural frequencies of the clamped-free beam first two modes to
be equivalent in the discrete and continuous model. While this ratio reads
ω2/ω1 = 6.3 in the continuous case [15], the discrete case is obtained by
solving the set of equations

[

1
6
mL3 1

16
mL3

1
16
mL3 1

24
mL3

](

q̈1
q̈2

)

+

[

k1 + k2 −k2

−k2 k2

] (

q1
q2

)

=

(

0
0

)

. (18)

Equation (18) is directly derived from the linearization of the mechanical
equations (10) when no damping, no initial tilting angle ψ and no electro-
static forces are considered. By simply respecting the required ratio between
the eigenfrequencies of equations (18), we obtain the desired parameter which
are in our specific case k1 = 2.36EI/L and k2 = 2.06EI/L., i.e. a stiffness
ratio ak = 0.873.

3.2. Electrostatic variables

The electrostatic variables c, b and m are not obtained directly from the
experimental data but through the electrostatic problem given in section
2.2 and they depend also strongly on the nanowire aspect ratio L/D. The
determination of these parameters and their related quantities such as r,
Uref , βref and Cref , are described in the following.

The electrostatic problem sketched in Figure 2 and accounted for the
dimensionless Laplace equation (14) is computed using the finite element
software Cast3m [16]. Solving this equation for different set of generalised
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angular displacements (q1, q2) yields a discrete map of the dimensionless elec-
trostatic quantities in the (q1, q2) space. A polynomial regression is then suffi-
cient to define the continuous field enhancement factor b (q1, q2), the electrical
capacitance c (q1, q2) and electrostatic moments m (q1, q2) that are necessary
for the further numerical analysis of the governing equations.

(a) Outside view of the electrostatic box (b) Nanowire: q1 = 10◦ and q2 = −4◦

Figure 4: 3D Finite Element model of the electrostatic boundaries

The vacuum chamber and the boundary surfaces S0, S1 and S01 are gener-
ated using 3D elements (20 nodes hexahedral) and are represented in Figure
4. According to our kinematics, the cantilevered nanowire of length L is
modelled by two cylindrical bars with diameter D making an absolute angle
q1 and q2 with the symmetrical configuration (Figure 4.b). The nanowire
apex is represented by a perfect semi-sphere oriented following the upper bar
direction. Due to the large scale ratio between the structure and its envi-
ronment, electrostatic phenomena will take place mostly in the vicinity of
the nanowire. As a consequence, the regular mesh has to be refined nearby
the structure but relaxed far from it to keep reasonable computation times.
Finally, the solution of the dimensionless Laplace equation (14) is discretized
with quadratic shape functions in order to correctly model the electrostatic
field evolution near the nanowire apex. The system of linear equations arising
from the approximation of (14) is solved using Crout method [17].

A typical electric potential (for q1 = 10◦ and q2 = −4◦) is shown in
Figure 5.a for a cross-section of the vacuum chamber in the vicinity of the
bi-articulated nanowire. Most of the change in the scalar field u takes place
close to the nanowire. As a consequence, the electric field e = −∇u, is
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localized all around the structure (Figure 5.b). Due to the large value of the
aspect ratio, e is concentrated at its apex as expected (tip effect).

(a) Evolution of electric potential (b) Evolution of electric field magnitude

Figure 5: Electostatic fields nearby the nanowire for q1 = 10◦ and q2 = −4◦

According to the dimensionless form of the electrostatic problem, the field
enhancement factor β is just the magnitude of the electric field at the pole
of the semi-sphere while the electric capacitance C is the total charge of
electrons on the nanowire given by (5). The continuous functions b (q1, q2)
and c (q1, q2) are obtained by applying a second order polynomial regression
to their discrete value computed for hundred values of (q1, q2) in the range
[−10◦, 10◦]. They read

b (q1, q2) = −0.058q2
1 − 0.074q2

2 + 0.019q1q2, (19a)

c (q1, q2) = −0.105q2
1 − 0.06q2

2 + 0.082q1q2 (19b)

given that βref = 1.032 × 107m−1 and Cref = 5.192 × 10−17 F for the sym-
metrical position (q1, q2) = (0, 0). These electrical functions are maximal for
the symetrical position (0, 0) and decrease quadratically when the nanowire
moves away from it. Note that for practical purpose, the nanowire apex is
not perfectly smooth but made up of several protrusions which are the real
field emitters. According to classical electrostatic theory [13], βref has also
been multiplied by 3 to take in account the electric field amplification due
to a hemispherical protrusion. Once these quantities computed, the ratio
of time constants reads simply r = ωRCref = 4.458. The voltage reference
Uref corresponds to the emergence of the FE current ie inside the emitter.
For practical purposes, it is chosen so that ie > 0.01 when U > Uref and is
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Uref = 400 V in our case. Below this reference value, the FE current given
by the Fowler-Nordheim formula (12b) is negligible due to the exponential
term e−G/βU . The shape of the dimensionless current Ie in the (q, u) space is
given in appendix A (Figure 10).

The electrostatic forces derive from the electric field e according to (4).
Two particular features can be made out. First, the tip effect pointed out
in Figure 5.b introduces strong partial following [18] pulling forces at the
nanowire apex. Second, the symmetry of the electric field being broken by
the leaning nanowire, the resultant electrostatic forces are restoring forces
trying to bring the structure back to its symmetrical position. The electro-
static moments m1A, m2A and m2B about the two articulations arise from
the vector product between the electrostatic forces and their distance with
the considered articulation. The coefficients of the second order polynomial
regressions of the discrete value of m1A, m2A and m2B computed in the (q1, q2)
space are given by

m1A (q1, q2) = 0.026q1 − 0.051q2, (20a)

m2A (q1, q2) = −0.117q1 + 0.054q2, (20b)

m2B (q1, q2) = 0.008q1 − 0.029q2. (20c)

The evolution of the moments is simply linear and their signs are in
agreement with the “restoring forces” properties. Moreover, the magnitude
of the moments decreases with the generalised coordinates (q1, q2) down to
the symmetrical position (0, 0) where they cancel.

4. Numerical results

4.1. Computation of the static position

The static equilibrium of the bi-articulated nanowire, later called the
base state, depends on the constant applied voltage V and is obtained by
computing the fixed points (q0

1, q
0
2, u0) of system (16):

(

q0
1 − ψ

)

+ ak

(

q0
1 − q0

2

)

− [m1A + m2A]u2
0 =0, (21a)

ak

(

q0
2 − q0

1

)

− m2Bu
2
0 =0, (21b)

v − u0 − hb2u2
0e

(g/bu0) =0. (21c)
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In this nonlinear set of equation, the dimensionless electrical and mechan-
ical quantities have been defined in Section 3 where the continuous functions
b (q0

1, q
0
2) and m (q0

1, q
0
2) are given by (19) and (20). The base state branch

[19] deriving continously from the base state (q0
1, q

0
2, u0) = (ψ, ψ, 0) at for

v = 0, is determined by progressively increasing the control parameter v.
The problem f (q0

1, q
0
2, u0) = 0 is solved using Newton-Raphson method for

each step v with the initial guess coming from the previous step.
For an initial tilting ψ = 20◦, we plot the evolution of fixed points

(q0
1, q

0
2, u0) against v in Figure 6. Two disctinct behaviours can be clearly

removed from the smooth branches. For a constant applied voltage V lower
than the voltage reference Vref (i.e. v < 1), the FE current Ie given by the
Fowler-Nordheim formula (12b) is negligible (no emission). Thus, accord-
ing to the electrical equation (21c), the voltage at the nanowire apex reads
directly u0 = v (Figure 6.b). The restoring electrostatic moments being pro-
portional to u2

0, the bi-articulated nanowire is almost quadratically coming
back to its symmetrical position (Figure 6.a).
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Figure 6: Evolution of the fixed points
(

q0
1
, q0

2
, u0

)

against v for ψ = 20◦

In emission configuration, i.e. for v > 1, the FE current Ie is no longer
negligible and increases exponentially with u0, following the Fowler-Nordheim
equation. Due to the nanowire electrical resistance, a supplementary volt-
age behaving exponentially as Ie appears inside the electrical circuit model
by (21c). As a consequence, the voltage u0 between the nanowire and its
environment saturates when increasing v (Figure 6.b). The electrostatic mo-
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ments saturate as well and the same is true for the evolution of the generalised
coordinates (q1, q2) (Figure 6.a).

4.2. Stability of the static solutions

We consider the perturbation expansions of the form q (τ) = q0 + ǫq (τ)
and u (τ) = u0 + ǫu (τ). Substituting these expansions into the dimensionless
governing equation (16) and equating the first power of ǫ, we express the
linearized governing equation around the static equilibrium (q0

1, q
0
2, u0)

q̈1 +
3

8
q̈2 cos

(

q0
1 − q0

2

)

+
6

Q
q̇1 + 6 (q1 − ψ) + 6ak (q1 − q2)

− 6u2
0

2
∑

j=1

[m1A,j + m2A,j] qj − 12u0 [m1A + m2A] u = 0, (22a)

q̈2 +
3

2
q̈1 cos

(

q0
1 − q0

2

)

+
24

Q
q̇2 + 24ak (q2 − q1)

− 48u0m2Bu − 24u2
0

2
∑

j=1

m2B,jqj = 0, (22b)

rcu̇ + ru0

2
∑

j=1

c,j q̇j + (1 + ie,u) u +
2

∑

j=1

ie,jqj = 0. (22c)

The dimensionless FE current ie, the electrical capacitance c and electro-
static moments m are continuous functions of (q0

1, q
0
2) according to (19) and

(20) obtained from the electrostatic problem. Their partial derivatives with
respect of qj are denoted by the subscript ( ),j and defined at (q0

1, q
0
2). In

particular, derivatives of the FE current are determined with b (q0
1, q

0
2) given

in (19) following

ie,j =
i0e
b2

(

b,jb− g
b,j
u0

)

, ie,u = i0e

(

2

u0

− g

bu2
0

)

, i0e = ie
(

q0
1, q

0
2, u0

)

(23)

and where the subscript ( ),u denotes the derivative with respect to u.
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Equation (22) may be rewritten in the physical space Z (τ) = [q1 q2 u]T

in the more compact way

MZ̈ (τ) + DŻ (τ) + KZ (τ) = 0, (24)

where M, D and K are respectively the mass, damping and stiffness matrix of
the coupled system (22). The stability of the base state branches (q0

1, q
0
2, u0)

is reached by stating the perturbation Z (τ) in the form

Z (τ) = ϕesτ with ϕ =
[

q
A
1 q

A
2 u

A
]T
, (25)

where the characteristic exponent s = σ + iω leads to the decay rate σ and
the dimensionless frequency ω of the eigenmode ϕ. For practical purpose,
the eigenproblem arising from (24) is solved in the phase space W (τ) =
[q1 q2 u q̇1 q̇2]

T where (24) becomes

BẆ (τ) − AW (τ) = 0 (26)

and W (τ) = Φesτ so that the computed eigenproblem reads

[sB − A] Φ = 0 with Φ =
[

q
A
1 q

A
2 u

A sqA
1 sq

A
2

]T
. (27)

For each value of the control parameter v, the fixed points (q0
1, q

0
2, u0) are

computed using (21) so that the linearized governing equation (22) is com-
pletely defined. The eigenmodes ϕ and their associated eigenvalues s are
then computed for each v with (27).

For v = 0, the electromechanical system (22) is totally uncoupled given
that u0 = i0e = 0. The first eigenmodes ϕ

1
and ϕ

2
are the mechanical modes

of the bi-articulated nanowire of the form ϕ =
[

q
A
1 q

A
2 0

]T
. These entities are

respectively the classical first and second bi-articulated modes with natural
frequencies ω1 and ω2 given in Section 3 and where the decay rates σ1 and σ2

are linked to the quality factor Q. The third eigenmode ϕ
3

is the electrical
mode of the RC circuit formed by the nanowire. This stationary mode
(ω3 = 0) is associated with the strong decay rate σ3 = −1/RC.
When increasing v, the purely mechanical and purely electrical modes com-
bine into electromechanical modes. The electrical contribution u

A in the
oscillating modes ϕ

1
and ϕ

2
grows progressively and the eigenvalues s vary.

In the same way, the mechanical contributions q
A
1 and q

A
2 increase in the

stationary mode ϕ
3

but the decay rate σ3 is strongly decreasing. Thus, the
interesting physical phenomenon will be contained in the first mode shapes
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ϕ
1

and ϕ
2
. In the following, only the natural frequencies and decay rate of

these first two modes are investigated in order to determine the stability of
the fixed points plotted in Figure 6.

The evolution of the dimensionless eigenvalues s against v for a can-
tilevered bi-articulated nanowire in field emission is displayed in Figure 7
for the situation of interest. The increase of the natural frequencies showed
in Figure 7.a accounts for the strong electrostatic pulling coming from the
tip effect in field emission (already expected in Section 3.2). As in Section
4.2 for the computation of fixed points, two distinct behaviours are observed
depending on the applied voltage V compared to the field emission reference
voltage Uref . Indeed, the saturation of the voltage u0 illustrated in Figure 6.b
and due to the FE current emergence is directly reflected in the electrostatic
pulling forces, i.e. in the geometric stiffness.
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Figure 7: Linear vibratory behaviour of the static equilibrium against v

According to the variation of the decay rate given in Figure 7.b, the first
mode ϕ

1
becomes linearly unstable for a low voltage v, highlighting thereby

the qualitative agreement between the bi-articulated nanowire modelling and
the experimental observations made in [9]. As above, it is possible to define
two domains in the decay rate evolution, separated by an inflexion point
located at v = 1, indicating that the field emission must be involved in
the destabilization process. A simpler kinematic model (straight nanowire),
given in appendix A, may be used to approximate this FE instability mech-
anism. Notably, the analytical form of σ (v) points out the interplay of the
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electromechanical parameters triggering such phenomenon.

4.3. Stability domain

By computing the eigenproblem (27) for different set of dimensionless
parameters, we obtain the stability map of the cantilevered bi-articulated
nanowire in field emission. Figure 8 shows the decay rate of the more prej-
udicial mode ϕ

1
in the dimensionless spaces (v, ψ), (v,Q) and (v, r). The

white regions are related to σ < 0 and are also refered as stability regions
while the dark ones display the decay rates σ > 0, i.e. the instability regions
where the hue illustrates the magnitude of σ. The numerical parameters used
in the computations are those defined in Section 3, ψ = 20◦, Q = 20000 and
r = ωRCref = 4.458.

Figure 8.a represents the stability map of the NanoElectroMechanical
System when varying the initial angle ψ and shows that a minimum angular
imperfection is needed to trigger the instability. Actually, if the nanowire
position (q0

1, q
0
2) is too close from its symmetrical position (0, 0), the FE cur-

rent dependence on (q1, q2) is not sufficient to counterbalance the stabilizing
terms ie,u and c,j given in equation (22). Indeed, for a given u0, ie (q0

1, q
0
2, u0)

is maximal at (q0
1, q

0
2) = (0, 0) and decreases quadratically when q0

1 and q0
2

increase according to (23) and (19). Its derivatives are also larger for high ψ.
Figure 8.b illustrates the influence of the mechanical Q factor on the

stability. Once again, a minimum quality factor is required to destabilize
the system. Indeed, when decreasing Q, the decay rate of the first mode
given in Figure 7.b is shifted to a smaller magnitude. Thus, for “small”
Q, the maximum value of σ (v) due to the stabilization of ie,u is negative
and no instability can occur. Note that the high numerical Q factor causing
instability are in good agreement with the experimental ones [2].

Finally, the last stability map investigated in this section is given in Figure
8.c and highlights the influence of the time constant ratio r = ωRCref on
the nanowire stability. The system is unstable only if the time constant of
the mechanical oscillator and electrical RC circuit are of the same order of
magnitude. In fact, if this condition is not fulfiled, the energy associated
with the destabilizing electrical term ie,q (appendix A) is no longer supplied
to the first mechanical mode. Figure 8.b seems to be the most relevant
numerical results to explain the lack of self-oscillations observed when using
the field emission configuration with carbon nanotubes since they have an
electrical resistance of approximately 105 Ω leading to a time constant ratio
r = 4.458 × 10−5.
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Figure 8: Stability maps of the bi-articulated nanowire in field emission

4.4. Limit cycles

In this last part, we investigate the nonlinear dynamics of the bi-articulated
nanowire in field emission. The purpose is to determine the nanowire equi-
librium after initial pertubations of the base state branches given in Figure
6. This equilibrium is numerically simulated by directly integrated the gen-
eralised coordinates q1 (τ), q2 (τ) and u (τ) from the dimensionless governing
equation (16). For practical purpose, this fully implicit differential equation
is expressed in the form
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Figure 9: Steady-state dynamic response for v = 1.55 and ~Y (0) = [θ10 θ20 U0 0.01 0]

f
(

τ, Y , Ẏ
)

= 0 with Y = [q1 (τ) q2 (τ) u (τ) q̇1 (τ) q̇2 (τ)]T . (28)

The differential system (28) is solved for an applied DC voltage v and
the initial conditions q1 (0), q2 (0) and u (0) are the fixed points q0

1, q
0
2 and u0

computed from equation (21). The initial perturbations are applied on the
initial angular velocities φ1 (0) = q̇1 (0) and φ2 (0) = q̇2 (0). The electrical
quantitites b, c and m are the polynomial regressions of the generalised coor-
dinates q1 and q2 given in (19) and (20). Since they are continuous functions,
the problem (28) is well defined for any τ .
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Figure 9 represents the dynamic response of the bi-articulated nanowire in
field emission after damping of the transient for a voltage v slightly superior
(0.1 %) to the instability threshold given in Figure 7.b. The limit cycles
plotted in the phase space of the Figure 9.a illustrate the nanowire vibration
around its static equilibrium position. The electromechanical model thus
seems to account for the experimental self-oscillations observed in [9]. Figure
9.c shows the Power Spectral Density of the steady-state responses q1 (τ) and
q2 (τ). At threshold, the mechanical response is harmonic with a frequency
ω given by the linear analysis in Figure 7.a.

Figure 9.b displays as well the self-oscillations of the electric voltage u (τ)
around its static equilibrium. This time, the secondary harmonic of the
steady-state response is not negligible beside the fundamental one ω. In
agreement with experimental observations, the electrical signal contains a
2ω component [9]. Indeed, u (τ) is oscillating with regard to the absolute
position (q1, q2) and performs also two cycles during a nanowire oscillation
period. According to the Fowler-Nordheim formula (12b), the FE current
ie (τ) is oscillating at the same frequency as u (τ) illustrating the possibility
of DC/AC conversion in this unforced device.

5. Concluding remarks

The study of the basic mechanical phenomena in NEMS and how they
can be best controlled by external parameters is of prime importance in view
of exploiting their possibilities in devices especially because new effects come
into play at the nanoscale that lead to both complications and opportunities.
In particular, the possibilities of self-oscillating nanowires in field emission
shown by Ayari et al. [9] is an important step toward making NEMS active
rather than passive devices but deserves further investigations to understand
and also control this physical phenomenon.

This paper gives a low-dimensional model to simulate the nonlinear be-
haviour of a cantilevered nanowire in field emission. The numerical method
was presented with a bi-articulated nanowire but can easily be adapted to
another kinematics for obtaining quantitative results rather than qualitative
ones. We here highlighted the ins and outs of this electromechanical system
resulting from an original coupling between the nanostructure nonlinear mo-
tion, its electrostatic environment and electrical contributions coming from
the FE current emergence. For a given applied voltage, the linear stability
of the static equilibrium results from the interplay of the FE current depen-
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dence on the nanowire absolute position and its dependence on the emitter’s
voltage. This interplay, illustrated by the Fowler-Nordheim formula, is very
sensitive to external parameters and the same is also true for the emergence
of oscillations. We showed that a minimum initial angular tilting, a high
Q factor and a sufficiently high electrical resistance are required to trigger
instability.

For a threshold of applied voltage, the direct integration of the nonlin-
ear electromechanical governing equations simulates the limit cycles of the
system pointing out the possibility of DC/AC conversion in this electrome-
chanical device. The dimension of the electromechanical system (16) and its
strong linearities are sufficient to display complex behaviour of the limit cy-
cles when increasing the control parameter v [19]. Future work would focus
more on this original Hopf bifurcation to improve the physical understanding
of the self-oscillations.

A. Simplified model for the Field emission instability

A simpler kinematic model can be used to approximate the FE instabil-
ity by setting q (t) = q1 (t) = q2 (t) at any time t (straight nanowire case).
Even if this basic model contains a poorer kinematics than its two degrees-
of-freedom counterpart (specially not taking in account follower forces), it
is sufficient to capture properly the mean features of the instability mecha-
nism. Deriving from equation (21), the fixed points (q0, u0) of the straight
cantilevered nanowire in field emission satisfy the two degrees-of-freedom
electromechanical equations

v − u0 − hb2u2
0e

(g/bu0) =0 (A.1a)

q0 − ψ − mAu
2
0 =0 (A.1b)

where the dimensionless moment mA (q0) comes from the external electro-
static forces applied on the straight nanostructure. Figure 10 displays the
evolution of the dimensionless FE current in the (q, u) space given by the
Fowler-Nordheim formula ie = hb2u2

0e
(g/bu0) where b (q0) is computed from

the electrostatic problem with a straight nanowire. The electromechanical
parameters used in Figure 10 are given in Section 3. The linearized governing
equations around (q0, u0) derive from (22) and read
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rcu̇ + (1 + ie,u) u = −ru0c,qq̇ − ie,qq (A.2a)

q̈ +
3

Q
q̇ +

(

3 − 3ψ − 3u2
0mA,q

)

q = 6u0mAu (A.2b)

where the subscripts ( ),q and ( ),u respectively represent the derivatives with
respect of q and u. Finally, by expressing the coupled equation (A.2) in the

modal basis Z (τ) = [q (τ) u (τ)]T =
[

q
A

u
A
]T
esτ , we find for the decay rate

of the mechanical prevailing mode ϕ
1
:

σ (v) = − 3

Q
+ Γ (v) (A.3a)

with Γ (v) =
6ru0mA

r2ω2 + (1 + ie,u)
2 × [ie,q − (1 + ie,u)u0c,q] . (A.3b)
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Figure 10: Evolution of the dimensionless FE current for the straight nanowire

Relation (A.3) governs the stability of the straight nanowire static equilib-
rium against v implicitely through the dependence of the fixed points (q0, u0)
given by (A.1)). It can also be qualitatively extended to the decay rate of
the first mode of the bi-articulated model given in Figure 7.b and serves as
a support for the understanding of the stability maps in Figure 8.
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For v < 1, there is no field emission. The FE current and its partial
derivatives ie,q and ie,u are negligible (Figure 10). The only stabilizing term
in relation (A.3) comes from the capacitance dependence on q and the decay
rate decreases when v increases. This behaviour is in agreement with the
evolution of the decay rate of the first mode given in Figure 7.b.

For v > 1, i.e. in field emission configuration, the decay rate (A.3) de-
pends on the competition between the destabilizing term ie,q and the stabiliz-
ing terms ie,u and c,q. At the begining of the emission, ie,q and ie,u, given by
(23), are of the same order of magnitude and the instability can occurred if
c,q is not too large as in Figure 7.b. For higher voltage, since ie,u is increasing
faster than ie,q, the FE destabilizing effect becomes negligible and σ (v) tends
to a maximal value before decreasing again due to the stabilizing terms ie,u
and c,q.
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