
LETTERS
PUBLISHED ONLINE: 20 FEBRUARY 2011 | DOI: 10.1038/NPHYS1925

Leidenfrost on a ratchet
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As discovered by Leidenfrost, liquids placed on very hot
solids levitate on a cushion of their own vapour1–3. These
model hovercrafts are remarkably mobile: placed on a hot
ratchet, a droplet not only levitates, but also self-propels, in
a well-defined direction, at a well-defined velocity4 (typically,
10 cm s−1). The challenge is to understand the origin of the
phenomenon, which contrasts with other situations where an
asymmetry in the solid/liquid contact was used to generate
liquid self-propulsion5–15. We consider Leidenfrost solids that
directly sublimate on hot substrates, and show that they also
self-propel on ratchets. This leads to a scenario for the motion:
the vapour flow escaping below the Leidenfrost body gets
rectified by the presence of asymmetric textures, so that a
directional thrust drives the levitating material. Using fishing
lines to catch drops, we measure the force acting on them,
and discuss both the driving force and the special friction
generated by the textures.

Self-propelling fluidic devices have received special attention
over the past few years because of their unique ability to displace
liquid at small scales without an external force. These devices can
be used to chemically treat a solid5–8, to direct and concentrate
liquid, for example in condensers9, or to drive compounds, as
observed with the phalarope, a bird that drives its prey mouthward
encapsulated in water15. In a self-propelling situation, asymmetry is
the primary cause of motion. This asymmetry can be provided by a
contrast in wettability, possibly maintained by a chemical reaction,
a temperature gradient or geometrical effects10–15. However, the
resulting capillary force is comparable to the sticking force arising
from the presence of defects on the solid, so that motion must
often be triggered by injecting energy into the system, using
vibrations for example16–18.

In this context, the system discovered in 2006 by Linke et al. is
particularly appealing4. There the authors considered Leidenfrost
non-stick drops levitating on hot solids, in the film-boiling
regime19, and showed that these drops self-propel if asymmetric
teeth are present on the solid. The teeth have millimetric lengths
and heights of typically 150 µm. The solid is heated well above the
Leidenfrost temperature at which the vapour film builds up, so
that the tips of the teeth do not induce boiling. Drops on these
hot ratchets accelerate and reach a constant velocity of the order of
5–15 cm s−1 (ref. 4). They follow the direction such that they climb
the steps, as seen in Fig. 1. The motion is observed provided that
the drop is larger than the tooth size: here wemainly consider drops
with radii between 3mm and 1 cm, for which the liquid is flattened
by gravity, as observed in Fig. 1.

Many effects can a priori be responsible for the propulsion, as
guessed from Fig. 1. First, the base of the drop is deformed by
the presence of the ratchet below, which induces a modulation of
its curvature and consequent Laplace pressure gradients4. Second,
a wave propagates from the trailing edge to the leading edge
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Figure 1 | The device of Linke et al. A drop deposited on a hot ratchet (of
temperature much higher than the boiling temperature of the liquid, so that
a vapour film separates the solid from the liquid) self-propels in the
direction indicated by the arrow. Here the drop has an equatorial radius
R= 3 mm. The ratchet is made of brass and brought to a temperature
T= 350 ◦C, much greater than 200 ◦C, the Leidenfrost temperature for
ethanol, at which boiling would be observed. The teeth have a length of
1.5 mm and a height of 300 µm. After a short transient regime of
acceleration, the drop moves at a constant velocity V= 14 cm s−1.

of the drop, making the transport of matter possible in the
direction of its motion. Third, a Leidenfrost drop is likely to
oscillate spontaneously20; for each elementary rebound, part of
the kinetic energy can be transferred from the vertical to the
horizontal direction because of the slope of the teeth. Fourth,
the Marangoni effect related to temperature differences might
cause a displacement, as seen in Marangoni-levitating drops heated
asymmetrically using a light source21. Fifth, as the drop loses
material, this gas flow might provoke a motion provided it is made
directional (or rectified) by the presence of the teeth.

It is crucial to note that the first four possibilities above are
related to the deformability of the moving body, that is, to its
liquid nature; hence the question arises whether a motion is still
possible using a levitating solid instead of a liquid. It turns out
that one solid is particularly suitable for such an experiment:
so-called dry ice, which is solid carbon dioxide, has the property
to sublimate at atmospheric pressure. The sublimation point is
−78.5 ◦C, and the ice density is 1,500 kgm−3. We modelled disks
of dry ice, the centimetric radii and millimetric thicknesses of
which are comparable to those of drops. These disks were deposited
on the hot ratchet (T = 350 ◦C) used previously, producing the
effects shown in Fig. 2.
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Figure 2 |Dry ice propulsion. Disk (millimetric thickness, centimetric
diameter) of solid carbon dioxide on a hot ratchet (T= 350 ◦C): this
Leidenfrost solid (the dry ice directly sublimates), starting from rest (first
picture), self-propels, as observed for a liquid, and in the same direction.
The bar indicates one centimetre and the time interval between two
successive photos is 300 ms.

Dry ice indeed levitates and moves in the same direction as
Leidenfrost drops (see Fig. 1). The ice disk is driven by a constant
force, as deduced from the constant acceleration in this start up
regime. Hence, even Leidenfrost solids self-propel on hot ratchets,
implying that the motion is not necessarily related to liquid
surface deformation. We can thus assume vapour production to
be the primary cause of motion. Whereas vapour escapes in an
isotropic way on a flat solid, its flow can be made anisotropic
by the presence of a ratchet. For typical values of the different
parameters (gas density ρ ∼ 1 kgm−3, viscosity η ∼ 10−5 Pa s,
radial escape velocity U ∼ 1m s−1 and film thickness h of 100 µm
(refs 1–3)) the Reynolds number Re = ρUh/η is of the order
of 10, so that there is no time reversibility as the gas flows.
As a consequence, this flow can be asymmetric, as known in
hydraulics in the context of singular pressure loss: fluid flows are
not symmetric when entering a sudden contraction or emerging
from it22. As the gas moves towards the step, that is towards
a sudden contraction in the fluid channel, the flow resistance
is higher than in the reverse direction23. As a consequence, the
vapour will mainly escape along the smallest slopes of the texture,
which propels the Leidenfrost body in the direction shown in
Figs 1 and 2 (jet thrust). This interpretation was confirmed by
forcing contact between the hot ratchet and a disk of dry ice,
thus printing the tooth pattern on the bottom of the disk, and
observing a similar motion with this textured disk on a hot flat
solid. Note that the size R of the moving object is assumed
larger than the tooth length, so that an asymmetric vapour flow
can indeed occur—a condition emphasized as being necessary to
observe motion4.

IfM
o
is the mass of gas ejected per unit time, the force propelling

the object will scale as M
o
1U , where 1U is the difference of gas

velocity between the two directions. This quantity will depend on
the exact shape of the teeth (the more symmetric they are, the
smaller 1U ) and on the ratio between the film thickness h and
the step height (the larger h, the smaller the effect of the ‘channel
constrictions’, and thus the smaller1U ). As we expect1U to scale
as U , we shall write 1U = αU , where the number α describes the
degree of flow asymmetry22. In our case, h is smaller than the step
height and the teeth are very asymmetric, so that we expectα to be of
order unity. It should be noted that some of the gas escapes laterally
and does not contribute to the propulsion. This three-dimensional
effect will reduce the numerical coefficient in the law of propulsion,
but will not affect the scaling laws.

To obtain amore quantitative understanding of the driving force
F and how it varies with the drop size, we need to evaluate both
M
o
and the radial gas velocity U . We consider a large Leidenfrost

drop flattened by gravity, such that the base radius can be identified
with the equatorial radius R defined in Fig. 1. The drop floats on
a vapour cushion of thickness h, and conservation of matter can
be written as:

M
o
∼ ρhRU (1)

The amount of matter evaporated per unit time results from a
classical energy balance. After a short transient regime (generally
smaller than 1 s), the temperature of a Leidenfrost body reaches its
boiling temperature, so that further heat supplied by the substrate
is mainly used to drive the phase change: in this stationary regime,
the temperature difference 1T between the solid and the liquid is
constant. It has been shown that conduction dominates the heat
transfer2, so the energy balance can bewritten per unit time as:

M
o
L∼ (κ1T/h)R2 (2)

where we denoted the thermal conductivity of the vapour as κ
and the latent heat of evaporation as L. In addition, we assume
that thermal exchanges and evaporation mainly take place on the
surface area R2 facing the hot solid. Furthermore, a Leidenfrost
body of height H and density ρo squeezes the film by imposing
a pressure ρogH . In the lubrication approximation (h� R), the
resulting flux is:

M
o
∼ (ρh3/η)ρogH (3)

The stationary vapour film is fed by evaporation at the rate at which
vapour escapes2,3. Equations (2) and (3) can be equated, which
yields a relationship between the film thickness h and the drop
radius R:

h∼ a1/2R1/2 (4)

with a= (κη1T/LρρogH )1/2. For drops larger than the capillary
length, the liquid thickness H becomes independent of the drop
size and is set by the capillary length, that is, a few millimetres for
ordinary liquids. Typical values for the other parameters are: κ ≈
0.03Wm−1 K−1, η ≈ 2× 10−5 Pa s, L≈ 106 J kg−1, ρ ≈ 103 kgm−3
and ρo≈ 103 kgm−3. Hence, we find a≈ 3 µm, which, for radii R of
a fewmillimetres, yields a film thickness h on the order of 100 µm, as
observed experimentally3. Combining equations (3) and (4) gives
the M

o
(R) variation:

M
o
∼ ρa3/2R3/2/τ (5)

where τ = η/ρogH is the characteristic viscous relaxation time of
the film associated with an applied pressure of ρogH—a time of
the order of 1 µs. Equation (5) shows that M

o
increases as R3/2, so

that we can express the force F ∼M
o
U likely to drive the drop

on the ratchet. Combining equations (1), (4) and (5), and noting
Fo≈ ρa4/τ 2, we find:

F ∼ Fo(R/a)3/2 (6)

For the values estimated above (a ∼ 3 µm and τ ∼ 1 µs), Fo is
10−4 µN. Hence, for drops of a few millimetres, we expect a
propelling force F of the order of 10 µN, which rapidly increases
with the drop size R. To determine the intensity of the force F
driving the motion, we placed a long (10 cm) glass fibre of diameter
125 µm in the path of the droplet. As it moves, the drop is caught
by the fibre, which gets deflected by a distance δ, at which point the
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Figure 3 | Force measurement. a, A thin glass fibre placed in the drop’s path
catches the drop, deflecting the fibre by a distance δ. The dotted line shows
the initial position of the fibre. Previously calibrating the elastic response of
the fibre allows us to measure the force F=Kδ acting on the liquid. The
drop slowly evaporates, causing its equatorial radius R to decrease with
time. The distance δ also decreases, showing that F is an increasing
function of R, as shown in b. The slope 3/2 drawn as a solid line suggests
that F, typically 10 µNfor millimetric drops, increases as R3/2. The error bars
at large F indicate the amplitude of the fluctuations of the force in the
experiments; at small F, the drop becomes sensitive to the discrete nature
of the steps of length λ, so that here the error bars correspond to F(δ= λ).

drop stops (Fig. 3a). As F is being balanced there by the elastic force
associated with the deflection, we can deduce quantitative values of
F in this range of force. In a Leidenfrost situation, the vapour layer
prevents the drops from boiling; instead, they slowly evaporate,
with a typical lifetime of one minute1–3,24, allowing us to measure
the force/radius relationship during this time. The drop size can be
varied by one order of magnitude, from the millimetre-scale below
which there is nomotion, to the centimetre-scale where Leidenfrost
drops become unstable because of the appearance of a central
vapour bubble3. We observe in Fig. 3b that the fibre displacement
δ decreases as the drop evaporates, showing that the force F acting
on the liquid increases with the size R.

In the log–log representation of Fig. 3b, the data seem to be fairly
well aligned, indicating a power law relationship between F and
R. The data are scattered, but the best fit provides an exponent
of 1.47, close to the straight line of slope 1.5 superimposed on
the data. The typical value of the force F is 10 µN for R≈ 3mm,
a relatively small value compared with other characteristic forces
at this scale: the weight of a drop of the same volume, for
example, is 10 times larger. However, this force is large enough to
induce fast motion because of the low friction in the Leidenfrost
situation. The order of magnitude of F and its dependence on
R are found to be in good agreement with equation (6), which
quantitatively supports vapour-based propulsion. For this kind
of model hovercraft, evaporation provides both levitation and
propulsion, which itself is made possible only by levitation: any
contact with the solid surface would stop the motion, because of a
contact angle hysteresis that induces a resisting force, scaling as γR
(with γ the surface tension), of the order of 100 µN. Other effects
might be invoked to explain a motion based on evaporation. Teeth
could induce an asymmetric evaporation close to the tops, in the
direction pointed to in Fig. 1, which yields a viscous drag (ηU/h)R2

in the same direction. From equations (1)–(4), this drag also scales
as R3/2 and is in the µN range. However, the vapour flow observed
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Figure 4 | Terminal velocity of the drops. The terminal velocity V of
ethanol Leidenfrost drops on a ratchet (heated to T= 360 ◦C) is plotted as
a function of the drop equatorial radius R. The wavelength of the ratchet is
λ= 1.5 mm. For drops smaller than λ, there is no motion. For drops of radius
between 2 and 7 mm, the terminal velocity varies only slightly with the drop
size. The order of magnitude of this terminal velocity is 10 cm s−1. The error
bars at large radius correspond to the fact that the drops (flattened by
gravity in this limit) rotate and vibrate, which generates an apparent change
of radius as seen from the side; at small radius, the drops are more
spherical, and the error bars smaller. The value of the terminal velocity V is
obtained from a fit to the trajectory. The extreme fits yield the bounds of
the terminal velocity, from which we deduce the error bar (typically
±0.5 cm s−1, much smaller than V).

(with tracers) at the tooth scale was found to be mainly directed
towards the back of the drop,whichmade us favour a thrust effect.

Finally, we discuss the terminal velocity of these drops. The
terminal velocity V is reached after a run of a few centimetres, a
distance significantly smaller than the total size of our ratchets, and
is shown in Fig. 4 as a function of the drop size R. This figure clearly
shows the existence of a threshold to trigger the motion: drops
smaller than 1.5mm, that is, the wavelength of the ratchet, remain
immobile. This is in accord with the argument of an anisotropic
vapour flow: this flow can exist only if the vapour film contacts
the ratchet over more than one wavelength. For larger drops, the
velocity increases quickly, reaching values as high as approximately
10 cm s−1, a remarkable speed considering the weakness of the
driving force. This terminal velocity V varies only slightly with the
drop size R (here between 2 and 7mm, above which a Leidenfrost
drop becomes unstable). The observed tendency is a weak decrease
in this interval of velocity.

Friction is generally very weak in a Leidenfrost situation. Both
the viscous friction in the subjacent film, scaling as (ηV /h)R2, and
the inertial friction related to the air displacement, scaling asρV 2R2,
are of the order of 0.1 µN, 100 times smaller than the driving force
F . In the stationary regime (Fig. 4), friction and propulsion balance
each other, which shows that the drop experiences a ‘special’ friction
much larger (by two orders of magnitude) than usual. This can
be understood in Fig. 1, where we see that the interface below the
drop is distorted by the presence of the teeth. As the drop moves,
rolls of liquid hit the steps, which dissipates energy (similarly, we
checked that a Leidenfrost drop impacting a crenellated surface no
longer bounces). We can evaluate the corresponding friction force:
denoting by λ and ε the length and depth of each tooth respectively,
the mass of a roll scales as ρoλεR. This mass decelerates in a time
λ/V . Once integrated over the number R/λ of rolls, this yields
for the friction force:

F ∼ ρoV 2R2ε/λ (7)

and with ρo ≈ 103 kgm−3, V ≈ 10 cm s−1, R ≈ 3mm, and
ε/λ≈ 1/10, we expect a force of the order of 10 µN, as observed
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experimentally. In contrast, friction is much smaller for dry ice,
which does not deform: as seen in Fig. 2, the solid continues to accel-
erate over distances of 10 cm,without reaching its terminal velocity.

Combining equations (5)–(7) provides the terminal velocity
V ∼ (a/τ )(ρ/ρo)1/2(λ/ε)1/2(a/R)1/4 of Leidenfrost drops on ratch-
ets. As observed in Fig. 4, the terminal velocity V is found to
be rather insensitive to the drop radius (V ∼ R−1/4), but it can
be conveniently tuned by the design of the ratchet (because it
scales as (λ/ε)1/2). Equation (7) indeed predicts that texturing a
solid with large scale crenellations (λ ≈ 1mm, ε ≈ 100 µm) can
lead to considerable friction forces: instead of decelerating over
a distance ρoR/ρ, as they would if the friction were classically
inertial, Leidenfrost drops are expected to stop on crenellated solids
over a distance Rλ/ε, that is, in centimetres rather than metres.
This implies that textured solids, shown to self-propel drops if the
texture is asymmetric, become impressively efficient at stopping
drops if the texture is symmetric, achieving efficient traps for the
ultra-mobile Leidenfrost drops.
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