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Abstract Organelles such as endosomes and the Golgi apparatus play a critical role
in regulating signal transmission to the nucleus. Recent experiments have shown that
appropriate positioning of these organelles within the intracellular space is critical for
effective signal regulation. To understand the mechanism behind this observation, we
consider a reaction-diffusion model of an intracellular signaling cascade and investi-
gate the effect on the signaling of intracellular regulation in the form of a small release
of phosphorylated signaling protein, kinase, and/or phosphatase. Variational analysis
is applied to characterize the most effective regions for the localization of this intra-
cellular regulation. The results demonstrate that signals reaching the nucleus are most
effectively regulated by localizing the release of phosphorylated substrate protein and
kinase near the nucleus. Phosphatase release, on the other hand, is nearly equally effec-
tive throughout the intracellular space. The effectiveness of the intracellular regulation
is affected strongly by the characteristics of signal propagation through the cascade.
For signals that are amplified as they propagate through the cascade, reactions in the
upstream levels of the cascade exhibit much larger sensitivities to regulation by release
of phosphorylated substrate protein and kinase than downstream reactions. On the
other hand, for signals that decay through the cascade, downstream reactions exhibit
larger sensitivity than upstream reactions. For regulation by phosphatase release,
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214 Y. Hwanng et al.

all reactions within the cascade show large sensitivity for amplified signals but lose
this sensitivity for decaying signals. We use the analysis to develop a simple model of
endosome-mediated regulation of cell signaling. The results demonstrate that signal
regulation by the modeled endosome is most effective when the endosome is posi-
tioned in the vicinity of the nucleus. The present findings may explain at least in part
why endosomes in many cell types localize near the nucleus.

Keywords Cell signaling · MAP kinase · Sensitivity analysis · Adjoint variables ·
Endocytosis

Mathematics Subject Classification 92B05 Biomathematics ·
65K10 Optimization and variational techniques

1 Introduction

Signaling cascades through covalent protein modification cycles play an important role
in regulating cell proliferation, mitosis, differentiation, and apoptosis. The covalent
protein modification cycle often consists of two interconvertible enzyme-mediated
reactions: phosphorylation and dephosphorylation. The phosphorylation of substrate
proteins in the cytoplasm is often initiated by signaling complexes at the cell mem-
brane. The signal carried by a particular phosphorylated protein is transferred down
the cascade to the protein modification cycle at the next level by phosphorylating
the related substrate protein. Typically, biochemical signals, which are activated at
the cell membrane by external stimuli such as growth factors and/or mechanical
forces, undergo a cascade of multiple protein modification cycles before attaining
the nucleus where gene expression is regulated. Examples of such cascades are the
MAPK (mitogen-activated-protein kinase) (Chang and Karin 2001) and small GTPase
cascades (Takai et al. 2001).

A number of previous studies have described mathematical models of intracellular
signaling. In this context, both static and dynamic responses of cascades of single and
multiple protein modification cycles have been investigated (Tyson et al. 2003; Kholo-
denko 2006, 2010). The models have demonstrated that in the case of single protein
modification cycles, the steady-state response of phosphorylated (active) signaling
proteins is exquisitely sensitive to the concentration of phosphorylating and dephos-
phorylating enzymes, particularly when the reaction is close to saturation (Stadtman
and Chock 1977; Goldbeter and Koshland 1981). This behavior, often referred to as
ultrasensitivity, becomes even more pronounced in cascades of multiple protein mod-
ification cycles (Goldbeter and Koshland 1981; Ferrell 1997). Importantly, it has been
found that the networking topology of multiple protein modification cycle cascades
plays a crucial role in generating a wide variety of temporally-dependent output signal-
ing patterns. For instance, positive and/or negative feedback looping among the reac-
tion partners may generate different possible signaling outputs such as sustained, tran-
sient (Brightman and Fell 2000; Asthagiri and Lauffenburger 2001), bistable (Bhalla
et al. 2002; Xiong and Ferrell 2003), or oscillatory responses (Nakayama et al. 2008),
which may have different effects on gene expression patterns at the nucleus. Further
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Intracellular regulation of cell signaling cascades 215

details on the diversity of possible temporal responses may be found in recent reviews
(Tyson et al. 2003; Kholodenko 2006, 2010).

Most previous modeling studies have assumed that signaling proteins and related
enzymes are uniformly distributed within the intracellular space (i.e. no spatial depen-
dence), although the notion of ‘space’ has been introduced fairly recently into theoreti-
cal descriptions of signaling cascades. The spatially inhomogenous distribution of cell
signal intensity stems essentially from the fact that the two enzymes involved in each
protein modification cycle are often present at different intracellular locations (Brown
and Kholodenko 1999; Kholodenko 2002, 2006, 2010; Munoz-Garcia et al. 2010).
For example, phosphorylating enzymes such as kinases and GEF (guanine nucleotide
exchange factors) are often localized exclusively at the plasma membrane, whereas
dephosphorylating enzymes such as phosphatases and GAP (GTPase-activating pro-
tein) appear to be uniformly distributed throughout the cytoplasm. Therefore, many
cell signals are initiated by phosphorylation at the cell membrane. As these signals
propagate towards the nucleus, they are partially inactivated due to the dephosphory-
lating enzymes in the cytoplasm. This mechanism leads to formation of a concentration
gradient of the phosphorylated signaling proteins with the characteristic length scale,

ξ =
√

D

ki
, (1)

where ki (�5 sec−1) is the rate constant for dephosphorylation and D(�5 ×
10−12m2 sec−1) is the diffusion coefficient of the phosphorylated signaling protein
(Kholodenko 2006). The presence of a concentration gradient of phosphorylated sub-
strate proteins was predicted in previous theoretical studies (Brown and Kholodenko
1999) and has been experimentally confirmed for the small GTPase Ran (Kalab et al.
2002), the microtubule-binding protein stathmin (Niethammer et al. 2004), and the
yeast MAPK Fus3 (Maeder et al. 2007). Theoretical predictions have shown that the
concentration gradient of the phosphorylated proteins may be very steep as typical
values of ki and D lead to ξ ∼ O(1 µm). Given that the length scale of many eukary-
otic cells is O(10 µm), the small value of ξ suggests the likely existence of several
mechanisms which facilitate signal transmission to distant intracellular sites (Brown
and Kholodenko 1999; Kholodenko 2002, 2006).

Trafficking of intracellular signaling complexes by molecular motors along the
cytoskeleton is thought to constitute an important mechanism for signal transmis-
sion to distant intracellular sites (Flore and Camilli 2001; Kholodenko 2002, 2003;
Perlson et al. 2005; Miaczynska et al. 2004; Howe and Mobley 2004; Birtwistle and
Kholodenko 2009; Sadowski et al. 2009). The endosome is an example of such a
signaling complex. Endocytosis was traditionally believed to be a signal attenuation
mechanism (Koenig and Edwardson 1997). However, a number of recent studies have
shown that it also plays an important role in signal transduction (Kholodenko 2002,
2006; Howe and Mobley 2004; Birtwistle and Kholodenko 2009; Sadowski et al.
2009): for instance, in COS-7 cells, when endocytosis is inhibited, ERK (extracellu-
lar signal-regulated kinase) activation is impaired (Pierce and Maudsley 2000). More
importantly, the spatial localization of endosomes within cells appears to be critical
for signal regulation (Hoepfner et al. 2005; Taub et al. 2007). In most cells, endosomes
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216 Y. Hwanng et al.

localize preferentially near the nucleus (Burkhardt et al. 1997; Harada et al. 1998).
A recent study has demonstrated that relocating late endosomes to the cell periphery
significantly disturbs MAPK signaling in response to epidermal growth factor (Taub
et al. 2007). This finding suggests that the proper intracellular positioning of signaling
complexes is essential for signal transduction. In addition to endosomes, other types
of intracellular signal complexes, for example the Golgi apparatus (Bivona et al. 2003)
and nuclear-outer-membrane bound proteins (Warren et al. 2010), are often located
near their target sites (periphery of the nucleus) (Burkhardt et al. 1997; Harada et al.
1998). Although spatial proximity of intracellular signaling complexes to their target
sites may appear intuitively advantageous, an understanding of the physical factors
that contribute to this advantage remains lacking.

The objective of the present study is to gain insight into how the localization of
a given intracellular signaling complex affects signal transduction. To this end, we
consider a conceptual reaction-diffusion model for signaling cascades (Munoz-Garcia
et al. 2009) and use variational analysis to investigate the sensitivity of intracellular
signaling to the release of a small amount of phosphorylated signaling protein, kinase,
and/or phosphatase at various locations within the intracellular space. We then discuss
the physical mechanisms that determine how intracellular localization affects the signal
reaching its target site and conclude with a simple model for the potential role of
endocytosis in intracellular signaling.

2 Model analysis

2.1 Model of a signaling cascade

Following Munoz-Garcia et al. (2009), we consider a model of a signaling cascade as
depicted in Fig. 1. The model consists of a cascade of multiple protein modification
cycles, where both phosphorylated and unphosphorylated forms of substrate proteins
are considered. Consistent with experimental observations and previous mathematical
models (Kholodenko 2006, 2010), we assume that the initial kinase in the cascade,
which catalyzes phosphorylation of substrate proteins at the first level of the cascade
(n = 1), is positioned exclusively at the cell membrane. At each level in the signaling
cascade, phosphorylated proteins are dephosphorylated by a phosphatase which is
assumed to be uniformly distributed throughout the cytoplasm. The model assumes
that there is no signaling feedback of any type although some signaling cascades exhibit
upregulation of phosphatase activity through a negative feedback loop when signaling
is activated (Brightman and Fell 2000). Finally, we assume that the phosphatase we
consider is not very specific to any signaling molecules. It is recognized that this
assumption is not strictly valid: for example, in the MAP kinase cascade, a phosphatase
may be very specific to the MAPKKK in the cascade. However, we believe that this
assumption is reasonable for illustrating the general behavior.

For simplicity, we neglect curvature effects as in Munoz-Garcia et al. (2009) and
consider one-dimensional intracellular space, x ∈ [0, L], where x = 0 and x = L
are the cell membrane (where signaling originates) and the nucleus (signal target
site), respectively. We assume that protein synthesis and degradation are negligible on
the time scale of interest and that all proteins throughout the signaling cascade have
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Intracellular regulation of cell signaling cascades 217

Fig. 1 Schematic diagram of a signaling cascade in the present study

the same diffusivity (D) (for the effect of different diffusivities of phosphorylated
and dephosphorylated proteins, the reader is referred to Stelling and Kholodenko
(2009)). These assumptions allow us to set the total concentration of phosphorylated
(active) and unphosphorylated (inactive) protein at each cascade level as constant
in time t (Stelling and Kholodenko 2009), i.e. Ctot

n = C̄n(x, t) + Cn(x, t), where
Cn(x, t) and C̄n(x, t) respectively denote the concentrations of phosphorylated and
unphosphorylated signaling proteins at cascade level n. For convenience, we normalize
the concentrations by Ctot

n : cn(x, t) = Cn(x, t)/Ctot
n and c̄n(x, t) = C̄n(x, t)/Ctot

n ,
leading to the following relation:

c̄n(x, t) + cn(x, t) = 1. (2)

In terms of the normalized concentrations, the reaction-diffusion equations for the
phosphorylated species in the cascade in Fig. 1 can be written as follows (see Appendix
A for further details on the normalization):

∂c1

∂t
= D

∂2c1

∂x2 − v
phos
1 + εδp1(x, t),

∂cn

∂t
= D

∂2cn

∂x2 + vkin
n − v

phos
n + εδpn(x, t) for n = 2, 3, . . . , N . (3a)
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218 Y. Hwanng et al.

with boundary conditions,

D
∂c1

∂x

∣∣∣
x=0

= −vkin
1 ,

∂c1

∂x

∣∣∣
x=L

= 0,

∂cn

∂x

∣∣∣
x=0

= ∂cn

∂x

∣∣∣
x=L

= 0 for n = 2, 3, . . . , N . (3b)

Here, vkin
n and v

phos
n are respectively the reaction rates of phosphorylation and dephos-

phorylation of the substrate protein. For these processes, we consider Michaelis-
Menten kinetics as done elsewhere (Kholodenko 2006; Munoz-Garcia et al. 2009)
so that:

vkin
1 = ka

1
1 − c1

1 + 1−c1
ma

1

∣∣∣
x=0

, vkin
n = ka

n
cn−1(1 − cn)

1 + 1−cn
ma

n

for n = 2, 3, . . . , N ,

v
phos
n = ki

n
cn

1 + cn
mi

n

for n = 1, 2, . . . , N , (4)

where ka
n and ki

n are the apparent first-order rate constants for the linear kinetic domain
of the kinase and phosphatase reactions, and ma

n and mi
n are dimensionless (normal-

ized) Michaelis constants that represent the extent of saturation of each enzyme kinet-
ics. If ma

n or mi
n is much smaller than O(1), then the corresponding reaction is close

to saturation. On the other hand, if either of these two parameters is much larger than
O(1), then the corresponding reaction is far from saturation. We note that the dimen-
sions of the first-order rate constant at the membrane (ka

1 ) differ from those of the rate
constants in the cytoplasm (m sec−1 for ka

1 vs. sec−1 for ka
n ).

In Eq. (3a, 3b), we introduce an external driving (or source) term δpn(x, t) with
small amplitude ε at all cascade levels. This term simulates the addition of new intra-
cellular signaling complexes or perturbation in existing complexes. Depending on
the intracellular signaling complex of interest, it is possible to formulate a specific
model for δpn, j (x, t) as done for endosomes in the last section of the present work.
In general, the form that δpn, j (x, t) takes will depend on the reaction involved in the
signaling complexes and their scaffolds. Because the goal of the present study is to
gain broad insight into intracellular signal regulation, we introduce a fairly general
form of this source term where δpn(x, t) represents the release of a small amount
of phosphorylated signaling protein, kinase, and phosphatase at each level n of the
signaling cascade. Thus, δpn(x, t) may be written as follows:

δpn(x, t) = (δ fn + δv
p
n − δvc

n)δ(x − xl), (5a)

where xl is the spatial location at which the source term is positioned and δ(x) is
the Dirac delta function. Here, δ fn is the release rate of the phosphorylated signaling
protein at level n, δv

p
n is the production rate by the added kinase at level n, and δvc

n is
the consumption rate by the added phosphatase at level n. As in the reaction terms of
each protein modification cycle, we also consider Michaelis-Menten kinetics for δv

p
n
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Intracellular regulation of cell signaling cascades 219

and δvc
n so that:

δv
p
n = δka

n
1 − cn

1 + 1−cn
ma

n

, δvc
n = δki

n
cn

1 + cn
mi

n

, (5b)

where δka
n and δki

n are first-order rate constants for the linear kinetic domain. It should
be pointed out that these rate constants have the same dimensions as the reaction
constant ka

1 at the membrane, i.e. m sec−1 for both δka
n and δki

n .

2.2 Variational analysis

We wish to characterize the effect of the intracellular signal source term δpn(x, t)on the
signal reaching the nucleus. To this end, we use variational analysis. We particularly
wish to explore how the spatial location of δpn(x, t) within the intracellular space
affects signaling at the nucleus. For simplicity, we limit the analysis to the steady case
(i.e. ∂cn/∂t = 0). We also assume that only the phosphorylated protein species at the
final level of the cascade (n = N ) is involved in regulating the signal at the nucleus
and that only the concentration of this species at the nucleus is (cN |x=L ) is important
for this regulation. If the effect of the added source is sufficiently small (ε � 1), then
the change in cN |x=L can be written as follows:

cN |x=L → cN |x=L + εδcN |x=L + O(ε2), (6)

where δcN |x=L is the leading-order variation of cN |x=L due to δpn(x) in Eq. (4).
This leading-order variation is computed using the adjoint-based method (Gunzburger
2003), which has been widely used in optimal control theories. Since we introduced a
small amount of the driving term εδpn(x) (ε � 1), the resulting change of the solution
of Eq. (4) is given as follows:

cn(x) → cn(x) + εδcn(x) + O(ε2), (7)

where cn(x) is the solution of Eq. (4) without any driving term (i.e. ε = 0), and εδcn(x)

represents the change of the solution due to the driving term εpn(x). We substitute (7)
into (3) and truncate it at O(ε). Then, the following equation for δcn(x) is obtained:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D ∂2

∂x2 + α1 0 0 · · · 0

β2 D ∂2

∂x2 + α2 0 · · · 0

0 β3 D ∂2

∂x2 + α3 · · · 0
...

...
. . .

. . .
...

0 0 · · · βN D ∂2

∂x2 + αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L

⎛
⎜⎜⎜⎜⎜⎝

δc1
δc2
δc3
...

δcN

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
δc

+

⎛
⎜⎜⎜⎜⎜⎝

δp1
δp2
δp3
...

δpN

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
δp

= 0,

(8)
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with boundary conditions

D
∂δc1

∂x

∣∣∣
x=0

+ β1δc1|x=0 = 0,
∂δc1

∂x

∣∣∣
x=L

= 0,

∂δcn

∂x

∣∣∣
x=0

= ∂δcn

∂x

∣∣∣
x=L

= 0 for n = 2, 3, .., N ,

where the coefficients αn and βn are given as

α1 = − ki
1

1 + c1
mi

1

+ ki
1c1

mi
1

(
1 + c1

mi
1

)2 ,

αn = − ki
n

1 + cn
mi

n

+ ki
ncn

mi
n

(
1 + cn

mi
n

)2 − ka
n cn−1

1 + 1−cn
mi

n

+ ka
n (1 − cn)cn−1

ma
n

(
1 + 1−cn

ma
n

)2 for n = 2, 3, ..., N , (9)

β1 = −
⎛
⎜⎝ ka

1

1 + 1−c1
ma

1

− ka
1 (1 − c1)

ma
1

(
1 + 1−c1

ma
1

)2

⎞
⎟⎠ ∣∣∣

x=0
, βn

= −ka
n (1 − cn)

1 + 1−cn
ma

n

for n = 2, 3, . . . , N .

Here, αn and βn are functions of only cn(x), indicating that Eq. (8) is linear.
Now, we extract δcN |x=L using the linear nature of Eq. (8). It is useful to introduce

the following standard inner product for vector variables such as δc, δp, and so on:

〈f, g〉 =
L∫

0

fT g dx, (10)

where f = [ f1 f2 f3 · · · fN ]T and g = [g1 g2 g3 · · · gN ]T are arbitrary vector
functions. This inner product allow us to introduce the adjoint variable of δc, δc+ =
[δc+

1 δc+
2 δc+

3 · · · δc+
N ]T , which satisfies the following relation:

〈Lδc, δc+〉 = 〈δc, L+δc+〉 + B(δc, δc+), (11)
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where

L+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D ∂2

∂x2 + α1 β2 0 · · · 0

0 D ∂2

∂x2 + α2 β3 · · · 0
...

...
. . .

. . .
...

0 0 · · · D ∂2

∂x2 + αN−1 βN

0 0 · · · 0 D ∂2

∂x2 + αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

and

B(δc, δc+) = D
N∑

n=1

(
δcn

∂δc+
n

∂x

∣∣∣
x=0

− δcn
∂δc+

n

∂x

∣∣∣
x=L

)
− Dδc+

1
∂δc1

∂x

∣∣∣
x=0

. (13)

Here, the right hand side is simply derived by performing integration by parts of the
left hand side, and the boundary term B(c, δc+) stems from the unknown boundary
values of δc+. Equation (8) allows us to rewrite Eq. (11) as:

〈δp, δc+〉 = −〈δc, L+δc+〉 − B(δc, δc+). (14)

We use a mathematical trick to extract the leading-order variation δcN |x=L . Note
that the adjoint variable is not yet determined. By choosing the proper equation for
the adjoint variable and its boundary condition, we can determine the leading-order
variation δcN |x=L . We first set an equation for the adjoint variable δc+ as:

L+δc+ = 0, (15a)

and choose its boundary conditions as

D
∂δc+

1

∂x

∣∣∣
x=0

+ β1δc+
1 = 0,

∂δc+
1

∂x

∣∣∣
x=L

= 0,

∂δc+
n

∂x

∣∣∣
x=0

= ∂δc+
n

∂x

∣∣∣
x=L

= 0, for n = 2, 3, ..., N − 1, (15b)

∂δc+
N

∂x

∣∣∣
x=0

= 0,
∂δc+

N

∂x

∣∣∣
x=L

= 1

D
,

resulting in the following relation:

B(δc, δc+) = −δcN |x=L . (16)

Then, using Eqs. (14), (15a), and (16), we obtain the following relation for the leading-
order variation of the final level of active protein concentration reaching the nucleus:

δcN |x=L = 〈δp, δc+〉. (17)

Here, δc+ is now determined by(15a) and (15b).
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From Eq. (5a), the leading-order variation δcN |x=L can be written as:

δcN |x=L =
N∑

n=1

L∫
0

δpnδc+
n dx

=
N∑

n=1

[
δ fnδc+

n (xl) + δv
p
n (cn(xl))δc+

n (xl) − δvc
n(cn(xl))δc+

n (xl)
]
. (18)

Here, the terms on the right hand side of Eq. (18) represent the effect of the release of
active (phosphorylated) substrate protein (δ fnδc+

n ), kinase (δv p
n δc+

1 ), and phosphatase
(−δvc

nδc+
n ) on the concentration of phosphorylated protein at the nucleus (cN |x=L ).

Note that these terms are characteristic functions of the location xl at which the source
term δpn(x) is deployed: δc+

n , active substrate protein release; δv
p
n δc+

n /δki
n , kinase

release; and δvc
nδc+

n /δka
n , phosphatase release. These functions determine the leading-

order variation in δcN |x=L , which implies that they represent the sensitivity of the
target signal (cN |x=L ) to the location at which the selected source term is positioned.
Therefore, we will henceforth refer to these functions as the spatial sensitivities of
the target signal to the release of phosphorylated substrate protein, kinase, and phos-
phatase, respectively. Finally, it should be noted that the leading-order variation is only
a functional that consists of the unperturbed concentration (cn) and the adjoint con-
centration (δc+

n ). Therefore, the leading-order variation is simply obtained by solving
Eq. (4) with ε = 0 along with Eq. (15).

2.3 Numerical methods

The steady solutions of Eqs. (4) and (7) are computed numerically. Spatial discretiza-
tion is performed using the second-order central difference. The number of grid points
is chosen as N = 501, sufficiently large to resolve all solutions. To reduce compu-
tational cost, steady solutions of Eqs. (4) and (15) are obtained using the Newton-
Raphson iteration instead of a time-marching simulation. The code is implemented
in Fortran 90. The baseline numerical solutions have been validated against those in
Munoz-Garcia et al. (2009). All computations in this study were carried out on an
Intel Xeon CPU E5345 operating Linux. The model parameters used in the present
study is summarized in Table 1.

3 Results

3.1 Single protein modification cycle

Let us start by analyzing the simplest case, where the cascade consists of a single
protein modification cycle (N = 1). We choose the spatial domain size as L =
10 µPm, a representative size for many eukaryotic cells. For the diffusion coefficient
and the deactivation rate by phosphatase, typical values are D = 5 × 10−12 m2 sec−1
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Table 1 Reaction constants in the present study

Parameters Units Reference value Test range

ka
1 m sec−1 5 × 10−6 5 × 10−7 − 5 × 10−2

ka
n sec−1 5 1.25 − 20

ki
n sec−1 5 Fixed

ma
n − 0.7 0.1 − 100

mi
n − 0.7 0.1 − 100

Here, ka
n and ka

n are the first-order rate constants for the linear kinetic domain respectively of the kinase and
phosphatase reactions, and ma

n and mi
n are the dimensionless Michaelis constants. Note that ka

1 has different
dimensions from other rate constants as it describes the reaction rate at the membrane. All the parameters
given here are adopted from Brown and Kholodenko (1999), Kholodenko (2006), Munoz-Garcia et al.
(2009)

and ki
1 = 5 sec−1 (Kholodenko 2006), which yield the characteristic length scale of

the signal ξ = 1 µm. For illustration purposes, we assume that the reaction is far from
saturation: ma

1, mi
1 	 1. If the reaction is far from saturation and for ε = 0, Eqs. (4)

and (15) can be solved analytically to yield:

c1(x) = ka
1

ka
1 +

√
ki

1 D

(
e−x/ξ + e(x−2L)/ξ

1 + ηe−2L/ξ

)
, (19)

where η = (ka
1 −

√
ki

1 D)/(ka
1 +

√
ki

1 D) and ξ =
√

D/ki
1. Here, note that ξ is the

length scale which characterizes how far the signal can be transmitted as discussed in
the Introduction. Now, we consider the case of a non-zero ε so that the signal at the
nucleus (c1(L)) is modified due to the effect of εδp1(x). Thus, the signal c1 is changed
into c1 + εδc1 + O(ε2). From Eq. (18), the leading-order variation δc1 is given as
follows:

δc1|x=L = δ f1δc+
1 (xl) + δka

1 (1 − c1(xl))δc+
1 (xl) − δki

1c1(xl)δc+
1 (xl), (20)

where δc+
1 (xl), (1−c1(xl))δc+

1 (xl), and −c1(xl)δc+
1 (xl) are the spatial sensitivities of

nuclear signaling to the release at x = xl of phosphorylated substrate protein, kinase,
and phosphatase, respectively. The solution δc+

1 (x) of the adjoint equation (20) is
obtained as follows:

δc+
1 (x) = 1√

ki
1 D

(
e(x−L)/ξ − ηe−(x+L)/ξ

1 + ηe−2L/ξ

)
. (21)

Interestingly, the solution (21) of the adjoint equation also exhibits the same charac-
teristic length scale ξ in its exponents, implying that this length scale also plays an
important role in characterizing the spatial sensitivities of cellular signaling.
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Fig. 2 Stationary concentration
profiles of phosphorylated
substrate proteins (a), and the
corresponding spatial
sensitivities to the release of (b)
phosphorylated substrate
protein, (c) kinase, and (d)
phosphatase for a signaling
cascade with a single protein
modification cycle where the
reaction is far from saturation
(ma , mi 	 1). The insets in
panels (b) and (c) provide a
zoom-in of the behavior near the
cell membrane. Here, ka

1 =
5 × 10−7, 5 × 10−6, 5 × 10−5,

5 × 10−4, 5 × 10−2m sec−1
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Figure 2a illustrates the steady-state spatial distribution of the phosphorylated sub-
strate protein concentration for several activation rate constants at the cell membrane
(ka

1 ). The concentration is maximum at the cell membrane (x = 0) and minimum at
the nucleus (x = L). As expected, the phosphorylated substrate protein concentration
increases with increasing ka

1 throughout the spatial domain. This increase stops when
the concentration at the cell membrane becomes saturated (i.e. c1|x=0 = 1). For all ka

1 ,
the phosphorylated substrate protein concentration becomes quite low when the dis-
tance from the cell membrane exceeds the characteristic length scale (i.e. x ∈ [ξ, L]).
This rapid drop leads to the formation of steep concentration gradients whose magni-
tude increases with ka

1 (Brown and Kholodenko 1999; Kholodenko 2002, 2006).
The spatial sensitivity to phosphorylated substrate protein release (δc+

1 ) correspond-
ing to the signal in Fig. 2a is depicted in Fig. 2b. For all ka

1 , the sensitivities increase
rapidly with x in the vicinity of the nucleus and attain very large values at the nucleus.
The sensitivity increase becomes particularly steep when the distance from the nucleus
becomes smaller than the characteristic length scale (x ∈ [L −ξ, L]). This implies that
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the release of phosphorylated substrate protein would be effective in regulating nuclear
signaling only if the distance between the location of this release and the nucleus is
smaller than the characteristic length scale ξ . Interestingly, the extent of this effective-
ness appears to be virtually independent of signal intensity because changes in δc+

1 (x)

remain largely independent of ka
1 for most of the intracellular space. Only near the

cell membrane does δc+
1 (x) rapidly decay with an increase in ka

1 , probably due to the
saturation of phosphorylated substrate protein concentration in that area (see inset of
Fig. 2b).

Figure 2c shows the spatial sensitivity of nuclear signaling to kinase release ((1 −
c1)δc+

1 ), which behaves very similar to the sensitivity to phosphorylated substrate
protein release. This resemblance appears to originate from the nature of the kinase-
mediated reaction: the kinase reaction rate is proportional to the unphosphorylated
substrate protein concentration (c̄1(= 1 − c1)), and this value remains near saturation
in most of the intracellular space away from the membrane as can be seen from Fig. 2a.
Consequently, the spatial sensitivity to kinase release becomes virtually identical to
that of phosphorylated substrate protein release in most of the intracellular space
except near the membrane.

The spatial sensitivity of nuclear signaling to phosphatase release (c1δc+
1 ) is shown

in Fig. 2d). Similar to the cases of phosphorylated substrate protein release and kinase
release, the largest sensitivity is at the nucleus. Unlike the other cases, however, the
sensitivity is relatively large even in the middle region of the cytoplasm. Furthermore,
the dependence of the sensitivity on ka

1 is more pronounced for phosphatase release
than for the other two cases. This very different behavior is attributable to the nature
of the phosphatase-mediated reaction rate. This reaction is proportional to the phos-
phorylated substrate protein concentration; therefore, the sensitivity increases with an
increase in ka

1 in most of the intracellular space. Near the membrane, however, the
spatial sensitivity to phosphatase release decreases for sufficiently large ka

1 because
the phosphorylation of the substrate protein can reach saturation in that region. Finally,
it is interesting to note that the maximum of the spatial sensitivity to phosphatase is
roughly two orders of magnitude smaller than that to kinase release. This implies that
if kinase and phosphatase have nearly the same normalized rate constants, then regu-
lation of nuclear signaling by phosphatase release would be much less effective than
that achieved by kinase release.

Thus far, we have considered cases where the reaction is far from saturation
(ma

1, mi
1 	 1). However, we note that this assumption is not greatly limiting. In

Fig. 3, we also examine the effect of saturation kinetics by numerically solving Eqs.
(4) and (15) with physiological values of the non-dimensionalized Michaelis con-
stants (ma

1 = mi
1 = 0.7). As clearly seen in this figure, the spatial sensitivities show

no qualitative difference relative to the results in Fig. 2.

3.2 Cascade of multiple protein modification cycles

We now consider the more realistic situation where the cell signal is transmit-
ted through a cascade of multiple protein modification cycles. For example, the
ERK pathway consists of at least three protein modification cycles (Raf-Mek-ERK).
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Fig. 3 Stationary (a)
concentration profiles of
phosphorylated substrate
proteins, and the corresponding
spatial sensitivities to (b)
phosphorylated-substrate-
proteins, c kinase, and (d)
phosphatase release for the
signal cascade with single
protein-modification cycle
where the reaction is set with
physiological values of the
normalized Michaelis constants
(ma = mi = 0.7). Here, ka

1 =
5×10−7, 5×10−6, 5×10−5, 5×
10−4, 5 × 10−2 m sec−1
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The presence of more levels in a cascade has often been thought to facilitate long-
distance signal transfer (Brown and Kholodenko 1999; Kholodenko 2006). Therefore,
in this section, we focus on how the nature of the cascade of multiple protein modi-
fication cycles modulates intracellular signal regulation. For illustration purposes, we
consider a cascade of four protein modification cycles (N = 4). The spatial domain
size is maintained the same as in the previous section (i.e. L = 10 µm). For simplicity,
we assume that ki

n = ki , ma
n = ma , mi

n = mi for all n and that ka
n = ka for n = 2, 3, 4.

Typical values are chosen for the rate constants of dephosphorylation and the dimen-
sionless Michaelis constants following Brown and Kholodenko (1999); Kholodenko
(2006); Munoz-Garcia et al. (2009): ki = 5 sec−1, ma = mi = 0.7. Because we
have already studied the effect of the rate constant at the cell membrane ka

1 (Fig. 2), a
fixed value of this parameter is chosen: ka

1 = 5 × 10−6 m sec−1. In signal cascades of
multiple protein modification cycles, the phosphorylation and dephosphorylation rate
constants ka and ki are crucial parameters in generating different signal propagation

123

Author's personal copy



Intracellular regulation of cell signaling cascades 227

Fig. 4 Stationary concentration
profiles of phosphorylated
substrate proteins in a signaling
cascade (N = 4): (a) amplified
case (γ = 0.25); (b) decaying
case (γ = 4). The inset in panel
B shows the behavior on a log
plot to delineate the small
differences near the cell
membrane
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patterns through the cascade. It has recently been proposed that the key parameter
determining the nature of signal propagation through the cascade is the ratio between
the dephosphorylation and phosphorylation rate constants in the linear kinetic domain
(Munoz-Garcia et al. 2009):

γ ≡ ki

ka
. (22)

The parameter γ plays an important role in determining to what extent an activated
signal propagates through the cascade, i.e. whether it is amplified or decays as it travels
through the cascade. The general relation of γ and the length of signals that travel
through the cascade has been extensively discussed by Munoz-Garcia et al. (2009).
In very large spatial domains, the amplification or decay of a cell signal propagating
through the cascade is determined by a critical value γc (Munoz-Garcia et al. 2009).
For γ < γc, signal transmission is promoted and the signal is amplified through each
level of the cascade. On the other hand, for γ > γc, the signal experiences decay
through each level of the cascade and thus becomes attenuated at the target location
(x = L). In the present study, the rate constant of phosphorylation ka at each level is
varied in the range ka = 1.25 − 20 sec−1, providing γ = 0.25 − 4. As we shall see
later, γc is well within this range of γ .

We first compute solutions of Eq. (4) without any intracellular regulation (i.e.
ε = 0). Figure 4a , b show the resulting spatial concentration distributions of phos-
phorylated substrate proteins at each level of the cascade for γ = 0.25 and γ = 4,
respectively. Similar to the case of a single-protein modification cycle (Figs. 2a, 3a),
the phosphorylated substrate protein concentrations exhibit spatial gradients near the
cell membrane at all cascade levels. The gradient at the cell membrane is steepest at the
first level in the cascade (n = 1) and becomes progressively shallower in subsequent
levels. For γ = 0.25, the concentration at a given intracellular location is amplified
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Fig. 5 Stationary concentration
of each level of phosphorylated
substrate proteins at the nucleus
with change of γ

n
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Fig. 6 Spatial sensitivity to
phosphorylated substrate protein
release in a signaling cascade:
a amplified case (γ = 0.25);
b decaying case (γ = 4). The
inset in panel B shows the
behavior on a log plot to
delineate the small differences
near the cell membrane

( )m x μ

)
(x

c n+
δ

1
2

3 4

A

B

1, 2

3

4)
(x

c n+
δ

0 2 4 6 8 10
0

100000

200000

300000

0 2 4 6 8 10
0

100000

200000

0 5 10
100

102

104

106

1
2
3
4

as the cascade level increases (Fig. 4a), indicating that the cascade promotes signal
amplification. On the other hand, for γ = 4, the concentration decays very rapidly with
cascade level (Fig. 4b). To determine an approximate value of γc in the present spatial
domain (L = 10 µm), we examine several different γ values (= 0.25, 0.5, 1, 2, 4).
Figure 5 demonstrates the dependence of the phosphorylated substrate protein con-
centration at the nucleus on the cascade level for the different γ values. For γ ≤ 0.5,
the phosphorylated substrate protein concentration at the nucleus increases with cas-
cade level, implying that the signal is amplified by the cascade. On the other hand, for
γ > 1, the concentration at the nucleus gradually decays as cascade level increases.
These results suggest that 0.5 < γc < 1 in the confined domain considered here, not
too different from γc � 0.7 obtained in unbounded spatial domains (Munoz-Garcia et
al. 2009).

We next study the effect of adding intracellular signal regulation (i.e. incorporating
the effect of δpn in Eq. (5a)) by constructing the spatial sensitivities using the solution
of the adjoint equation (15). The adjoint solution is obtained numerically using the
same method as for the solution of the regular reaction-diffusion equation. Figure 6a
and b depict the spatial sensitivities to phosphorylated substrate protein release for
γ = 0.25 and γ = 4, respectively. For both cases, the spatial sensitivities at all levels
in the cascade (δc+

n ) have their largest values at the nucleus, consistent with the results
in the previous section (see Figs. 2b, 3b). For γ = 0.25, δc+

1 > δc+
2 > δc+

3 > δc+
4
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Fig. 7 Spatial sensitivity to
kinase release in a signaling
cascade: a amplified case
(γ = 0.25); b decaying case
(γ = 4). The inset in panel b
shows the behavior on a log plot
to delineate the small differences
near the cell membrane
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in most of the spatial domain (Fig. 6a), indicating that when the signal is amplified in
propagating through the cascade (γ < γc), control of nuclear signaling by the release of
phosphorylated substrate protein is more effective the further upstream in the cascade
the release occurs. On the other hand, for γ = 4, δc+

1 < δc+
2 < δc+

3 < δc+
4 in most of

spatial domain (Fig. 6b), leading to the opposite conclusion: release of phosphorylated
substrate protein at the downstream end of the cascade is more effective than at the
upstream end when the signal decays as it propagates through the cascade (γ > γc).
Comparison of Fig. 6a and b indicates that the effect of γ on spatial sensitivity is
largest for n = 1 and decreases progressively further downstream in the cascade. In
fact, at the cascade level furthest downstream (n = 4), γ has no effect on the spatial
sensitivity (δc+

4 behavior is nearly identical in Fig. 6a, b). This finding suggests that
if the intracellular signal is regulated via release of phosphorylated substrate protein,
then the nature of signal propagation through the cascade (i.e. signal amplification vs.
decay, which is determined by the value of γ ) significantly affects the controllability
of the signal at the nucleus.

Very similar behavior is observed for the spatial sensitivities to kinase release
(δv p

n δc+
n /δka

n ) as seen in Fig. 7: the spatial sensitivities at all cascade levels have
increase near the nucleus and attain their largest values at the nucleus. For γ = 0.25,
the sensitivity increases progressively the farther upstream in the cascade the kinase is
released (Fig. 7a), suggesting that control of signaling at the nucleus would be more
effective by placing the kinase source at the upstream end of the cascade. In contrast,
the kinase source would be more effectively positioned at the downstream end of the
cascade for γ = 4 (Fig. 7b). As in the single protein cycle case (see Figs. 2, 3), the
structural similarity between the dependence of spatial sensitivities on kinase release
and on phosphorylated substrate protein release stems from the nature of the kinase-
mediated reaction, which is proportional to the concentration of unphosphorylated
substrate proteins (c̄n(1 − cn)).

Finally, the spatial sensitivities to phosphatase release (δvc
nδc+

n /δki
n) are presented

in Fig. 8 for γ = 0.25 and γ = 4. As in the case of the single protein modification
cycle (cf: Figs. 2, 3), the spatial sensitivities to phosphatase release show signifi-
cantly different behavior from those to phosphorylated substrate protein release or
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Fig. 8 Spatial sensitivity to
phosphatase release in a
signaling cascade: a amplified
case (γ = 0.25); b decaying
case (γ = 4) 1 2 3
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kinase release. At all cascade levels, the sensitivities to phosphatase release are fairly
uniformly distributed throughout the cytoplasm, unlike the cases of phosphorylated
substrate protein release and kinase release where the sensitivities are clearly high-
est near the nucleus. As already described, this feature originates from the nature
of the phosphatase-mediated reaction, which is proportional to the concentration of
phosphorylated substrate proteins. For phosphatase release, the sensitivities exhibit
very different spatial distributions depending on the level within the signaling cas-
cade. For n = 1, the maximum sensitivity is at the cell membrane. As the cascade
level n increases, the location of the maximum sensitivity gradually moves towards
the nucleus and is at the nucleus for the last level of the cascade (n = 4). This
implies that the most effective spatial location for phosphatase release within the
cytoplasm depends on the cascade level at which this release occurs. Contrary to the
cases of phosphorylated proteins and kinase release, γ appears to affect signal regu-
lation by intracellular phosphatase release almost uniformly at all cascade levels: an
increase in γ significantly lowers sensitivities for all cascade levels (Fig. 8a, b). The
shapes of the spatial sensitivity curves, however, are largely independent of γ (compare
Fig. 8a, b).

In an earlier section, we had investigated the effect of γ on signal amplification
and decay (cf: Fig. 5). To further explore the ramifications of this aspect of signal
propagation, we studied the effect of γ on the sensitivity of the signal at either the cell
membrane or the nucleus to the release of phosphorylated substrate protein, kinase,
or phosphatase at the different levels in the signaling cascade (Fig. 9). At both the cell
membrane and the nucleus, the sensitivities to phosphorylated substrate protein release
and to kinase release for small γ (γ < 0.5) are largest at the most upstream level of
the cascade (n = 1) (Fig. 9a–d). Increasing γ markedly reduces these sensitivities
except for the case of the most downstream level of the cascade (n = 4) where
the sensitivities become independent of γ . These findings suggest that for γ > 1.0,
release of phosphorylated substrate protein and/or kinase in the upstream levels of
the cascade is ineffective for controlling the signal at either the cell membrane or
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Fig. 9 Dependence on γ of the spatial sensitivities to (a, b) phosphorylated substrate protein release, (c,
d) kinase release, (e, f) phosphatase release in each level of a signaling cascade: (a, c, e) cell membrane
(x = 0); (b, d, f) nucleus (x = L)

the nucleus. The sensitivities to phosphatase release behave quite differently from the
sensitivities to phosphorylated substrate protein release or kinase release (Fig. 9e, f).
At the cell membrane, the maximum sensitivity is obtained at the fartherst upstream
level of the cascade (n = 1) (Fig. 9e), whereas at the nucleus, the most downstream
levels of the cascade (n = 4) exhibits the maximum sensitivity (Fig. 9f). Contrary
to the sensitivities to phosphorylated substrate protein release and kinase release, an
increase in γ results in an almost uniform decrease in the sensitivities to phosphatase
release at all cascade levels (Fig. 9e, f). This behavior is probably attributable to the
nature of the phosphatase-mediated reaction.
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Fig. 10 Effect of the Michaelis constants (ma = 100, mi = 100): a, b concentration profiles of phosphory-
lated substrate proteins; the corresponding spatial sensitivities to (c, d) phosphorylated-substrate-proteins,
(e, f) kinase, and (g, h) phosphatase release for the signal cascade of four protein-modification cycles. Here,
(a, c, e, g) propagating (γ = 0.25) and (b, d, f, h) decaying (γ = 4) signals through the cascade

We note that structure and behavior of the spatial sensitivities with γ do not sig-
nificantly depend on the changes in the Michaelis constants. In Figs. 10, 11, and 12,
we examined different values of the Michaelis constants. Consistent with observa-
tion in signaling with single protein modification cycle (see the Sect. 3.1), the spatial
sensitivities to phosphorylated substrate protein, kinase, and phosphatase release with
differen Michaelis constants reveal qualitatively the same behavior with those with
the physiological values of the Michaelis constants (ma = mi = 0.7).
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Fig. 11 Effect of the Michaelis constants (ma = 100, mi = 0.1): a, b concentration profiles of phosphory-
lated substrate proteins; the corresponding spatial sensitivities to (c, d) phosphorylated-substrate-proteins,
(e, f) kinase, and (g, h) phosphatase release for the signal cascade of four protein-modification cycles. Here,
(a, c, e, g) propagating (γ = 1) and (b, d, f, h) decaying (γ = 5) signals through the cascade

4 Discussion

4.1 How location makes a difference

In this paper, we have used variational analysis to study the sensitivity of signaling
in protein modification cycles to spatial variations in the localized release of phos-
phorylated substrate protein, kinase, and phosphatase. The results indicate that for
the release of substrate protein and/or kinase, signal regulation is effective only if the
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Fig. 12 Effect of the Michaelis constants (ma = 0.1, mi = 100): a, b concentration profiles of phosphory-
lated substrate proteins; the corresponding spatial sensitivities to (c, d) phosphorylated-substrate-proteins,
(e, f) kinase, and (g, h) phosphatase release for the signal cascade of four protein-modification cycles. Here,
(a, c, e, g) propagating (γ = 0.05) and (b, d, f, h) decaying (γ = 0.5) signals through the cascade

distance between the localized release source and the target (dtarget) is sufficiently
small. A simple dimensional analysis provides interesting additional insight into this
notion. If we consider a signaling complex which releases phosphorylated substrate
protein and/or kinase, then the signal provided by this complex and which originates
at the cell membrane would be transmitted over a distance of O(ξ) only because of
limitations on transport due to the presence of phosphatase in the cytoplasm. There-
fore, signal regulation by this complex would only be effective if the target is located
within a distance O(ξ):
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dtarget � O(ξ). (23)

This explains why the adjoint solution also yields the same length scale as the orig-
inal reaction-diffusion equation. Using typical values, ξ = 1 µm while cell size
is O(10)µm, which suggests that signal regulation at the nucleus would only be
effective if intracellular complexes intended to mediate this regulation are posi-
tioned sufficiently closely to the nucleus. This is consistent with the observation that
many intracellular signaling complexes such as endosomes, lysosomes and the Golgi
apparatus are localized preferentially around the nucleus (Burkhardt et al. 1997;
Harada et al. 1998).

For a signaling complex that releases or acts as a phosphatase, the range of its
effectiveness in signal regulation would be determined by a competition between the
distance from the source over which significant phosphatase activity persists and the
length scale given by Eq. (23). Because the phosphatase reaction rate is proportional to
the concentration of phosphorylated substrate protein and because this concentration
is expected to be largest near the cell membrane, reaction associated with phosphatase-
releasing signaling complexes would be most active around the cell membrane. How-
ever, this location is far from the target location (the nucleus) which, in accordance
with Eq. (23), would render signal regulation by this complex quite ineffective. Plac-
ing the signaling complex near the nucleus does not resolve the dilemma because the
concentration of phosphorylated protein in that region is lower than that near the cell
membrane, which would reduce phosphatase reaction rate and hence the effectiveness
of the signaling complex. These arguments lead to the conclusion that signal regula-
tion at the nucleus by a phosphatase source would be largely ineffective regardless
of where this source is positioned within the intracellular space. This conclusion is
broadly supported by the present numerical results (see Figs. 2, 3, 8, 9).

Finally, we should stress that the spatial preference of the intracellular regulation
discussed here has been found to be robust to the choice of dimensionless Michaelis
constants, which directly controls ultrasensitivity and bistability of the reactions in the
present system (see Figs. 10, 11, 12). It has recently been shown that the presence of
space in the MAPK pathway leads to loss of ultrasensitivity and bistability (Takahashi
et al. 2010). However, the robustness of the present findings to the nature of ultra-
sensitivity and/or bistability suggests that the spatial preference of the intracellular
regulation discussed here would not be changed as long as the formation mechanism
of the spatial gradient of phosphorylated substrate protein is preserved.

4.2 Importance of the nature of the signaling cascade

The analysis of the cascade with multiple protein modification cycles has demonstrated
that the effectiveness of signal regulation at the nucleus is also strongly dependent on
the nature of signal propagation through the cascade. If the intracellular signal is
amplified as it propagates through the cascade, then most of reactions in the cascade
exhibit high sensitivity to release from localized signaling complexes. In particular,
for regulation by release of phosphorylated signal proteins and/or kinase, reactions
in the upstream levels of the cascade exhibit particularly high sensitivities. On the
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other hand, if the intracellular signal decays as it propagates through the cascade,
then the reactions in the cascade generally lose their ability to effectively control cell
signaling, and reactions in upstream levels of the cascade become considerably less
effective than those in the downstream levels. Importantly, these results appear to be a
general feature, as they are also observed for different reaction constants and diffusion
coefficients (see Figs. 10, 11, 12).

Protein modification cycle cascades are thought of as a mechanism for effective
signal transmission to distant intracellular target sites via signal amplification (Brown
and Kholodenko 1999; Kholodenko 2006). Within this context, the present analysis
suggests that localized release of factors that modulate the reactions within protein
modification cycles provides an effective tool for robust intracellular signaling regula-
tion. Importantly, regulation by the release of phosphorylated substrate protein and/or
kinase becomes very effective particularly for the upstream reactions in the cascade
(Fig. 9a–d). This might explain why membrane receptors, which primarily drive reac-
tions near the cell membrane, are so effective in regulating intracellular signaling.

4.3 Application to endocytosis: a model analysis

As a specific example of the application of the present analysis, we focus on endosome-
mediated intracellular signal regulation. It should be noted in this regard that the model
depicted in Fig. 1 is considerably simpler than the actual physiological situation. Fur-
thermore, the present analysis neglects temporal dynamics, which play an important
role in cellular signal transduction. Therefore, the analysis presented here is valid
only in a qualitative sense for most of the signaling cascades which exhibits rich
spatio-temporal dynamics. However, we note that the steady analysis here may also
be relevant to some specific cases such as MAPK response to NGF (nerve growth
factor) stimulation which exhibits sustained behavior for hours (Marshall 1995; Wu
et al. 2001) (see also discussion in Sect. 4.4). We consider a signaling cascade identi-
cal to the one discussed in the previous section. For simplicity, the parameter values
for reaction constants and diffusion coefficient are assumed to be the same as those
in the previous section, and a signal that gets amplified as it propagates through the
cascade (γ = 0.25) is considered to mimic the physiologically relevant situation. We
assume that the cell membrane loses its signaling complexes due to internalization of
receptors during endocytosis and that the internalized signaling complexes are trans-
ported by vesicles to an endosome located at x = xe. Since our approach is limited
to the steady case (∂/∂t = 0), the movement of the vesicles and the endosome are
neglected. Finally, we assume that the internalized membrane signaling complexes
phosphorylate signaling proteins for the reaction at the most upstream level of the
cascade (i.e. n = 1) in a similar way as those at the cell membrane. Thus, these
assumptions allow us to describe endosome-mediated intracellular signal regulation
εδpn as follows:

εδpn = εδn1

[
ka

1 (1 − c1)

1 + (1 − c1)/ma
1
δ(x − xe) − ka

1 (1 − c1)

1 + (1 − c1)/ma
1
δ(x)

]
, (24)

123

Author's personal copy



Intracellular regulation of cell signaling cascades 237

where δn1 is the Kronecker delta function. Here, the first term on the right hand side
describes the phosphorylation rate of substrate proteins by the internalized signaling
complexes in the endosome, while the second term represents the reduced phospho-
rylation activity at the cell membrane due to the internalization of the signaling com-
plexes. For illustration purposes, we choose ε = 0.1, implying that 10 % of signaling
complexes at the cell membrane are transported to the endosome. Then, from Eq. (18),
the leading-order change of c4|x=L due to this type of intracellular signal regulation
is given by

εδc4|x=L = ε

[
ka

1 (1 − c1)

1 + (1 − c1)/ma
1
δc+

1 (xe) − ka
1 (1 − c1)

1 + (1 − c1)/ma
1
δc+

1 (0)

]
. (25)

Note that εδc4|x=L now appears as only a function of the location of endosome xe.
Figure 13 shows the leading-order change of the most downstream signal reaching

the nucleus as a function of the location of the endosome. To understand the effect of
cell size, two different sizes of the intracellular domain, L = 10 µm and L = 100 µm,
are considered as shown in Fig. 13a, b, respectively. For both cases, the leading-order
change of the target signal (εδc4|x=L ) by the modeled endosome becomes significant
when the endosome is located near the nucleus. Interestingly, the maximum amount
of signal regulation, which is obtained at the nucleus, is almost identical in the two
cases, suggesting that the maximum ability of signal regulation does not depend on
cell size if the endosome is positioned properly within the intracellular space (near
the nucleus in this case). Cell size matters, however, in the sense that for small cells
(L = 10 µm), the endosome is effective to some extent even in the middle of the
spatial domain (x = 5 µm): the regulation effect at x = 5 µm is about 20 % of
the maximum that can be obtained at the nucleus (Fig. 13a). In contrast, for large
cells (L = 100 µm), an endosome positioned in the middle of the spatial domain
(x = 50 µm) has little influence on the signal reaching the nucleus (Fig. 13b), implying
that the endosome would be ineffective in most of the intracellular space except in
the close vicinity of the nucleus. It has been suggested the endosome plays no role
in long-distance signal transduction in large cells (Birtwistle and Kholodenko 2009).
The present result suggests that if the endosome is positioned sufficiently close to the
nucleus, then endocytosis may indeed play an important role in signal regulation even
for a very large cell.

For both small and large cells, the effect of the endosome decays exponentially
as its distance from the nucleus increases. Consequently, for endosomes located near
the cell membrane, their effect on signaling is expected to be negligible even if they
function normally in activating cell signals. This finding is consistent with recent
experimental results that have demonstrated that displacing endosomes to the vicinity
of the cell membrane significantly disturbs MAPK signaling (Taub et al. 2007). It is of
course recognized that the function of endosomes and related signaling cascades are
much more complicated than those described here (Flore and Camilli 2001; Kholo-
denko 2002, 2003; Perlson et al. 2005; Miaczynska et al. 2004; Howe and Mobley
2004; Birtwistle and Kholodenko 2009); however, the present analysis may provide a
conceptual rationale for why endosomes localize preferentially near the nucleus.
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Fig. 13 The leading-order variation of the most downstream phosphorylated substrate at the nucleus with
respect to the change in the location of the modeled endosome xe

Finally, one may consider the fact that real organelles have finite sizes. In the present
one-dimensional model, it may be relevant to consider two point sources instead of
one point source as in Eq. (24): for example,

εδpn = εδn1

[
ka

1 (1 − c1)/2

1 + (1 − c1)/ma
1
δ(x − xe + r) + ka

1 (1 − c1)/2

1 + (1 − c1)/ma
1
δ(x − xe − r)

− ka
1 (1 − c1)

1 + (1 − c1)/ma
1
δ(x)

]
, (26)

where r is the radius of the given organelle. We note that Eq. (26) becomes identical
to Eq. (24) as r → 0. Using Eq. (18), it is straightforward to obtain the leading-order
variation of the most downstream signal reaching the nucleus as follows:

εδc4|x=L = εδn1

[
ka

1 (1 − c1)/2

1 + (1 − c1)/ma
1
δc+

1 (xe − r)) + ka
1 (1 − c1)/2

1 + (1 − c1)/ma
1
δc+

1 δ(xe + r)

− ka
1 (1 − c1)

1 + (1 − c1)/ma
1
δc+

1 (0)

]
. (27)

Since r � L in many cases, the dependence of the leading-order variation εδc4|x=L on
the location of the organelle xe from the two-points model (26) would be very similar
to that shown in Fig. 13. However, we should point out that the two-point model clearly
exhibits the effect of the organelle’s size. For instance, when the organelle is bound
to the cell membrane (xe = r ), εδc4|x=L is not strictly zero unlike in the case of
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the one-point model (24) (see also Fig. 13). On the other hand, when the organelle
is bound to the nucleus (xe = L − r ), the amount of signal upregulation from the
two-point model becomes smaller than that from the one-point model.

4.4 Limitations and outlook

Probably the most important contribution of the present work is the quantification using
variational analysis of the role of space in intracellular signaling regulation for given
models of signaling cascades. For example, the role of endocytosis discussed here has
been analyzed by a few recent studies (Kholodenko 2002, 2006; Birtwistle and Kholo-
denko 2009) in which similar mathematical models are directly solved with the driving
term provided at a fixed location (typically midpoint between signal source and target).
In the present study, we show that applying the variational approach to those models
greatly simplifies their analysis because the solution of the adjoint equation enables
us to visualize the full information on the role of ‘space’ in endocytosis-mediated cell
signaling. This suggests that the variational analysis introduced here could be poten-
tially extended to more realistic models and provide much deeper understanding of
the role of intracellular signaling complexes in cell signaling cascades.

Although the variational analysis in the present study is limited to the steady case, it
still provides useful physical insights into the role of intracelluar signaling regulation
for some specific cases. One of the well-known examples is cell signaling outcome of
the PC12 cell-line stimulation with NGF. PC12 cells exhibit sustained MAPK response
for hours after treatment with NGF (Marshall 1995), and the current steady analysis
would probably be directly applicable to this case. Indeed, it has been experimen-
tally shown that disturbing endosomes and the Golgi apparatus inhibits the sustained
MAPK response with NGF stimulation (Wu et al. 2001), consistent with the analysis in
Sect. 4.3.

However, it should be pointed out that in many cases, cell signaling often exhibits
much richer spatio-temporal patterns than the simply sustained response due to the fact
that the architecture of signaling cascades in many cells is much more complicated than
the simple top-down signaling cascade assumed here (see Fig. 1). For example, in MAP
kinase signaling driven by EGF (epidermal growth factor), negative signal feedback
from ERK to Raf is present, which essentially generates temporally transient ERK
activation (Brightman and Fell 2000). The presence of such feedback or feedforward
loops in signaling cascades is expected to lead to considerably richer spatio-temporal
dynamics (Tyson et al. 2003; Kholodenko 2006). Indeed, it has recently been shown
that bistability in signaling cascades triggers traveling waves which propagate from the
cell membrane to the nucleus with near constant speed (Markevich et al. 2006; Munoz-
Garcia et al. 2010; Zhao et al. 2011). Furthermore, signaling activation at upstream
could also be dependent in time as cells often experience change in their environment
(Zhao et al. 2011). From this perspective, a natural follow-up would be to apply the
variational analysis to spatio-temporally dynamic signaling cascades. This can be done
by extending the present inner product space (Eq. 10), taking only space into account,
to time domain. We expect that this extension would provide sensitivity information of
given signaling patterns in both time and space, and understanding its sptio-temporal
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correlation to the given signaling patterns would enable us to access much richer
information on the role of intracellular regulation in cell signaling cascades. We believe
that this analysis would become an useful framework to enhance our understanding
of signaling cascades as well as cellular physiology.

Acknowledgments This work was funded in part by an endowment in Cardiovascular Cellular Engineer-
ing from the AXA Research Fund.

Appendix: Normalization of the model

The reaction-diffusion equations for the signaling cascade in Fig. 1 are given as follows
(Munoz-Garcia et al. 2009):

∂C1

∂t
= D

∂2C1

∂x2 − V phos
1 + εδP1(x, t),

∂Cn

∂t
= D

∂2cn

∂x2 + V kin
n − V phos

n + εδPn(x, t) for n = 2, 3, . . . , N

(28a)

with boundary conditions,

D
∂C1

∂x

∣∣∣
x=0

= −V kin
1 ,

∂C1

∂x

∣∣∣
x=L

= 0,

∂Cn

∂x

∣∣∣
x=0

= ∂Cn

∂x

∣∣∣
x=L

= 0 for n = 2, 3, . . . , N ,

(28b)

where the reaction terms are given as

V kin
1 = V kin

max,1
Ctot

1 − C1

K kin
1 + Ctot

1 − C1

∣∣∣
x=0

,

V kin
n = kkin

cat,n
Cn−1(Ctot

n − Cn)

K kin
n + Ctot

n − Cn
for n = 2, 3, . . . , N , (29)

V phos
n = V phos

max,n
Cn

K phos
n + Cn

for n = 1, 2, . . . , N .

Here, kkin
cat,n is the catalytic constant (turnover number), V kin

max,1 the maximal rate for

the kinase at the cell membrane, V phos
max,n the maximal rate for the phosphatase at level

n of the cascade, K kin
n the Michaelis constant for the kinase at level n, and K phos

n the
Michaelis constant for the phosphatase at level n. Normalization of Eq. (1) by Ctot

leads to the normalized reaction terms as in Eq. (4), where vkin
n = V kin

1 /Ctot and

v
phos
n = V phos

n /Ctot for all n. The apparent first-order rate constants in Eq. (4) are
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readily obtained as:

ka
1 = V kin

max,1

K kin
1

, ka
n = kkin

cat,nCtot
n−1

K kin
n

for n = 2, 3, . . . , N ,

ki
n = V phos

max,n

K phos
n

for n = 1, 2, 3, . . . , N .

(30)

Similarly, the normalized (dimensionless) Michaelis constants in Eq. (4) are given as:

ma
n = K kin

n

Ctot
n

, mi
n = K phos

n

Ctot
n

for n = 1, 2, 3, . . . , N . (31)
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