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Abstract A major challenge regarding thin films is the
characterization of their rheology and the measurement of

the fluid physical parameters. For complex fluids, per-

forming direct rheology measurements is extremely diffi-
cult considering the geometric characteristics of thin films.

In this paper, we present a method for characterizing the

film rheology based on measurements at regular time
intervals of the film surface topography. These measures

allow us, by solving an inverse problem, to validate a

model of rheology for the thin fluid film and to determine
the physical parameters specific to this model.

1 Introduction

Many industrial processes involve the flow of thin films

over rough surfaces. For instance, the surface levelling of
such films is of particular interest in the paint industry,

since levelling largely determines the final topography and

consequently the visual appearance of the painted surface.
The study presented here is part of a larger research

project, which aims at optimizing the roughness of the
surfaces on which the paint is deposited to improve their

visual quality at the end of the painting process. To this

end, a first step is to be able to model the rheology of the
paint with enough accuracy and to simulate numerically the

levelling process. The technique presented in this article

allows one to access the rheology parameters that govern
the levelling of paint, which are very difficult to measure

directly for a thin liquid film.

Thin films have received considerable attention in the
literature. A first major contribution is that of Orchard

(1961), who considered film levelling within the frame-

work of the lubrication approximation, which permits a
substantial simplification of the Navier–Stokes equations.

In his model, Orchard only considered Newtonian fluids

that do not evaporate. For such films, he showed that the
levelling dynamics is the result of an interplay between

surface tension, as capillary forces tend to smoothen the

topography, and the fluid viscosity, which limits the flow
induced by the levelling. Later, Overdiep (1986) investi-

gated the case of evaporating Newtonian thin films. Con-
sidering a fluid made of a solvent and a resin, he showed

that local surface tension variations strongly affect the

dynamics of the thin film levelling. Surface tension is
strongly dependent on the solvent concentration within the

film. In thinner areas where solvent evaporates more

quickly, its value can vary significantly. The resulting
surface tension gradient creates a shearing effect at the film

surface known as the Marangoni effect. It was shown by

Evans et al. (2000) that this shearing effect can lead to the
formation of crater patterns on the surface of the paint

during drying. However, for the topographies studied here,

numerical simulations of the levelling have been performed
(Figliuzzi et al. 2012), which show that Marangoni effect

can be neglected. The thickness variations of the film are

B. Figliuzzi (&) ! D. Jeulin
Centre de Morphologie Mathématique,
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indeed quite small in our case. Wilson (1993) and later

Howison et al. (1997) contributed to improve Overdiep’s
model. The effect of the substrate topography was studied

by Weidner et al. (1996) in the two-dimensional case, and

Eres et al. (1999) and Schwartz et al. (2001) in the three-
dimensional case. Gaskell et al. (2004, 2006) finally con-

sidered the generalization of the different models to the

case of inclined substrates, where gravity plays a signifi-
cant physical role in the flow dynamics. A generalization of

the model to non-Newtonian fluids was also considered by
O’Brien and Schwartz (2002).

The rheology of fluids used in industrial processes is

often complex and largely determines the levelling
dynamics of thin films. The composition of the paint also

influences the dynamics, since spatial variations of the

solvent concentration can induce a shearing effect on the
surface. A major challenge regarding the study of thin films

is consequently the characterization of the fluid rheology

and the measurement of the physical parameters. For
complex fluids, performing direct in situ rheology mea-

surements is extremely difficult considering the geometric

characteristics of thin films. The experimental validation of
the models is therefore often based on topography data

relative to the film surface during its evolution. In this

paper, we present an in situ characterization of the film
rheology based on measurements of the topography of the

film surface at regular time intervals. By solving an inverse

problem, these measures allow us first to validate a rheo-
logical model for the fluid constituting the thin film and

next to determine its rheological parameters. This method

was applied to the study of a lacquer used in the automotive
industry. A wavefront sensor developed by PhasicsTM

enabled precise monitoring of the topography evolution

during the painting process and allowed us to gather a large
experimental database.

In Sect. 2, the mathematical model used to describe the

evolution of the painted film topography is described, and a
theoretical approach of the inverse problem is presented.

The method is applied to characterize the rheology of a

lacquer used in the automotive industry. Section 3 is
devoted to the presentation of the experimental data

obtained with the wavefront sensor for this paint. The

application of the method is described and discussed in
Sect. 4. Conclusions are drawn in Sect. 5.

2 Mathematical model

We consider the levelling of a thin incompressible fluid
film deposited on an horizontal substrate. The topography

of the substrate is denoted as Sa(x, y), the film thickness as

e(x, y, t), and the height of the free surface of the film as
h(x, y, t). An order of magnitude of the roughness is

Sa = 5 lm. At the beginning of the levelling, the film

thickness is approximately H = 70 lm. A typical value of
the paint velocity is U = 10 lm/s. The Reynolds number

Re = qUH/g is then approximately Re % 7.8 9 10-7. The

Ohnesorge number of the film flow, which relates the
viscous forces to inertial and surface tension forces, is

Oh ¼ g
qcL

;

where L denotes a characteristic length in the horizon-
tal direction. With g = 0.9 Pa s, q = 1,000 kg/m3, c =

2.71 9 10-2 N/m and L = 150 lm, we find Oh % 221,

which indicates a preponderant influence of the viscosity in
the levelling phenomenon.

In what follows, the levelling process will be studied

within the framework of the lubrication approximation.
More elaborate theories can be developed from the Navier–

Stokes equations (Oron et al. 1997; Ruyer-Quil and Man-

neville 1998, 2000). The lubrication approximation is
based on two observations: firstly, as the thin film flow is

very slow, it becomes possible to use the Stokes equation to
study the film evolution; secondly, as the thickness of the

film is much smaller than the wavelength of the modula-

tions along the surface, the fluid velocity is essentially
directed in the horizontal direction. These considerations

allow a substantial simplification of the equations

describing the flow of the film.

2.1 Direct flow calculation

The thin film flow is governed by the Stokes equation

#rpþr ! !!r ¼ 0; ð1Þ

where !!r denotes the deviator stress tensor and p the local
pressure within the film. Letting u and v be the velocity

components along x and y, the z-component of the velocity

and the gradients of u and v along x and y being neglected
within the lubrication approximation, the strain rate tensor

reads:
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The deviator stress tensor can be expected to be parallel to

the strain rate tensor. Tensor !!r then reads

!!r ¼
0 0 rxz
0 0 ryz
rxz ryz 0

0

@

1

A: ð3Þ

Boundary conditions are given by a no-slip kinematic
condition at the substrate surface, u(z = Sa) =
0, v(z = Sa) = 0, and by a mechanical condition
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expressing that the constraint is zero at the free surface,

qu/qz(z = h) = 0, qv/qz(z = h) = 0. Consequently:

rxz ¼ #op
oxðh# zÞ;

ryz ¼ #op
oyðh# zÞ:

(

ð4Þ

The pressure is defined as the product of the surface tension
c and the free surface curvature C. Within the lubrication

approximation, at lowest order,

C ¼ o2h
ox2

þ o2h
oy2

; ð5Þ

where h(x, y, t) = e(x, y, t) ? Sa(x, y) is the altitude of the
fluid surface. Equation (4) becomes then

rxz ¼ c o3h
ox3 þ

o3h
oy2ox

# $
ðh# zÞ;

ryz ¼ c o3h
oy3 þ

o3h
ox2oy

# $
ðh# zÞ:

8
<

: ð6Þ

Equation (6) has been derived without making any
assumptions on the paint rheology. However, the deviator

stress tensor can be expressed as a rheology-dependent

function of the strain rate tensor. It is consequently possible
to link the velocity vector u to the derivatives of the film

altitude h, and to calculate the local flow, given the film

topography h, by integrating the velocity:

qðx; yÞ ¼
Zh

Sa

uðx; y; zÞdz: ð7Þ

2.2 Inverse problem of flow determination

We rely on measurements of the film topography that are

obtained at regular time intervals during the levelling
process. By solving an inverse problem, it is possible to

access the local flow rates within the film, without any

hypothesis on the fluid rheology. The local altitude varia-
tion is indeed related to the local evaporation and the local

flow gradients by the mass conservation equation:

oh
ot
ðx; y; tÞ ¼ #r ! qðx; y; tÞ # Eðx; y; tÞ; ð8Þ

where E(x, y, t) denotes evaporation. The direct problem

described by (8) yields the local altitude variation knowing
the local flow rate. We are interested in the inverse problem,

which is to determine the local flowknowing the local altitude

variation. A major difficulty in the study of such inverse
problems is that the solution is rarely unique. Amathematical

problem is said to be well-posed if it admits a unique solution

that depends continuously on the data. The mathematical
problemwe are interested in is ill-posed. Indeed, it is obvious

that if q1 is a solution, any flow writing q1 þ q2 where r !
q2ðx; y; tÞ ¼ 0 will also be a solution. In the framework of the
lubrication approximation, as the gradients along x and y; and

the velocity along z canbe neglected,we cannevertheless add
the physical condition

curl curl q ¼ 0: ð9Þ

Under this assumption, we have the following relation

Dqðx; y; tÞ ¼ #r oh
ot
ðx; y; tÞ þ Eðx; y; tÞ

% &
: ð10Þ

Estimating the right-hand side of (10), it becomes possible

to access the flow rate by solving the Poisson equation,
which allows us, on the one hand, to validate a model of

rheology by comparing the flow values to those calculated

with the model and, on the other hand, to determine the
local rheological parameters of the fluid.

3 Experimental measurements

The method presented in the previous section was used to
study the rheology of thin films of a lacquer used in the

automotive industry within the few minutes after its deposit.

Most of the flow occurs indeed at room temperature during
this short period of time that we refer to as flash time. Mea-

surements of the layer topography are performed at regular

time intervals (1 s) with a high resolution wavefront sensor
developed by PhasicsTM (http://www.phasicscorp.com/).

The wavefront sensor uses a technology based on a modified

Hartmann test tomeasurewavefront distortions. Bymeans of
a 2D diffraction grating, a beam is replicated into four iden-

tical waves that are propagated along slightly different

directions. The direction differences create interference pat-
terns that are used to reconstruct the measured surface

topography. The main advantage of this experimental device

is that it is able to measure a large painted surface with a high
dynamics and a satisfying accuracy (themeasurement error is

less than a few lm), which allows us to take snapshots in
sufficiently quick succession. The adjustment of the wave-

front sensor is also robust, so that it is not necessary to readjust

the device during the painting process.
The wavefront sensor probes 18 mm 9 18 mm sur-

faces. The large-scale components of the measured sur-

faces will be referred to as the shape. A shape extraction is
achieved by the device during the measurement to correct

optical aberrations. The topography is projected on a basis

of spherical harmonic polynomials of empirically chosen
degree. Nevertheless, the shape extraction is not perfect

and a slight error remains in the topography.

3.1 Surface evolution

Figure 1 shows the evolution of the topography of a lac-
quer layer deposited on a smooth substrate at the beginning

of the flash time. We observe a very rapid levelling of the
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paint. This levelling is due to the combined effects of the

rapid evaporation of light solvents and the flow caused by
surface tension. The phenomenon is especially important at

the beginning of the flash time when the viscosity of the

painting is still relatively low. At the end of the flash time,
the levelling slows down until the painted layer topography

stops evolving.

3.2 Roughness characterization

The roughness of a surface corresponds to the elevation

changes that distinguish this surface from a smooth one. As

the physical effects that cause the film levelling occur at
different scales, it is of interest to use tools to separate the

roughness scales of the studied topographies. An algorithm

based on the wavelet packet transform (Mallat 1999) and
the reconstruction formula was developed that allows a

decomposition of the roughness into the sumof itsmultiscale

contributions (Zahouani et al. 2003; Figliuzzi et al. 2011).

Let f be a function in L2ðRÞ: As

jjf jj2 ¼
Z

R

f ðxÞ2dx\1;

the function

x ! f ðxÞ2

jjf jj2

can be viewed as a density of probabilities. We can then

associate a mean spatial position to the function f,

!x ¼ 1

jjf jj2

Z

R

xf ðxÞ2dx;

and a variance around this mean position:

rðf Þ ¼ 1

jjf jj2

Z

R

ðx# !xÞ2f ðxÞ2dx:

Using the Plancherel theorem, we can also associate a
mean position to the Fourier transform of f in the Fourier

space,

!x ¼ 1

2pjjf̂ jj2

Z

R

xf̂ ðxÞ2dx;

and a variance around this position:

rðf̂ Þ ¼ 1

2pjjf̂ jj2

Z

R

ðx# !xÞ2 f̂ ðxÞ2dx:

A wavelet is a function w in L2ðRÞ with zero average,
normalized ||w|| = 1 and centred in the neighbourhood of

Fig. 1 Evolution of the lacquer layer topography measured with the
wavefront sensor at the beginning of the flash time. The horizontal
scale is given in mm and the vertical scale in lm. The precision of
the vertical measurements is up to 1 lm. On each surface, during
measurements, the minimum is arbitrarily set to zero, as it is not
possible to obtain absolute altitudes, but only relative ones with the
device used
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t = 0, which is well localized in both physical and Fourier

space. We obtain a wavelet family fwu;s; u 2 R; s[ 0g by

dilating this function by a scale parameter s[ 0 and

translating it by u 2 R :

wu;sðxÞ ¼
1ffiffi
s

p w
x# u

s

# $

Let f be a function in L2ðRÞ. The wavelet transform of f is

Wf ðu; sÞ ¼
Zþ1

#1

f ðxÞ 1ffiffiffi
x

p w
x# u

s

# $
dx:

A wavelet coefficient corresponds to the projection of the
function f on the wavelet wu,s. A high value of a wavelet

coefficient then indicates that the function f contains

information at the scale s and at location u. It is possible to
reconstruct the original function f using the wavelet

coefficients:

f ðxÞ ¼ 1

Cw

Zþ1

0

Zþ1

#1

Wf ðu; sÞ 1ffiffiffi
x

p w
x# u

s

# $ds
s2
du:

In our case, the projection of the surface on a family of

wavelets consequently allows to locally identify the scales

of the surface corrugations. It is straightforward to gener-
alize the wavelet transform formula and the reconstruction

formula for two or more dimensions. Algorithms that are

suitable to the case of numerical signals have been devel-
oped, for example, the orthonormal wavelet transform or

the packet transform (Mallat 1999).

The idea behind the roughness characterization algo-
rithm presented here is to decompose the studied surface S
on a family of wavelet packets and to reconstruct it,

keeping only the wavelet coefficients that correspond to
each successive scale. The surfaces are sampled with an

horizontal step Dl ¼ 60 lm; which results in a 128 by 128

pixels image S = S[n1, n2]. The surface S is then decom-
posed in its multiscale components:

S½n1; n2( ¼
XJ

j¼0

Sj½n1; n2(; ð11Þ

where J denotes the number of scales. The use of the

packet wavelet transform requires us to adopt a dyadic

discretization of the scale parameter, which leaves us with
seven octaves as we have 128 by 128 pixels image

(128 = 27). We then introduce three intermediate scales in

each octave [2j, 2j?1] to improve the accuracy of the scale
discretization. Finally, we are left with J = 28. V j\ J, we
have

Sj½n1; n2( ¼
X

k1;k2

Wf ðk1;2; 2 jÞ 1ffiffiffiffi
2j

p w
k1;2 # n1;2

2j

% &
:

For each reconstructed surface, it is possible to define a

parameter, denoted Mq, that characterizes the mean
deviation from the average surface at the scale j. The

resulting Mq curve characterizes the frequential content of

the roughness:

Mq½j( ¼ 1

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n1¼1

XN

n2¼1

Sj½n1; n2( # !Sj
Dl

% &2
vuut ; ð12Þ

where !Sj denotes the mean value of Sj. The parameter Mq
describe the contribution of each scale of the surface to the

global roughness and allows us to observe scale by scale

the influence of the physical effects that occur during the
levelling of the paint.

4 Results and discussions

4.1 Estimation of the evaporation law

Using the surface characterization algorithms that have

previously been presented, it is possible to separate, scale
by scale, the physical effects that occur during the film

levelling. Accordingly, we shall assume that the pattern

attenuation at the largest scales is mainly caused by
evaporation, since a levelling caused by surface tension

would suppose a huge mass transport which would be

unrealistic considering the geometric characteristics of the
painted film. The surfaces measured with the wavefront

sensor can be decomposed in their multi-scale components.

At a specified time t, we have:

hðx; y; tÞ ¼
XJ

j¼0

hjðx; y; tÞ; ð13Þ

where h denotes the film altitude, J the number of
decomposition scales, and hj the surface reconstruction

from its projection on the wavelets of scale j. Assuming

that the large-scale patterns attenuation is mainly caused by
evaporation, if a denotes the evaporation rate for the large

scale components, the evolution of the reconstructed

surface is given by

hjðx; y; t þ DtÞ ¼ ahjðx; y; tÞ: ð14Þ

By studying the evolution of the Mq parameter corre-

sponding to the largest scales between two successive
surfaces, it is consequently possible to estimate the evap-

oration rate experimentally.
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The chemical composition of the lacquer is complex,
and many solvents are involved to avoid fast evaporation

and to prevent immediate levelling of the film. Neverthe-
less, from a macroscopical point of view, evaporation can

be modelled by a relatively simple law. To determine it, we

assume that the paint is made of a resin in concentration
1 - c and a solvent in concentration c. We will assume

evaporation E to be proportional to the solvent

concentration:

E ¼ kc: ð15Þ

Denoting the film thickness by e and the final film

thickness by e1; the solvent concentration within the
film is given by

c ¼ e# e1
e

: ð16Þ

Neglecting the levelling caused by the surface tension,
mass conservation reads

de

dt
¼ #E: ð17Þ

Consequently,

de

dt
¼ #k

e# e1
e

# $
: ð18Þ

The thickness evolution, assumed to correspond to the Mq
parameter attenuation at the largest scales, is represented in

green in Fig. 2. The film thickness is normalized to the

unity. The theoretical evaporation law obtained from (18)
is plotted in blue on the same figure. Parameter k is esti-

mated from experimental data by adjusting the theoretical

and the experimental curves. Its value is given in Table 1.

The main difference between the two curves is observed at

the beginning of the levelling. Many different solvents evap-
orate then, which increases the dynamics of the evaporation.

4.2 Resolution of the inverse problem

Given two successive film topographies, the inverse prob-

lem consists in determining the local flow rate. We saw
earlier that the flow is a solution to Poisson equation

Dqðx; yÞ ¼ #5 oh
ot
ðx; yÞ þ Eðx; yÞ

% &
: ð19Þ

Using the characterization algorithm described in the
previous section, it was possible to estimate the

evaporation term E(x, y) and consequently the right-hand

side of (19). When measuring the topographies using the
wavefront sensor, an error on the shape of the measured

surface is likely to remain due to optical aberrations during

the process. To correct this error, a shape extraction is
performed by projecting the right-hand side of (19) on a

wavelet basis and by reconstructing it cancelling the

highest scales components. To manage boundary effects,
the surface is unfolded by mirror symmetry to remove the

jumps at the interfaces. Assuming that the boundary

conditions are periodic, we solve (19) using a spectral
method. In Fourier space, denoting by fx the component of

the right-hand side along the x axis, and by fy its

component along the y axis, the equation reads:

f̂x;yðnx; nyÞ ¼ #ðn2x þ n2yÞq̂x;yðnx; nyÞ: ð20Þ

The flows expressions can easily be calculated in the

Fourier space:

q̂x;yðnx; nyÞ ¼ #
f̂x;yðnx; nyÞ
n2x þ n2y

: ð21Þ

The local values of the flow rate can be derived from the
previous equations by an inverse Fourier transform. It is

important to notice that f̂x;yð0; 0Þ ¼ 0: Indeed, denoting L
the unfolded surface size,

Fig. 2 Evaporation curve of the thin film of lacquer during the flash
time: the experimentally measured curve deduced from the Mq
parameter evolution is represented in green. The fitting curve is
represented in blue

Table 1 Simulation parameters

Parameter Value Value in Overdiep (1986) Unit

cr – 3.0 9 10-2 N/m

cs – 2.5 9 10-2 N/m

g0 – 1.0 Pa s

c0 0.58 0.5 –

a 19 15 (Weidner et al. 1996) –

k 4.0 9 10-9 2.0 9 10-9 m/s

c0/3g0 1.0 9 104 1.0 9 104 lm/s
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f̂x;yð0; 0Þ ¼
ZL

0

ZL

0

fx;yðx; yÞdxdy: ð22Þ

This quantity cancels, as f̂x;yð0; 0Þ corresponds to the inte-

gral over a period of a continuous periodic function
gradient.

Figure 3 shows the mapping of the flow-rate field

obtained by solving the considered inverse problem at
different moments of the flash time.

4.3 Newtonian model

Assuming a Newtonian rheology, the deviator stress tensor
can easily be expressed as a function of the strain rate

tensor:

!!r ¼ g
2

ruþTru
! "

ð23Þ

Consequently, the local flow components on the film

thickness along the horizontal directions read

qx ¼ c
3gðh# SaÞ3 o3h

ox3 þ
o3h
oxoy2

# $
;

qy ¼ c
3gðh# SaÞ3 o3h

oy3 þ
o3h
oyox2

# $
:

8
<

: ð24Þ

As shown in Sect. 2, the formula allows the calculation of

the flow from the topography of the thin film.

The expressions for the flow rate resulting from the
Newtonian model are given by (24). These equations

involve high-order spatial gradients of the film surface. If

one wishes to calculate the flow by applying directly this
model on the surfaces obtained with the wavefront sen-

sor, we need efficient differentiation methods. The cal-

culation of the spatial derivative of an experimental
surface is far from trivial. The surfaces obtained through

the wavefront sensor are indeed slightly noisy after the

measurement, and the gradient operator is very sensitive
to noise. In order to regularize the data, the spatial

derivatives will consequently be calculated using

Gaussian filtering. The gradient is calculated by convo-
luting the original surface with the kernel of the deriv-

ative of a centred Gaussian function of specified variance

r2:

Gðx; yÞ ¼ 1

2pr
exp #x2 þ y2

2r2

% &
: ð25Þ

We easily verify that

S ) oG
ox

ðx; yÞ ¼ G ) oS
ox
ðx; yÞ: ð26Þ

The result corresponds to the convolution product of the

surface derivative with a Gaussian with variance r2. The
choice of the variance of the Gaussian kernel is funda-
mental, since it remains important to avoid losing too much

physical information. Here, we empirically take
r = 92 lm: this value is on the same order of magnitude

than the spatial step and allows to properly perform the

Fig. 3 X-component of the lacquer flow rate at the beginning of the
flash time, obtained by solving the inverse problem. The flow map is
represented in a square image of 128 9 128 pixels. Each pixel value
represents the value of the mean flow averaged over 60 lm 9 60 lm
surface. The horizontal scale is given in mm and the vertical scale
in lm2/s
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gradient calculations. Figure 4 shows the results of the flow

direct simulation using the Newtonian model.

Power law models are often used to describe the rhe-
ology of paints such as electrophoresis. In our case, we find

a good agreement between the Newtonian model and the

experimental data and show that a Newtonian rheology
explains the dynamics of the levelling for the considered

lacquer. It is not possible to improve the correlation coef-

ficients by employing a power law model. A result of the
measurement led during our study is then that a Newtonian

model seems well-adapted to describe the rheology of the

lacquer at the considered scales.

4.4 In situ estimation of the rheological parameters

of the paint

By comparing the values of W ¼ ðh# SaÞ3ðoxxxhþ oxyyhÞ
and the local flow calculated by solving the inverse prob-
lem point by point, we obtain the cloud of points of Fig. 5.

If the fluid rheology is Newtonian, there exists a linear

relation between both quantities, the proportionality coef-
ficient being c/3g. The results presented in the Fig. 5 show

that the data are relatively well interpolated by a straight

line during the flash time, which suggests that the fluid
exhibits a Newtonian rheology. Figure 6 shows the evo-

lution of the proportionality coefficient c/3g. The following
law is often proposed in the literature to link the surface
tension to the solvent concentration:

c ¼ cr þ cðcs # crÞ ¼ cr þ cDc; ð27Þ

where cr denotes the surface tension of the resin, and cs the
surface tension of the solvent. On the other hand, the

viscosity depends on the solvent concentration through
the exponential law

gðcÞ ¼ g0e
#ac: ð28Þ

Using these laws to fit the experimental data, we find

c
3g

ðcÞ ¼ cr þ cDc
3g0

eaðc#c0Þ ð29Þ

with c0/3g0 = 10,000 lm/s, c0 = 0.58 and a = 19.0,

yielding rheological parameters very close to those mea-

sured by Overdiep (1986).
The parameters determined by solving the inverse

problem were used to carry out numerical simulations of

the evolution of the film topography for a Newtonian fluid,
results of which are presented in Figliuzzi et al. (2012).

The simulation results are very close to the experimental
data, which shows that it is possible to accurately repro-

duce the levelling dynamics with the rheological parame-

ters found in Table 1.

4.5 Discussion

Used in the case of a lacquer for the automotive industry,

the characterization method presented in this paper allows

the determination of physical parameters that correspond
to the usual data found in the literature. An interesting

result is, in particular, that the dynamic range of the

wavefront sensor is high enough to make it possible to

Fig. 4 Evolution of the quantity W ¼ ðh# SaÞ3ðoxxxhþ oxyyhÞ at the
beginning of the flash time. The map is represented in a square image
of 128 pixels by 128 pixels. Each pixel value corresponds to the mean
value ofWðx; yÞ on a 60 lm 9 60 lm surface. The horizontal scale is
given in mm, and the vertical scale is given in lm
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obtain a good estimate of the time derivative of the paint

layer topography.

In practice, the method remains very sensitive to the
influence of measurement noise and signal processing tools

have to be developed to filter and exploit the experimental

data. The main practical difficulty is the estimation of the
evaporation coefficient. In our case, this estimation is

performed using the wavelet transform algorithm described

in this paper. This approach proves very useful to separate

the physical effects at different scales and to isolate the

patterns whose levelling is uniquely led by evaporation.

Other difficulties arise from the measurements errors:
due to optical aberrations, a shape error remains on the

topographies. The wavelet transform is used to isolate the

largest scales of the surfaces, and a correction is applied on
these scales. However, it is very difficult to correct the

shape, and a small error remains, that impacts both

the estimation of the evaporation coefficient, done on the

Fig. 5 Flow rates calculated by
the inverse method as a function

of W ¼ ðh# SaÞ3ðoxxxhþ
oxyyhÞ. The linear correlation
coefficient ranges from 0.85 to
0.67
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largest scales of the surface, and the results of the inverse
problem.

The high-frequency measurement noise also deeply

affects the results. If the linear correlation coefficient is close
to one at the beginning of the flash time, the data are extre-

mely noisy later in the process of painting, and the correlation

coefficient decreases. Indeed, the physical effects of the
surface tension tend to become very slow as the viscosity

increases within the paint film and, as the film evaporates and

loses solvent, it tends to diffuse light more, which affects the
quality of the data collected with the wavefront sensor. It

becomes then difficult to separate the physical effects from

the noise. Themethod therefore cannot be applied to the long-
time evolution of the lacquer. However, in the present case,

most of the levelling occurs during the flash time. At long

times, as very low flow rate prevails, behaviours such as
thixotropy could be reasonably expected.

Finally, as the direct calculation of the flow involves
high-order gradients of the surface probed by the wavefront

sensor, it is necessary to slightly filter the data in order to

appropriately calculate the surface spatial gradients. Due to
Gaussian filtering performed on the data, the results

obtained by solving the inverse problem and consequently

the modelling of flow phenomena are valid only for scales
ranging from 100 lm to 1 cm. Small particles, with sizes

close to 1–10 lm, are involved in the composition of the

lacquer. The presence of these particles is likely to change
the lacquer rheology fundamentally at smallest scales,

where a non-Newtonian rheology should be observed.

5 Conclusion

In this paper, we have presented a method to characterize

the rheology of a thin film from measurements at regular

time intervals of its surface topography. By solving an
inverse problem, we showed that it was possible to vali-

date a model of rheology for the film and to estimate its

rheology parameters. In practice, some difficulties arise
due to measurement noise. Specific methods based on the

wavelet transform have been used to properly exploit the

experimental data. The method was applied to the study
of a lacquer used in the automotive industry. Despite

some weakness due to the sensitivity to measurement

noise, the method validates the assumption that the paint
exhibits a Newtonian behavior at scales ranging from

100 lm to 1 cm, and estimates parameters that are close

to those found in the literature for a fluid with similar
properties. The measurements obtained with the wave-

front analyser open interesting prospects for studying the

fluids rheology in the thin films geometric configuration.
These observations combined with numerical simulations

of the evolution equations of the fluid elevations on a

rough surface open the way to in situ rheological mea-
surements of thin films. In the case of the painting pro-

cess, such measurements could help the paint makers to
better understand the physical properties of their paintings

and to improve their properties. An accurate knowledge

of the physical phenomena involved during the painting
process could finally help steel makers to optimize the

roughness of their sheets.
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