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Abdominal aortic aneurysms are a dilatation of the aorta, localized preferentially
above the bifurcation of the iliac arteries, which increases in time. Understanding
their localization and growth rate remain two open questions that can have either a
biological or a physical origin. In order to identify the respective role of biological
and physical processes, we address in this article these questions of the localization
and growth using a simplified physical experiment in which water (blood) is pumped
periodically (amplitude a, pulsation ω) in an elastic membrane (aorta) (length L, cross-
section A0 and elastic wave speed c0) and study the deformation of this membrane
while decharging in a rigid tube (iliac artery; hydraulic loss K). We first show
that this pulsed flow either leads to a homogenous deformation or inhomogenous
deformation depending on the value of the non-dimensional parameter c2

0/(aLω2K).
These different regimes can be related to the aneurysm locations. In the second part,
we study the growth of aneurysms and show that they only develop above a critical
flow rate which scales as A0c0/

√
K .
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1. Introduction
1.1. Definitions and history

The use of the word aneurysm (dilate in Greek) in medicine seems to go back to Guy
de Chauliac (1373), medical doctor of four popes and considered as the ‘father’ of
mediaeval surgery. He used this word in La grande Chirurgie to designate the local
dilatation of an artery. The study of aneurysms progressed with the development of
medical techniques, starting with the stethoscope of Laennec (1819), who writes:

We use aneurysm to designate either the dilation of an artery or the presence of a sack connected to

the artery. The first case is called true aneurysm by surgeons while the second is referred to as false

aneurysm.

We learn from these definitions that aneurysms develop on arteries and can be
classified in two different types which are now called fusiform (‘true’), illustrated in
figure 1(b) with an abdominal aortic aneurysm (AAA), and saccular (‘false’) illustrated
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Figure 1. (Colour online) (a) Three-dimensional angiography of an aorta without aneurysm:
(1) heart, (2) aortic arch, (3) coronary arteries, (4) thoracic aorta, (5) kidneys, (6) abdominal
aorta and (7) iliac arteries. (b) Angiography of an aorta with an abdominal aortic aneurysm.
(c) Angiography of a cerebral aneurysm.

in figure 1(c) with a cerebral aneurysm. We focus on fusiform aneurysms and use as
a paradigm the AAA (Roberts 1959; Glagov 1961).

1.2. Physiological characteristics

The main geometrical features of the aorta are presented in figure 1(a): at the
exit of the left ventricle, the aortic arch conducts the aorta from the heart to the
spinal column. The thoracic and abdominal aortas designate the ‘straight’ portions
of the aorta located above and below the diaphragm, respectively. At the end of
the spinal column, the aorta splits into two iliac arteries, which irrigate each of the
legs. For humans, the aorta is the longest artery (L ≈ 40 cm) and we observe from
this angiography that its diameter (D ≈ 2 cm) is much larger than the secondary
connecting vessels. To a first approximation, the aorta will thus be considered as a
plain tube without branching until the iliac arteries.

We observe in figure 1(b) that the AAA develops above the bifurcation of the
iliac arteries. According to recent studies (Lasheras 2007), AAA rarely appears in
individuals under 50 years of age, but their incidence increases drastically at the age
of 55 and peaks in the early 80s. A large screening study conducted in Norway in
1994–1995 showed that AAA are present in 8.9 % of men and 2.2 % of women over
60 years of age.

The exact reasons for the development of AAA are still unknown (Alexander 2004,
McAuley et al. 2002). However, atherosclerosis and hypertension have been recognized
as important risk factors. Atherosclerosis can be responsible for the alteration of the
wall properties while hypertension can be responsible for the overpressure leading to
a local deformation of the aorta.

With regard to the growth rate of the aneurysms and the risk of rupture, they
both increase with the size of the aneurysm: the study by Guirguis & Barber (1991),
dedicated to the growth after 12 months of four classes of aneurysms (diameters less
than 4 cm, from 4 to 5 cm, from 5 to 6 cm and more than 6 cm), shows that they
have grown of 0.2, 0.3, 0.4 and 0.8 cm, respectively. With regard to the risk of rupture,
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the same study reveals that the risk factor for aneurysms of diameters less than 4 cm,
from 4 to 5 cm and larger than 5 cm is 1, 2 and 20 %, respectively.

1.3. Physical properties and orders of magnitude

The blood is composed of different cells, the larger ones being the leucocytes
(dmax ≈ 22 µm in diameter) and the more numerous being the red blood cells (mean
diameter 7 µm, Humphrey & Delange 2004). Depending on the size R0 of the vessel
in which the blood is flowing, it can behave either as a Newtonian (R0/dmax � 1) or as
a non-Newtonian (R0/dmax < 1) liquid (Reinke 1986). In the limit of large vessels such
as the aorta (R0/dmax ≈ 450), the blood behaves as a Newtonian liquid of kinematic
viscosity ν ≈ 4.10−6 m2 s−1 (Pedley 1980; Chandran & Yearwood 1981; Ku 1997).

The non-intrusive velocity measurements in the human aorta obtained by Cheng
et al. (2003) using the magnetic resonance imaging (MRI) reveal that the mean
velocity is always smaller than the metre per second (U ≈ 0.8 m s−1) and that the
velocity profile is close to a top hat with thin boundary layers O(1) mm.

The wall of arteries is composed of three layers, the intima, the media and the
adventia. The media is composed of elastin, which enables the dilatation of the artery
when exposed to a transmural pressure increase. For mammals, the order of magnitude
of the pressure variation over a cardiac cycle is of the order of δp ≈ ρgH , where H is
the size of the mammal (McDonald 1960, 1968), which means that δp ≈ 104 Pa for a
human. The corresponding relative variations of the cross-section of the arteries are
of the order of 10 %: δA/A ≈ 0.1. To describe the elastic behaviour of the arteries,
the physiologists use the distensibility D ≡ A−1δA/δp, which can be evaluated using

the previous estimations to 10−5 m2 N
−1

for a human (McDonald 1968; Fung 1990).
Lighthill (1975) showed that this deformation can be localized and can propagate
without dispersion along the aorta with the wave speed c0 = 1/

√
ρD ≈ 10 m s−1, much

larger than the flow velocity.
To model the aortic flow in a laboratory experiment, one needs to respect the

non-dimensional numbers which characterize the actual flow. For a Newtonian liquid
flowing in a tube of radius R0 with the mean velocity U , the flow is first characterized
by the Reynolds number Re ≡ UR0/ν ≈ 103, which compares inertial effects (ρR2

0U
2)

to viscous forces ρνUR0. In this limit of high Reynolds numbers, inertia dominates
and viscous effects are concentrated in thin boundary layers close to the walls.

In the case of a pulsating flow (pulsation ω), Stokes’ second problem gives a scaling
of the boundary layer size δ ≈

√
ν/ω. The ratio R0/δ gives the relative size of the

boundary layer compared with the size of the tube. In physiological applications, this
ratio is known as the Womersley number Wo ≡ R0

√
ω/ν (Womersley 1957). For the

aorta, we evaluate Wo ≈ 20. The boundary layer is thus small compared with the size
of the artery, and we recover the observation done considering the plug-like velocity
profiles measured by Cheng et al. (2003).

Finally, since the artery is elastic, one needs to respect the ratio between the elastic
wave propagation c0 and the velocity of the flow U . This ratio Sh ≡ U/c0 is classically
called the Shapiro number (Päıdoussis 2006). For the aorta Sh ≈ 0.1.

In conclusion, in order to reproduce the physiological flow, the experiment must be
conducted in the limit

Re � 1, Wo � 1, Sh � 1. (1.1)

1.4. Objectives

Abdominal aortic aneurysms have been found to be systematically localized before
the iliac bifurcation and are characterized by a growth rate which increases with their
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Figure 2. (Colour online) Sketch of the experiment: T= tank, W= water, ST= stroke
(oscillatory motion of the amplitude a and the angular frequency ω), C= computer, S = servo,
EC= electrical cylinder, P1 and P2 = pressure sensors and M= elastic membrane. We also
use d for the local membrane thickness, U for the local flow velocity and A for the local
cross-section. Finally, P0 stands for the atmospheric pressure and H is the vertical distance
between the membrane and the tank.

size and a characteristic period of development of the order of a year. To determine
the respective role of biology and mechanics in AAA, we reproduce, in a scaled
model, the pulsating flow of a Newtonian liquid in an elastic membrane and identify
the mechanical conditions under which aneurysms can form.

The experimental set-up is presented in § 2. The dynamics of the aorta on the time
scale of the heart beat is presented in § 3, where the question of the localization is
addressed. The development and growth rate of the aneurysms is addressed in § 4,
prior to the conclusion in § 5.

2. Experimental set-up and protocol
In this section, we first give an overview of the experiment and then detail each of

the main parts before presenting the diagnostic tools used to quantify the dynamics
of the deformation of the membrane.

2.1. Overview

The experimental set-up is sketched in figure 2: the water (blood) (W) is contained
in a tank (T) with a free surface maintained at the constant atmospheric pressure
P0. Using a computer (C) we move, via the servo (S), an electric cylinder (EC) which
pumps the water in the stroke (heart) (ST) with the amplitude a and the frequency
ω. We define the amplitude with respect to the liquid motion at the exit of the stroke,
which means that the velocity of the liquid as it enters the membrane (aorta) (M)
is of the order of aω. Two valves in the stroke impose the motion of the liquid in
the anticlockwise direction as indicated by the arrows. Two pressure sensors (P1) and
(P2) enable the measure of the pressure variation across the membrane. At the exit
of the elastic membrane, the liquid returns to the tank via a rigid tube (iliac artery).
The tank is located above the membrane, at a height H ≈ 1 m which imposes a mean
pressure jump across the membrane of the order of ρgH . This positive pressure jump
ensures that as long as the velocity in the membrane remains smaller than

√
2gH ,
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L R0 ≡
√

A0/π d0 c0 E

(cm) (mm) (mm) (m s−1) (MPa)

Elastin: 2.4
Human aorta 40 7.4–11.3 ≈1 5.15; 6 Collagen: 114
(Fung 1997; Global: 5.3
Groenink et al. 1999)
Latex membrane 0–200 9.5 0.7 6 1.07
Michelin�

Human iliac artery 5 ≈ 5.5 ≈ 0.7 9 ; 11.5 Global: 10
(Gray 1918; Li et al. 1981;
Medynsky et al. 1998)

Table 1. Characteristics of human arteries and latex membrane.

the membrane is always under tension. Since arteries work in this inflated regime, the
whole study is conducted in this limit.

2.2. An elastic membrane for the aorta

As an elastic membrane, we have used latex tyre tubes from Michelin, the properties
of which are presented in table 1 and compared with the properties of the human
aorta and iliac arteries. The elastic membrane is characterized by its length L, initial
unstretched cross-section A0, initial thickness d0 and Young modulus E. We also
report in table 1 the value of the elastic wave speed c0 ≡

√
d0 E/2ρR0 (Lighthill 1975),

defined with ρ as the density of the contained liquid and R0 ≡
√

A0/π as the initial
radius of the membrane.

Note in table 1 that the geometrical properties (L, R0, d0) as well as the dynamical
characteristic (c0) of the latex membrane are compatible with the characteristics of
the human aorta reported in the literature. We also underline the higher rigidity of
the iliac artery which is modelled in our experiment using the limit of a rigid tube
(see § 2.2.4).

2.2.1. Experimental characterization of the elasticity of the membrane

To characterize the elastic properties of the latex membrane, we have used an
hydraulic traction machine, presented in figure 3(a): a rectangular piece of material
(length L0, width b0 and thickness h0) is initially clamped between cylindrical jaws.
A controlled traction force F is then exerted via the jaws on the membrane and
the corresponding equilibrium length L is measured. The relation between the stress
σ ≡ F/(hb) and the relative extension ε ≡ (L − L0)/L0 is presented in figure 3(b).
In this graph, the force F and the length L are measured while the cross-section
hb is deduced from the initial cross-section h0b0 via the incompressibility relation
hb = h0 b0 L0/L, which assumes a Poisson coefficient νp =1/2.

In the limit of small relative deformation ε < 2, the stress is proportional to the
deformation σ ≈ 106ε. This is the Hookean regime from which one deduces the
value of the Young modulus E ≈ 1 MPa presented in table 1. For a higher relative
deformation, the stress is a stronger function of the deformation as plastic effects
appear (Carpenter & Pedley 2003).

2.2.2. A pressure law for the cylindrical membrane

Let us now consider a cylindrical membrane such as the one presented schematically
in figure 4(a). When there is no pressure jump across the membrane (P = P0) the
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Figure 3. Characterization of the elastic properties of the membrane: (a) scheme of the
traction experiment, (b) results obtained for the traction stress σ ≡ F/(hb) as a function of the
relative elongation ε ≡ (L − L0)/L0.
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Figure 4. A pressure law for the cylindrical membrane: (a) scheme for the equilibrium, (b)
experimental evolution of the transmural pressure p with the relative deformation R/R0 − 1
(�). The solid line corresponds to the theoretical curve (2.2).

radius of the membrane is R0. When the pressure across the membrane increases
p ≡ P − P0 > 0, the new equilibrium radius R results from the balance between the
pressure and elastic stresses. For a small element of the angular extension β , this
equilibrium reads

p =
d0

R0

σ (ε)

(1 + ε)2
, (2.1)
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f Ejected volume Ω Reynolds no. Womersley no. Shapiro no.
(Hz) (cm3 cycle−1) Re = UR0/ν Wo = R

√
ω/ν Sh= U/c0

Human heart 1.25–3 ∼80 700–2500 ∼20 0.1–0.25
Electric cylinder 0.1–10 5.6–168 900–104 7–40 0.1–0.16

Table 2. Properties of the human heart (Shapiro 1977; Chandran & Yearwood 1981; Fung
1990; Ku 1997; Groenink et al. 1999; Humphrey & Delange 2004) and the present experiment.

where ε ≡ R/R0 − 1. The experimental evolution p(R/R0) is shown in figure 4(b)
by solid squares. At small relative extensions (ε < 1), the radius of the membrane
increases with the pressure. This evolution stops at R = 2 R0, where the pressure
reaches a maximum p	 ≈ 18 500 Pa. If the pressure is increased above this critical
pressure, one observes a jump on the radius from R =2 R0 to R ≈ 6 R0. For an even
higher pressure, since the membrane becomes stiffer, the radius increases with a lower
sensitivity to the pressure.

Using the Hookean expression of the stress σ = Eε, the pressure–radius equation
(2.1) reduces to

p = E
d0

R0

ε

(1 + ε)2
. (2.2)

This relation is shown by a thin solid line in figure 4(b). The comparison with the
experimental data shows that the linear Hookean approximation does capture the
evolution of the pressure up to the pressure maximum p	. It predicts correctly
the extension at which the maximum occurs (dp/dR = 0 when R/R0 = 2) as well
as the absolute value of the critical pressure. Since the Hookean model does not
account for the stiffening of the membrane at large relative deformations (observed in
figure 3b), it fails to describe the increase of the pressure observed in the range ε > 5.
However, since the whole study is conducted in the range of deformations R/R0 � 2,
we will use the Hookean approximation (2.2) to describe the pressure–radius relation.
In terms of the cross-section A, this relation can be rewritten

p (A) = 2ρc2
0

(√
A0

A
− A0

A

)
. (2.3)

Under this form, the relation has already been used (Paquerot & Lambrakos 1994)
and discussed in Olsen & Shapiro (1967). In Olsen & Shapiro (1967), the authors
prefer a pressure law derived from statistical physics given by p = 1/2ρc2

0[1−(A0/A)2].
Both expressions are equal in the limit A/A0 = 1 + εA, where p = ρc2

0εA (εA � 1).
However, the essential difference between the two expressions is that one predicts a
maximum (see (2.3)) while the other predicts a saturation. Since the maximum and
the corresponding instability is observed experimentally as shown in figure 4(b) we
have decided to work with the Hookean model (2.3).

2.3. An electrical cylinder for the heart

Concerning the heart, we report in table 2 its main mechanical characteristics: beat
frequency f ≡ ω/2π and ejected volume per beat Ω . These values are compared
with those obtained artificially from the electric cylinder (IDC-Motion EC3-B23)
controlled with a computer. Both the frequency and the ejected volume range of the
physiological system are covered by the experimental counterpart. These parameter
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Figure 5. (Colour online) Resistance to the flow: (a) scheme of the experimental set-up
dedicated to the description of the resistance, (b) measurement of the pressure in the membrane

p ≡ P − P0 − ρgH as a function of the square of the mean velocity U 2. The proportionality

p = KρU 2 is illustrated for three different rigid tubes which lead to K = 8 (�), K =14 ( )
and K = 40 ( ).

ranges have been chosen to generate a flow in the elastic membrane in close similarity
with that observed in the aorta.

The similarity between both flows is achieved by using similar non-dimensional
numbers: Reynolds, Womersley and Shapiro numbers. Their typical range of
variations is indicated in table 2. The Reynolds number Re ≡ UR0/ν = Ωf/πR0ν

is typically O(103) in the human aorta (Chandran & Yearwood 1981; Fung 1990;
Groenink et al. 1999) whereas the range of the experiment is 900–104. The Womersley
number Wo ≡ R0/

√
ν/ω is O(20) in the aorta (Fung 1990; Ku 1997; Humphrey &

Delange 2004) and ranges between 7 and 40 in our experiment. Finally, the Shapiro
number Sh ≡ U/c0 compares the velocity of the flow to the propagation velocity of
the elastic waves on the aorta. The Shapiro number is small in the aorta (typically
0.1, Pedley 1980) and the same range is achieved in our experiment.

2.4. A rigid tube as iliac artery

As seen in table 1 and mentioned in § 2.2, the iliac arteries are stiffer than the aorta.
Moreover, the network of subsequent arteries and vessel behaves as a ‘resistance’ for
the flow in the aorta (McDonald 1960). To model these two effects, we connect the
elastic membrane to a rigid tube the diameter (and length) of which is used to change
the ‘resistance’ to the flow. Experimentally, this connection is achieved using a hose
clamp.

In analogy with Ohm’s law, the resistance is classically defined as the relation
between the pressure and the velocity in the membrane.

To measure this resistance, we have conducted a specific experiment presented in
figure 5(a): first, the elastic membrane is filled with water and set into tension by a
static pressure Ps ≡ P0+ρgH imposed by the rigid tube which connects the membrane
to an overflow standing at a height H above the elastic tube. A mean velocity U is
then imposed and we measure the corresponding pressure difference 
p ≡ P −Ps . The
evolution 
p(U ) is presented in figure 5(b). We observed a linear relation between the
pressure difference and the square of the mean velocity: 
p = KρU 2. The constant
of proportionality K changes from 8 to 14 and then 40 as we have varied the rigid
tube length and diameter. Since the Reynolds number of the flow in the experiment
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Figure 6. Experimental method used to measure the deformation of the membrane: (a)
scheme of the set-up, (b) example of the observation in the case of a homogeneous deformation,
(c) example of the observation in the case of an inhomogeneous deformation.

is large (>103), one is not surprised to obtain such a relationship for the resistance
(Prandtl & Tietjens 1957).

Furthermore, with a mean velocity of the order of the metre per second, the
corresponding pressure losses for the three different resistances are 8000, 14 000 and
40 000 Pa. These values are comparable to the pressure loss measured in a human
aorta, ≈ 104 Pa (McDonald 1960).

2.5. Experimental methods

In the limit of small deformations, the law of the membrane (2.3) shows that the
relative deformation δR/R0 is related to the pressure fluctuations δp via the relation
δR/R0 ∼ δp/ρc2

0. The evaluation δp ∼ ρU 2 leads to δR/R0 ∼ (U/c0)
2 ≈ 1–10 %. For

a centimetric elastic membrane (c0 ≈ 6 m s−1) and a typical metre per second flow, we
deduce that the radial deformations are millimetric. Since the length of the aorta is
of the order of 1 m, the ratio between the length scale of the domain and the length
scale of the deformation is 103. This is out of the scope of a classical video camera
∼102. We thus use a geometrical magnification to reduce the scale ratio to 102 in
order to observe the dynamical deformations of the membrane with a video camera.
This geometrical zoom is presented in figure 6(a): it consists of a comb of laser
sheets inclined of an angle α with respect to the membrane. As shown in figure 6(b,c),
each laser sheet intersects the cylindrical membrane and produces a bright elliptical
trace. In figure 6(b,c), the image at the top represents the membrane prior to the
deformation (the edges of the membrane are marked by long dashed lines) while
the image at the bottom presents the membrane after the deformation (the edges of
the membrane after the deformation are underlined by short dashed lines). The radial
deformation being millimetric δR ≈ 1 mm, we observed that it induces a displacement
of the laser trace δx ≈ 1 cm. The geometrical relation between the two variations
is δx =2δR/ tan α. The displacements are reduced to a translation in the case of a
homogeneous deformation (figure 6b) or lead to a more complex figure in the case
of an inhomogeneous deformation (figure 6c).

3. Dynamics on the time scale of the heart beat
In this section, we consider the dynamics of the deformation of the elastic

membrane on the time scale of a few periods of forcing. We first present the
experimental results and then the model and numerics are developed to account for the
observations.
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Figure 7. Spatio-temporal diagrams: (a) view from above of the whole membrane L = 1 m,
R0 = 1 cm; (b) spatio-temporal diagram obtained during 6 s at the frequency f =0.5 Hz with
the amplitude a = 270 mm; (c) spatio-temporal diagram obtained during 5.9 s at the frequency
f = 3 Hz with the amplitude a =45 mm.

3.1. Experimental evidence of two distinct regimes

The experimental results presented in this section have all been obtained with the
resistance (of the iliac artery): K = 8. In order to describe the time evolution of the
deformation of the membrane, we use spatio-temporal diagrams: starting from a
global view of the membrane such as the one presented in figure 7(a) we extract
the centred horizontal line and construct a new image where its different lines
correspond to the selected line at different times equally spaced. An example of such
a spatio-temporal diagram is presented in figure 7(b). This diagram extends over 6 s
and corresponds to the experimental conditions: f =0.5 Hz, amplitude a = 270 mm
(velocity aω =0.85 m s−1). At a given spatial location we observe that the deviation
of the light oscillates in time with the period of ≈2 s. We also measure an amplitude
of the deviation of ≈ 1 cm which implies a radius variation δR ≈ 1 mm.

Considering the spatial evolution of the deviations, figure 7(b) presents a
synchronous translation of the different beams: the membrane thus undergoes an
homogeneous deformation. Let us now consider the spatio-temporal diagram shown
in figure 7(c) obtained at the same velocity (0.85 m s−1) but with different forcing
conditions: f =3 Hz and a = 45 mm. The time evolution of the light deviation at a
given location contains more harmonics than in figure 7(b). Furthermore, instead of a
synchronous translation of the beams, we observe strong oscillations at the entrance
and the exit of the membrane and almost no oscillations at an intermediate position
x ≈ 0.6 m. We also observe that the oscillations at the two ends oscillate out of phase.

We retain from the qualitative analysis of these spatio-temporal diagrams that
depending on the value of the forcing parameters, the membrane can undergo either
an homogeneous deformation or an inhomogeneous one.

The transition between the two regimes of deformation illustrated in figures 7(b)
and 7(c) can be quantified. First, keeping the length of the membrane constant
(L =50 cm), figure 8(a) shows the evolution of the critical amplitude of forcing a	

with the frequency f 	. As the frequency increases from 0.65 to 1.5 Hz, the critical
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Figure 8. Quantitative analysis of the transition between the homogeneous and
inhomogeneous deformation regimes: (a) evolution of the critical amplitude a	 (denoted
by solid squares) with the frequency f 	 for a fixed length of the membrane L = 50 cm; (b)
evolution of the critical length L	 (denoted by solid squares) as a function of the frequency f 	

for a fixed amplitude a =27 mm.
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Figure 9. Windkessel model: Qin(t) is the inlet flow rate, Qout (t) is the outlet flow rate, Ω(t)
is the volume of the fluid contained in the membrane and A(t) is the mean cross-section.

amplitude above which an inhomogeneous membrane is observed decreases from 270
to 27 mm.

Now keeping the amplitude of forcing constant (a = 27 mm), figure 8(b) displays
the evolution of the critical length L	 as a function of the forcing frequency f 	. At
a given frequency, we observe an homogeneous deformation on ‘short’ membranes
and an inhomogeneous deformation above L	. As f 	 increases from 1.5 to 4 Hz, the
critical length decreases from 50 to 10 cm.

3.2. Model

To discuss the homogeneous character of the deformation, we first consider the
Windkessel model (Frank 1905) which consists of a lumped (space averaged) model
of the flow in the elastic membrane as shown in figure 9. In this limit, the cross-section
of the membrane only depends on time through mass conservation which reads

L
dA

dt
= Qin(t) − Qout (t). (3.1)

In this equation, Qin(t) is imposed by the ‘heart’ while Qout (t) is related to the pressure
p in the membrane via the relation

Qout (t) = Aout

√
p

Kρ
, (3.2)
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where Aout is the outlet cross-section of the elastic tube. The transmural pressure
is given by the elastic membrane law (2.3). To estimate the characteristic time of
deformation of the membrane, we consider a small deformation A(t) = A0[1 + ε(t)]
and linearize (2.3), yielding

dε

dt
=

Qin(t)

LA0

− c0√
KL

√
ε. (3.3)

When the inflow is steady Qin(t) = Qin, the system reaches the equilibrium
εeq = (Q2

inK)/(A2
0c

2
0) with the characteristic time τeq = LQinK/A0c

2
0.

In the presence of a time-dependent periodic inflow rate Qin(t) = A0aωf (t) of the
period τf ∼ 1/ω, the above analysis only holds if τeq < τf (quasi-steady limit). Since
τeq scales as L there is always a portion of the size LH which satisfies this criterion:

LH =
τf c2

0

aωK
, (3.4)

where LH is the length over which the membrane deforms homogeneously. To discuss
the homogeneous/inhomogeneous transition observed on the whole membrane,
LH must be compared with the total length L. Note that L/LH > 1 will lead to
inhomogeneities while L/LH < 1 ensures a homogeneous deformation. The transition
is thus described by the criterion

aω2KL

c2
0

∼ 1. (3.5)

For a given membrane, this criterion predicts that the frequency f 	 above which
the membrane becomes inhomogeneous decreases as the amplitude of the forcing
increases. For a fixed amplitude, it also implies that the critical length decreases with
increasing forcing frequency. These two behaviours are qualitatively compatible with
the experimental results presented in figure 8.

More quantitatively, we present in figure 10 the evolution of the ratio (ω/c0)
2 as

a function of aL obtained for a constant resistance K =8. We observe in this figure
that the data obtained from different tubes length, forcing amplitudes and frequencies
collapse on a single curve and closely follow the criterion (3.5) shown by a solid line.
Figure 10 enables us to establish the transition at aω2KL/c2

0 ≈ 0.5.
In the present model, since the Shapiro number is small (aω/c0 � 1) we have

neglected the role of waves, which could also be responsible for inhomogeneity.
However, for linear elastic waves (Lighthill 1975) the wavelength λ=2πc0/ω is always
larger than the membrane length. The numerical model developed in § 4.4 accounts
for the role of nonlinear waves (Pedley 1980).

3.3. Physiological implications

In this section, we propose some qualitative ideas on the location of aneurysms based
on the two types of deformations observed from our elastic membrane. In the human,
as in our experiments, the ‘acoustic’ wavelength λ= 2πc0/ω (c0 ≈ 5 m s−1) is much
larger than the length of the aorta L = 0.4 m. The criterion (3.5) can be used to
discriminate whether an artery submitted to the heart pulsating flow undergoes an
homogeneous or inhomogeneous deformation. Using the values K ≈ 10 (McDonald
1960) and aω ≈ 1 m s−1 (Cheng et al. 2003), inhomogeneous deformations are assumed
to occur when aLω2K/c2

0 > 0.5. For the aorta, this ratio can be evaluated to 0.7. The
aorta should thus undergo inhomogeneous deformations as shown in figure 11(a1).
Assuming that inhomogeneous deformations induce, in time, inhomogeneous tissue
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Figure 10. Transition observed experimentally between the synchronous and asynchronous
regimes. The solid line stands for the behaviour expected from the scaling law (3.5).
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Figure 11. (a) Inhomogeneous deformation of a ‘long artery’, (b) homogeneous deformation
of a ‘short artery’.

characteristics, one can understand at least qualitatively the formation of aneurysms at
specific places along the vessel. The influence of the inhomogeneity of the deformation
on the development of aneurysms is further studied with the numerics in § 4.4.

For a shorter and stiffer artery such as the carotid artery (L ≈ 10 cm, c0 ≈ 10 m s−1),
the situation is different: the parameter aLω2K/C2

0 is O(0.01), which is smaller
than the transition value 0.5. The carotid artery should thus undergo homogeneous
deformations as shown in figures 11(b1) and 11(b2). If the artery undergoes
homogeneous deformation, the properties of the tissue should remain homogeneous
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Figure 12. Diameter (mm) of the membrane as a function of the position x along the
membrane, obtained by two simultaneous experimental diagnostics: a lateral close view
delivered by a digital camera (reproduced in the figure inlet), and a set of discrete data
points retrieved from the view from above of the displacement of the laser sheet device. Both
shapes are well fitted by Gaussian functions.

and there is no reason for the appearance of an inhomogeneity along the artery. In
this limit, if an inhomogeneity appears, it should be observed ‘outside’ the artery. The
aneurysm presented in figure 11(b3) can be seen as an aneurysm developing outside
an artery.

4. Dynamics on the time scale of life
4.1. Experimental observations

The time required for the development of an AAA is of the order of years and,
therefore, of the order of millions of cardiac cycles. The aim of this section is to
analyse if similar growing processes can be identified in our experiment and under
which circumstances saturation is encountered or catastrophic growth (aneurysm)
triggered.

In order to detect and characterize growing bulges on the membrane and to measure
the precise membrane shape as a function of time and space, the laser sheet device
described in § 2 is used.

When a small deformation occurs as in the case shown in figure 12, the discrete
set of data points is fitted by a Gaussian function of the form D(x, t) = Db(t) +

D(t) exp[−(x − xc(t))

2/δ(t)2], where Db(t) is the base diameter away from the bulge,

D(t) is the bulge amplitude, xc(t) is the bulge centre position, and δ(t) is the bulge
width. An alternative determination is obtained through a fit of a lateral close view
delivered by a digital camera, as seen in the inset of figure 12, where the two fits
are shown in the same graph at a given time. Both fitting functions agree to a
certain extent, 24.5 + 3.64 exp[−(x − 205.45)2/820] for the imaging technique and
24.32 + 4.29 exp[−(x − 201.79)2/490] for the best fit over the laser deviations. These
discrepancies are related not only to the experimental techniques but also to the
presence of the bottom wall which breaks the axisymmetry. In this example, the
relative discrepancy on the maximum diameter Dmax = Db + 
D is less than 1 %. In
the sequel, the laser sheet device is used for determining the above shape parameters.

The long time (over more than 100 ‘cardiac’ periods) evolution of the maximum
diameter for K = 40, L = 1 m and f = 0.75 Hz is shown in figure 13(a) for various
forcing amplitudes a. A threshold is visible: For amplitudes less than 90 mm, the
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Figure 13. (a) Evolution of the maximum diameter as a function of time for various piston
amplitudes a; K =40, L = 1 m, f = 0.75 Hz. For amplitudes less than 90 mm, the membrane
reaches a stationary plateau, once the oscillations based on the cardiac cycle are filtered,
whereas for amplitudes larger than 90 mm, the maximum diameter diverges in finite time
and an aneurysm is formed. (b) Pressure reached in the membrane as a function of (aω)2 for
K = 40 et L = 1 m. In these experiments, the hydrostatic pressure has been varied by varying
H . The evolution is presented for various combinations of forcing amplitudes and frequencies:
(�) f = 0.75 Hz, H =0.7 m; (�) f = 0.75 Hz, H = 1.23 m; (�) f =2 Hz, H = 0.7 m. Open
symbols correspond to experiments where an aneurysm forms. The horizontal line shows the
maximum pressure in the curve p(R).

membrane reaches a stationary plateau, once the oscillations based on the cardiac
cycle are filtered out, whereas for amplitudes larger than 90 mm, the maximum
diameter diverges in finite time. Below the threshold, a characteristic settling time
t∞ of a few dozen of cardiac cycles may be identified. Both t∞ and D∞ grow when
the forcing amplitude is increased. Above the threshold, an inflexion point links the
initial settling phase to a strongly growing stage.

Beyond the threshold, the cycle-averaged transmural pressure attains a steady value
p∞ when the plateau regime is reached. This plateau pressure p∞ is shown as a function
of (a.ω)2 in figure 13(b). Above the threshold, no plateau is reached, and since the
experiment is stopped as soon as the aneurysm develops, the last measurement of
the transmural pressure is retained and is shown (open symbols) in figure 13(b). The
maximal pressure p∗ of the pressure–deformation law [defined in figure 4(b)] is also
shown. Since all pressures measured at an incipient aneurysm are above this value,
whereas all plateau pressure values in the absence of any aneurysm are below this
value, a clear correspondence may be drawn between the formation of an aneurysm
and the appearance somewhere along the membrane of a pressure above p∗.

The forcing amplitude and the frequency at the threshold (ac, fc) obtained by several
similar experiments where the outlet hydraulic resistance K and the membrane length
L are varied are shown together in figure 14. This figure clearly shows that the
threshold amplitude ac is inversely proportional to the forcing frequency fc, pointing
to a threshold inflow rate. It further suggests that the membrane length L does not
influence the threshold and that larger hydraulic resistances K favour aneurysms.

4.2. Nonlinear Windkessel model for aneurysms

As seen in figure 14, our experiments have shown that an aneurysm was triggered
whenever the inlet flow rate Q became higher than a certain threshold Q∗ increasing
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Figure 14. Amplitude and frequency threshold above which a bulge grows without bounds
for several hydraulic outlet resistances and lengths. (�) K = 40, L = 1 m; (�) K = 14, L = 1 m;
(�) K =14, L =0.5 m.

with decreasing hydraulic resistance K and independent of the length of the
membrane. In this section, we derive a nonlinear Windkessel model accounting for
this scaling.

The main difference with the study conducted in § 3.2 is that we now consider large
deformations so that the membrane law (2.3) is not linearized.

The outflow rate Qout is related to the pressure inside the membrane by (3.2) and
thus gives

Qout (t) =
Aout

√
2 c0√

K

√√
A/A0 − 1

A/A0

(4.1)

Therefore, the Windkessel model becomes

dA

dt
=

Qin(t)

L
− Aout

√
2 c0√

KL

√√
A/A0 − 1

A/A0

≡ f (t, A). (4.2)

In the present aneurysm regime, the deformations are large and the time scale τe

characterizing the deformation of the membrane is large compared with the period
of the forcing (in figure 13(a) ωτe ∼ 100 and in physiology ωτe ∼ year s−1 ∼ 107).

A multiple scale analysis can be followed, introducing the fast time scale τ = t/ε

with ε = 1/ωτe, we write

A = A(0)(τ, t) + εA(1)(τ ) (4.3)

this yields

1

ε

∂A(0)

∂τ
+

∂A(0)

∂t
+

∂A(1)

∂τ
= f (τ, A(0) + εA(1)) = f (τ, A(0)) + O(ε). (4.4)
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At order 1/ε, ∂A(0)/∂τ = 0, meaning that the amplitude does not depend on the fast
time scale. At leading order this amplitude is therefore the average over one period

(1/T )
∫ T

0
A(t) dt =A(0). At the next order

∂A(1)

∂τ
= f (τ, A(0)) − dA(0)

dt
. (4.5)

If the average over one period of the right-hand side is not zero, it is easy to see that
A(1) grows at least linearly. In that case, the initial separation between the amplitude
and the fluctuation becomes invalid in a time of order 1/ε. Therefore, necessarily∫ T

0

(
f (τ, A(0)) − dA(0)

dt

)
dτ = 0, (4.6)

that is

dA(0)

dt
=

1

T

∫ T

0

f (τ, A(0)) dτ. (4.7)

With f (τ, A(0)) given by (4.2), this yields

dA(0)

dt
=

1

T L

∫ T

0

Qin(τ ) dτ − Aout

√
2 c0√

KL

√√
A(0)/A0 − 1

A(0)/A0

. (4.8)

This equation can be further non-dimensionalized by introducing A(0) = A0Ā,

t = ((L
√

K/2)/c0)̄t and Q̄in = (
√

K/2/A0c0)(1/T )
∫ T

0
Qin(τ ) dτ , the reduced average

incoming flow rate:

dĀ

dt̄
= Q̄in −

√√
Ā − 1

Ā
. (4.9)

Equation (4.9) shows that a steady state is attained (dĀ/dt̄ = 0) only if the two

terms on the right-hand side cancel. Since the function

√
(
√

Ā − 1)/Ā reaches the

maximum value 1/2 for Ā= 4 the balance is possible only if Q̄in < 1/2. Above this
critical inflow, the amplitude grows without bound and enters the aneurysm regime.

This analysis is confirmed by the numerical integration of (4.9) performed in
figure 15 for different values of Q̄in. The two different behaviours (steady and
aneurysm) are recovered and we also notice the similarity in the time evolution of the
cross-section with the one measured experimentally (figure 13a).

A quantitative comparison of the non-dimensional threshold Q̄c = 1/2 is provided
in figure 16, with a remarkable agreement regarding the exact prefactor if one bears
in mind the extreme simplicity of the Windkessel model considered here. Despite the
two main limitations of the model, the time-averaging procedure resulting from the
separation of scales and the global character of the model, which fully neglects
the inhomogeneities described in § 3, the agreement is excellent.

With dimensions, the critical mean flow Q̄c = 1/2 above which aneurysms are
expected is

Qc = A0acωc =
A0c0√

2K
. (4.10)
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Figure 15. Theoretically predicted evolution of the mean cross-section as a function of
non-dimensional time for various non-dimensional inflow rates. For non-dimensional inflow
rates less than 1/2, the membrane reaches a stationary plateau, whereas for inflow rates larger
than 1/2, the maximum cross-section diverges in finite time.

Under this form, the observations of figure 14 can be interpreted as follows:
(i) The threshold amplitude ac is inversely proportional to the forcing frequency

fc.
(ii) The membrane length L does not influence the threshold.
(iii) Larger hydraulic resistances K favour aneurysms.

4.3. Numerical aneurysms experiments

To go one step further the Windkessel model and discuss the localization of aneurysms,
we perform a long-wave analysis of the flow in the spirit of Lighthill (1975) and get
two conservation equations for mass and momentum:

∂A

∂t
+

∂ (AU )

∂x
= 0, (4.11)

∂U

∂t
+

∂

∂x

[
U 2

2
+ 2c2

0

√
A0

√
A −

√
A0

A

]
= 0, (4.12)

A pulsating velocity is imposed at the entrance (x =0): U (0, t) = (A0/A)aω(1 −
cosωt)/2 and at the exit (x = L) U (L, t) =p(L, t)/R, where the resistance R has the
form R = R0 + ρKU (0, t). The first part is a constant R0 = 103 Pa s m−1. It accounts
for the low-velocity regime where the resistance becomes of the Poiseuille type. This
term is essential to ensure the numerical stability of the integration. The second part
linear in U reproduces the experimental trends observed for ‘large’ Reynolds numbers
(figure 5). For a typical velocity U = 1 m s−1 and a resistance factor K = 10, we find
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Figure 16. Non-dimensional critical frequency at the onset of an aneurysm
f̄c = ((L

√
K/2)/c0)fc as a function of 1/2āc , half the inverse of the non-dimensional critical

amplitude āc = ac/L for the aneurysms reported in figure 14. The predicted linear dependence
with slope 1/2π is shown by the solid line.

that the second component of the resistance is 10 times larger than the constant R0.
The numerical resistance is thus close to that observed experimentally.

Equations (4.11) and (4.12) are solved using a finite-difference Lax–Friedrich scheme
(see the Appendix) and a constant ratio U/(dx/dt) = 1/2 satisfying the Courant–
Friedrichs–Lewy (CFL) condition. In this expression, dx and dt represent the space
and time discretization intervals, respectively. As discussed by Hirsch (1989), this CFL
condition is a necessary condition for convergence of the numerical integration.

In order to mimic the formation of aneurysms with our numerical model, we have
observed that is was compulsory to introduce a more elastic region of the membrane,
as shown in figure 17, so as to prevent numerical instabilities at the outlet boundary
condition. In the following, we have used a defect of width δ = L/4 (figure 17)
and wave speed c1 = c0/

√
2, located in the middle of the membrane. Note that the

intensity of this defect could have been kept very low at the expense of a reduced
time step. This in turn would have increased artificially the numerical dissipation of
the Lax–Friedrich scheme and spuriously damped the dynamics.

Typical results are shown in figure 18 for a numerical membrane with K = 60,
L = 4 m, f = 1 Hz and c2

0 = 35 m2 s−2. As in the experiment, two regimes are
easily identified. For amplitudes less than 252 mm, the membrane reaches a
mean stationary plateau of the cross-section A∞ whereas for amplitudes larger
than 252 mm, the maximum diameter diverges in finite time. Again, beyond the
threshold, a characteristic settling time teq of a few dozen of cardiac cycles may be
identified.
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Figure 18. Evolution of the maximum cross-section as a function of time for various piston
amplitudes a; K = 60, L =4 m, f = 1 Hz, c2

0 = 35 m2 s−2. For amplitudes less than 252 mm,
the membrane reaches a stationary plateau once the oscillations based on the cardiac cycle
are filtered, whereas for amplitudes larger than 252 mm, the maximum cross-section diverges
in finite time.

The numerical calculations are complementary to the experimental measurements,
since they enable one to easily vary L and K . A comparison of the threshold for
unbounded growth obtained in the numerical model and the experiment is provided
in figure 19 in the non-dimensional 1/2āc–f̄c plane. Here, f̄c = fcL

√
K/2/c0 and

āc = ac/L, in accordance with the previous section. The linear relationship, predicted
by the nonlinear Windkessel model, is again verified here and it shows that aneurysms
are formed whenever the flow rate Q =A0aω becomes larger than Qc ∼ A0c0/

√
2K .

There is however a discrepancy in the proportionality factor between the experiment
and the numerical model. Several plausible interpretations may be proposed. The
temporal flow rate signal in the numerical experiments differs from the experimentally
imposed flow rate. Whereas a sinusoidal signal is used in the numerical integration,
the experimental signal is more like a truncated sinus wave. It is likely that for a given
amplitude and frequency, the peak experimental influx is larger than the numerical
influx. Another difference lies in the fact that the membrane used in the numerical
model does contain a localized defect.
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Figure 19. Non-dimensional threshold amplitude and frequency (denoted by open circles)
for aneurysm in the numerical model (integration of the system (4.11) and (4.12)) for various
lengths L and hydraulic resistances K; the dashed line refers to the predicted linear dependence
with slope 1/2π (4.10).

4.4. Influence of the nonhomogeneous deformations of the membrane
onto the aneurysm threshold

Section 3 was devoted to the analysis of various regimes of deformation of the
membrane below the aneurysm threshold. It was shown that if the forcing time
becomes smaller than the Windkessel settling time, the membrane could not fill and
empty as a whole and becomes non-homogeneous. In the present section, we aim
at considering the effect of such inhomogeneities onto the formation of aneurysm
and to answer the question if they are particular regions in the membrane which
encounter aneurysm at first as a consequence of focalization. From an experimental
point of view, we have always observed aneurysms forming close to the end of the
membrane, but we should remember that the length of the membrane could not be
much varied, preventing a more systematic analysis. The numerical model should in
principle enable a detailed study, but unfortunately it is not appropriate to yield a
direct answer. Indeed, it is not possible to use a uniform membrane since in that case
aneurysms would form at the end point and destabilize the boundary condition.

It is however possible to study the influence of the forcing-induced inhomogeneities
in an indirect manner. For a given membrane, the position xd and the amplitude
∆ =(c2

0 − c2
min)/c

2
0 of the defect (see figure 17) can be varied until the aneurysm is

triggered. Such a numerical experiment is shown in figure 20.
Figure 20(a1) shows that for the same defect intensity and width, the position of the

centre of the defect has an influence on the aneurysm threshold. Indeed, for a defect
located in the middle of the membrane xd =L/2, an aneurysm is formed, whereas for
defects located upstream or downstream, the membrane reaches a mean equilibrium
averaged shape shown in figure 20(a2). This time-averaged mean shape displays a
bulge at the position of the defect, since the membrane is locally more distensible. The
corresponding shape for xd =L/2 is not plotted since an aneurysm takes place, but for
lower values of the defect intensity, the resulting bulge surpasses (not shown) those
obtained for xd = L/3 and xd = 2L/3, and one may infer that, prior to aneurysm, the
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Figure 20. Numerical experiments on the influence of the position of the defect for a
membrane with L = 2 m, f = 1 Hz, a = 360 mm, K = 200. (a) Time evolution of the maximal
cross-section along the membrane, for three different positions of the same defect (∆ = 0.12).
(b) Maximal (max), minimal (min) and time-averaged (moy) mean cross-sections for
an homogeneous membrane (∆=0), and the two imperfect membranes at equilibrium:
xd = L/3,∆ = 0.12 and xd = 2L/3,∆ = 0.12. (c) Threshold value of ∆∗ required for the
triggering of an aneurysm as a function of the position of the defect. The hashed zone
could not be reached for numerical stability reasons. (d ) Maximal, minimal and time-averaged
mean cross-sections for an homogeneous membrane (∆=0), displaying highs and lows. The
lowest ∆∗ is obtained in the crest whereas the highest ∆∗ is obtained in the trough.

maximum deformation with a localized defect increases with the mean deformation
of the reference perfect membrane at the position of the defect. The influence of
the defect location on the threshold for aneurysm is investigated quantitatively in
figure 20(b1,b2), where the lowest required defect intensity is obtained for the position
of the maximum focalization in the membrane without defect. Conversely, locations
where the focalization is not active correspond to high threshold defect intensities. In
this figure, positions of the defect close to the ends of the membrane could not be
explored for numerical instability reasons.
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Figure 21. Numerical experiments on the influence of the position of the defect, similar to
figure 20(b), with L =1 m, f = 1 Hz, a = 360 mm, K = 200.

A similar analysis with the same trends is provided in figure 21 for another
membrane length L. The lowest required defect intensity ∆∗ is observed at the
location of the reference membrane crests whereas the highest ∆∗ is obtained in
the trough. This confirms the influence of focalization onto the threshold for the
formation of an aneurysm.

4.5. Physiological implications

Using formula (4.10) with a suitable prefactor to fit the experimental data and
parameters suited to the aorta, A0 = 3 × 10−4 m2, c0 = 5 m s−1, K = 10, the threshold
inflow becomes Qc = 50 ml s−1. This value is lower than the cardiac flux 80 ml cycle−1,
but note that only 50–70 % of the flux goes into the aorta, the remaining flowing into
the coronary and carotid arteries so that the order of magnitude of our threshold is
close to the typical aortic blood flow rate.

Let us now discuss the possible link between our simple scaling law on the critical
flow rate and the well-accepted risk factors for aneurysms:

(a) the age of the patient, inducing a rigidification of the aorta and other large
arteries;

(b) hypertension, also associated with the rigidification of the aorta and
augmentation of the mean and peak systolic pressure;

(c) atherosclerosis, i.e. the local deposition of lipidic calcified constituents leading
to a stenosis;

(d) Marfan syndrome, a congenital disease that leads to a reduced elastin in the
arteries wall.
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Regarding risk factors (a) and (b), the rigidification of iliac arteries leads to an
increasing K , favouring aneursyms. The rigidification of the aorta however also leads
to an increasing c0, which should at first glance help to avoid aneurysms. However,
the increased mean pressure produced by the heart to drive the flow through the more
rigid membrane is associated with an increase in the peak diastolic pressure. This
point needs to be explored in a subsequent study. Atherosclerosis (c) may lead to a
stenosis in the illiac increasing K . Alternatively, if the stenosis takes place in the aorta,
the induced recirculation in the wake of the stenosis may lead to an enhancement of
the shear in this lee region (Lasheras 2007), locally altering the mechanical properties
of the aorta wall and ultimately weakening the elasticity properties in a finite region
(Ku et al. 1997). As shown in the preceding subsection, this weakened region is
an excellent candidate for aneurysm formation. Finally, in the presence of Marfan
syndrome (d ), the reduced elastin fraction leads to a lower c0 that favours aneurysm
formation.

4.6. Further comments on the relevance of the study

Note that the criterion (4.10) for aneurysm formation is based on the existence of
a local maximum in the pressure law P (R). In this paragraph, we refer to general
features of membrane stability and use them to discuss the relevance of our results
with respect to real aneurysms.

For a cylindrical membrane characterized by a pressure law P (R) and filled with a
liquid which moves from high- to low-pressure regions, it is straight forward to show
that stable cylinders correspond to dP/dR > 0 while membranes such that dP/dR < 0
are unstable. A consequence of this remark is that capillary jets for which P (R) = γ /R

(γ > 0 represents the surface tension) are always unstable since dP/dR = −γ /R2.
This conclusion is correct in the long wavelength limit and is known as the Savart–
Plateau–Rayleigh instability (Savart 1833; Plateau 1849; Rayleigh 1879).

For an elastic membrane law such as (2.2), one finds dP/dR =Ed0/R
2
0[(2 −

R/R0)/(R/R0)]. The membrane is thus expected to be stable in the range R/R0 < 2
and to turn unstable above this critical value, as shown in § 4. More generally, the
existence of this stable to unstable transition is associated with the existence of a
maximum in the P (R) curve.

Now, let us show that the existence and typical geometry of aneurysms imposes
the existence of such a maximum: since an aneurysm is a dilatation of a cylindrical
artery which develops over the years, it does not evolve significantly on the time scale

τ of few hundreds of heart beat cycles, and on this time scale, we can thus think
of it as a steady deformation of the artery. Associating a mean pressure p̄ with the
mean flow, one can see that two states of different radii coexist in the membrane
at the same mean pressure, similar to the case of an elastic membrane shown in
figure 22(b). These two states E1 and E2 are reported in the general pressure–radius
diagram in figure 22(a). These two states of different radii are stable on the time
scale 
τ which imposes that dP/dR is positive in E1 and E2. The segments [AB]
and [CD] have thus positive slopes. Assuming that P (R) is continuous, i.e. a slowly
varying (in space and time) membrane law can be used, one deduces that the portion
[BC] will necessary contain a region of the negative slope. This shows the existence
of a maximum between E1 and E2 which is at the origin of the shape instability
which has led from the initial straight cylinder to the bulgy one.

For such an elastic membrane as we have used, this maximum originates directly
in the cylindrical geometry and can be treated as a mechanical analogue of coexistent
phases and treated with a Maxwell rule (Chater & Hutchinson 1984a,b). For a real
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Figure 22. (Colour online) (a) General picture for the pressure–radius relation P (R) on a
membrane which presents a stationary dilatation (b).

artery, the maximum has probably a different origin, resulting from the competition
of geometrical and elastic nonlinearities. Still, as stressed above, the existence of
aneurysms indicates that it should exist.

5. Conclusion
Abdominal aortic aneurysms are a dilatation of the aorta localized preferentially

close to the bifurcation of the iliac arteries and which increases in time. Understanding
their localization and growth rate remain two open questions which can have
biological or physical origin or both. In order to identify the respective roles of
the biological and physical processes, we have addressed these two questions of
the localization and growth using a simplified physical experiment consisting of the
pulsating flow in an elastic membrane in similarity with the flow in a human aorta.

We first show that submitted to an oscillating flow, the elastic membrane can
undergo either an homogeneous deformation or an inhomogeneous deformation. We
show that the transition between these two types of deformations is sensitive to both
the frequency and the amplitude of the forcing. We propose a scaling argument to
understand this transition and suggest a connection with the localization of real
aneurysms.

Concerning the formation and development of bulges along the elastic membrane,
we propose a simple model that captures the physics of the shape transition: in our
elastic membrane, an ‘aneurysm’ forms whenever the time-averaged inflow is high
enough for the time-averaged diameter of the membrane to double from its base
value. At this specific dilatation, the relation between the inner pressure and the
diameter presents a maximum, a property needed to observe the instability.
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The modifications brought to this global view by the influence of the local
inhomogeneities in space has been tentatively discussed with the numerics and it is
shown that the places where bulges develop are strongly related to the inhomogeneity
of the deformation.

While discussing the possible application of this simple model to real aneurysms,
we show that the critical flow rate criterion is compatible with most of known risk
factors.

At this point, we have to underline that even if this simple model is promising,
important biological factors such as the remodelling of the membrane properties have
not been considered, and must be included in future work.

Similarly, we underline that in our experiments the time-dependent flow rate is
prescribed, independent of the state of the latex tube or the downstream resistance.
However, the heart does not exactly behave as a pure flow source, and if the peripheral
resistance is changed, both the pressure and the flow pulses also change. This feedback
loop will also be an interesting complement to the present model.

We thank B. Levy and A. Tedgui from INSERM U 541, Hôpital Lariboisière
as well as P. Boutouyrie Inserm – U652 HEGP for the time they have allowed to
discussions on the appropriate way to model aneurysms in a physics laboratory.

Appendix. Detailed numerical scheme
Equations (4.11) and (4.12) are discretized on a uniform finite difference grid with

spacing dx according to
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where n refers to the spatial index, p refers to the temporal index and dt is the time
discretization interval. Note that in these equations c0 has been replaced by c(x), a
function of x, which enables us to consider the membrane with non-uniform elasticity.
The limit conditions used at the entrance are
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where Dp+1 = D(0, t = (p + 1)δt) = A0aω (−1 + cos[ω(p + 1)δt]) /2. At the exit we
impose
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with R = R0 + ρKU (0, t).



A fluid mechanical view on abdominal aortic aneurysms 31

REFERENCES

Alexander, J. J. 2004 The pathobiology of aortic aneurysms. J. Surg. Res. 117, 163–175.

Carpenter, P. W. & Pedley, T. J. 2003 Flow in Collapsible Tubes and Past Other Highly Complaint
Boundaries. Kluwer.

Chandran, K. B. & Yearwood, T. L. 1981 Experimental study of physiological pulsatile flow in a
curved tube. J. Fluid Mech. 111, 59–85.

Chater, E. & Hutchinson, J. W. 1984a On the propagation of bulges and buckles. J. Appl. Mech.
51, 269–277.

Chater, E. & Hutchinson, J. W. 1984b Mechanical analogs of coexistent phases. In Phase
Transformations and Material Instabilities in Solids, pp. 21–36. Academic Press Inc. ISBN
0-12-309770-3.

de Chauliac, G. 1373 La grande chirurgie (ed. C. Michel). Imprimeur de l’Université de Montpellier.
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Office canadien de coordination de l’évaluation des technologies de la santé.
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