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Abstract
The size of sports fields considerably varies from a few meters for table tennis to
hundreds of meters for golf. We first show that this size is mainly fixed by the
range of the projectile, that is, by the aerodynamic properties of the ball (mass,
surface, drag coefficient) and its maximal velocity in the game. This allows us to
propose general classifications for sports played with a ball.

Keywords: physics of sports, aerodynamics, ballistics, ball trajectory, ball sports

One could think that the size of a sports field is a function of the number of players, of the
rules, of the ball shape, or of the way of launching the ball [1]. We focus here on the role of the
ball range, that is, the maximal distance that the ball can travel in one shot. Due to its
application in the military context [2], and more recently in sports [3], this ballistic problem
has been studied in detail for a long time, and geometrical constructions [4], numerical
solutions [5] and theoretical discussions [6, 7] have been proposed for approaching the actual
trajectory.

One famous early work on the subject is ‘Dialogues Concerning Two New Sciences’ [8]
published in 1638 by Galileo, one century after ‘triangular trajectories’ were reported by
Tartaglia [9, 10]. Here, we revisit the problem with a special focus on the maximal range and
then study its correlation with the size of sports fields.
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One example of a ballistic trajectory is shown in figure 1 with a chronophotograph of a
high clear in badminton. The shuttlecock, launched at = −U 58 m s0

1 and θ = °520 , first goes
straight, rapidly decelerates, then curves downwards, before falling nearly vertically at constant
speed U∞ = 6.7m s−1. It is striking how the projectile trajectory differs from a Galilean
parabola: the trajectory does not present any left–right symmetry, and its range (defined as

≈x 9 m0 in figure 1) is much shorter than expected for a parabolic behavior (240 m, for this
angle and this velocity). This reduced range and the asymmetric shape both arise from the
influence of air drag, which is now discussed.

Projectile trajectories are predicted by Newtonʼs law, where we take into account both
weight and air resistance, a quantity quadratic in velocity at large Reynolds numbers3 [11]. In

the absence of lift [12–14], it can be written as MdU/dt = Mg ρ− SCD
1

2
UU, where U is the

velocity of the projectile (and U its modulus), ρ the air density, π=S R2 the cross-sectional
area of the projectile, M its mass and CD its drag coefficient4. This equation has a stationary
solution (MdU/dt = 0), for which drag balances weight. In this stationary limit, the velocity
is aligned with gravity ( = − ∞UU ey) with an intensity ρ=∞U Mg SC(2 / )D

1/2. This terminal
velocity has been measured in a vertical wind tunnel and it is displayed in table 1 for different
sports.

Comparing the initial velocity U0 of the projectile to its terminal one ∞U defines two
regimes. For < ∞U U0 , air drag can be initially neglected and we expect the classical parabola, as
observed in basketball. The opposite limit > ∞U U( )0 concerns most sports in table 1 if we take
for U0 the maximum recorded launching velocity =U max (U ).max 0 The maximal ratio

≈∞U U/ 20max is achieved in badminton where the terminal velocity =∞
−U 6.7 m s 1 is much
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Figure 1. Chronophotography of a shuttlecock trajectory viewed from the side. The
snapshots are separated by 50 ms. The shuttlecock, sent at −58 m s 1, first decelerates,
and it reaches its minimum velocity at the top of the trajectory, after which it re-
accelerates in the gravity field and eventually falls almost vertically at constant speed.

3 The Reynolds number compares the contributions of viscosity and inertia in the fluid motion. For an object of
size R2 moving with the velocity ∞U in a fluid of kinematic viscosity ν, it is written as ν= ∞Re RU2 / .
4 The whole discussion is conducted assuming that CD is constant for a given sport. This assumption is discussed
in appendix B where the role of the drag crisis is considered.
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Table 1. Characteristics of various sports projectiles: the diameter R2 , mass M, and length of the field Lfield are extracted from the
official rules of the different federations. The sources for the maximum recorded speed Umax are: badminton [17, 18], tennis [19],
table tennis [20], squash [21], jai alai [22], golf [23], volleyball [24], soccer [25], softball [26–28], baseball [29, 30], lacrosse [25],
handball [31], and basketball [32]. The terminal velocities, ∞U , have been measured in a vertical wind tunnel [33]. The Reynolds

number Re is calculated with the air viscosity ν = × − −1.5 10 m s5 2 1. The drag coefficient CD is linked to the mass and terminal

velocity via the relation ρ π= ∞C Mg U R2 /(D
2 2). The aerodynamic distance  is ∞U g/2 . The last two columns present the calculated

optimal angle θmax (equation (3)) and the corresponding maximal range xmax (equation (2)).

Sport 2R (cm) M (g) Lfield (m) Umax (m s−1) ∞U (m s−1) ν= ∞Re RU2 / CD ∞U U( / )max  (m) θmax (°) xmax (m)

Badminton 6.0 5 13.4 137 6.7 3e + 04 0.64 20.4 4.6 22.1 14
Tennis 6.5 55 24 73 22 1e + 05 0.56 3.32 49.3 31.3 67
Table tennis 4.0 2.5 2.70 32 10 3e + 04 0.36 3.20 9.2 31.5 12
Squash 4.0 24 9.75 78 34 9e + 04 0.30 2.31 106 34.0 113
Jai alai 6.5 120 54.0 83 41 2e + 05 0.38 2.01 159 35.1 152
Golf 4.2 45 225 91 48 1e + 05 0.23 1.90 235 35.6 214
Volleyball 21 210 18 37 20 3e + 05 0.25 1.85 40.4 35.8 36
Soccer 21 450 100 51 30 4e + 05 0.24 1.70 90.2 36.5 75
Softball 9.7 190 76 47 33 2e + 05 0.38 1.42 113 37.9 80
Baseball 7.0 145 110 54 40 2e + 05 0.38 1.35 165 38.3 111
Lacrosse 6.3 143 100 50 48 2e + 05 0.35 1.04 215 40.1 110
Handball 19 450 40 27 36 5e + 05 0.20 0.75 132 41.9 45
Basketball 24 650 28 16 31 5e + 05 0.24 0.52 99.8 43.3 20



lower than the maximal recorded initial velocity = −U 137 m smax
1 [15–17]. A shuttlecock

experiences no Magnus lift force since the only possible spin direction is aligned with the
velocity, and its trajectory is strongly asymmetric, as seen in figure 1. We call this roughly
triangular shape a Tartaglia curve in honor of Niccolo Tartaglia who first observed them in the
context of cannonball paths [9]. In this limit ( > ∞U U0 ), the projectile weight can initially be

neglected, so the equation of motion reduces to = −dU ds U/ / , where  ρ= = ∞M SC U g2 / /D
2

has the dimension of a length. Hence we expect a straight and exponentially decelerated path
along the curvilinear coordinate s ( = −U s U e( ) s

0
/ ). Slowing down takes place on this

aerodynamic length , which only depends on the fluid and ball characteristics, scaling for
example as ρ ρR/

b
for a spherical ball of radius R and density ρ

b
. (See appendix A for more

details.)
However, the range of the projectile does not simply scale as  θcos 0, where θ0 is the

initial direction defined from the horizontal (figure 1). As the motion proceeds, the vertical
component of the drag ρSC UU(1/2 )D y decreases, and it becomes equal to the weight Mg for

 θ= ∞s U Uln ( / (sin ) )0 0
1/2 . Further, the projectile is mainly subjected to the action of gravity,

which makes it fall nearly vertically (the gravitational part of the Tartaglia curve observed in
figure 1). The corresponding range x0, defined as the position on the horizontal axis where the

projectile returns to its initial height, scales as  θ θ ∞( )U Ucos ln (sin ) /0 0 0
1/2 . On the one hand,

contrasting with the case for parabolas, the range of a Tartaglia curve only weakly
(logarithmically) depends on the initial velocity U0: if you hit a ball harder, it will not go
much further, a familiar feeling when you play badminton or strike a balloon. On the other
hand, the range x0 is expected to be a strong function of the angle θ0, and is found from the latter

expression to be maximum for an angle θ* given at the leading order by
θ ≈*

∞U Utan 1/(2 ln ( / ))0
1/2. This angle deviates from the 45° value expected for a parabola,

and it is all the smaller since the launch speed is high.
A more detailed calculation is presented in appendix A, and it extends previous theoretical

discussions and numerical solutions [5, 6, 34, 35]. It yields an approximate analytical
expression for the projectile range:

 θ θ= +
∞

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥x

U

U

1
2

cos ln 1 4 sin . (1)0 0
0

2

0

At small velocity < ∞U U( )0 , this expression reduces to the classical parabolic range,

θ=x U gsin (2 )/0 0
2

0 . For the opposite limit > ∞U U( )0 , we recover both the scaling law derived

above for x0 and the angle θ* maximizing this range. The optimal angle θ θ= ⋆ U( )max max and the
maximum range θ=x x U( , )max 0 max max can be calculated as

 θ θ= +
∞

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
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θ =
+ +
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In order to predict the maximal range for a given sport, one thus needs to know the
distance  ρ= M SC2 / D and the velocity ratio ∞U U/max . These data are reported in table 1 for
thirteen different sports. The ball properties (size R2 and mass M) and the size of the field L( )field

are prescribed by the different federations. They are respectively listed in columns 2, 3 and 4.
The fastest hit velocity, Umax, is obtained from the Guinness Book of Records or other sources
detailed in the caption. The terminal velocity ∞U( ) has been measured in a vertical wind tunnel
for most of the sports [33]. The Reynolds number ν= ∞Re RU2 / , whose calculated value is

given in column 7, ranges from ×3 104 to ×5 105. This large value justifies the expression for
the drag used in the equation of motion. The drag coefficient is deduced from ∞U and M. The
velocity ratio ∞U U/max is presented in column 9 and is used to sort the different sports. Its value
decreases from 20.4 for badminton to 0.52 for basketball. Most of the sports present a value
larger than unity, which underlines the importance of aerodynamics in all these sports. Finally,
calculated values of , θmax and xmax are given in the last three columns. It is found that θmax can
strongly deviate from 45° (it is for instance 22.1° for badminton), and that xmax naturally varies
to a large extent, from approximately 10 m for badminton or table tennis to 200 m for golf.

One way to understand the link between the range of the ball and the size of a sport field is
to take the example of two players playing with a soft balloon. The common experience is that
whatever the strength of the hit, the range of the balloon never exceeds =x 3 mmax . Now
imagine that the pitch is 100 m long with a net at the center: we expect the players to stay close
to the net in a region of the order of the range. We thus anticipate the useful pitch distance to be
comparable to the range. More generally, it is natural to compare the maximum projectile range
deduced from equations (2) and (3) with the corresponding field length. This is done in figure 2
where we plot for each sport the size of the field, Lfield, as a function of the associated ballʼs
maximal range, xmax. The equality =L xfield max is underlined with a solid black line. It is

remarkable that, without any free parameter for calculating xmax, we observe a strong correlation
between the maximal range and the field dimensions. This correlation implies that once a ball is
chosen, one is able to calculate ∞U and, knowing Umax (from the way of launching), it is then
possible via equations (2) and (3) to predict the size of the field on which this game should be
played.

Despite the strong correlation between Lfield and xmax, we also observe in figure 2 some

deviations, to which we dedicate the last part of our study. We first start from the two strongest
deviations stressed by red full squares. These points are associated with squash and jai alai.
Since the field is much smaller than the range, these two sports are played with walls on the side
to keep the ball in the field. They are the only ‘immured’ sports in our list. All the others are
played on an open field. Apart from effecting a change in direction, the walls are used to
decrease the time between two hits and these two sports are known to be characterized by strong
accelerations and fast reflexes.
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To complete our discussion about the length, we introduce the characteristic time
τ = L U/sport field max, that is, the time needed for the ball to move over the whole field length at the

maximal speed. If τsport is shorter than the reaction time of a player, the sport involves reflexes

and quick decisions. The reaction time τ of the player is the typical time needed to move over
his/her own size. According to Keller [36, 37], this reaction time is of the order of one second
(τ = 1 s). The ratio τ τ τ= L U/ /( . )sport field max is shown in figure 3 as a function of the distance

ratio L x/field max for all the games of table 1.

In this graph, we identify two main families, the one in the bottom left corner and the one
in the upper right corner. The first family includes squash, table tennis, tennis, volley and jai
alai. It is characterized by a small field (compared to the range) and a small time (compared to
the reaction time). The skills involved for this first family are thus reflexes and precision. In
addition, for open fields (table tennis, tennis and volley), the property <L xfield max implies that it

is difficult to keep the ball within the limits. This difficulty is recognized by counting points
whenever the ball goes out of the limits. In these games, players use topspin in order to reduce
the ball range via the Magnus effect. Since one shot is enough to reach the opposite field, an
obstacle is inserted to prevent, or to delay, an immediate scoring: for all these sports, a net is
placed on the projectile path. Besides this, the inequality τ τ> sport implies that a player at rest

will miss the ball if it is too far from him/her. This static situation is encountered during the
serve and we observe that aces or winning serves are indeed possible.

The second main family of sports in figure 3 is composed of handball, baseball, softball,
lacrosse, golf, soccer and basketball. The field is larger than the range, so it is not difficult to
keep the ball within the limits. For the largest values of L x/field max (soccer and basketball),

several shots are needed to move from one side to the other, which imposes passes and a
collective game. Moreover the time of the sport is larger than the reaction time, so the player has
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Figure 2. Correlation between the size of the sports field Lfield for the different sports
and the associated ballʼs maximum range, xmax. The data are extracted from table 1. The
solid line represents the equality between those two distances.



enough time to reach the ball. As a common denominator, all the sports of the second family
involve a target. The challenge is not the reflexes but the strategy and skill used in reaching this
target (a goal for soccer and handball, a hole for golf, a basket for basketball).

Apart from these two main families, we find badminton in the bottom right corner of
figure 3. This location underlines that the difficulty of the game is not staying within the limits
of the field, but reacting within a very short time. For this reason, badminton can be defined as a
pure reflex game. Finally, the upper left corner is empty here. For those games with a limited
field (compared to xmax) yet a large time (compared to τ), ‘precision’ is the main goal and we
expect to find activities such as billiard, which are beyond the scope of the present study.

Sports fields have obviously been defined empirically, but their size, Lfield, seems to be

mainly fixed by the maximal range of the balls used to play, xmax. We show this correlation in
the first part of this study. In the second part, we define a phase diagram composed of two axes,
one with the length ratio L x/field max and the other with the time ratio τ·L U/field max comparing the

characteristic time of the game to the reaction time of the player. This diagram enables us to
identify two main families, ‘precision & reflex’ sports and ‘target’ sports. This could be
completed with ‘precision’ sports that have not been considered. Here, we have mainly
considered sports where aerodynamic drag dominates. There are sports where lift plays a
dominant role, such as Ultimate or even rugby and American football. A similar study for these
lift sports remains to be done. Sports often are seen as metaphors of human activity, so our
classification might more generally also reflect two main ways of acting, for example in science:
intuition (with its shortcuts), as opposed to deduction (with its step-by-step approach). In this
context, we find it symptomatic that Genia Peierls shared researchers between tennis players,
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Figure 3. Classification of the different sports according to the distance ratio L x/field max

and the time ratio τ τ τ= ·L U/ /sport field max .



who run toward the net to smash the ball and take advantage of the confrontation with an
opponent, and golfers, who patiently push the ball many times until they reach the target [38]—
that is, two sports opposed in our classification; de Gennes liked and used the Peierls analogy,
and often stressed that we need both styles!
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Appendix A

This appendix focuses on the main mathematical steps which lead to equation (1). It is extracted
from a recent publication by the authors in the Proceedings of the Royal Society of London,
Series A [33].

The projectile trajectory (figure 4) is predicted by Newtonʼs law taking into account both
the weight and the air resistance, which is quadratic in velocity at large Reynolds numbers.
With the curvilinear location s, this equation is written as

ρ= −MU
d

ds
M SC U

U
g U

1
2

, (4)D

where U is the velocity of the projectile (and =U U ), ρ the air density, π=S R2 the cross-
sectional area of the projectile, M its mass and CD its drag coefficient. The projection of this
equation on the x-axis leads to the horizontal velocity Ux:

θ θ= = −⎜ ⎟⎛
⎝

⎞
⎠U U U

s
cos cos exp

2
, (5)x 0 0

where U0 and θ0 are respectively the initial velocity and the initial angle.  ρ= M SC/ D is the
characteristic length of deceleration of the ball along the x-axis. We now project equation (4)
along the direction ⃗n :

θ θ= −U
d

ds
g cos . (6)2

Using equation (5), we get a differential equation for θ. With the initial condition
θ θ= =s( 0) 0, this leads to
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Figure 4. Parameters of the system.
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⎛
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⎞
⎠
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1 sin
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cos cos
( 1) (7)s

2
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2

/
0

Here, =∞U g2 is the terminal velocity, i.e. the velocity that the ball gets when the drag

compensates gravity. The function = ++( )F u( ) ln u

u

u

u

1 sin

cos

sin

cos2 can be approximated by

=G u u u( ) 2 sin /cos2 (figure 5(a)). To find the range x0 of the trajectory, we make the
approximation θ= θ−x s cos0 00

. θ−s
0
is the curvilinear location of the projectile for θ θ= − 0

(figure 5(b)).
With those approximations and equation (7), we find equation (1) of the paper:

 θ θ= +
∞

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥x

U

U
cos ln 1 4 sin . (8)0 0

0

2

0

We now want to find the angle θ* for which the range is maximal. We derive the

expression for the range: θ =θ*dx d( / ) 00 0 . This leads to θ = + +* X X Xtan /(1 ) ln (1 ) with

θ= *
∞X U U4( / ) sin0

2 . This implicit equation is difficult to solve. We make the approximation

≈ ∞X U U( / )0
2. The optimal angle becomes

θ =
+ +

⋆ ∞

∞ ∞
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( )
( ) ( )

U U

U U U U
arctan

1 ln 1
. (9)0

2

0

2

0

2

Equations (8) and (9) are discussed and tested numerically in a separate work [33].

Appendix B

The whole discussion on the size of the pitch has been conducted so far assuming a constant
drag coefficientCD. One could however be concerned by the fact that the ball may cross the drag
crisis during its flight, which would change the drag coefficient and thus the trajectory. We
discuss this effect in the present appendix.
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Figure 5. (a) Function F and its approximation G. (0b) Definition of θ−s
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.



For each sport in table 1, we report in table 2 the Reynolds number Rec at which the drag
crisis occurs together with the jump in drag coefficient Δ = −+ − −C C C C( )/D D D D . In this
expression, +CD and −CD respectively stand for the drag coefficient after the crisis and that before
the crisis. For golf, volley and baseball the values have been extracted from the work of Mehta
[39]. For soccer, we have used data from [40]. For table tennis, squash, and lacrosse, we take
the values corresponding to a smooth sphere [41]. For badminton [42] and tennis [43], no crisis
has been observed. Due to ball similarity (and the lack of available data on the crisis), we
assume that softball and jai alai have the same characteristics as baseball. Similarly the values
for handball and basketball are supposed to be the same as for soccer.

Using these data, we computed the ‘maximal’ trajectory, using the fastest velocityUmax and
the optimal angle θmax as initial conditions (s = 0), and integrated up to smax where the particle
returns to the ground =y s( ( ) 0)max . For each sport concerned by the crisis, we report in
figure 6(a) the evolution of the reduced Reynolds number, Re Re/ c, as a function of the
normalized particle location, s s/ max. The crisis is underlined by the horizontal thick line

=Re Re/ 1c . The first striking observation is that very few sports cross the crisis during their
‘maximal’ trajectory. Some stay below (table tennis, squash, lacrosse) and most stay above
(golf, soccer, handball, volleyball, jai alai, basketball). This first observation justifies the
assumption of a constant drag coefficient.

However, we notice in figure 6(a) that two sports cross the line, namely baseball and
softball. Focusing on baseball, we compare in figure 6(b) the trajectory obtained with a constant
drag coefficient and the one obtained with a variable drag coefficient accounting for the crisis
crossing. Since the drag coefficient increases as the ball moves from the supercritical to the
subcritical region, we observe that the ‘variable’ trajectory leads to a smaller range. However,
the ranges predicted by both calculations only differ by 7%. This difference is weak because the
drag crisis occurs close to the maximum of the trajectory, after which the fall is close to vertical.
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Table 2. Columns 2 and 3 give the properties of the sports (initial velocity and
launching angle) used to integrate the ‘maximal’ trajectory (figure 6(a)). The last two
columns present the Reynolds number at which the drag crisis is expected, Rec, and the
corresponding jump in drag coefficient, Δ = −+ − −C C C C C/ ( )/D D D D D .

Sport Umax ( −m s 1) θmax CD Rec ΔC C/D D

Badminton 137 22.1 0.64 n.o. 0
Tennis 73.0 31.3 0.56 n.o. 0
Table tennis 32.0 31.5 0.36 4e + 05 0.6
Squash 78.0 34 0.30 4e + 05 0.6
Jai alai 83.0 35.1 0.38 1.3e + 05 0.24
Golf 91.0 35.6 0.23 4e + 04 0.5
Volleyball 37.0 35.8 0.25 1.7e + 05 0.68
Soccer 51.0 36.5 0.24 1.5e + 05 0.58
Softball 47.0 37.9 0.38 1.3e + 05 0.24
Baseball 54.0 38.3 0.38 1.3e + 05 0.24
Lacrosse 50.0 40.1 0.35 4e + 05 0.6
Handball 27.0 41.9 0.20 1.5e + 05 0.58
Basketball 16.0 43.3 0.24 1.5e + 05 0.58



Hence, even in this unfavorable case, the change in CD only marginally affects our conclusions
obtained with a constant drag assumption.
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