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We study the existence of nonlinear solutions of the real Ginzburg–Landau amplitude equation,
with varying coefficients when the solution is subject to a boundary condition atx50. These
solutions, called nonlinear global modes, are explicitly obtained from a matched asymptotic
expansion when nonlinear effect dominates over the inhomogeneity. The dynamics of this model is
believed to mimic the behavior of strongly nonlinear but weakly nonparallel basic flow~basic flow
varying in the streamwise direction!. For the model, we derive scaling laws for the amplitude of
nonlinear global modes and for the position of the maximum that explain for the first time the
experimental observations of Goujon-Durandet al. @Phys. Rev. E50, 308~1994!# and the numerical
simulations of Zielinska and Wesfreid@Phys. Fluids7, 1418 ~1995!# of the wake behind bluff
bodies. © 1999 American Institute of Physics.@S1070-6631~99!03111-6#
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I. INTRODUCTION

Spatially extended open flows may be classified acco
ing to their dynamical behavior. Either they may be eas
manipulated by external excitations~for example, a forcing
fixed in space or upstream noise contaminating the entra
condition of the flow! and they behave as a noise amplifie
Jets, mixing layers, and boundary layers belong to this cl
Or they display a self-sustained saturated oscillation ne
unaltered by external excitation. In this case, the flow
comes tuned at a specific intrinsic frequency everywhere
space and behaves as an oscillator. The associated s
distribution of fluctuations defines the global mode of t
flow.1 The Kármán vortex street behind a cylinder constitut
a typical example of transition to a global mode regim
When the Reynolds number is increased above a crit
value (;47), the laminar steady flow becomes globally u
stable and ultimately exhibits a self sustained oscillation~a
saturated limit cycle oscillation2–5!. A global mode regime
~also called a self-sustained oscillation regime or a reson
regime! appears in jets,6 when the inner density is lightened
in mixing layer when suction is applied to one of the stream7

in Rayleigh–Be´nard with Poiseuille flow when the heating
high enough;8,9 or in Taylor-Couette system with an adde
axial throughflow,10 when the rotation rate is increased.

If the existence of oscillator-like behavior of the strong
unstable system is now well established, the relevant me
nism allowing the sustainment of oscillations is yet cont
versial, especially for bluff body wakes. The problem may
schematically formulated as identifying the feedback loop
space giving rise to the self-sustained oscillator. If the m
ing ‘‘downstream’’ branch of the loop is similar between a
the models and is made of a vortical instability wave, t
‘‘upstream’’ branch closing the loop differs from one mod
to another.

One of the proposed mechanisms for wakes relies

hydroacoustic resonances~edge tones, wake tones! occurring
when there is a second blunt body at a finite distanc
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downstream.11 A feedback loop dominates the dynamics
the flow with a downstream branch consisting of rotation
instability waves rolling up into vortices and an upstrea
branch consisting of irrotational pressure disturbances ge
ated by interaction between the vortical structures and
downstream body. The pressure perturbation is conve
into vortical instability mode at the separation point. Th
mechanism might also apply when no downstream bod
present, the pressure wave being directly emitted by
growing and saturating vortices.11 Precise threshold value o
scaling laws generic to the class of self-sustained resona
we consider have not been predicted using this mechani

An original mechanism has been proposed
Villermaux12 in the form of a nonlinear delayed feedbac
which models the reintroduction of disturbances close to
bluff body by the counter flow which exists just behind th
cylinder. This mechanism applies well to describe the lo
frequency modulation of the large scale von Ka´rmán vortices
at high Reynolds numbers in an order-one aspect ratio c
tainer. This large-scale structure would originate in the lo
frequency modulation on the small scale Kelvin–Helmho
instability of the separated shear flow. However, this mo
is unable to explain the self-sustained resonance observe
hot jets, convection cells with throughflow or Taylor
Couette rolls with an added Poiseuille flow in which no r
circulation is present. In the case of the cylinder wake, t
model fails to predict the bifurcation structure at low Re
nolds numbers.

Another proposed mechanism is concerned with a fe
back loop closed by a decaying vortical instability wave13

moving upstream, and has been associated with the notio
absolute instability.14–16 This concept refers to the behavio
of the impulse response of the parallel flow obtained by
tending to infinity the flow that exists at a particular stationx
~the so-called local instability!. If localized disturbances
e
spread upstream and downstream and contaminate the entire
flow, the system is said to beabsolutely unstable. If, in

8 © 1999 American Institute of Physics
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contrast, disturbances are swept away from the source
system is said to beconvectively unstable. Using the notions
of local absolute and convective instability, most open sh
flows have been recently investigated and the existence
global mode has been associated with local linear instab
of the flow ~see Ref. 1 for a review!. The term ‘‘global
mode’’ usually refers to the exponentially growing in tim
solution of a nonhomogeneous linear eigenproblem invo
ing the whole streamwise direction, and the ‘‘global instab
ity’’ refers to its existence. The connection between glo
instability and local absolute nature of the instability h
been first established on model equations and subsequ
extended to real flows.17 In the weakly nonparallel approxi
mation, a sufficiently large region where the instability
locally absolute has been shown to lead to an unstable gl
mode.18 Bifurcation threshold predicted by this weakly no
parallel theory is well confirmed by direct numerical simu
tion in the case of the wake with added counter flow!.19

In more complex geometry, all three feedback mec
nisms might be active20 and the ultimate goal will be to be
able to precisely quantify each mechanism. However,
present, it seems likely from numerous experimental and
merical results1 that the feedback through vortical instabili
wave that we will discuss does apply for the first bifurcati
of wakes,5 mixing layer with counterflow,7 light jets,6 and
Rayleigh–Be´nard9 and Taylor–Couette flow10 with through-
flow.

If the linear global stability analysis is quite well esta
lished, it is not so for the effect of nonlinearity and a prec
description of the bifurcation is lacking. In the present pap
we will consider fully nonlinear solutions of a model amp
tude equation and compare directly results derived for th
models to real experiments. However, we have to keep
mind that these flows are far from local threshold, and t
the real flow dynamics does not reduce exactly to the mo
amplitude equation. Therefore, the comparison should b
best qualitative.

For model equations, it has been shown by Chom
et al.18,21 that a necessary condition for the linear global
stability is the existence of a finite region of absolute ins
bility. Once the linear global stability was solved and an
lyzed in the Wentzel–Kramers–Brillouin–Jeffrey~WKBJ!
framework,22 it was natural to study the weakly nonline
behavior23 as early experimental evidence5 shows that the
global bifurcation was following the Landau equation. U
fortunately, the weakly nonlinear problem turns out to be
posed in the sense that the approach is valid only when
departure from threshold is exponentially small in compa
son with the inhomogeneity parameter.24 This drastic limita-
tion of the ‘‘easy nonlinear theory’’25 may be explained by
the fact that for order-one advection velocity, the seco
order modification of the basic flow due to the growth of t
perturbation occurs far downstream of the region determ
ing the growth rate of the linear global instability. Whe
small but not exponentially small departures from thresh
are considered, a fully nonlinear study is necessary and is
aim of the present paper.

26–31

Phys. Fluids, Vol. 11, No. 12, December 1999
In previous studies, we have carried out a fully non-
linear study of a homogeneous flow for potential and nonpo
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tential cases.29,30 This homogeneous model29,30 predicts the
occurrence of a self-sustained nonlinear solution whe
front is able to sustain the advection. This solution is deriv
from the front solution obtained by Kolmogorovet al.32 in
the potential case and by Dee33,34 in the nonpotential case
and occurs for the Ginzburg–Landau equation at the pre
value where the flow goes from convective to absolute ins
bility. Indeed, it has been shown in Ref. 35 that the select
of the fully nonlinear front solution occurs through the line
‘‘marginal stability criterion.’’ The front impinging on the
boundary condition allows us to predict the scaling law at
global bifurcation. The models gives a good agreement w
the numerical observations by Bu¨chelet al.10 for the Taylor–
Couette problem with throughflow, or by Mu¨ller et al.8,9 for
the Rayleigh–Be´nard problem with an added Poiseuille flow

We will present here extensions of these previous stud
to the inhomogeneous case and we assume that the co
parameterm(x) varies linearly inx, the direction of the flow.
This assumption does not restrict the generality of the st
since the method could be applied to arbitrarym(x). More-
over, we focus this study on the case of a real amplitu
equation for the sake of simplicity since, as for the homo
neous case, the nonhomogeneous global mode has a si
structure for the real and complex amplitude.28,29

We present the model in Sec. II. We assume that n
linearities dominate inhomogeneity and we make a wea
non parallel assumption, using a small parameterm1 ac-
counting for the inhomogeneity of the medium, (m(x)5m0

2m1x). In the case of an order-one advection velocity, t
hypothesis allows us to derive in Sec. III, a matched solut
exactly representing the saturated weakly nonparallel glo
mode with the upstream boundary condition that the am
tude of the perturbation is zero atx50. In Sec. IV, we derive
scaling laws for the maximum amplitude of the global mo
and its position versus the departure from instability thre
old. In Sec. VI, the analytical solution and the scaling la
found in Sec. IV allow a direct and quantitative comparis
with the experimental results by Goujon-Durandet al.2 and
with the numerical results by Zielinska and Wesfreid3 which
concern the wake of angular obstacles. They observe
variations of the amplitude of the longitudinal velocity com
ponent in the streamwise direction similar to those obtain
in our model. According to these observations, the nonlin
saturation of the amplitude occurs on a smaller scale than
scale of streamwise variation of the mean flow, allowing o
weakly nonparallel assumption to be correct at leading ord
A discussion of this hypothesis is done in Sec. VI. The sc
ing laws for the maximum amplitude and its position vers
the departure from instability threshold predicted by t
present theoretical approach are in good agreement
those observed by these authors.

II. THE GINZBURG–LANDAU MODEL

Ginzburg–Landau equations describe the evolution
the amplitude of unstable modes for any process exhibitin
Hopf bifurcation, for which the continuous band of wav

3689Fully nonlinear global modes in slowing varying flows
-
numbers is destabilized. More generally, Ginzburg–Landau
equations are relevant to describe spatially extended systems
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when oscillations or waves are present.36 In the present pa-
per, the Ginzburg–Landau model describes the evolution
the complex amplitude of instability waves which develop
the wake behind a cylinder. For simplicity, coefficients w
be assumed real since a similar behavior is observed
complex coefficients. In a real flow, the laboratory frame
usually singled out by the conditions at the entrance of
flow; this breaks the Galilean invariance and leads us to t
into account the mean advection velocity of the flow expl
itly. Mixing layers37 and wakes evolve in space. Therefo
inhomogeneity of the flow modifies the local stability cha
acteristics and has to be taken into account explicitly. In
model, this inhomogeneity is introduced in the local grow
rate m(x) which varies in the streamwise direction and
assumed for simplicity to be such that the flow is stable
infinity, i.e., such thatm(1`),0. The objective of the
present paper is to describe the spatial structure of nonli
global modes of a nonparallel flow, which in the present c
are steady fully nonlinear solutions of the real Ginzbur
Landau equation with varying coefficientm(x) and with a
nonzero advection termU0.0:

]A

]t
1U0

]A

]x
5

]2A

]x2
1m~x!A2A3 ~1!

in a semi-infinite domain@0,1`) with an ‘‘entrance’’ con-
dition,

A~0!50, ~2!

and an asymptotic behavior atx51` dictated by the fact
that the system is stable at infinity with a single fixed po
A50:

A~1`!50. ~3!

The control parameterm is assumed to depend linearly o
the space variablex,

m~x!5m02m1x, ~4!

wherem0 andm1 are positive constants. The length scaleL
51/m1 characterizes the inhomogeneity. This choice o
linear dependence is similar to the one used in Refs. 18,
and 39 to study the linear global stability and models a fl
that becomes stable far downstream. It allows us to giv
concrete and quantitative example of nonparallel flow
which the coefficients will be deduced from the numeric
study by Hammond and Redekopp,40,19 but it does not re-
strict the generality of the study since the model rema
valid as long asm(x) is any decreasing function dependin
on x only through a slow space variableX5m1x, with m1

!1.
In weakly inhomogeneous media (m1!1), the existence

of a finite region of absolute instability has been shown18,23

to be a necessary condition for the linear global instabil
For the model~1!–~4!, the basic stateA50 is locally linearly
unstable form(x).0, i.e., for x,x0[m0 /m1. In order to
obtain the linear global instability for this model, a suf

3690 Phys. Fluids, Vol. 11, No. 12, December 1999
ciently large region of absolute instability should be presen
within the unstable region bounded byx0. The linear theory
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of absolute and convective instability1 allows us to define the
thresholdmA of absolute instability as a function of the ad
vection velocity:

mA[
U0

2

4
. ~5!

Here, we considerU0 of order one so thatmA is also of order
one. Whenm(x).mA , the basic stateA50 is locally abso-
lutely unstable, i.e., locally linearly unstable with growin
waves moving upstream and downstream and contamina
the entire medium. At the origin of the semi-infinite doma
we assume that the control parameter is greater thanmA :
m05mA1e (e.0), therefore, a finite region of absolute in
stability exists near the origin. This region of absolute ins
bility is bounded by xA , the distance at whichm(xA)
5mA :

xA5
e

m1
. ~6!

The sizex0 of the region of convective instability is such th
x0;L, since we considerm0 of ordermA .

When the nonlinearity is weak compared to inhomog
neity as in the study by Le Dize`s et al.,24 the global mode
may be described by a linear solution of Eq.~1! with the
required boundary conditions:41

A~x!5e~U0/2!xAi „m1
1/3~x2xA!…. ~7!

Such a linear global mode has been shown to exist o
when the control parameterm0 is larger than the linear
threshold,

mg
l 5mA1uz1um1

2/3, ~8!

where z1 is the first zero of the Airy function (z1

.22.338). The positionxs
l of the maximum of the linear

global mode~7! is simply determined by the root of th
derivative of Eq.~7! and, whenm1 goes to zero, it is found to
scale like the inhomogeneity length scaleL ~whenm1!1, we
obtainxs

l ;mA /m1;L sincemA is of order one!. A shape of
the global mode typical for this exact resultxs

l ;L is
sketched in Fig. 1.

FIG. 1. Spatial structure of a linear global mode in the weakly nonlin
régime.xs approachesx0 ~parameters in theW region in Fig. 4!. The insta-
bility is locally absolute~A! near the origin and locally convective~C!
betweenxA andx0. The system is stable~S! further downstream.

A. Couairon and J.-M. Chomaz
t Linear global modes bifurcate when the control param-
eter m0 exceeds the threshold of absolute instability by a
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the
quantity scaling likem1
2/3. Le Dizès et al.24 have shown that

the weakly nonlinear theory is valid only when the depart
from thresholdm02mg

l remains smaller than an expone
tially small quantity@m02mg

l ,exp(21/m1)#, and, therefore,
a fully nonlinear theory is necessary for larger departu
from threshold.

For model~1! we have established in Ref. 28 the ex
tence of fully nonlinear global modes in homogeneous m
dia, i.e., whenm150 ~parallel flow case!. We know from
Ref. 28 the spatial structure of steady solutions of~1! van-
ishing at the origin and saturating at a finite amplitude wh
x→1`. In order to avoid confusion, these solutions f
which the control parameterm does not vary with respect t
x will be denoted ‘‘homogeneous’’ nonlinear global~HNG!
modes throughout the study. Please note that they
asymptotic toA25Am at infinity. For Eq.~1!, HNG modes
exist only if the instability is absolute (m.mA). In this case,
the linear absolute/convective transition and the nonlin
global instability are simultaneous. In Ref. 28, we have
fined the characteristic growth length of HNG modes as
distance at which the solution reaches 99% of its maxim
amplitudeA2, and we have determined the scaling ofDx as
a function of the departure from global instability thresho
e5m2mA , which has been shown to be such that

Dx.
1

Ae
. ~9!

The typical spatial structure of HNG modes is sketched
Fig. 2 and corresponds to a front blocked on the upstre
boundary condition.

In many ways,Dx may be considered as the correlati
length scale of a flow with mean advection; its physics i
little more complex than the usual correlation length sc
since it involves not only instability and diffusion, but als
the advection.

The lengthsL, x0 , xA , andDx are separately associate
to particular physical effects which may be dominant d
pending on the relative value of the two small parametere
andm1.

The problem faced here is the nonuniform limitm1→0
ande→0 which imposes to define the range of variation

FIG. 2. Spatial structure of a homogeneous nonlinear global mode.
control parameter is constantm(x)5m0.mA . Dx is the distance at which
the solution saturates.

Phys. Fluids, Vol. 11, No. 12, December 1999
m1 compared toe. Therefore, throughout this study, we will
not only use a weakly nonparallel hypothesis (m1!1), but
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also a stronger condition ensuring that nonlinearity dom
nates over nonparallelism in a sense that will be rigorou
defined through the matching but that we are going to m
precise with physical arguments.

Let us denote byxs the position of the maximum ampli
tude of the NG mode~see Fig. 3!. Actually, the scaling forxs

is unknown~except in the weakly nonlinear case wherexs

5xs
l ). To estimate the conjugated effect of nonlinearity,

stability, and advection in terms of a single length scale is
general, not easy, but, in the present case, we chose
length scaleDx, taking advantage thatDx depends only one
whereasxs depends, in general, also onm1. It will turn out
that the second length scale to consider will bexA , which
characterizes both the nonparallelism and the departure f
threshold.

WhenDx!xA , nonlinear effects dominate over inhomo
geneity. The solution initially~in space! grows as if the flow
was homogeneous and reaches saturation once the basic
is still absolutely unstable. Then, i.e., forx.Dx, it follows
adiabatically the saturated amplitudeA25Am(x) until
m(x)50, where the flow will be stable and the amplitud
almost zero. This typical spatial evolution is reported on F
3. In that case,xs is almostDx.

In contrast, whenxA!Dx, inhomogeneity effects are
dominant over nonlinear effects and the HNG mode struct
is lost since it would correspond to a front blocked on t
upstream boundary condition which saturates in a reg
where the flow is convectively unstable and, therefore, wh
would be washed out by the mean advection. In that caseDx
is no longer an estimate ofxs. This case corresponds to th
weakly nonlinear re´gime24,23 for which the global mode may
be described by the linear solution~7!, but it is valid only if
the control parameterm0 belongs to an extremely narrow
band around the linear thresholdmg

l . As the nonlinear global
mode is spatially identical to the linear one, the scaling ofxs

should still be of the order of magnitude ofL, the inhomo-
geneity length scale.

In conclusion, whetherDx is smaller or larger thanxA

leads us to distinguish two regions of the parameter sp
(m1 ,e). In the light gray regionK in Fig. 4, e is sufficiently

e

FIG. 3. Comparison of a NG mode with its homogeneous counterpart in
strongly nonlinear re´gime.Dx is smaller thanxA ~parameters in theK region
in Fig. 4!. See caption of Fig. 1 for the meaning of A, C, and S.

3691Fully nonlinear global modes in slowing varying flows
large so as to allow the mode to grow and saturate within the
locally absolute regionDx!xA @Fig. 3~b!#. The spatial grow-
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ing part of the NG mode will be identical to the one of
HNG mode if condition~10! is satisfied:

Dx!xA⇔ 1

Ae
!

e

m1
⇒e@m1

2/3. ~10!

This naive thought is fully confirmed by the analysis in Se
III where we will see that in the light grayK region in Fig. 4,
i.e., whene@m1

2/3, the spatial structure of the NG mode is
first order, the one of the Kolmogorovet al. front32 which
describes the HNG mode at leading order, and the next o
which has to be taken into account as long as the solu
grows in space is the departure from global instability thre
old e5m02mA , and not the inhomogeneity which acts fu
ther downstream.

Inhomogeneity of the medium does not affect the po
tion of the maximum amplitude which scales ase21/2 like
the growth length of a HNG mode given by Eq.~9!. This
remains true when decreasinge until the maximum ampli-
tudexs leaves the absolute regionxs.xA .

The weakly nonlinear theory then applies to the line
global mode~7! in an exponentially small region (W) repre-
sented in dark gray in Fig. 4. A sharp variation ofxs occurs
in this narrow band~dark gray regionW in Fig. 4! for which
e2uz1um1

2/3;exp„21/m1…, and the NG mode shape jump
from the weakly nonlinear to the strongly nonlinear descr
tion.

In order to cover the gray regionK above the e
5uz1um1

2/3 line in (e,m1) space~Fig. 4!, the inhomogeneity
parameter and the departure from global instability thresh
e are assumed to be connected by the relation

m15en ~11!

with n. 3
2, i.e., the set of continuous lines given by relati

~11! e5m1
1/n with n. 3

2 in Fig. 4 covers all of regionK in
light gray, and only one example has been drawn to ill
trate. Our goal is to obtain a uniform convergence inm1 and

FIG. 4. Parameter space (m1 ,e). The light gray regionK indicates where
the present fully nonlinear and weakly inhomogeneous description ap
and the maximum amplitude positionxs of NG modes scales like the growt
length Dx.e21/2 of homogeneous NG modes~Figs. 2 and 3!. In the dark
gray regionW, the weakly nonlinear theory on linear global modes~7!
described by a WKBJ approximation~Ref. 24! is valid andxs scales likeL.

3692 Phys. Fluids, Vol. 11, No. 12, December 1999
e in the light gray regionK and to describe the spatial struc-
ture of NG modes in this region.
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III. SPATIAL STRUCTURE OF NG MODES

Figure 5 represents an example of a NG mode obtai
by numerical simulation of the evolution equation~1! with
boundary conditions~2! and~3!. Initially, the system is in the
uniform stateA50 and an infinitely small (10210) perturba-
tion is added at some location (x5x0/2). The amplitude
grows, saturates, and reaches a steady state. This asym
solution is a NG mode which satisfies the steady version
Eq. ~1!:

d2A

dx2
2U0

dA

dx
1~m02m1x!A2A350, ~12!

with vanishing amplitude at the origin and at infinity. Th
spatial structure of the NG modes will be described theor
cally using the method of matched asymptotic expansion42

and is closely related to the structure of similar modes
tained in the case of doubly infinite domains.43 We have to
distinguish six subdomains in the original semi-infinite d
main represented on Fig. 5.

The solution varies rapidly in the two first domain
whereas it varies slowly~on a length scaleX5m1x) in the
remaining layers. The two first layers therefore have a str
ture very similar~but not identical! to the structure of the
HNG mode described in Ref. 28, i.e., a Kolmogorov fro
impinging on the boundary. They are better described
leading order in the phase space (A,dA/dx) since variations
of the coefficients withx are slow. The other layers may b
described in the WKBJ approximation.

The three main layers~KF, CNL, OL! are connected
through two small transition layers (TLs, TL0) and con-
nected to the boundary by an inner resonant linear la
~IRL!, which may be viewed as the physical oscillator indu
ing the whole global mode structure.

The detailed structure of the NG mode represented
Fig. 5 will be described for each layer in the Appendix.
the following, we indicate only briefly the nature of the s
lutions in each layer and we focus on the description of
NG mode in the transition layer IRL which is the key lay
for this matching. Indeed, the matching between this la

es

FIG. 5. Asymptotic solution of~1!–~3!. The control parameterm(x) is
represented by the straight line. In the original semi-infinite domain, th
transition layers@the inner resonant layerIRL at the origin, TLs around the
maximum amplitude and TL0 near the pointx0 where m(x0)50] allow
connection of the linear and nonlinear regions; as in Ref. 43, CNL den
central nonlinear regions and OL is an outer linear region.

A. Couairon and J.-M. Chomaz
and KF determines the dominant part in the scaling law for
the position of the maximum amplitudexs , which will be

 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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compared with experimental and numerical results for wa
by Goujon–Durandet al.2 and Zielinska and Wesfreid3 in
Sec. VI.

A. Qualitative description of NG modes

1. Spatial structure of NG modes in the inner
resonant layer IRL

The inner resonant layer IRL is crucial since the partic
lar form of the solution in this layer allows us to respect t
boundary condition by the beating of two waves. The mat
ing will then be possible only fore.0. Fore,0, the bound-
ary condition atx50 and the matching condition at th
downstream boundary of IRL cannot be satisfied simu
neously.

In this layer, the amplitude is small sinceA vanishes at
x50. Denotingj the inner variable which is connected
the amplitude by the relationA5 f (e)j, where the gauge
f (e)→0 ase→0, j satisfies the linearized Eq.~12! around
A50:

j92U0j81m~x!j50. ~13!

Sincej(x) must vanish at the origin, the solution of Eq.~13!
may be written with one undetermined integration const
v0 and using Airy functions,44

j~x!5
v0p

m1
1/3

e~U0/2!x~aBi@~x2xA!m1
~1/3!#

2bAi @~x2xA!m1
~1/3!# !, ~14!

wherexA5e/m1 denotes as previously the size of the ab
lute domain,a5Ai( 2xAm1

1/3), and b5Bi( 2xAm1
1/3). The

slopev0 at the origin of the inner solution~14! will be fixed
by the matching.

2. The Kolmogorov front layer

The phase space (A,dA/dx) has to be used in order t
represent the solution matching in the Kolmogorov fro
layer where the variations ofA are fast. Figure 5 may be
thought of as the projection in the plane (A,x) of the three-
dimensional trajectory representing the NG mode in

FIG. 6. The projection of the phase space in the plane (A,dA/dx) shows the
different layers~the transition layers being in gray!. IRL @of size f (e) given
in Eq. ~19!# and TLs ~of size ep) allow respectively satisfaction of the
boundary condition at the origin and the connection in the phase space o
solution in CNL to the point of maximum amplitude. The decreasing par
the NG mode (dA/dx,0) is close to the (A,x) plane of phase space and th
matching of this part of the trajectory is then done in the physical spac

Phys. Fluids, Vol. 11, No. 12, December 1999
phase space (A,dA/dx,x), whereas Fig. 6 presents the same
trajectory but projected on the plane (A,dA/dx).
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The different scales on Figs. 5 and 6 show that fromxs

to 1` in the decreasing part of the trajectory, the NG mo
evolves slowly; therefore,dA/dx keeps being small and th
trajectory lays nearly in the (A,x) plane of the phase spac
and the slow variableX5m1x could have been used t
present this part of the trajectory. However, when consid
ing the growing part of the NG mode (x,xs), since xs

!m1
21 by assumption,x does not vary much on the sca

m1
21 and the trajectory in the phase space is now close to

plane (A,dA/dx), close meaning that the distance from t
plane (A,dA/dx) is small when measured inX5m1x vari-
able. The solution in KF then takes the form of a front lin
ing a small amplitude toAmA, which is reminiscent of the
shape of a homogeneous NG mode28 in the parallel flow
case, described in the phase space (A,dA/dx) as the stable
manifold of a fixed point (A2,0). This stable manifold is
itself viewed as the perturbation of an heteroclinic trajecto
linking the origin (0,0) of phase space to the point (A2

5AmA,0) and representing the Kolmogorov front solution
an infinite homogeneous domain, presented in dashed lin
Fig. 6 ~see Ref. 28 for details!. When m5mA1e, the per-
turbed trajectory defines a homogeneous NG mode wh
links in the phase space, a point of thedA/dx axis to (A2,0).
When considering the effect of inhomogeneity, we must ta
into account a new perturbation in this trajectory by intr
ducing corrective terms inm1 and m1x in the basic front
solution at threshold.

In the three-dimensional phase space (A,dA/dx,x), the
solution in KF is described as a series expansion ofdA/dx in
A with coefficients depending onx:

u~A!5
dA

dx
5(

j 50

1`

„2n j2el j1m1~z j1h j x!…

3~A22A! j , ~15!

wheren j , l j , j j , andh j are constant. Terms of ordere are
by assumption larger than terms inm1x, since, in the KF
layer, x<Dx and, in the light gray region of Fig. 4,Dx
!xA5e/m1. The matching between KF and TLs @done in the
phase space (A,dA/dx,x)] determines the first coefficient
in the series~15!, allowing us to compute other coefficien
recursively. In practice, the coefficients expressed as an
lytical formula have to be computed numerically. Note th
when this matching is done, we obtain the result thatxs must
be at least greater than the size log(1/m1) of TLs. After hav-
ing computed the set of coefficients in Eq.~15!, we know the
asymptotic behavior ofu(A) whenA→0:

u~A!.2(
j 51

1`

n jA2
j 1(

j 51

1`

j n jA2
j 21A1m1x(

j 50

1`

h jA2
j

2e(
j 50

1`

l jA2
j 1m1(

j 50

1`

z jA2
j . ~16!

the
f

3693Fully nonlinear global modes in slowing varying flows
We now proceed to the detailed description of the
matching between IRL and KF.
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3. Matching IRL ˜KF in the case m1!e3/2

In the casem1!e3/2 (m15en with n. 3
2 in the light gray

region in Fig. 4!, we obtainxAm1
1/35m1

1/n22/3→1`. Keep-
ing in mind the conditionm1!e3/2 implies, the NG mode
must reach its maximum inside the absolute domainxs

!xA), we may letx go to infinity in IRL by keeping the
conditionx!xA satisfied, and we obtain (x2xA)m1

1/3→2`.
Airy functions may be expanded using their asymptotic
havior at2`. We find again the inner solution already foun
for homogeneous global modes28

j~x!5
v0

Ae
e~U0/2!x sin~Aex!. ~17!

Ordere must be lower than orderm1x for all x!xA , what-
ever the scaling law for the position of the maximum amp
tude. The matching may then proceed with the same sca
laws than for homogeneous NG modes. Asx→pe21/2, so-
lution ~17! admits in the phase space the asymptotic beh
ior:

dj

dx
.

U0

2
j2v0e~U0/2! ~p/Ae!. ~18!

~Dx.pe21/2 is the characteristic growth length of homog
neous NG modes.! Replacingj by A/ f (e) in the inner ex-
pansion~18! and identifying with the expansion~16! in KL
leads to the choice of the size of IRL@in the phase spac
(A,dA/dx)]:

f ~e!5ee2~U0/2! ~p/Ae!, ~19!

and to the following matching conditions:

(
j 51

1`

n jA2
j 50, (

j 51

1`

j n jA2
j 215

U0

2
, (

j 50

1`

l jA2
j 5v0 .

~20!

Terms inm1x ~andm1) do not have to be matched since t
whole matching is done at leading order, and, as expec
the spatial structure of NG modes is fully consistent with
one of homogeneous NG modes.

From now on, matchings will be realized in the physic
space as the variations in OL, TL0, CNL, and TLs are slow.

4. The central part

In the central nonlinear layer~CNL! of size m1
21, the

amplitude of the solution is saturated; it follows adiabatica
the variation ofm. The amplitude in CNL is at first order th
weakly decreasing functionA;Am02m1x5Am(x), for
which the slope remains small at each station. It reflects
interplay of nonlinearities and inhomogeneity and can be
mulated as the nonlinear WKBJ solution of the problem
decreases slowly from its maximum atxs to a small ampli-
tude (;m1

1/4) at which the solution must be matched with t
linear outer solution of Eq.~12! in OL, via TL0.

At the upstream boundary of CNL, the amplitude
close to its maximum value. Since we assume that the
tance from the origin toxs , the position of the maximum
amplitude, is much smaller thanm21, the maximum ampli-

3694 Phys. Fluids, Vol. 11, No. 12, December 1999
1
tude is at first orderAm0.AmA. In the transition layer TLs
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aroundxs , the amplitude is then a linear solution of Eq.~12!
linearized aroundA5AmA. Since Eq.~12! is of second order,
we must determine two integration constants. One is gi
by the matching with the solution in CNL, and the conditio
that xs realizes a maximum of the amplitude yields the se
ond one.

5. The downstream part: Matching CNL to OL via TL0

In OL, the flow is strongly linearly stable; nonlinea
terms in Eq.~12! are neglected and the solution reflects t
interplay of advection and inhomogeneity as the product o
shifted Airy decreasing function with an exponential ter
~due to the advection! @see Eq.~A21!#. It may be also viewed
as the linear WKBJ solution which follows adiabatically th
variation of the linear wave number.

In the transition layer TL0 of sizem1
21/2, the basic state

is nearly neutral; nonlinearities, advection, and inhomoge
ity possess the same order of magnitude (;m1

1/4) in Eq. ~12!
and the corresponding solution matches both solutions
CNL and OL. At this stage, note that the matching in T0

fixes the position of the layer TL0 around the pointx0, but
does not give any information about the position of the ma
mum xs ~which is two layers away!.

Our analysis describing a NG mode in a weakly inh
mogeneous medium as a perturbed front solution is there
only valid whenm1!e3/2 in the light grayK region in Fig. 4.
The conclusion of this section is that, in Fig. 4, we ha
extended the weakly nonlinear theory for NG modes, valid
the dark grayW region, to a strongly nonlinear theory whic
applies in the light gray region. In the light gray regionK,
inhomogeneity modifies only the tail of the homogeneo
nonlinear global mode and not its front shape near
boundary. In the dark gray regionW, the conjugated effects
of inhomogeneity and advection acts strongly on the grow
part as on the tail of the NG mode: if the growing part we
described at leading order by a front at a position grea
than xA , it would experience a convective instability an
would be advected downstream. While being advec
downstream, the maximum amplitude decreases till wea
nonlinear effects are able to counterbalance inhomogen
and advection. Then the solution finds equilibrium near
positionx0 where the flow becomes stable again.

IV. SCALING LAWS FOR x S AND FOR THE MAXIMUM
AMPLITUDE

The matching has been shown to be possible whenm1

!e3/2. We now proceed to the description of the scaling la
directly given by the matching for the maximum amplitud
and its position.

In the transition layer IRL, the solution grows until th
inner amplitude becomes of order one, i.e., on a dista
which scales likee21/2. In the Kolmogorov front region KF,
the NG mode keeps growing untilA5A22ep ~or until the
upstream part of TLs where the rescaled inner amplitude is
order one; see the Appendix, Sec. 2!. The contribution of this
layer TLs in which the solution saturates to the characteris
growth length scales like log(1/e) @or equivalently log(1/m )

A. Couairon and J.-M. Chomaz
1

because of the exponential dependence of the amplitude@see
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Eq. ~A9!#. Thus, the total growth length is determined at t
lowest order solely by the inner resonant layer and read

xs.
p

Ae
~when m1!e3/2!, i.e., xs.Dx!xA!L.

~21!

At this stage, it should be noted that the specific form of
control parameter profile far behind the leading edge d
not influence the scaling law forxs which coincides at lowes
order with the scaling found for the length of a HNG mod
While the latter scaling does not depend onm1, there is
nothing to prevent the variation ofm(x) from causing
second-order distortions inxs . The same remark is valid fo
the maximum amplitude as will be shown below. The ma
mum amplitude is reached in TLs. The detailed structure o
the NG mode in this layer is given in the Appendix, Sec. 2
a small correction to the saturation amplitudeA2[AmA of
homogeneous NG modes. From Eq.~A11!, we obtain imme-
diately the maximum amplitude of the global modes wh
reads

As.AmA1e
1

2AmA

2
m1

Ae

p

2AmA

~when m1!e3/2!.

~22!

The maximum amplitude is only slightly modified with re
gard to the maximum amplitudeAmA1e valid for HNG
modes. This is not surprising since our fully nonlinear h
pothesis implies that we have to remain sufficiently far fro
threshold in order for the inhomogeneity to act as a per
bation on the homogeneous fully nonlinear case. Moreo
Eq. ~22! is fully consistent with the extrapolation:

As;A2~xs!.Am02m1xs.AmA1
1

2AmA

~e2m1xs!,

~23!

and introduction of~21! into expansion of~23! in powers of
e yields exactly Eq.~22!.

V. NUMERICAL VALIDATION OF THE SCALING LAWS

To test the validity of the model, we have compared
scaling law~22! with results from numerical temporal simu
lations using a realistic value of the inhomogeneity para
eterm150.01 which has been deduced as will be seen be
from the work of Hammond and Redekopp.40,19 Figure 7
shows the values of the maximum amplitude and its posi
as a function of the ratio of the control parameter to
threshold valuem0 /mA . The dots are computed using tem
poral simulations by the very long time behavior~up to a
million time steps! of the real system~1! with 1500 points
spaced by 0.1. The time marching is implicit, allowing
great deal of efficiency. We have also reported by a vert
axis the value of the shift on the linear global thresho
(mg

l 5mA2z1m1
2/3, wherez1522.338 is the first zero of the

Airy function! derived by Chomazet al.18 using the linear

Phys. Fluids, Vol. 11, No. 12, December 1999
theory. This threshold may be approached by the numeric
data with less than 0.4% error.
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Since the present theory is valid in the strongly nonline
regimee@2z1m1

2/3, the parts of the curves on the left of th
linear thresholdmg

l are not relevant. On the right ofmg
l , we

obtain a good qualitative agreement between the scaling
~21! @dashed line in Fig. 7~a!# and the numerical results ob
tained for the position of the maximum amplitude~dots!,
which becomes more quantitative when the nonparallel
m1 approaches zero~data not shown!. The continuous line
represents the scaling law~21! with addition of the second-
order contribution toxs in log(1/m1) computed from Eq.
~A9!. The scaling law~22! for the maximum amplitude
@dashed line in Fig. 7~b!# is very close to the obtained nu
merical values and, when using the second-order contr
tion in log(1/m1) to xs , the agreement is even closer~con-
tinuous line!. Therefore, the results reported in Fig. 7 sho
that scaling~21! and ~22!, derived theoretically using the
uniform limits as e and m1 simultaneously tends to zero
describe with good agreement the numerical solution
tained by integration of~1! using a fixed~small! value ofm1,

FIG. 7. ~a! Comparison of the position of the maximum amplitude obtain
by numerical simulation of the evolution equation~1! ~dots! with the scaling
law ~21! ~dashed line!. The continuous line represents~21! with a second-
order contribution toxs in log(1/m1). ~b! Same as~a! with numerical data
for the maximum amplitude compared to~22!. We have used the valuem1

50.01 estimated from Refs. 40 and 19. The interrupted line indicates
weakly nonlinear Landau theory with a Landau constant of 10222. It crosses
the axis at the linear global thresholdmg

l computed in Ref. 18 with respec
to the local absolute threshold. Whenm,mg

l , we have obtained that the
flow relaxes to zero following the linear global mode theory~Ref. 18! with
As50, butxs5xg

l ;106 here.

3695Fully nonlinear global modes in slowing varying flows
alexcept in a small range above the linear global threshold. In
this range simulations need a large number of time steps to
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reach equilibrium and, therefore, the size of this range
difficult to quantify, but, for the value of inhomogeneity p
rameter used, it is less than 0.4 % and decreases when
smaller values ofm1. For this relatively small value ofm1,
the agreement of the computed location of the maximumxs

and the scaling law~in interrupted line!, xs.e21/2 is at lead-
ing order correct.

The Landau constant given by the weakly nonlinear L
dau theory developed in Refs. 23 and 31 has been comp
as

c5
^A†~x!uA3~x!&

^A†~x!uA~x!&
~24!

where^u& stands for the usual inner product over the inter
@0,1`). The quantityA(x) is the linear global mode define
by Eq. ~7!, andA†(x)[e(2U0/2)xAi „m1

1/3(x2xA)… belongs to
the kernel of the adjoint operator atmA . The Landau con-
stant then equals 10222. This extremely small value is repre
sented by the interrupted line of slope 10222 in Fig. 7~b!
which indicates that a departure of 10222 above the linear
global thresholdmg

l is sufficient to reach order-one ampl
tudes. This sharp transition predicted by the linear glo
mode theory is in agreement with the numerically obtain
fast variation ofAs

2 with m, shown in Fig. 7~b! close tomg
l .

VI. COMPARISON WITH EXPERIMENTAL AND
NUMERICAL RESULTS IN WAKES

In Ref. 2, Goujon-Durandet al.have studied experimen
tally the evolution of the global mode issued from the des
bilization of the wake behind a trapezoidal bluff body. Th
have measured the streamwise and the crosswise veloci
the axis and at one diameter off the axis for a large region
streamwise location. Repeating this measurement for sev
Reynolds numbers R~i.e., increasing the mean flow veloc
ity!, they have shown the existence of a universal curve
the renormalized amplitude of the streamwise velocity p
file. They have rescaled the amplitude by its maximum va
and the streamwise coordinate by the position of the m
mum and they have found that the data collapse to a si
curve @Fig. 8~a!#. They have proposed the following scalin
laws for the maximum amplitude valueAs and positionxs

which fit their measurements:

As.A0~R2Rc!
1/2, ~25!

xs.~R2Rc!
21/2, ~26!

where R2Rc denotes the departure from critical Reynol
number Rc for the occurrence of the global mode, Rc being
experimentally determined by plottingAs

2 versus R. In Ref.
3, Zielinska and Wesfreid have presented results from t
dimensional numerical simulations of wake flow behind
triangular obstacle and confirmed the experimental result
Goujon-Durandet al.2 In particular, the form of global
modes and their dependence on the Reynolds number fo
numerically were in agreement with the scaling laws~25!
and ~26! given in Ref. 2. The universality of these scalin

3696 Phys. Fluids, Vol. 11, No. 12, December 1999
laws is reinforced by the fact that a different body has bee
used in the two studies~triangular in Ref. 3 and trapezoidal
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in Ref. 2!. Only when the wake is confined by side boun
aries at65 diameters, the rescaled global mode shape
pears to vary with R.

A. Comparison of the scaling laws

Direct comparison of those real two-dimensional flo
dynamics with our oversimplified model might seem unre
istic, but the scenario and behavior obtained with our
model applies amazingly well to the real world. It is we
known that Ginzburg–Landau models are valid well beyo
expectations for many instabilities; for example, f
Rayleigh–Be´nard convection or the Taylor–Couette flow
the dynamics is dominated by the unstable mode at thres
even far from threshold. The same unexplained validity
the Ginzburg–Landau model has been observed by Alba`de
and Monkewitz for the orientation of the vortices in the wa
of a cylinder.45 In the present case, a simplified version
the Ginzburg–Landau model gives the correct scaling la
which indicates that the essential ingredients necessar
describe the physics of wakes have been kept in our mo

Indeed, it is quite remarkable that the theoretical@Eq.
~21!# and experimental@Eq. ~26!# laws for the location of the
maximumxs are identical. Comparison of the predicted a
the observed scaling laws for the amplitude is less straig
forward since the theory is the leading order of o
asymptotic expansion, which linkse and m1, the departure
from criticity and the nonparallelism parameter, wherease
and m1 are finite in the experiment. To compare with~25!,
the theoretical scaling law for the maximum amplitude~22!
should be extrapolated by considering thatAs is a function of
the parameterse and m1 which are no longer connecte
through the relationm15en. In the expansion~22!, we trans-
form the sumAmA1e/2AmA back into the unique term
Am05AmA1e. When m1 is kept constant ande indepen-
dently is brought to zero, Eq.~22! shows thatAs becomes
negative and even singular. The value ofe at which this
extrapolated scaling laws predict a zero maximum amplitu
is obtained byAs(e3/2)50 when

e3/2.
p2

4mA
2 m1

2 ~ for Dx!xA!. ~27!

Keeping in mind thatm1!1, we find thate3/2!2z1m1
2/3,

i.e., the scaling law~22! should be valid as soon as the line
thresholdmg

l is exceeded by an exponentially small quant
corresponding to the weakly nonlinear regime. Therefore

As
2;mA1e2m1xs , ~28!

with xs given by Eq. ~21! @which yields Eq.~22!# is ex-
tremely close to the scaling law~25! observed experimen
tally and numerically in Refs. 2–4.

Comparison between model and reality seems to
qualitatively extremely favorable since Eq.~26! is correctly
predicted and Eq.~25! is predicted at leading order. To mak
the comparison quantitative, we still face the problem t
the nonparallelism of the flow~measured in the model b
m1) is finite and, far from critical, depends on the Reynol

A. Couairon and J.-M. Chomaz
nnumber which itself defines the instability of the flow mea-
sured bye in the model. Therefore, for the wake flow,m1
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ande are functions of a single control parameter R and
representative point corresponding to real experiment in
(m1 ,e) plane~Fig. 4! moves on a curve parametrized by
for which e will go to zero whilem1 will stay finite at thresh-
old. For large enough e, the representative poin
„m1(R),e(R)… will always enter increasing R the gray do
main of Fig. 4 where the theory we have developed app
but only at leading order~i.e., when bothm1 and e go to
zero!. We shall therefore extrapolate the results we ha
theoretically derived to finite value of (m1 ,e) using numeri-
cal simulation of~1! before comparison with experiments.

B. Comparison of the global mode profile

In order to show more clearly the quantitative agreem
between the model~1! and the experimental observations
Goujon-Durandet al.and the numerical observations by Zi
linska and Wesfreid,3 we have integrated numerically th
evolution equation~1!. We follow to that aim the derivation
of Monkewitz et al.17 Model ~1! is in scaled variables~the
amplitude, the time, and the streamwise coordinate! such that
the coefficients of the diffusive term and the coefficient
nonlinearity are unities; but if the model~1! had been de-
rived from the full two-dimensional Navier–Stokes equ
tions, using a weakly nonparallel assumption as in Ref.
the Ginzburg–Landau equation obtained would use dim
sionless variables based on physical scales such as the sd
of the body, the velocityU` of the stream flow without
body, and the time scaled/U` . Using these units based on
on physical scales, the local linear dispersion relation of
stability waves is a function of the Reynolds number and
dimensionless streamwise slow coordinateX, and may be
written in the form

v5vR~X,R!1vk~X,R!k1 1
2vkk~X,R!k2, ~29!

wherevk[]v/]k andvkk[]2v/]k2. In this expansion, we
have substracted the carrier wave of maximum linear gro
rate. For convenience, the dispersion relation~29! may be
recast in the form of a Taylor expansion around the wa
numberk0(X,R)[2vk(X,R)/vkk(X,R), corresponding to a
saddle point of the dispersion relation atX:

v5v0~X,R!1
vkk~X,R!

2
„k2k0~X,R!…2, ~30!

wherev0(X,R)[vR(X,R)2vkkk0
2/2. This expansion repre

sents the dispersion relation associated with the equatio

]A

]T
2vkk~X,R!k0

]A

]X

5 i
vkk~X,R!

2

]2A

]X2 2 i S v0~X,R!1
vkk~X,R!

2
k0

2DA, ~31!

in which terms coming directly from nonparallelism ha
been omitted~see Ref. 17!. Note that the complex group
velocity vk is equal to the termvkkk0. When including the

Phys. Fluids, Vol. 11, No. 12, December 1999
leading-order nonlinear term compatible with translationa
invariance in timeuAu2A, and after expandingv0(X,R),
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vkk(X,R), andk0(X,R) at first order in the variableX and
assuming thatvkk(X,R) andk0(X,R) dependence onX are
acting at higher order, we obtain

]A

]T
2vkk,0~R!k0,0~R!

]A

]X
5 i

vkk,0~R!

2

]2A

]X2 2guAu2A

2 i S v0,0~R!1
vkk,0~R!

2
k0,0

2 ~R!2
dv0

dX U
0

XDA. ~32!

This model needs the evaluation of the complex coe
cientsvkk,0(R), v0,0(R), dv0 /dXu0 , k0,0(R), andg, where
the second subscript, ‘‘0’’ indicates evaluation of the fun
tion at X50. Finally, we assume that only Im@v0,0(R)#,
which models the local growth rate of instability waves, d
pends on the Reynolds number and is proportional to R.

The coefficients of Eq.~32! may be all deduced from the
work of Hammond and Redekopp,40,19 except from the non-
linear coefficient g. They study numerically the two
dimensional wake behind the rectangular based body
compute the local growth rates(X)[Im@v0(X,R)# as a
function of the distance to the body. Their Fig. 6 in Ref.
and Fig. 13 in Ref. 19 exhibit a parabolic variation ofs(X),
in contrast with our assumption of a linear variation. Usi
the theoretical framework developed in Ref. 17 for an in
nite domain, they have computed the complex coefficients
Eq. ~32! for a criticity of 33%. The complex coefficients w
will use are estimated from theirs. Because of their quadr
variation of Im(v0) in X, they do not obtain directly a value
for d Im(v0)/dXu0, but a coefficient of the quadratic term
~which equals 0.0149) that we are going to identify
d Im(v0)/dXu0, as we just need an order of magnitude. Th
value ofm1 evaluated by the computation of the coefficien
corresponds approximatively to the mean slope ofs(X) de-
termined by Hammond and Redekopp~Fig. 6 in Ref. 40 and
Fig. 13 in Ref. 19!. We might as well have chose
d Im(v0)/dXu0;Ad2 Im(v0)/dX2 in order to identify the
typical size of the nonparallel effect; this would have led
an order of magnitude largerm1 for which the difference is
minor departures from the asymptotic laws~21! and ~22!
affecting a larger range ine.

Let us first rewrite Eq.~32! by rescaling the streamwis
coordinate X @using the change of variableX
5xA2Im(vkk,0/2)] in order to set the coefficient of the dif
fusive term to unity; the amplitude is also properly resca
to eliminate the imaginary terms proportional to]A/]x and
A, and to set the real part of the nonlinear coefficient
unity. We obtain a complex version of Eq.~1!:

]A

]T
1U0

]A

]x
5~11 ic1!

]2A

]x2 1~mA1e2m1x!A

2~12 ic3!uAu2A, ~33!

where all coefficients are obtained from those of Eq.~A1!
computed in Ref. 19 after applying the rescaling. Since
model~1! is real and since we use values of the coefficie
obtained in Ref. 19 for a complex model, we therefore ha

3697Fully nonlinear global modes in slowing varying flows
la crude estimation which is sufficient since only the order of
magnitude is necessary. The advection velocity is estimated
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g
FIG. 8. Renormalized global modes scaled withAs andxs with the same departures from critical Reynolds number (Rc;38.3) than in Ref. 3, correspondin
to R541, 42, 43, 45, 47, 50.~a! Experimental data for the NG mode associated with transversal velocity component of the wake from Ref. 2.~b! Numerical

3698 Phys. Fluids, Vol. 11, No. 12, December 1999 A. Couairon and J.-M. Chomaz
data from Ref. 3.~c! Numerical data from Ref. 3 with variation of the blockage.~d! Results of the present study for which the inhomogeneity parameter has
been estimated for eache from Fig. 3~b! in Ref. 3.~e! Results of the present study using a constant inhomogeneity parameterm150.033~no free parameter!.
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to U0.2 and its link to the threshold valuemA @Eq. ~5!#
yields mA.1. The inhomogeneity parameter is estimated
m1.0.033 as explained above.

Oncem1 has been estimated, the model~1! then depends
on the criticalitye5m02mA . Typical criticalitiese are ob-
tained using the same values of the ratio (m02mg

l )/mg
l as in

experiment for the ratio (R2Rc)/Rc , leading to a compa-
rable departure from instability thresholde[(R2Rc)/Rc .

Experimental results obtained by Goujon-Durandet al.1

for the NG modes associated with transversal velocity co
ponent of the wake are sketched in Fig. 8~a! for different
values of the Reynolds number, after having renormali
the amplitudes to setAs andxs to unity. A unique shape is
observed since the global modes are practically superp
into one curve for the different Reynolds number. Figu
8~b! presents the NG modes obtained numerically by Zie
ska and Wesfreid3 for unconfined wake, after renormalizin
the amplitudes in the same way as in Fig. 8~a!. The numeri-
cal data obtained for the different Reynolds numbers sh
that the renormalized NG modes are superposed into
curve exactly as for the experimental results by Gouj
Durand et al.2 @Fig. 8~a!#. When the wake is laterally
confined,3 the numerically computed nonlinear global mod
reported in Fig. 8~c! show that the growing parts of the NG
modes are still superposed into one curve exactly but not
tails. Before discussing the results obtained in the pres
study with the protocol described above, let us remark t
experimental or numerical data in Ref. 2 and 3 have b
measured in a fixed short domain@0,xM#. Therefore, the res
caled NG modes plotted in Fig. 8~a!–8~c! seem to be shorte
~in the rescaled coordinatex/xs) for smallere sincexs get
larger. For consistency, we will represent in Figs. 8~d! and
8~e! the NG modes of the toy model cut at the same fix
position as in Figs. 8~a!–8~c!, i.e., viewed through a window
of fixed real size.

Figure 8~e! presents the results obtained from the mo
1 with a fixedm150.033 and different values ofe. As for the
experimental results by Goujon-Durandet al.2 @Fig. 8~a!# or
for the numerical results by 2@Fig. 8~c!#, the growing part of
the NG modes are superposed exactly into a single curve
the tails do not coincide. This discrepancy in the tails b
tween the toy model and the real experiment may be
either to the fact that the assumption of a linear variation
m(x) with respect tox is crude, or to the fact that in realit
m1 varies withe. We emphasize that the theory has sho
only a slight influence of the specific form of the contr
parameter profile on the overall structure of the pattern.
lowest order, the positionxs and amplitudeAs of the maxi-
mum remain unchanged by the variation ofm(x), which
therefore induces distortions only in the far tail of the N
mode, with the constraint that the tail still follows adiaba
cally the variation ofm(x). A better comparison but some
how more artificial may be obtained for the tail by letting t
inhomogeneity coefficientm1 vary with the Reynolds num
ber@Fig. 8~d!#. The inhomogeneity parameter of our proble
is estimated according to Fig. 3~b! of Ref. 3 which shows the
amplitude of the transverse velocity component on the a

Phys. Fluids, Vol. 11, No. 12, December 1999
as a function of the streamwise positionx/d ~rescaled by the
size of the bluff body!, resulting from numerical integration
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of Navier–Stokes equations for the wake configuration. F
each R, a value form1 is computed by assuming that down
stream ofxs , the amplitude follows adiabatically the wea
variation of As(x), s(x) being the local linear spatia
growth rate of the perturbation of the basic state. We obt
this way an estimation of the inhomogeneity parameterm1

which satisfiesm1!e3/2. The values ofm1 vary from 0.032
for R541 to 0.065 for R550, which is coherent with the
estimate previously derived from Ref. 19. In our theoreti
model, we have made the hypothesis of a linear variation
m(x) with respect tox. However, Fig. 3~b! of Ref. 3 shows
that far downstream, this hypothesis certainly leads us to
accuracy in the description of the tail of NG modes; a be
quantitative agreement would have been obtained wit
functionm(x) decreasing less rapidly~at a nonconstant rate!.
Moreover, when the Reynolds number approaches its crit
value, the estimation ofm1 becomes inaccurate as the portio
of the tail computed in Ref. 3 becomes too small~for R539
it is even impossible to estimate the inhomogeneity of
wake as the saturation is nearly reached within the obse
tion domain!. Therefore we have used Reynolds values
42, 43, 45, 47, and 50,~relative criticities from 7% to 30%!
and letm1 vary with e and plotted in Fig. 8~d! the rescaled
NG modes.

The quantitative agreement is good since from the ori
to twice the position of the maximumxs , we see only slight
differences between the toy model and reality.

Early exploration of the global dynamics5 have reported
Landau-like dynamics when the amplitude of the wake
measured at a fixed location. Zielinska and Wesfreid3 have
undertaken such measurements that we have reporte
dashed lines in Fig. 9; we have tested such measurem
using the toy model~1! with the inhomogeneity paramete
varying withe as in Fig. 8~d!. Of course, as remarked in Re
3, since the global scaling~25! and ~26! are not compatible
with a local scaling of the amplitude inA(xfixed);AR2Rc,
we should not observe this scaling but we want to quan

FIG. 9. A2 at different spatial station chosen as in Ref. 3, i.e., variablex
5xs and fixedx52.2, 5.7, and 10. The dotted lines represent the val
reported from Fig. 5 of Ref. 3. The continuous lines represent our va
computed from Eq.~12!. Arbitrary units are used in the ordinate scale.

3699Fully nonlinear global modes in slowing varying flows
for varying m1 the departure of numerical results on model
~1! from the classical Landau theory.
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In Fig. 9, we have measured the amplitude at three
ferent fixed distances from results of Fig. 8~e! and reported
similar measurements by Zielinska and Wesfreid~Fig. 5~c!
of Ref. 3!. At a fixed location close to the body (x/d52.2),
the amplitude varies approximately linearly withx, the slope
being proportional tof (e) given by Eq.~19!, and therefore
A2(x52.2) possesses a parabolic shape in Fig. 9. In cont
far enough from the origin, i.e., downstream ofxs for the e
reported in Fig. 9,A2 is approximately linear with respect t
R ~Fig. 9 for x55.7 andx510) as for all thee reported.
Those points belong to the tail where the amplitude is loca
saturated and, therefore, they followA2(xfixed)5sfixed

5mfixed5mA1e2m1xfixed. Thus, if A2 scales linearly with
e, the threshold value it points at is the local and not
global one:e5m1x2mA . This analysis breaks down if th
fixed position of the probe is too far in the tail. Again th
quantitative agreement is fairly good, even for the high
Reynolds number~R550!. For x5xs(R), As

2 is linear with
respect to R in agreement with Zielinska and Wesfreid
sults and with our extrapolation. Similar measurements us
a fixed value ofm1 would have led to similar results whil
the probe is between the origin and the maximum; as in F
8~e! the difference from Fig. 8~d! is to be seen in the tails.

VII. CONCLUSION

In this paper we have shown that the spatial structure
nonlinear global modes in weakly inhomogeneous~nonpar-
allel! semi-infinite systems may be described by perturb
the global mode solution we have derived for an homo
neous~parallel! semi-infinite domain and which predicts e
actly with no free parameter the behavior of Rayleig
Bénard convection8,9 and Taylor–Couette rolls10 with
throughflow. The present model takes into account only t
small parameters: the criticitye of the flow and the inhomo-
geneity parameterm1 . The nonlinear global modes are d
rived in the uniform limit wheree and m1 are brought to
zero. The Landau theory based on a WKBJ approxima
has been shown to be valid in an exponentially small dom
of the plane (m1 ,e). In contrast, this fully nonlinear theor
which is essentially based on results for front propagation
homogeneous systems leads to the existence of nonli
global modes in an entire algebraic domain of the pla
(m1 ,e): m1<en;n. 3

2. We have shown that a necessa
condition for the existence of a fully nonlinear solution
that the saturation occurs within the locally absolutely u
stable domain. In this strongly nonlinear re´gime, NG modes
are described as fronts perturbed by the inhomogeneity
at first order in their tail, and the inner resonant layer close
the origin plays the master role of the resonator. Our m
result is the existence of critical exponents for the scal
law of the maximum amplitude position, which depend
the relative magnitude of the departure from global insta
ity thresholde and of the inhomogeneity length scale. Wh
m1!e3/2, the NG mode is described at leading order a
perturbed Kolmogorov front, the scaling law for maximu
amplitude location is in 1/Ae and is in agreement with ex

3700 Phys. Fluids, Vol. 11, No. 12, December 1999
perimental and numerical results in wakes. In light of this
result we are able to interpret the fit used for the maximum
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amplitude in Refs. 2–4. In contrast, whene3/2;m1!e ~in
fact, whenm1 exceeds the linear thresholdmg

l by less than an
exponentially small quantity!, the inhomogeneity modifies
the front solution at leading order and the critical expon
should change as two length scales appear in the scaling
for xs : the length associated with the criticity parame
e21/2 and the inhomogeneity length scalem1

21.
It is quite surprising that such a simple one-dimensio

amplitude model may be found in agreement with expe
mental and numerical results since only the dynamics al
the streamwise direction has been considered and simpl
to the extrem. Another challenge is to explain why such
theory based on the hypothesis of a weak inhomogeneit
the medium~WKBJ type of assumption!, which might ap-
pear unreasonable in the strongly nonparallel case of
wake, describes successfully, however, the spatial struc
of the wake reported in the literature. Many reasons, all
flecting the crudeness of the model, may be pointed ou
indicate that the model should not describe accurately
real experimental or numerical results. First, the spatial str
ture in the crosswise direction and the propagation of
perturbation in this crosswise direction have been neglec
in the mechanism of global instability. This crosswise dire
tion is considered to be slave to the dynamics in the stre
wise direction. Second, our model is minimal in the sen
that it takes into account only the leading order terms inx, k,
and R necessary to produce a nonlinear global instabi
The linear part of the model represents the simplest dis
sion relation with one temporal branch and two spa
branches leading to a change of nature of the instab
~transition from convective to absolute instability!. The cubic
nonlinearity is the leading order nonlinear term compati
with translational invariance in time. The reason for the ab
ity of the present theoretical approach to describe real exp
ments, even if the parameters are driven far beyond the
lidity domain of the theory, is perhaps due to these essen
ingredients which capture the main features of conser
symmetries or broken symmetries of the real flow.

In Ref. 2, it is suggested that the experimentally o
served scaling laws could be explained by a model
Ginzburg–Landau equation with complex coefficients. W
have studied in Ref. 29 the structure of homogeneous
modes of the complex Ginzburg–Landau equation with
bic nonlinearities and we have shown that although
model is no longer potential, the homogeneous NG mo
have the structure of a front selected by the linear marg
stability criteria, and exhibit a growth length which scal
like e21/2, as for the real Ginzburg–Landau model. As sc
ing laws for all the length scales introduced in Sec. II ke
being identical when the complete Ginzburg–Landau eq
tion is considered instead of the real one, the structure of
NG mode would be similar in both cases. The only nov
results would be the frequency selection, which should
similar at leading order to the homogeneous case descr
in Ref. 29. For the maximum amplitude value and locatio
the scaling laws should only differ by numerical factors d
pending upon the imaginary parts of the Ginzburg–Land

A. Couairon and J.-M. Chomaz
coefficients. Associated with the derivation of those coeffi-
cients for the experimental setup used in Ref. 2, this study
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should lead to a systematic quantitative comparison betw
our theory and the experiment. However, if the imagina
parts of the Ginzburg–Landau coefficients are small~as for
the Rayleigh–Be´nard or the Taylor–Couette experimen!,
the real model should give very good quantitative agreem
between theory and experiment~as it is already the cas
when the flow is parallel, as we have demonstrated in R
29!.

Similar ideas have been recently developed to exp
the occurence of self-sustained resonances in galactic d
and stellar shells. See the review article by Soward47 for
extensive references, and in particular Refs. 48–51. In
case, two coupled equations describe the dynamics of
magnetic field; self-sustained resonances occur when
propagative waves become absolutely unstable; the sp
structure consists of a front stabilized at the location of
convective/absolute transition.

ACKNOWLEDGMENTS

We are grateful to J. E. Wesfreid, B. J. A. Zielinska, a
S. Goujon-Durand for their fruitful comments.

APPENDIX A: DETAILED SPATIAL STRUCTURE OF
NG MODES

1. Outer layer CNL

In this subdomain, the NG mode has saturated and
saturation amplitude follows the weak variation of the co
trol parameter with respect tox. On using the change o
variable

Z5m1x2m0 , ~A1!

wherem05mA1e andm15en, we can rewrite Eq.~12! up to
the second order in the form

ZA~Z!1A3~Z!1enU0A8~Z!50, ~A2!

where a prime denotes differentiation with respect to the
gument. The solution of Eq.~A2! reads

A~Z!5A2Z1en
U0

4~2Z!3/2
~A3!

and represents the saturation amplitude which follows
weak variation ofm(x) with respect tox. By making use of
~A1!, we obtainZ52mA2e1enx, and expansion of~A3! in
powers ofe yields

A.AmA2en
1

2AmA

x1e
1

2AmA

1en
U0

4mA
3/2

. ~A4!

2. Transition layer TL s

Around the saturation amplitude,A5A2(mA)2epf(x),
where f(x) satisfies the equation obtained by linearizi
~12! aroundA2[A2(mA):

d2f df

Phys. Fluids, Vol. 11, No. 12, December 1999
dx2
2U0 dx

1m2f5~e12p2en2px!A2 , ~A5!
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where m25mA23A2
2522mA . @For clarity, we no longer

explicitly mention the (mA) dependence ofA2[A2(mA)
5AmA.# Using the notations

k25
U0~12A3!

2
, k15

U0~11A3!

2
, ~A6!

the general solution of Eq.~A5! then reads

f~x!5c1ek1(x2xs)1c2ek2(x2xs)

1e12p
A2

m2
2en2p

A2

m2
S x1

U0

m2
D , ~A7!

where the last non-exponential term represents a partic
solution of ~A5! and c1 ,c2 are integration constants. A
boundary condition will be imposed by the matching wh
x2xs→1`. The outer solution~A4! in CNL is linear with
respect tox; then epf(x) must be also linear whenx2xs

→1`. This matching condition impliesc150. As x2xs

→1`, the inner solution~A7! admits the expansion

epf~x!.
A2

m2
S 2enx1e2en

U0

m2
D ~A8!

SinceA25AmA andm2522mA , expansion~A8! represents
exactly orderse anden of ~A4!. Matching between CNL and
TLs is done.

The position of the maximumxs must satisfy the condi-
tion df/dx(xs)50, which determines the constantc2

5en2pA2 /m2k2 . The complete solution~A7! then reads

f~x!5e2p
A2

m2
S en

k2
ek2(x2xs)1e2enS x1

U0

m2
D D . ~A9!

When x2xs→2`, the asymptotic behavior off(x) is de-
termined by the exponential term. On differentiating E
~A9! and using again~A9! in order to eliminate ek2(x2xs), it
follows that

ep
df

dx
5k2epf1

k2A2

m2
S enxs2e1enS U0

m2
2

1

k2
D D .

~A10!

This exact relation will, however, be used as the asympt
behavior of the solution~A9! in the phase space asx2xs

→2`. Moreover, the maximum amplitude verifiesA(xs)
5A22epf(xs) with

epf~xs!52en
A2

m2
xs1e

A2

m2
1en

A2

m2
S 1

k2
2

U0

m2
D . ~A11!

3. Layer KF

The solution is sought directly in the phase space in
form of a series representingu(A)[dA/dx and expanded
into

u~A!5
dA

dx
5u0~A!1eu1~A!1m1u2~x,A!. ~A12!

3701Fully nonlinear global modes in slowing varying flows
At the lowest order ine, let us briefly recall how to compute
u0(A), which is the same solution as the one obtained for
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saturated global modes,28 i.e., linking the origin of phase
space (A50,dA/dx50) to the point „A5A2(mA),dA/dx
50… and satisfying

u0u082U0u01mAA2A350, ~A13!

where a prime denotes differentiation with respect toA. This
solution reads

u0~A!52(
j 51

1`

n j~A22A! j . ~A14!

Introduction of~A14! in ~A13! and identification of the pow-
ers of (A22A) yield equations for the recursive coefficien
n j which may be numerically computed.@The first one at
lowest order in (A22A) must be negative since~A14! rep-
resents the stable manifold ofA2 and satisfiesn1

22U0n1

1m250. Thusn15U0(12A3)/2[k2 .#
Hereu1(A) andu2(x,A) satisfy

u0]Au11~]Au02U0!u152A, ~A15!

u0]Au21]xu21~]Au02U0!u25xA, ~A16!

and are also sought in the form of series expansions

u1~A!52(
j 50

1`

l j~A22A! j , ~A17!

u2~x,A!5(
j 50

1`

~z j1h j x!~A22A! j . ~A18!

The recurrent coefficientsl j , z j , and h j are numerically
computed.@The first equations allowing to initiate the com
putation read

~U02n1!l05A2 , or l05~11A3!21,

~U02n1!h052A2 , or h052~11A3!21,

~U02n1!z05h0 , or z052U0
21~21A3!21].

The asymptotic behavior of the solution~A12! as A
→A2 in the phase space reads

dA

dx
.2n1~A22A!1m1xh01el01m1z0 . ~A19!

Since we have verified that

k25n1 ,
k2A2

m2
52h05l0 , z05S 12

U0k2

m2
D A2

m2
,

expansions~A19! and ~A10! are identical whateverp and
solutions in TLs and KF are now matched. In other word
the matching succeeds whatever the size of the trans
layer TLs.

3702 Phys. Fluids, Vol. 11, No. 12, December 1999
When A→0, the asymptotic behavior of the solution
reads
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u0~A!1eu1~A!1m1u2~x,A!

.2(
j 51

1`

n jA2
j 1(

j 51

1`

j n jA2
j 21A1m1x(

j 50

1`

h jA2
j

2e(
j 50

1`

l jA2
j 1m1(

j 50

1`

z jA2
j . ~A20!

4. Transition layer TL 0 and outer layer OL

In the outer layer OL1, A(x) is small since it must van-
ish at infinity. Therefore,A(x) is the solution of the linear
equation~13! and reads

A~x!5g~m1!expS U0

2
xD Ai „~x2xA!m1

1/3
… ~A21!

whereg(m1) is an integration constant~the coefficient of Bi
must be zero in order to cancel the growing part of the g
eral solution!.

In the central nonlinear layer CNL, whenZ→0, a sin-
gularity appears in the solution~A3!. The transition layer
TL0 has therefore been introduced to match solutions~A3!
and~A21! whenZ→0. In this layer, on using the change o
variableZ̃5Z/m1

1/2 andA(Z)5m1
1/4Ã(Z̃) in order to collect

the nonlinear term, the advection term, and the inhomo
neous term at the same order,Ã(Z̃) satisfies

U0Ã852Z̃Ã2Ã3. ~A22!

The solution of Eq.~A22! reads

Ã5Ã0S 11
2Ã0

2

U0
E

0

Z̃
e2u2/U0 duD 21/2

e2Z̃2/2U0, ~A23!

where the integration constantÃ0 is given by the matching
with the CNL solution. Indeed, asZ̃→2`, we obtain

Ã.A2Z̃S 11
U0

4Z̃2D ~A24!

if the choice Ã05(U0 /p)1/4 is done and solution~A24!
matches with~A3!.

WhenZ̃→1`, the solution~A23! admits the asymptotic
expansion

Ã.
Ã0

A2
5S U0

4p D 1/4

expS 2
Z̃2

2U0
D ~A25!

and matches with the OL solution~A21! once the following
value ofg(m1) is chosen:

g~m1!5p1/4U0
3/4expS 2

U0
3

24m1
D . ~A26!
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of the Bénard-von Kármán instability,’’ Phys. Rev. E50, 308 ~1994!.

3B. J. A. Zielinska and J. E. Wesfreid, ‘‘On the spatial structure of glob

A. Couairon and J.-M. Chomaz
modes in wake flow,’’ Phys. Fluids7, 1418~1995!.
4J. E. Wesfreid, S. Goujon-Durand, and B. J. A. Zielinska, ‘‘Global mode

 license or copyright; see http://pof.aip.org/pof/copyright.jsp



ri-

ity
ids

i-

t-

he
vo

ing

ion

ity

n

ric

er
o
ed

tio

d.

ar
s

ar
ly
ff-
.

c-

ys

es,

of a

bal

-
to a

m-

bil-

m-

id

,

-

c-

ic
-

for

el-

ally

e

-

o
n,

.

te
behavior of the streamwise velocity in wakes,’’ J. Phys. II France6, 1343
~1996!.

5C. Mathis, M. Provansal, and L. Boyer, ‘‘The Be´nard von Kármán insta-
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