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We study the existence of nonlinear solutions of the real Ginzburg—Landau amplitude equation,
with varying coefficients when the solution is subject to a boundary condition=dl. These
solutions, called nonlinear global modes, are explicitly obtained from a matched asymptotic
expansion when nonlinear effect dominates over the inhomogeneity. The dynamics of this model is
believed to mimic the behavior of strongly nonlinear but weakly nonparallel basic(HBasic flow
varying in the streamwise directipnFor the model, we derive scaling laws for the amplitude of
nonlinear global modes and for the position of the maximum that explain for the first time the
experimental observations of Goujon-Duraetdl.[Phys. Rev. B50, 308(1994 ] and the numerical
simulations of Zielinska and WesfreidPhys. Fluids7, 1418 (1995] of the wake behind bluff
bodies. ©1999 American Institute of Physids§1070-663(99)03111-9

I. INTRODUCTION downstreant! A feedback loop dominates the dynamics of
the flow with a downstream branch consisting of rotational
instability waves rolling up into vortices and an upstream
. o ) branch consisting of irrotational pressure disturbances gener-
manipulated by external excitatiogor example, a forcing ated by interaction between the vortical structures and the

flxed_m space or upstream noise contamlnatln.g the en.tr.ancc?ownstream body. The pressure perturbation is converted
condition of the flow and they behave as a noise amplifier. . L . : . :
into vortical instability mode at the separation point. This

Jets, mixing layers, and boundary layers belong to this Clas‘?ﬁechanism miaht also apply when no downstream bodyv is
Or they display a self-sustained saturated oscillation nearl 9 PPy y

unaltered by external excitation. In this case, the flow beis resent, the pressure wave being directly emitted by the

comes tuned at a specific intrinsic frequency everywhere growing and saturating vorticé$ Precise threshold value or

space and behaves as an oscillator. The associated spaﬁ’gﬁling I‘.’JIWS generic to the class. of self-'sustai'ned resonance
distribution of fluctuations defines the global mode of the'V® consider have not been predicted using this mechanism.

flow.! The Kaman vortex street behind a cylinder constitutes " An ?(2'29',”3'h n}echan:‘sm heils beznl prgpfosz% tl)(y
a typical example of transition to a global mode regime.V!lErmaux=in the form of a nonlinear delayed feedbac

When the Reynolds number is increased above a criticéi"hiCh models the reintroduction of disturbances close to the
value (~47), the laminar steady flow becomes globally un-bluff body by the counter flow which exists just behind the

stable and ultimately exhibits a self sustained oscillaon CcYlinder. This mechanism applies well to describe the low-
saturated limit cycle oscillatién®. A global mode regime fréguency modulation of the large scale vorritian vortices
(also called a self-sustained oscillation regime or a resonartt high Reynolds numbers in an order-one aspect ratio con-

regime appears in jet§ when the inner density is lightened; tainer. This Iarge-spale structure would origingte in the low-
in mixing layer when suction is applied to one of the stram; frequency modulation on the small scale Kelvin—Helmholtz
in Rayleigh—Beard with Poiseuille flow when the heating is instability of the separated shear flow. However, this model
high enougt*® or in Taylor-Couette system with an added is unable to explain the self-sustained resonance observed in
axial throughflow!® when the rotation rate is increased. ~ hot jets, convection cells with throughflow or Taylor—

If the existence of oscillator-like behavior of the strongly Couette rolls with an added Poiseuille flow in which no re-
unstable system is now well established, the relevant meché&irculation is present. In the case of the cylinder wake, this
nism allowing the sustainment of oscillations is yet contro-model fails to predict the bifurcation structure at low Rey-
versial, especially for bluff body wakes. The problem may beholds numbers.
schematically formulated as identifying the feedback loop in ~ Another proposed mechanism is concerned with a feed-
space giving rise to the self-sustained oscillator. If the movback loop closed by a decaying vortical instability weave
ing “downstream” branch of the loop is similar between all moving upstream, and has been associated with the notion of
the models and is made of a vortical instability wave, theabsolute instability*~* This concept refers to the behavior
“upstream” branch closing the loop differs from one model of the impulse response of the parallel flow obtained by ex-
to another. tending to infinity the flow that exists at a particular station

One of the proposed mechanisms for wakes relies ofithe so-called local instabilily If localized disturbances
hydroacoustic resonancésdge tones, wake tonesccurring  spread upstream and downstream and contaminate the entire
when there is a second blunt body at a finite distancdlow, the system is said to babsolutely unstablelf, in

Spatially extended open flows may be classified accord
ing to their dynamical behavior. Either they may be easily
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contrast, disturbances are swept away from the source, thential case$’*° This homogeneous modef® predicts the
system is said to beonvectively unstabldJsing the notions occurrence of a self-sustained nonlinear solution when a
of local absolute and convective instability, most open sheafront is able to sustain the advection. This solution is derived
flows have been recently investigated and the existence offaom the front solution obtained by Kolmogorat al in
global mode has been associated with local linear instabilitghe potential case and by DE&*in the nonpotential case,
of the flow (see Ref. 1 for a review The term “global and occurs for the Ginzburg—Landau equation at the precise
mode” usually refers to the exponentially growing in time value where the flow goes from convective to absolute insta-
solution of a nonhomogeneous linear eigenproblem involvbility. Indeed, it has been shown in Ref. 35 that the selection
ing the whole streamwise direction, and the “global instabil-of the fully nonlinear front solution occurs through the linear
ity” refers to its existence. The connection between global‘marginal stability criterion.” The front impinging on the
instability and local absolute nature of the instability hasboundary condition allows us to predict the scaling law at the
been first established on model equations and subsequengjobal bifurcation. The models gives a good agreement with
extended to real flow¥. In the weakly nonparallel approxi- the numerical observations by Bhelet al.*° for the Taylor—
mation, a sufficiently large region where the instability is Couette problem with throughflow, or by Mer et al®® for
locally absolute has been shown to lead to an unstable globtfte Rayleigh—Beard problem with an added Poiseuille flow.
mode?® Bifurcation threshold predicted by this weakly non- We will present here extensions of these previous studies
parallel theory is well confirmed by direct numerical simula-to the inhomogeneous case and we assume that the control
tion in the case of the wake with added counter flo% parametef(x) varies linearly inx, the direction of the flow.

In more complex geometry, all three feedback mechaThis assumption does not restrict the generality of the study
nisms might be acti® and the ultimate goal will be to be since the method could be applied to arbitrarx). More-
able to precisely quantify each mechanism. However, apver, we focus this study on the case of a real amplitude
present, it seems likely from numerous experimental and nuequation for the sake of simplicity since, as for the homoge-
merical resultsthat the feedback through vortical instability neous case, the nonhomogeneous global mode has a similar
wave that we will discuss does apply for the first bifurcationstructure for the real and complex amplitudé?

of wakes®> mixing layer with counterflow, light jets® and We present the model in Sec. Il. We assume that non-
Rayleigh—Baard and Taylor—Couette flotfl with through-  linearities dominate inhomogeneity and we make a weakly
flow. non parallel assumption, using a small parameigrac-

If the linear global stability analysis is quite well estab- counting for the inhomogeneity of the mediumy (k) = o
lished, it is not so for the effect of nonlinearity and a precise— u1X). In the case of an order-one advection velocity, this
description of the bifurcation is lacking. In the present paperhypothesis allows us to derive in Sec. lll, a matched solution
we will consider fully nonlinear solutions of a model ampli- exactly representing the saturated weakly nonparallel global
tude equation and compare directly results derived for thesgode with the upstream boundary condition that the ampli-
models to real experiments. However, we have to keep itude of the perturbation is zeroxt0. In Sec. IV, we derive
mind that these flows are far from local threshold, and thascaling laws for the maximum amplitude of the global mode
the real flow dynamics does not reduce exactly to the modeind its position versus the departure from instability thresh-
amplitude equation. Therefore, the comparison should be &tld. In Sec. VI, the analytical solution and the scaling laws
best qualitative. found in Sec. IV allow a direct and quantitative comparison

For model equations, it has been shown by Chomaxvith the experimental results by Goujon-Duraetal? and
et all®?'that a necessary condition for the linear global in-with the numerical results by Zielinska and Wesffeichich
stability is the existence of a finite region of absolute instaconcern the wake of angular obstacles. They observe the
bility. Once the linear global stability was solved and ana-variations of the amplitude of the longitudinal velocity com-
lyzed in the Wentzel-Kramers—Brillouin—JeffréyWVKBJ) ponent in the streamwise direction similar to those obtained
framework?? it was natural to study the weakly nonlinear in our model. According to these observations, the nonlinear
behaviof® as early experimental evidericehows that the saturation of the amplitude occurs on a smaller scale than the
global bifurcation was following the Landau equation. Un- scale of streamwise variation of the mean flow, allowing our
fortunately, the weakly nonlinear problem turns out to be illweakly nonparallel assumption to be correct at leading order.
posed in the sense that the approach is valid only when th& discussion of this hypothesis is done in Sec. VI. The scal-
departure from threshold is exponentially small in compari-ing laws for the maximum amplitude and its position versus
son with the inhomogeneity parametéiThis drastic limita- the departure from instability threshold predicted by the
tion of the “easy nonlinear theory® may be explained by present theoretical approach are in good agreement with
the fact that for order-one advection velocity, the secondthose observed by these authors.
order modification of the basic flow due to the growth of the
perturbation occurs far downstream of the region determins;
ing the growth rate of the linear global instability. When Il. THE GINZBURG-LANDAU MODEL
small but not exponentially small departures from threshold  Ginzburg—Landau equations describe the evolution of
are considered, a fully nonlinear study is necessary and is thbe amplitude of unstable modes for any process exhibiting a
aim of the present paper. Hopf bifurcation, for which the continuous band of wave

In previous studie&®~*'we have carried out a fully non- numbers is destabilized. More generally, Ginzburg—Landau
linear study of a homogeneous flow for potential and nonpoequations are relevant to describe spatially extended systems
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when oscillations or waves are preséhtn the present pa-
per, the Ginzburg—Landau model describes the evolution of
the complex amplitude of instability waves which develop in
the wake behind a cylinder. For simplicity, coefficients will
be assumed real since a similar behavior is observed for
complex coefficients. In a real flow, the laboratory frame is
usually singled out by the conditions at the entrance of the
flow; this breaks the Galilean invariance and leads us to take
into account the mean advection velocity of the flow explic-
itly. Mixing layers®” and wakes evolve in space. Therefore,
inhomogeneity of the flow modifies the local stability char-
acteristics and has to be taken into account explicitly. In theFIG. 1. Spatial structure of a linear global mode in the weakly nonlinear
model, this inhomogeneity is introduced in the local growthg?ﬁti;“?s-ﬁso ?gﬁrozﬁggﬁ?e%ra:;?f;ﬁéncf:?“ivnrefmci:;;:g' férlliitiir\zt:?_
rate (x) WhiC_h Vgrigs in the streamwise direCt?on and is betweenx, an)t/jxo. The system is stabl@)gfurther downs);ream.
assumed for simplicity to be such that the flow is stable at

infinity, i.e., such thatu(+«)<0. The objective of the

present paper is to describe the spatial structure of nonlinear o ] .

global modes of a nonparallel flow, which in the present cas@f absolute and convective mstg_bﬁtallows us to define the
are steady fully nonlinear solutions of the real Ginzburg—thresholdu, of absolute instability as a function of the ad-
Landau equation with varying coefficiepi(x) and with a  Vection velocity:

nonzero advection terrd,>0: u3

M= g 5

IA A 5°A 5
ot + UO(;_X = ﬁ Tr)A—A (1) Here, we consided , of order one so that, is also of order
one. Whenu(x)> ua, the basic statd=0 is locally abso-

in a semi-infinite domai0,+ ) with an “entrance” con- lutely unstable, i.e., locally linearly unstable with growing

dition, waves moving upstream and downstream and contaminating
the entire medium. At the origin of the semi-infinite domain,
A(0)=0, (2) we assume that the control parameter is greater fhan

and an asymptotic behavior &t + dictated by the fact o= At 6.(€>0)' therefqrg, a finite re_gion of absolutg in-
that the system is stable at infinity with a single fixed pointstab|I|ty exists near the origin. This region of absolute insta-
A=0: bility is bounded byx,, the distance at whichu(Xa)
=HA:
A(+22)=0. (3) .

— (6

. . Xpa=—.
The control parameter is assumed to depend linearly on A

the space variablg, The sizex, of the region of convective instability is such that

Xo~L, since we consider of order up .

When the nonlinearity is weak compared to inhomoge-
whereu, and ., are positive constants. The length scale neity as in the study by Le Dizeet al,>* the global mode
=1/u, characterizes the inhomogeneity. This choice of anay be described by a linear solution of E@) with the
linear dependence is similar to the one used in Refs. 18, 38equired boundary conditiorfs:
and 39 to study the linear global stability and models a flow L (UnDXA: s 13
that becomes stable far downstream. It allows us to give a A(x) = €Y0ZXAT (11 (x—Xa)). (7)
concrete and quantitative example of nonparallel flow forSuch a linear global mode has been shown to exist only
which the coefficients will be deduced from the numericalwhen the control parametew, is larger than the linear
study by Hammond and Redekofip® but it does not re- threshold,
strict the generality of the study since the model remains I _ 2] 213 )
valid as long asu(x) is any decreasing function depending Mg= MaTlo1lke
on x only through a slow space variab¥= ux, with u;  where ¢, is the first zero of the Airy function J;
<1. =—2.338). The positiorx'S of the maximum of the linear

In weakly inhomogeneous media{<1), the existence global mode(7) is simply determined by the root of the
of a finite region of absolute instability has been shtf#i  derivative of Eq(7) and, whenu, goes to zero, it is found to
to be a necessary condition for the linear global instability.scale like the inhomogeneity length scalévhenp <1, we
For the mode(1)—(4), the basic statd=0 is locally linearly  obtainx.~ ua/u;,~L sinceu, is of order ong A shape of
unstable foru(x)>0, i.e., forx<xqg=wug/uq. In order to  the global mode typical for this exact resuktva is
obtain the linear global instability for this model, a suffi- sketched in Fig. 1.
ciently large region of absolute instability should be present Linear global modes bifurcate when the control param-
within the unstable region bounded lay. The linear theory eter u, exceeds the threshold of absolute instability by a

m(X) = po— MaX, (4)



Phys. Fluids, Vol. 11, No. 12, December 1999 Fully nonlinear global modes in slowing varying flows 3691

A@) | Az A2 =B Al®) | A
|
! Ta Zo
0 0 Ts I I T
z Ho [ H
Ho L I I
A pal T !
0 z
z 0
A T c S
FIG. 2. Spatial structure of a homogeneous nonlinear global mode. The u(z)
control parameter is constapi(x) = uo>ua . AX is the distance at which
the solution saturates. FIG. 3. Comparison of a NG mode with its homogeneous counterpart in the

strongly nonlinear rgime. Ax is smaller tharx, (parameters in thi region
in Fig. 4). See caption of Fig. 1 for the meaning of A, C, and S.

quantity scaling likeu2”. Le Dizes et al?* have shown that

the weakly nonlinear theory is valid only when the departure . . . . .
| . also a stronger condition ensuring that nonlinearity domi-
from thresholdu,—uq remains smaller than an exponen-

tially small quantity] 2o | —ex (—1/11,)], and, therefore nates over nonparallelism in a sense that will be rigorously
y q Ko=Hqg P L)), ' ' _defined through the matching but that we are going to make
a fully nonlinear theory is necessary for larger departures . . .
precise with physical arguments.

from threshold.

For model(1) we have established in Ref. 28 the exis- Let us denote by the p03|t|on of the maximum ampli-
. . tude of the NG modésee Fig. 3 Actually, the scaling foxg
tence of fully nonlinear global modes in homogeneous me:

dia, i.e., whenu,=0 (parallel flow case We know from is unknown (except in the weakly nonlinear case whete

Ref. 28 the spatial structure of steady solutiongHfvan- XS). ” To estimate t_he (_:onjugated eff_ect of nonlmearltyf n
L - . o . stability, and advection in terms of a single length scale is, in
ishing at the origin and saturating at a finite amplitude when

! . . general, not easy, but, in the present case, we chose the
X—+oo. In order to avoid confusion, these solutions for !
. . length scale\x, taking advantage thdix depends only om
which the control parameter does not vary with respect to f :
) ” Y . whereasxs depends, in general, also @ny. It will turn out
x will be denoted “homogeneous” nonlinear glob@dNG) , . ;
that the second length scale to consider willXpe which
modes throughout_the study. Please note that they Aharacterizes both the nonparallelism and the departure from
asymptotic toA,=+/u at infinity. For Eq.(1), HNG modes P P

; . . O, . threshold.

eX|st_onIy if the instability is .absoluth.(.> #)- I this case, WhenAx<x,, nonlinear effects dominate over inhomo-
the linear absolute/convective transition and the nonlinear : L :
lobal instability are simultaneous. In Ref. 28, we have de_gene|ty. The solution initiallyin spacg grows as if the flow
gned the chara)(/:teristic rowth Ien. th of H.NG,modes as the\:NaS homogeneous and reaches saturation once the basic flow

. . grou 9 . . is still absolutely unstable. Then, i.e., fa>Ax, it follows
distance at which the solution reaches 99% of its maximum, .oy the saturated amolitudé,— V00 until
amplitudeA,, and we have determined the scalingof as y P 2 VK

a function of the departure from global instability threshold’u(x)zo’ Wherg the .ﬂOW W'". be stabl_e a_nd the amplltud_e
€= su— 11, which has been shown to be such that almost zero. This typical spatial evolution is reported on Fig.

3. In that casex, is almostAx.
In contrast, whenx,<AX, inhomogeneity effects are
Ax= N (9 dominant over nonlinear effects and the HNG mode structure
€ is lost since it would correspond to a front blocked on the
The typical spatial structure of HNG modes is sketched inupstream boundary condition which saturates in a region
Fig. 2 and corresponds to a front blocked on the upstreamwhere the flow is convectively unstable and, therefore, which
boundary condition. would be washed out by the mean advection. In that case,

In many waysAx may be considered as the correlationis no longer an estimate of. This case corresponds to the
length scale of a flow with mean advection; its physics is aveakly nonlinear rgime?*23for which the global mode may
little more complex than the usual correlation length scalebe described by the linear solutign), but it is valid only if
since it involves not only instability and diffusion, but also the control parameter, belongs to an extremely narrow
the advection. band around the linear threshqu. As the nonlinear global

The lengthd., xg, X5, andAx are separately associated mode is spatially identical to the linear one, the scalingof
to particular physical effects which may be dominant de-should still be of the order of magnitude bf the inhomo-
pending on the relative value of the two small parameters geneity length scale.
and 4. In conclusion, whetheAx is smaller or larger thamu

The problem faced here is the nonuniform lingi{— 0 leads us to distinguish two regions of the parameter space
and e— 0 which imposes to define the range of variation for (u,€). In the light gray regiorK in Fig. 4, € is sufficiently
mq compared tee. Therefore, throughout this study, we will large so as to allow the mode to grow and saturate within the
not only use a weakly nonparallel hypothesjs;&1), but locally absolute regiothx<x, [Fig. 3(b)]. The spatial grow-
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0 “1 FIG. 5. Asymptotic solution of(1)—(3). The control parameter(x) is

represented by the straight line. In the original semi-infinite domain, three

FIG. 4. Parameter space(,e). The light gray regiorK indicates where  transition layergthe inner resonant layéRL at the origin, TE around the

the present fully nonlinear and weakly inhomogeneous description applie§1aximum amplitude and TLnear the pointx, where u(xo)=0] allow

and the maximum amplitude positieg of NG modes scales like the growth  €onnection of the linear and nonlinear regions; as in Ref. 43, CNL denotes
length Ax=e~2 of homogeneous NG modéBigs. 2 and 3 In the dark  central nonlinear regions and OL is an outer linear region.

gray regionW, the weakly nonlinear theory on linear global mod&s

described by a WKBJ approximatidRef. 29 is valid andx, scales likeL.

lll. SPATIAL STRUCTURE OF NG MODES

] . ] ) Figure 5 represents an example of a NG mode obtained
ing part of the NG mode will be identical to the one of &,y nymerical simulation of the evolution equatiét) with
HNG mode if condition(10) is satisfied: boundary condition§2) and(3). Initially, the system is in the
uniform stateA=0 and an infinitely small (10'%) perturba-
Ax<xA@i<i:>e>,uf’3. (10) tion is added at some locatiork€Xy/2). The amplitude .
Je  m1 grows, saturates, and reaches a steady state. This asymptotic
solution is a NG mode which satisfies the steady version of
This naive thought is fully confirmed by the analysis in Sec.Eq. (1):
Il where we will see that in the light gral¢ region in Fig. 4,
i.e., whene> 123, the spatial structure of the NG mode isat ~ 9°A U dA
first order, the one of the Kolmogoraet al. front*? which dx® - %dx

describes the HNG mode at leading order, and the next order

which has to be taken into account as long as the solutio?"f’ith_vaniShing amplitude at the origin and at ?nfinity. The_
grows in space is the departure from global instability threshSPatial structure of the NG modes will be described theoreti-

old €= sy ua, and not the inhomogeneity which acts fur- cally using the method of matched asymptotic expanéfons
ther downstream and is closely related to the structure of similar modes ob-

Inhomogeneity of the medium does not affect the posi—t"j_“n,ed n the.case of doybly. infinite ‘?'Qmaﬁ?sw‘? _hayt_a to
tion of the maximum amplitude which scales as'? like distinguish six subdomains in the original semi-infinite do-

the growth length of a HNG mode given by E@). This ™Main represented on Fig. 5.

remains true when decreasirguntil the maximum ampli- The solution varies rapidly in the two first domains
tudex, leaves the absolute region>x whereas it varies slowlyon a length scal&X= ux) in the
S :

The weakly nonlinear theory then applies to the Iinearremaining layers. The two first layers therefore have a struc-

global mode(7) in an exponentially small regior/{() repre- ture very similar(but not identical to the structure of the

sented in dark gray in Fig. 4. A sharp variationx@foccurs HNG mode described in Ref. 28, i.e., a Kolmogoroy front
in this narrow banddark gray regionV in Fig. 4) for which ~ IMPinging on the boundary. They are better described at

eI~ eXoLuy. and the NG mode shape fumps 3010 rter 1 e phase spadkd N sice varitons
from the weakly nonlinear to the strongly nonlinear descrip- i : S y y
tion described in the WKBJ approximation.

In order to cover the gray regioi above thee Thﬁ three ma“n Iaye'riﬁKF,l CNL, (%IL)T?_roe cor:jnected
:|§1|,U«§/3 line in (e, 1) space(Fig. 4), the inhomogeneity through two small transition layers (7] ) and con-

parameter and the departure from global instability threshol(?'eCtEd to_ the b°“”d’°_‘“/ by an inner r_esona”F Ilneqr layer
¢ are assumed to be connected by the relation IRL), which may be viewed as the physical oscillator induc-

ing the whole global mode structure.
n (12) The detailed structure of the NG mode represented in
Fig. 5 will be described for each layer in the Appendix. In
with n>3, i.e., the set of continuous lines given by relation the following, we indicate only briefly the nature of the so-
(11) e=ui™ with n>% in Fig. 4 covers all of regiork in Iutions in each layer and we focus on the description of the
light gray, and only one example has been drawn to illusNG mode in the transition layer IRL which is the key layer
trate. Our goal is to obtain a uniform convergenceuinand  for this matching. Indeed, the matching between this layer
e in the light gray regiorK and to describe the spatial struc- and KF determines the dominant part in the scaling law for
ture of NG modes in this region. the position of the maximum amplitude,, which will be

+(mo— m1X)A—A%=0, (12

p1=€
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dA KF The different scales on Figs. 5 and 6 show that foam
dz to + in the decreasing part of the trajectory, the NG mode
AT T evolves slowly; therefored A/dx keeps being small and the
/- T~ trajectory lays nearly in theA,x) plane of the phase space
—_ /f(e) \\ TL? and the s_Iow variablé(z,L_le could have been used to
> present this part of the trajectory. However, when consider-
TLON oy £ 4 ing the growing part of the NG modex{£Xx), since X
”1 CNL <,u1_1 by assumptionx does not vary much on the scale

,ul’l and the trajectory in the phase space is now close to the

! ' ace. C 5 plane @A,dA/dx), close meaning that the distance from the
different layergthe transition layers being in grayRL [of sizef(€) given

in Eq. (19)] and TL® (of size €”) allow respectively satisfaction of the plane (A"dA/dX,) IS_Sma" when measured M=,U,1X Va”-,
boundary condition at the origin and the connection in the phase space of tfabl€. The solution in KF then takes the form of a front link-

solution in CNL to the point of maximum amplitude. The decreasing part ofing a small amplitude ta/ua, which is reminiscent of the
the NG mode § A/dx<<0) is close to theA,x) plane of phase space and the shape of a homogeneous NG m&lin the parallel flow
matching of this part of the trajectory is then done in the physical space. case, described in the phase spaAed(A/dx) as the stable

manifold of a fixed point A,,0). This stable manifold is

compared with experimental and numerical results for wakegself viewed as the perturbation of an heteroclinic trajectory
by Goujon—Durancet al? and Zielinska and Wesfreldn  linking the origin (0,0) of phase space to the poimt,(
Sec. VI. = /u,0) and representing the Kolmogorov front solution in
an infinite homogeneous domain, presented in dashed line in
Fig. 6 (see Ref. 28 for details When u= u,+ €, the per-
turbed trajectory defines a homogeneous NG mode which
links in the phase space, a point of @h&/dx axis to (A,,0).
When considering the effect of inhomogeneity, we must take

The inner resonant layer IRL is crucial since the partiCUsny, account a new perturbation in this trajectory by intro-
lar form of the solution in this layer allows us to respect theducing corrective terms inu; and u;x in the basic front
boundary condition by the beating of two waves. The match ! !

ing will then be possible only foe>0. Fore<0, the bound- In the three-dimensional phase spadedA/dx,x), the

ary condition atx=0 and the matching condit@on a_t the solution in KF is described as a series expansiotAfdx in
downstream boundary of IRL cannot be satisfied S|multa-A with coefficients depending ox

neously.

In this layer, the amplitude is small sinéevanishes at
x=0. Denoting¢ the inner variable which is connected to
the amplitude by the relatiod=f(€)¢, where the gauge

f(e)—0 ase—0, ¢ satisfies the linearized E¢12) around ‘
A=0: X (A=A, (19

&= Uot’ + p(x)£=0. (13
) ) o _ wherev;, \;, §;, andz; are constant. Terms of orderare
Since&(x) must vanish at the origin, the solution of H43)  py assumption larger than terms jmx, since, in the KF
may be written with one undetermined integration constanfayer, x<Ax and, in the light gray region of Fig. 4Ax
vo and using Airy functions? <X,= €/ u1. The matching between KF and T[done in the
Vo phase spaceA,dA/dx,x)] determines the first coefficients
E(X)= Lme(uo’z”‘(aBi[(x—xA),ul(l’g)] in the serieq15), allowing us to compute other coefficients
M1 recursively. In practice, the coefficients expressed as an ana-
. 3 lytical formula have to be computed numerically. Note that
~bAIL(Xx=xp) 11 ™71), 9 hen this matching is done, we obtain the result shanust
wherex,= €/ uq denotes as previously the size of the abso-be at least greater than the size log(jly of TLS. After hav-
lute domain,a=Ai( —xau1?), and b=Bi(—xau1®). The ing computed the set of coefficients in E(5), we know the
slopevy at the origin of the inner solutiofl4) will be fixed  asymptotic behavior ofi(A) whenA—0:
by the matching.

FIG. 6. The projection of the phase space in the plake A/dx) shows the

A. Qualitative description of NG modes

1. Spatial structure of NG modes in the inner
resonant layer IRL

solution at threshold.

+ oo

d
WA= g =2 (- vi= et + 7))

+ oo + o + o

u(A)=—, VjAjz+E jvjAj[lAJerXE 7ijAjz
=1 = i=o

2. The Kolmogorov front layer

The phase spaceA(dA/dx) has to be used in order to
represent the solution matching in the Kolmogorov front +o _ +o _
layer where the variations ok are fast. Figure 5 may be —62 )\,-AJZ+ ,44,12 ngJZ. (16
thought of as the projection in the plana,k) of the three- =0 =0
dimensional trajectory representing the NG mode in the
phase spaceA,dA/dx,x), whereas Fig. 6 presents the same
trajectory but projected on the plana,dA/dx).

We now proceed to the detailed description of the
matching between IRL and KF.
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3. Matching IRL —KF in the case m,<e%? aroundx,, the amplitude is then a linear solution of Ef2)

In the casew,<e%? (u,=€" with n> in the light gray linearized arounaf\= \/,uA.'Since Eq(lZ) is of second o'rder.,
region in Fig. 4, we obtainxau, 8= x5 4o Keep- W€ must detv_armm_e two integration constants. One is given
ing in mind the conditionw,<¢3? implies, the NG mode by the matching with the solution in CNL, and the condition

must reach its maximum inside the absolute domaig ( that x¢ realizes a maximum of the amplitude yields the sec-

<x,), we may letx go to infinity in IRL by keeping the ©nd one.

conditionx<x, satisfied, and we obtain( x,) ui>— —o.

Airy functions may be expanded using their asymptotic be-5. The downstream part: Matching CNL to OL via ~ TL°

havior at—o0. We find again the inner solution already found In OL, the flow is strongly linearly stable; nonlinear
for homogeneous global modés terms in Eq.(12) are neglected and the solution reflects the
interplay of advection and inhomogeneity as the product of a
E(x) = ﬁe(UOIZ)x sin(Vex). (17)  shifted Airy decreasing function with an exponential term
Je (due to the advectiorisee Eq(A21)]. It may be also viewed

as the linear WKBJ solution which follows adiabatically the

Order e must be lower than ordexx for all x<x,, what- o )
variation of the linear wave number.

ever the scaling law for the position of the maximum ampli- _1

tude. The matching may then proceed with the same scaling N the transition layer TR of sizeu; *, the basic state
laws than for homogeneous NG modes. s e~ 2, so- iS nearly neutral; nonlinearities, advection, and inhomogene-

; ; Aldy
lution (17) admits in the phase space the asymptotic behayy POSSess the same order of magnituded;”) in Eq. (12)
; and the corresponding solution matches both solutions in

ior:
CNL and OL. At this stage, note that the matching in°TL
§~ﬁ eV (1) (19) fixes the position of the layer PLaround the poink,, but
dx 2 0 ’ does not give any information about the position of the maxi-
(Ax=me Y2 is the characteristic growth length of homoge- - Xs (which is two layers away

Our analysis describing a NG mode in a weakly inho-
mogeneous medium as a perturbed front solution is therefore
leads to the choice of the size of IRln the phase space only valid wh_en,u1< Gs./zin th(_e Iight grayK_regi_on in Fig. 4.

(A dA/dX)]: The conclusion of this s_ect|on is that, in Fig. 4, we h_av_e
extended the weakly nonlinear theory for NG modes, valid in
f(e)=ee (Vo2 (7/Ve) (19)  the dark grayw region, to a strongly nonlinear theory which
applies in the light gray region. In the light gray regi&n
inhomogeneity modifies only the tail of the homogeneous
= - . .Y & nonlinear global mode and not its front shape near the
Zl vjA,=0, Zl jvA =2 ZO NAL= V. boundary. In the dark gray regidf, the conjugated effects
= = = (20  ©f inhomogeneity and advection acts strongly on the growing
) ) part as on the tail of the NG mode: if the growing part were
Terms inu;x (andu,) do not have to be matched since the gescribed at leading order by a front at a position greater

whole matching is done at leading order, and, as expecteghan x, it would experience a convective instability and
the spatial structure of NG modes is fully consistent with the,,o,1d be advected downstream. While being advected
one of homogeneous NG modes. o ~downstream, the maximum amplitude decreases till weakly
From now on, matchings will be realized in the physical yonjinear effects are able to counterbalance inhomogeneity
space as the variations in OL, TLCNL, and TL® are slow.  and advection. Then the solution finds equilibrium near the
positionx, where the flow becomes stable again.

neous NG modesReplacingé by A/f(e) in the inner ex-
pansion(18) and identifying with the expansiofi6) in KL

and to the following matching conditions:

4. The central part

IV. SCALING LAWS FOR x5 AND FOR THE MAXIMUM

In the central nonlinear layeiCNL) of size u; ', the
AMPLITUDE

amplitude of the solution is saturated,; it follows adiabatically
the variation ofw. The amplitude in CNL is at first order the The matching has been shown to be possible when
weakly decreasing functiolPA~ uo— ui1x=+u(x), for  <e%2 We now proceed to the description of the scaling laws
which the slope remains small at each station. It reflects thdirectly given by the matching for the maximum amplitude
interplay of nonlinearities and inhomogeneity and can be forand its position.

mulated as the nonlinear WKBJ solution of the problem. It In the transition layer IRL, the solution grows until the

decreases slowly from its maximum at to a small ampli- inner amplitude becomes of order one, i.e., on a distance
tude (~,u%’4) at which the solution must be matched with the which scales likes™ 2. In the Kolmogorov front region KF,
linear outer solution of Eq(12) in OL, via TLC. the NG mode keeps growing un#i=A,— &P (or until the

At the upstream boundary of CNL, the amplitude is upstream part of TEwhere the rescaled inner amplitude is of
close to its maximum value. Since we assume that the dissrder one; see the Appendix, Seg. Phe contribution of this
tance from the origin toxg, the position of the maximum layer TL® in which the solution saturates to the characteristic
amplitude, is much smaller thayml‘l, the maximum ampli- growth length scales like log(dy [or equivalently log(14)
tude is at first order/uo=ua. In the transition layer T because of the exponential dependence of the ampliseste
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Eqg. (A9)]. Thus, the total growth length is determined at the T,
lowest order solely by the inner resonant layer and reads 1

Xe= = (When u;<€e®?), ie., xe=Ax<xa<L
s \/— M1 o Ley s A . i
€ 20

(21)

At this stage, it should be noted that the specific form of the
control parameter profile far behind the leading edge does
not influence the scaling law foi; which coincides at lowest

15

10

order with the scaling found for the length of a HNG mode. 5
While the latter scaling does not depend gn, there is o
nothing to prevent the variation ofc(x) from causing ° —
second-order distortions y. The same remark is valid for #a
the maximum amplitude as will be shown below. The maxi- 9
mum amplitude is reached in TLThe detailed structure of AS
the NG mode in this layer is given in the Appendix, Sec. 2 as 1.
a small correction to the saturation amplitulle=\/u» of N
homogeneous NG modes. From E411), we obtain imme- (b)
diately the maximum amplitude of the global modes which
reads o
A= st e L S (when p,<€e%?) o
S M zm \/E zm M1 B
(22) . ,Uf, Ho

The maximum amplitude is only slightly modified with re- T 1z EREIE I s /J'_A

gard to the maximum amplitude/ua+ e valid for HNG
modes. This is not surprising since our fully nonlinear hy-FIG. 7. (8 Comparison of the position of the maximum amplitude obtained
pothesis implies that we have to remain sufficiently far fromPY numerical simulation of the evolution equatid (dots with the scaling

. . . law (21) (dashed ling The continuous line representl) with a second-
threshold in order for the inhomogeneity to act as a Perturarder contribution taxg in log(1/uq). (b) Same aga) with numerical data
bation on the homogeneous fully nonlinear case. Moreovefor the maximum amplitude compared 2). We have used the valye,

Eq. (22) is fully consistent with the extrapolation: =0.01 estimated from Refs. 40 and 19. The interrupted line indicates the
weakly nonlinear Landau theory with a Landau constant 0?40t crosses

the axis at the linear global threshqd@ computed in Ref. 18 with respect

1
A~ Ax(Xg) =V o= w1 Xs=\ua+ ——(€— u1Xs), to the local absolute threshold. Wh¢n<ug, we have obtained that the
2\ pa flow relaxes to zero following the linear global mode the@Ref. 18 with

(23)  A=0, butx,=x,~106 here.
and introduction 0f21) into expansion of23) in powers of
e yields exactly Eq(22).
Since the present theory is valid in the strongly nonlinear

regimee> — ¢, 12", the parts of the curves on the left of the

V. NUMERICAL VALIDATION OF THE SCALING LAWS linear threSh()quLIg are not relevant. On the rlght ng, we
obtain a good qualitative agreement between the scaling law
To test the validity of the model, we have compared the(21) [dashed line in Fig. (&)] and the numerical results ob-
scaling law(22) with results from numerical temporal simu- tained for the position of the maximum amplitudéots,
lations using a realistic value of the inhomogeneity paramwhich becomes more quantitative when the nonparallelism
eterw,=0.01 which has been deduced as will be seen belovw, approaches zer¢data not shown The continuous line
from the work of Hammond and Redekoffp® Figure 7  represents the scaling la(@1) with addition of the second-
shows the values of the maximum amplitude and its positiororder contribution toxs in log(1/u;) computed from Eq.
as a function of the ratio of the control parameter to the(A9). The scaling law(22) for the maximum amplitude
threshold valueug/u,s. The dots are computed using tem- [dashed line in Fig. (b)] is very close to the obtained nu-
poral simulations by the very long time behavi@p to a merical values and, when using the second-order contribu-
million time stepg of the real systenl) with 1500 points tion in log(1/jx4) to Xs, the agreement is even clos@on-
spaced by 0.1. The time marching is implicit, allowing atinuous ling. Therefore, the results reported in Fig. 7 show
great deal of efficiency. We have also reported by a verticathat scaling(21) and (22), derived theoretically using the
axis the value of the shift on the linear global thresholduniform limits ase and w, simultaneously tends to zero,
(,u'g=,uA—§1,u,§/3, where{;= —2.338 is the first zero of the describe with good agreement the numerical solution ob-
Airy function) derived by Chomazt al!® using the linear tained by integration ofl) using a fixedsmal) value ofu1,
theory. This threshold may be approached by the numericaxcept in a small range above the linear global threshold. In
data with less than 0.4% error. this range simulations need a large number of time steps to
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reach equilibrium and, therefore, the size of this range isn Ref. 2. Only when the wake is confined by side bound-
difficult to quantify, but, for the value of inhomogeneity pa- aries at=5 diameters, the rescaled global mode shape ap-
rameter used, it is less than 0.4 % and decreases when usipgars to vary with R.
smaller values ofu,. For this relatively small value oftq,
the agreement of the computed location of the maximym
and the scaling lawin interrupted ling, x;= e~ *?is at lead- Direct comparison of those real two-dimensional flow
ing order correct. dynamics with our oversimplified model might seem unreal-
The Landau constant given by the weakly nonlinear Lan4stic, but the scenario and behavior obtained with our toy
dau theory developed in Refs. 23 and 31 has been computedodel applies amazingly well to the real world. It is well
as known that Ginzburg—Landau models are valid well beyond
(AT |A%(0) expectations for many instabilities; for example, for
- 7 (24) Rayleigh—Beard convection or the Taylor—Couette flow,
<AT(x)|A(x)> the dynamics is dominated by the unstable mode at threshold

where(|) stands for the usual inner product over the interval®ve"N _far from threshold. The same unexplained validity of
(0:+). The quantiyA(x) is the near gobal mode defnea T+ CIEFETS, SRy ML fod Foun SOseriec Y e
— a(=Ug/2)x
by Eq.(7), andA(x)=e"Yo®¥Ai (" (x — x,)) belongs to of a cylinder® In the present case, a simplified version of
the Ginzburg—Landau model gives the correct scaling laws,
which indicates that the essential ingredients necessary to
describe the physics of wakes have been kept in our model.
Indeed, it is quite remarkable that the theoretidad.

A. Comparison of the scaling laws

the kernel of the adjoint operator at,. The Landau con-
stant then equals 182 This extremely small value is repre-
sented by the interrupted line of slope #0in Fig. 7(b)

which indicates that a departure of 1 above the linear

global threshold,u,'g is sufficient to reach order-one ampli- ) X
tudes. This sharp transition predicted by the linear globafZl)] and experimentdIEq. (26)] laws for the location of the

mode theory is in agreement with the numerically Obtame%axwgumxsdare |(ii.ent||cal. C;omtpr)]anson ﬁ[f :jhe_prledlctetd ‘?‘n:t
fast variation ofA§ with «, shown in Fig. Tb) close tO,ulg. € observed scaiing 1aws for In€ amplitude 1s 1ess straight-

forward since the theory is the leading order of our
asymptotic expansion, which links and x4, the departure
VI. COMPARISON WITH EXPERIMENTAL AND from criticity and the nonparallelism parameter, whereas
NUMERICAL RESULTS IN WAKES and w4 are finite in the experiment. To compare wi2b),
the theoretical scaling law for the maximum amplitu@e)

In Ref. 2, Goujon-Duranet al. have studied experimen- gy, 14 he extrapolated by considering thas a function of
tally the evolution of the global mode issued from the desta—the parameters and ; which are no longer connected

bilization of the wake behind a trapezoidal bluff body. Theythrough the relatione,; = €". In the expansiori22), we trans-

have measured the streamwise and the crosswise velocity m the sum Jiiat el2\in back into the unique term

the axis and at one diameter off the axis for a large region of - ;
. . . ) =\uate. When is kept constant an@ indepen-
streamwise location. Repeating this measurement for severé 0T NEA 1 P P

R Id b ' ; ) h ﬂ I ntly is brought to zero, Eq22) shows thatA; becomes
eynolds numbers R.e., increasing the mean flow veloc- negative and even singular. The value eofat which this

ity), they have shown the existence of a universal curve fo%xtrapolated scaling laws predict a zero maximum amplitude

the renormalized amplitude of the streamwise velocity Pross obtained byA (es,) =0 when

file. They have rescaled the amplitude by its maximum value

and the streamwise coordinate by the position of the maxi- w2 5
mum and they have found that the data collapse to a single €32~ 2 7 1 (for AX<<Xa). (27)

curve[Fig. 8a)]. They have proposed the following scaling
laws for the maximum amplitude valu&, and positionxs  Keeping in mind thatu,<1, we find that63,2<—§1,ui’3,
which fit their measurements: i.e., the scaling law22) should be valid as soon as the linear
A=Ao(R—R)Y? (25) threshold,ud{q is exceeded by an ex'ponentia.IIy small quantity
corresponding to the weakly nonlinear regime. Therefore,
Xs=(R—R;) 12, (26)

where R-R. denotes the departure from critical Reynolds

number R for the occurrence of the global mode, BReing  with x¢ given by Eg.(21) [which yields Eq.(22)] is ex-
experimentally determined by plotting§ versus R. In Ref. tremely close to the scaling lay25) observed experimen-
3, Zielinska and Wesfreid have presented results from twotally and numerically in Refs. 2—4.

dimensional numerical simulations of wake flow behind a  Comparison between model and reality seems to be
triangular obstacle and confirmed the experimental results ajualitatively extremely favorable since E@6) is correctly
Goujon-Durandet al? In particular, the form of global predicted and Eq25) is predicted at leading order. To make
modes and their dependence on the Reynolds number fouride comparison quantitative, we still face the problem that
numerically were in agreement with the scaling la(@$)  the nonparallelism of the flowmeasured in the model by
and (26) given in Ref. 2. The universality of these scaling w) is finite and, far from critical, depends on the Reynolds
laws is reinforced by the fact that a different body has beemumber which itself defines the instability of the flow mea-
used in the two studie@riangular in Ref. 3 and trapezoidal sured bye in the model. Therefore, for the wake flow,

AZ~ pat €= piXs, (28)
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and e are functions of a single control parameter R and the,,(X,R), andky(X,R) at first order in the variablX and
representative point corresponding to real experiment in thessuming that,,(X,R) andky(X,R) dependence oX are

(11,€) plane(Fig. 4 moves on a curve parametrized by R acting at higher order, we obtain
for which e will go to zero whilew will stay finite at thresh-

old. For large enoughe, the representative point JA RIk- (R A ooR) r92_A_ IAIPA
(11(R),e(R)) will always enter increasing R the gray do- 4T @xkol R)Ko ol )ax T e Y

main of Fig. 4 where the theory we have developed applies

but only at leading ordeti.e., when bothu, and e go to i wegR)+ okko(R) kéo(R)—% | A (32
zerg. We shall therefore extrapolate the results we have ‘ 2 dX |,

theoretically derived to finite value ofu(; ,€) using numeri-
cal simulation of(1) before comparison with experiments. This model needs the evaluation of the complex coeffi-
cientswyy o(R), woo(R), dwg/dX|g, koo(R), andy, where
the second subscript, “0” indicates evaluation of the func-
tion at X=0. Finally, we assume that only [mqR)],
which models the local growth rate of instability waves, de-
In order to show more clearly the quantitative agreemenpends on the Reynolds number and is proportional to R.
between the modéll) and the experimental observations by ~ The coefficients of E¢(32) may be all deduced from the
Goujon-Durandkt al. and the numerical observations by Zie- work of Hammond and Redekofp; except from the non-
linska and Wesfreid, we have integrated numerically the linear coefficient y. They study numerically the two-
evolution equatior(1). We follow to that aim the derivation dimensional wake behind the rectangular based body and
of Monkewitz et al'’” Model (1) is in scaled variablegthe ~ compute the local growth rate(X)=Im[wo(X,R)] as a
amplitude, the time, and the streamwise coordinstieh that function of the distance to the body. Their Fig. 6 in Ref. 40
the coefficients of the diffusive term and the coefficient ofand Fig. 13 in Ref. 19 exhibit a parabolic variationafX),
nonlinearity are unities; but if the modél) had been de- in contrast with our assumption of a linear variation. Using
rived from the full two-dimensional Navier—Stokes equa_the theoretical framework developed in Ref. 17 for an infi-
tions, using a weakly nonparallel assumption as in Ref. 17nite domain, they have computed the complex coefficients of
the Ginzburg—Landau equation obtained would use dimenEd. (32) for a criticity of 33%. The complex coefficients we
sionless variables based on physical scales such as theé sizavill use are estimated from theirs. Because of their quadratic
of the body, the velocityU., of the stream flow without Variation of Im(wg) in X, they do not obtain directly a value
body, and the time scati/U.. . Using these units based only for dIm(wo)/dX|o, but a coefficient of the quadratic term
on physical scales, the local linear dispersion relation of in{which equals 0.0149) that we are going to identify to
stability waves is a function of the Reynolds number and thel Im(wo)/dX|o, as we just need an order of magnitude. This
dimensionless streamwise slow coordindteand may be value of w1 evaluated by the computation of the coefficients

B. Comparison of the global mode profile

written in the form corresponds approximatively to the mean sloper@X) de-
termined by Hammond and Redekofifg. 6 in Ref. 40 and
0=or(X,R)+ o (X,Rk+ o X,R)k?, (299  Fig. 13 in Ref. 19. We might as well have chosen

d Im(wg)/dX|o~dZIm(we)/dX? in order to identify the

— — 92 2 H H
wherew=dw/Jk and = 9w/ Jk". In this expansion, we typical size of the nonparallel effect; this would have led to

have substracted the carrier wave of maximum linear growt%n order of magnitude larger, for which the difference is

rate. For convenience, the dispersion relati@gf) may be minor departures from the asymptotic lau®1) and (22)
recast in the form of a Taylor expansion around the Waveaffecting a larger range is

numberky(X,R)= — w(X,R)/w(X,R), corresponding to a

Let us first rewrite Eq(32) by rescaling the streamwise
saddle point of the dispersion relationat a(32) by g

coordinate X [using the change of variableX
o X,R) =xV—Im(wyko/2)] in order to set the coefficient of the dif-
0= X,R)+ T(k—ko(X,R))z, (300 fusive term to unity; the amplitude is also properly rescaled
to eliminate the imaginary terms proportional 48/9x and
wherewo(X,R)=wgr(X,R)— wyk3/2. This expansion repre- A, and to set the real part of the nonlinear coefficient to
sents the dispersion relation associated with the equation unity. We obtain a complex version of E€{):

A (X.R)K A IA N A
JT Wy ’ O&x a—T+U0&—(1+Icl)ﬁ—X§+(MA+6—,U,1X)A
o X,R) A o X,R) —(1—ic3)|Al?A, (33

=i o wo(X,R)+Tk§ A, (3)
where all coefficients are obtained from those of E4l)

in which terms coming directly from nonparallelism have computed in Ref. 19 after applying the rescaling. Since the

been omitted(see Ref. 1Y Note that the complex group model(1) is real and since we use values of the coefficients

velocity w, is equal to the ternw, ko. When including the obtained in Ref. 19 for a complex model, we therefore have

leading-order nonlinear term compatible with translationala crude estimation which is sufficient since only the order of

invariance in time|A|?A, and after expandingso(X,R), magnitude is necessary. The advection velocity is estimated
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FIG. 8. Renormalized global modes scaled withandx, with the same departures from critical Reynolds number<(88.3) than in Ref. 3, corresponding
to R=41, 42, 43, 45, 47, 5Qa) Experimental data for the NG mode associated with transversal velocity component of the wake fron{iiyéuderical

data from Ref. 3(c) Numerical data from Ref. 3 with variation of the blocka¢®). Results of the present study for which the inhomogeneity parameter has
been estimated for eaehfrom Fig. 3b) in Ref. 3.(e) Results of the present study using a constant inhomogeneity pargmet€.033(no free parametgr
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to Up=2 and its link to the threshold valug, [Eq. (5)] A2
yields up=1. The inhomogeneity parameter is estimated to  *
n1=0.033 as explained above.

Oncepu, has been estimated, the mod#l then depends a
on the criticalitye= uy— ua. Typical criticalitiese are ob-
tained using the same values of the rafigy - ug)/ uy as in 5

experiment for the ratio (RR;)/R;, leading to a compa-
rable departure from instability threshodeg=(R—R.)/R. .
Experimental results obtained by Goujon-Duragtdal
for the NG modes associated with transversal velocity com-
ponent of the wake are sketched in Figa)8for different
values of the Reynolds number, after having renormalized
the amplitudes to sehs andxg to unity. A unique shape is ¢ 40 42 4 a6 a8 s 52
observed since the global modes are practically superposeu R
into one curve for the different Reynolds number. FigureFIG. 9. A2 at different spatial station chosen as in Ref. 3, i.e., variable
8(b) presents the NG modes obtained numerically by Zielin-=x, and fixedx=2.2, 5.7, and 10. The dotted lines represent the values
ska and Wesfreﬁjfor unconfined wake, after renormalizing reported from Fig. 5 of Ref. 3. The continuous lines represent our values
the amplitudes in the same way as in Figg)8The numeri- computed from Eq(12). Arbitrary units are used in the ordinate scale.
cal data obtained for the different Reynolds numbers show
that the renormalized NG modes are superposed into one
curve exactly as for the experimental results by Goujon-of Navier—Stokes equations for the wake configuration. For
Durand et al? [Fig. 8a@]. When the wake is laterally each R, a value fop, is computed by assuming that down-
confined® the numerically computed nonlinear global modesstream ofx,, the amplitude follows adiabatically the weak
reported in Fig. &) show that the growing parts of the NG variation of Jo(x), o(x) being the local linear spatial
modes are still superposed into one curve exactly but not thgrowth rate of the perturbation of the basic state. We obtain
tails. Before discussing the results obtained in the preserhis way an estimation of the inhomogeneity parameter
study with the protocol described above, let us remark thawhich satisfiesu,<e>? The values ofu, vary from 0.032
experimental or numerical data in Ref. 2 and 3 have beefor R=41 to 0.065 for R=50, which is coherent with the
measured in a fixed short domdidx,, ]. Therefore, the res- estimate previously derived from Ref. 19. In our theoretical
caled NG modes plotted in Fig(8d—8(c) seem to be shorter model, we have made the hypothesis of a linear variation of
(in the rescaled coordinate'x;) for smallere sincexs get  w(x) with respect tax. However, Fig. 8) of Ref. 3 shows
larger. For consistency, we will represent in Fig&d)8and that far downstream, this hypothesis certainly leads us to lose
8(e) the NG modes of the toy model cut at the same fixedaccuracy in the description of the tail of NG modes; a better
position as in Figs. @ —8(c), i.e., viewed through a window quantitative agreement would have been obtained with a
of fixed real size. function u(x) decreasing less rapidlat a nonconstant rate
Figure 8e) presents the results obtained from the modelMoreover, when the Reynolds number approaches its critical
1 with a fixedu; =0.033 and different values ef As for the  value, the estimation g, becomes inaccurate as the portion
experimental results by Goujon-Duraetial? [Fig. 8@] or  of the tail computed in Ref. 3 becomes too snifdl R=39
for the numerical results by [Fig. 8c)], the growing part of it is even impossible to estimate the inhomogeneity of the
the NG modes are superposed exactly into a single curve; butake as the saturation is nearly reached within the observa-
the tails do not coincide. This discrepancy in the tails be-tion domairn. Therefore we have used Reynolds values 41,
tween the toy model and the real experiment may be dud2, 43, 45, 47, and 5Qrelative criticities from 7% to 30%
either to the fact that the assumption of a linear variation ofand letu, vary with e and plotted in Fig. 8l) the rescaled
w(X) with respect tax is crude, or to the fact that in reality NG modes.
mq varies withe. We emphasize that the theory has shown  The quantitative agreement is good since from the origin
only a slight influence of the specific form of the control to twice the position of the maximumy, we see only slight
parameter profile on the overall structure of the pattern. Adifferences between the toy model and reality.
lowest order, the positiorg and amplitudeAg of the maxi- Early exploration of the global dynamithave reported
mum remain unchanged by the variation @{x), which  Landau-like dynamics when the amplitude of the wake is
therefore induces distortions only in the far tail of the NG measured at a fixed location. Zielinska and Wesfréiave
mode, with the constraint that the tail still follows adiabati- undertaken such measurements that we have reported as
cally the variation ofu(x). A better comparison but some- dashed lines in Fig. 9; we have tested such measurements
how more artificial may be obtained for the tail by letting the using the toy mode{(1) with the inhomogeneity parameter
inhomogeneity coefficient.; vary with the Reynolds num- varying with e as in Fig. &d). Of course, as remarked in Ref.
ber[Fig. 8(d)]. The inhomogeneity parameter of our problem 3, since the global scalin@®5) and (26) are not compatible
is estimated according to Fig(l8 of Ref. 3 which shows the with a local scaling of the amplitude A(Xfiyxeq) ~ VR—Rg,
amplitude of the transverse velocity component on the axisve should not observe this scaling but we want to quantify
as a function of the streamwise positiofd (rescaled by the for varying w4, the departure of numerical results on model
size of the bluff body, resulting from numerical integration (1) from the classical Landau theory.

N




3700 Phys. Fluids, Vol. 11, No. 12, December 1999 A. Couairon and J.-M. Chomaz

In Fig. 9, we have measured the amplitude at three difamplitude in Refs. 2—4. In contrast, whef?~ u;<e€ (in
ferent fixed distances from results of FigeBand reported fact, whenu, exceeds the linear threshqu by less than an
similar measurements by Zielinska and Wesfrétih. 5c)  exponentially small quantijy the inhomogeneity modifies
of Ref. 3. At a fixed location close to the bodx/d=2.2), the front solution at leading order and the critical exponent
the amplitude varies approximately linearly withthe slope  should change as two length scales appear in the scaling law
being proportional tdf(e) given by Eq.(19), and therefore for x.: the length associated with the criticity parameter
A?(x=2.2) possesses a parabolic shape in Fig. 9. In contrast,” Y2 and the inhomogeneity length scatg .
far enough from the origin, i.e., downstream>qffor the e It is quite surprising that such a simple one-dimensional
reported in Fig. 9A? is approximately linear with respect to amplitude model may be found in agreement with experi-
R (Fig. 9 for x=5.7 andx=10) as for all thee reported. ~mental and numerical results since only the dynamics along
Those points belong to the tail where the amplitude is locallythe streamwise direction has been considered and simplified
saturated and, therefore, they follo?(Xged=0fxed  to the extrem. Another challenge is to explain why such a
= Wiixed= M+ €~ U1Xed- Thus, if A% scales linearly with  theory based on the hypothesis of a weak inhomogeneity of
€, the threshold value it points at is the local and not thethe medium(WKBJ type of assumption which might ap-
global one:e= u;X—ua. This analysis breaks down if the pear unreasonable in the strongly nonparallel case of the
fixed position of the probe is too far in the tail. Again the wake, describes successfully, however, the spatial structure
quantitative agreement is fairly good, even for the highesbf the wake reported in the literature. Many reasons, all re-
Reynolds numbe(R=50). For x=x¢(R), A§ is linear with  flecting the crudeness of the model, may be pointed out to
respect to R in agreement with Zielinska and Wesfreid reindicate that the model should not describe accurately the
sults and with our extrapolation. Similar measurements usingeal experimental or numerical results. First, the spatial struc-
a fixed value ofu; would have led to similar results while ture in the crosswise direction and the propagation of the
the probe is between the origin and the maximum; as in Figperturbation in this crosswise direction have been neglected
8(e) the difference from Fig. @) is to be seen in the tails. in the mechanism of global instability. This crosswise direc-
tion is considered to be slave to the dynamics in the stream-
wise direction. Second, our model is minimal in the sense
that it takes into account only the leading order terms, ik

In this paper we have shown that the spatial structure ohnd R necessary to produce a nonlinear global instability.
nonlinear global modes in weakly inhomogenednsnpar- The linear part of the model represents the simplest disper-
allel) semi-infinite systems may be described by perturbingsion relation with one temporal branch and two spatial
the global mode solution we have derived for an homogebranches leading to a change of nature of the instability
neous(paralle) semi-infinite domain and which predicts ex- (transition from convective to absolute instabilitfhe cubic
actly with no free parameter the behavior of Rayleigh—nonlinearity is the leading order nonlinear term compatible
Benard convectioh® and Taylor—Couette roft8 with  with translational invariance in time. The reason for the abil-
throughflow. The present model takes into account only twaty of the present theoretical approach to describe real experi-
small parameters: the criticity of the flow and the inhomo- ments, even if the parameters are driven far beyond the va-
geneity parameter., . The nonlinear global modes are de- lidity domain of the theory, is perhaps due to these essential
rived in the uniform limit wheree and w, are brought to ingredients which capture the main features of conserved
zero. The Landau theory based on a WKBJ approximatiorsymmetries or broken symmetries of the real flow.
has been shown to be valid in an exponentially small domain  In Ref. 2, it is suggested that the experimentally ob-
of the plane f+1,€). In contrast, this fully nonlinear theory served scaling laws could be explained by a model of
which is essentially based on results for front propagation irGinzburg—Landau equation with complex coefficients. We
homogeneous systems leads to the existence of nonlinehave studied in Ref. 29 the structure of homogeneous NG
global modes in an entire algebraic domain of the planenodes of the complex Ginzburg—Landau equation with cu-
(u1,€): w1<€e"Vn>2 We have shown that a necessarybic nonlinearites and we have shown that although the
condition for the existence of a fully nonlinear solution is model is no longer potential, the homogeneous NG modes
that the saturation occurs within the locally absolutely un-have the structure of a front selected by the linear marginal
stable domain. In this strongly nonlineagiee, NG modes  stability criteria, and exhibit a growth length which scales
are described as fronts perturbed by the inhomogeneity onljke €2 as for the real Ginzburg—Landau model. As scal-
at first order in their tail, and the inner resonant layer close tang laws for all the length scales introduced in Sec. Il keep
the origin plays the master role of the resonator. Our mairbeing identical when the complete Ginzburg—Landau equa-
result is the existence of critical exponents for the scalingion is considered instead of the real one, the structure of the
law of the maximum amplitude position, which depend onNG mode would be similar in both cases. The only novel
the relative magnitude of the departure from global instabil+esults would be the frequency selection, which should be
ity thresholde and of the inhomogeneity length scale. Whensimilar at leading order to the homogeneous case described
u1<e? the NG mode is described at leading order as an Ref. 29. For the maximum amplitude value and location,
perturbed Kolmogorov front, the scaling law for maximum the scaling laws should only differ by numerical factors de-
amplitude location is in 4/e and is in agreement with ex- pending upon the imaginary parts of the Ginzburg—Landau
perimental and numerical results in wakes. In light of thiscoefficients. Associated with the derivation of those coeffi-
result we are able to interpret the fit used for the maximuncients for the experimental setup used in Ref. 2, this study

VII. CONCLUSION
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should lead to a systematic quantitative comparison betweenhere ,u2=,uA—3A§= —2up. [For clarity, we no longer
our theory and the experiment. However, if the imaginaryexplicity mention the f,) dependence ofA,=A,(u,)
parts of the Ginzburg—Landau coefficients are srtaslfor = \/u,.] Using the notations

the Rayleigh—Beard or the Taylor—Couette experimgnt

the real model should give very good quantitative agreement | _ Uo(1-13) _ U1+ V3) (A6)
between theory and experimefds it is already the case - 2 T 2 '
when the flow is parallel, as we have demonstrated in Ref, .
29). the general solution of EGA5) then reads
Similar ideas have beerl recently develolped to gxplgin B(X) = C 8+ (XX g gk (x=x9
the occurence of self-sustained resonances in galactic disks
and stellar shells. See the review article by Sowafdr N 1-pP2 Al x+% (A7)
extensive references, and in particular Refs. 48—-51. In this € o € o o)’

case, two coupled equations describe the dynamics of the , .
magnetic field: self-sustained resonances occur when th@here the last non-exponential term represents a particular
propagative waves become absolutely unstable; the spatidf!ution of (AS) and c,,c; are integration constants. A

structure consists of a front stabilized at the location of thé®oundary condition will be imposed by the matching when
convective/absolute transition. X—Xg— +0. The outer solutior{A4) in CNL is linear with

respect tox; then eP¢(x) must be also linear wher—xg
—+o. This matching condition implieg;=0. As X—Xg

ACKNOWLEDGMENTS — +o0, the inner solution(A7) admits the expansion
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S. Goujon-Durand for their fruitful comments. €"p(x) AN Xte—e P (AB)
SinceA,=us andu,=—2ua, expansior(A8) represents
APPENDIX A: DETAILED SPATIAL STRUCTURE OF exactly orders ande" of (A4). Matching between CNL and
NG MODES TL® is done.
1. Outer layer CNL The position of the maximumg must satisfy the condi-

tion d¢/dx(xs)=0, which determines the constam,
In this subdomain, the NG mode has saturated and its- ¢"~PA, /u,k_ . The complete solutiofA7) then reads
saturation amplitude follows the weak variation of the con-

i i A, [ € U
trol_ parameter with respect tg. On using the change of ¢(X):E,p_2 € kx| o 20 | (A9)
variable Mo\ K_ Mo
Z= X~ po, (A1)  Whenx—x,— —, the asymptotic behavior ap(x) is de-
whereuy= ua+ € andu, = €", we can rewrite Eq(12) up to termined by the egpone_nUaI term. On _dlfferentlfttlng Eq.
. o (x=x9)
the second order in the form (A9) and using agaiitA9) in order to eliminate , it
follows that
ZA(Z)+A3(Z)+e"UA'(Z)=0, (A2)
. . i . do k_A, U, 1
where a prime denotes differentiation with respect to the ar-  ¢P—=k_ePgp+ €'Xs— et e ———
gument. The solution of EA2) reads dx H2 ma K-
(A10)
AZ)=\-Z+ 6n$ (A3)  This exact relation will, however, be used as the asymptotic
4(—2)%? behavior of the solutiofA9) in the phase space as- X,

and represents the saturation amplitude which follows the~ ~ - Moreover, the maximum amplitude verifigs(x;)

ZA,—€P i
weak variation ofu(x) with respect tax. By making use of Ay~ e"(xs) with

(A1), we obtainZ=— pp— e+ €"x, and expansion dfA3) in A A, A1 U
powers ofe yields ePP(Xy)=—€"—XFte—+e"—| ———|. (A1l
M2 M2 M2 \Ko o
1 1 Uo
A=\ upr—€" X+ e +é" . (A4)
Zm Zm 4#2/2 3. Layer KF
The solution is sought directly in the phase space in the
2. Transition layer TL *° form of a series representing(A)=dA/dx and expanded
Around the saturation amplitudé&,=A,(us) — €’ d(X), Into
where ¢(x) satisfies the equation obtained by linearizing dA
(12) aroundA,=A,(ua): u(A)= a=uo(A)+eu1(A)+,u1u2(x,A). (A12)
2
d_¢ — Uod—d) + ppp= (€ P— e PX)A, (A5) At the lowest order ire, let us briefly recall how to compute
dx? dx ug(A), which is the same solution as the one obtained for
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saturated global modé&,i.e., linking the origin of phase uy(A)+ euy(A)+ piuy(x,A)
space A=0,dA/dx=0) to the point(A=A,(ua),dA/dX

+ oo + o0 + o
=0) and satisfyin - ) .- -
fy g :_J-Zl V]AJ2+ 1_21 JVJAJZ 1A+ /.lejzo 77JAJ2
UoUy— Ugug+ uaA—A3=0, (A13) o o
_ Al Al
where a prime denotes differentiation with respecAtd his GJZO )\JA2+’“1,-ZO Lz (A20)
solution reads
Yoo 4. Transition layer TL © and outer layer OL
Uo(A)=— 2, »j(A;—A)L. (A14) In the outer layer OL, A(x) is small since it must van-

=1 ish at infinity. ThereforeA(x) is the solution of the linear
Introduction of(A14) in (A13) and identification of the pow- €duation(13) and reads

ers of (A,—A) yield equations for the recursive coefficients Uy

v; which may be numerically computefiThe first one at A(X):g(ﬂl)exl{7x) AT (X—Xp) p1*'®) (A21)
lowest order in A,—A) must be negative sindd14) rep-

resents the stable manifold &, and satisfies:zi—uovl whereg(u4) is an integration constatithe coefficient of Bi

+1,=0. Thusy;=Uy(1—3)/2=k_.] must be zero in order to cancel the growing part of the gen-
Hereu(A) andu,(x,A) satisfy eral solution.
In the central nonlinear layer CNL, whef—0, a sin-
Ugdaly+ (daUg—Uglu = —A, (A15)  gularity appears in the solutiofA3). The transition layer
TLO has therefore been introduced to match solutioh’)
UgdaUp+ dyUp+ (dalpg—Ug)up = XA, (A16)  and(A21) whenZ—0. In this layer, on using the change of

variableZ=27/u}? andA(Z) = u}*A(Z) in order to collect

and are also sought in the form of series expansions the nonlinear term, the advection term, and the inhomoge-

oo neous term at the same ord&(Z) satisfies
u(A)=—2, Ni(A,—A), A17 ~ _— ~
1A J§=:O i(Az=A) (A1) UoA' = —ZA—A3. (A22)
+oo The solution of Eq(A22) reads
Ua(X,A) = 2 (£j+ 7%) (Ag = A). (A18) JR2 5 2
: A=A, 1+ U—OJ e”z’UOdu) e 220, (A23)
0JO

The recurrent coefficients;, ¢;, and »; are numerically
comp_uted.[The first equations allowing to initiate the com- here the integration constaAy, is given by the matching
putation read with the CNL solution. Indeed, a8— —, we obtain

Uo

Uo—v1)Ao=A,, or \o=(1++3)71, ~ =
(Uo—v1)No=A; 0=(1+3) A:\/—_21+E

(A24)

(Ug— ) mo=—Ay, OF 7p=—(1+3)%,
if the choice Ag=(Uy/m)** is done and solutior(A24)
(Uo—v1)lo=m0, OF Lo=-Uy(2++3)71. matches with(A3).
WhenZ— + o, the solution(A23) admits the asymptotic
The asymptotic behavior of the solutid®12) as A expansion
— A, in the phase space reads

X Zo ( Uo)lm ,{ 72 ) 25)
Ty = V(A= A ixaot ehot palo. (A19) V2 4 2Uo
and matches with the OL solutigih21) once the following
Since we have verified that value ofg(u4) is chosen:
3
K_A; ( Uok—) Az 114y 1314 Uo
k™=, = —mo=Xo, Lo=|1- =2 g(py) =T exp — 52| (A26)
! M2 T=Ro, Lo Mo | 2 24411
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