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Abstract 

We study the existence of self-sustained saturated solutions of the real Ginzburg-Landau equation subject to a boundary 
condition at x = 0; such solutions are caUed nonlinear global (NG) modes. The NG instability referring to the existence of 
these solutions is rigorously determined and the scaling behavior of the NG modes close to threshold is derived. The NG 
instability is first compared to the linear concept of convective/absolute (C/A) instability characterizing whether the impulse 
response of an unstable flow in an infinite domain is asymptotically damped or amplified at a fixed location. NG modes are 
shown to exist while at the same time the flow may be linearly stable, convectively unstable, or absolutely unstable. The 
growth size of the NG modes is shown to be proportional to ~-1/2 when NG and A instabilities exist simultaneously, e being 
the criticality parameter, whereas a ln(1/e)  scaling is found when the NG instability occurs while the flow is C unstable or 
linearly stable. 

The nonlinear convective/absolute (NC/NA) instability defined Chomaz (1992) by considering, in infinite homogeneous 
domains, whether the front separating a bifurcated state from the basic state moves downstream or upstream, is determined 
using van Saarloos and Hohenberg (1992) results for the selected front velocity. Remarkably, the NA domain and the NG 
domain are shown to coincide. Similar results are presented for supercritical bifurcating systems, for the "van der Pol-Duffing" 
system, and for a transcritical model. In all the cases, the A instability is only a sufficient condition for the existence of an 
NG mode, and these simple models demonstrate that a system may be nonlinearly absolutely unstable whereas it is linearly 
convectively unstable. This property should be generic if one accepts the conjecture that the selected front velocity is always 
larger than the linear front velocity. 

Response to a constant forcing applied at the origin is also studied. It is shown that in the NG region, the system possesses 
intrinsic dynamics which cannot be removed by the forcing. By contrast, the behavior of a nonlinear spatial amplifier is 
observed in a domain larger than the NC region. NC instability is only a sufficient condition to trigger the system with 
forcing. 
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1. Introduction 

The concepts of linear absolute (A) and convective (C) instabilities have recently been applied to understand the 
spatiotemporal development of open flows such as mixing layers, jets, or wakes [1-3]. In these flows fluid particles 
continuously enter and leave the experimental domain of interest. Therefore, the input perturbations and the mean 
advection have to be taken into account explicitly. The concepts of linear absolute or convective instability are 
usually defined with respect to the linear response to an initially localized impulse perturbation. If the wave packet, 
representing the Green function, asymptotically decays in any uniformly translating frame, the system is said to be 
linearly stable (S) (Fig. l(a)). If  this is not the case, it is linearly unstable. Moreover, it is linearly absolutely (A) 
unstable if, at any fixed location, the response grows in time (Fig. l(c)) and linearly convectively (C) unstable if it 
decays (Fig. l(b)). In a C unstable system, perturbations grow as they are advected away and the system acts as a 
spatial amplifier of incoming turbulence. On the contrary, in an A unstable system, perturbations viewed at a fixed 
location keep growing and the system is thought to ultimately exhibit an intrinsic self-sustained oscillation. 

In the linear approximation, such a self-sustained oscillation has been analyzed by Chomaz et al. [4-6], Huerre 
and Monkewitz [1], Monkewitz et al. [7], le Dizbs et al. [8], Hunt and Crighton [9,10]. It has been called a linear 
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Fig. 1. Sketches of the typical response of the system in the (x, t) plane. 
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global mode because it develops over the whole spatial domain, requiring the resolution of an eigenproblem, not 
only in the transverse direction, but also in the direction of the flow (x). Inhomogeneity in x (variation of the 
basic flow in x or boundary condition) is a necessary condition for the existence of linear global modes. When the 
inhomogeneity is weak (slow variation of the length scale )~, i.e. d log )~/dx ~ E << 1), a WKBJ approximation may 
be used to show that the existence of a local absolute region in the flow is a necessary condition for the occurrence 
of an unstable linear global mode. In fact, resonances observed in real experiments such as a flow past a cylinder, 
a helium hot jet [11], or a mixing layer with a back flow [12] are likely to result from the nonlinear saturation 
of a global mode. The weakly nonlinear theory has been applied to linear global modes [6,8,13] but, despite the 
already strong but inherent limitation that the amplitude must be exponentially smaller that the inhomogeneity 
parameter ~ for the theory to be valid, it has been shown (Le Diz~s et al. [8]) to be ill-posed and the determination 
of the nonlinear nature of the bifurcation is in general impossible as E goes to zero. The physical explanation of 
this mathematical breakdown is that, for an order- 1 advection velocity, the nonlinear modification of the basic flow 
occurs far downstream of the region which determines the growth rate of the linear global mode. Technically, this 
corresponds to the fact that, at the global instability threshold, the eigenfunctions of the linearized inhomogeneous 
operator and its adjoint do not overlap. This failure of the weakly nonlinear route signals the need for a strongly 
nonlinear analysis of the absolute and convective instability concepts. 

In this spirit, Chomaz [14] has extended the notions of absolute and convective instabilities to nonlinearly 
unstable systems. This notion may be important not only for the description of nonlinearly unstable open flows such 
as boundary layers or Poiseuille flow, but also for linearly unstable flows with order-one advection for which the 
absolute instability occurs far from "the" threshold. For these systems where Galilean invariance is broken and the 
laboratory frame is unambiguously specified, nonlinear absolute and convective instabilities have been defined as 
follows: "The basic state of a system is nonlinearly stable (NS) if for all initial perturbations of finite extent and 
amplitude, the system relaxes to the basic state everywhere in any moving frame. The system is unstable if it is 
not stable in the above sense. The instability is nonlinearly convective (NC) if, for all initial perturbations of finite 
extent and finite amplitude, the system relaxes to the basic state everywhere in the laboratory frame. It is nonlinearly 

absolute (NA) if, for some initial condition of finite extent and amplitude, the system does not relax to the basic 
state everywhere in the laboratory frame". In the above definition, the "laboratory frame" refers to an experimental 
situation and is used to point out the frame specified by boundary conditions, forcing, etc. 

A more convenient definition has been given in [ 14] for a one-dimensional bifurcating system in an infinite domain. 

The nonlinear nature of the instability may be determined by referring to the evolution of an initial "droplet" of 
bifurcating state surrounded by the basic state. When all initial droplets shrink (Fig. 1 (d)) the system is stable; when at 
least one droplet expands (Figs. l(e) and (f)) the system is nonlinearly unstable. In this case, the distinction between 
absolute and convective instability depends on the velocity of the fronts limiting the droplet "in the laboratory 
frame". When the two limiting fronts are moving in the same direction, the instability is NC (Fig. l(e)) and it is NA 
when the fronts are moving in opposite directions (Fig. l(f)). 

If  we keep the usual convention that the mean advection is directed to the right, the convective or absolute 
instability is solely discriminated by the direction of propagation of the trailing front. In the abundant literature 
about fronts, the front velocity Vf is usually oriented from the bifurcated region to the basic state. Here Vf is thus 
positive when front moves to the left and negative when it moves to the fight (Vf being oriented from fight to left). 
Using this convention, the nonlinearly absolute or convective nature of the instability is determined by the sign Vf 
as follows: when Vf > 0 (Vf < 0), the front moves to the left (right) in the "laboratory" frame, thus the flow is 
NA (NC) unstable. If the uniformly translating "front" solution is not unique, the determination of Vf implies the 
solution of a selection problem recently elucidated by Dee [15,16], Ben-Jacob et al. [17], and van Saarloos and 
Hohenberg [18-20] among others. In particular, van Saarloos and Hohenberg [18] have formulated the principle 
that the nonlinearly selected front velocity Vf is always greater than the velocity Vf 1 of the linearly selected front. As 
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pointed out by Huerre and Monkewitz [1], V~ is the velocity of the trailing edge of the Green function. Therefore, 

the sign of Vf 1 determines whether the instability is linearly absolute (Vf 1 > 0 with our orientation convention) or 

linearly convective (Vf 1 < 0). The principle of van Saarloos and Hohenberg's essentially implies the extremely 
important property, illustrated by the present paper that A instability is only a sufficient condition for NA instability. 
Indeed, if the system is A unstable thenJVf 1 > 0, but as Vf > Vf 1, we immediately deduce that Vf > 0, which implies 
that the system is NA unstable. The converse is false since there may exist domains of the parameter space where 
the flow is linearly stable or linearly convectively unstable but nonlinearly absolutely unstable (see Section 2). 

The previous definitions pertain to the ideal case of an infinite domain with a somewhat artificial introduction 
of the laboratory frame. Dealing with real open flows, as argued by Huerre and Monkewitz [1] and Chomaz and 
coworkers [4,14], the useful concept is the existence of a global mode of the flow which takes into account the 
upstream and downstream boundary conditions (eventually the lateral boundary conditions) and the nonparallelism 
of the flow. This global instability leads to self-sustained dynamics characterizing the intrinsic behavior of the flow. 
In the linear approximation, the linear global instability corresponds to the emergence of a temporally growing 
solution occupying the whole spatial domain (the linear global mode). In a fully nonlinear study [21], the nonlinear 
global (NG) instability will correspond to the existence of a saturated solution of the original problem (the nonlinear 
global mode). 

The physical significance of these notions will be illustrated by considering one-dimensional systems in a semi- 

infinite domain, with homogeneous left boundary conditions. A semi-infinite domain represents an idealized open 
flow, in which the perturbation level is supposed to be zero at the entrance of the test section. Galilean invariance 
is actually broken by the left boundary condition, which unambiguously singles out the laboratory frame. 

The aim of the present study is to establish the link between A, NA, and NG instabilities for simple one-dimensional 
systems. For this purpose, we consider the one-dimensional real Ginzburg-Landau equation 

OA OA OZA ~];(A) 
O---t- -~- UO Ox 0x 2 6A ' (1) 

where A stands for the real amplitude of the bifurcating mode. The operator UoOA/Ox represents the effect of 
advection at the mean velocity U0 (taken positive). Except for the last section of our paper, the potential density 
);(A) is taken in the form 

A 2 A 4 A 6 

V(A) = - / z  2 4 + --6-' (2) 

which gives rise to a subcritical pitchfork bifurcation. In this case, Eqs. (1) and (2) depend on two independent 
constant control parameters: the advection velocity U0 and the bifurcation parameter/z. 

The outline of the paper is as follows. In Section 2, we give a brief review of the concepts ruling the propagation 
of fronts separating the bifurcating state from the basic state. This allows us to delineate the S, C, A, NS, NC 
and NA regions of parameter space for model equation (1) with potential density (2). Although this section is a 
straightforward application of Chomaz's definition to van Saarloos and Hohenberg's results, the front solutions and 
the selection mechanism are presented because their phase-space interpretation also governs the existence of the NG 
mode. The latter problem is addressed in Section 3 where the NG solutions of (1) and (2) in a semi-infinite domain 
with homogeneous boundary conditions at the origin (x = 0) are derived. Remarkably, we find that the existence 
region of such an NG mode, rigorously demonstrated by a perturbation argument, coincides with the NA region 
defined from the front velocity selection criterion. The NG mode existence demonstration gives us information 
which has no equivalent in the front selection problem. In particular, we obtain in this manner scaling laws for the 
growth size of the NG mode which appear to be remarkably different depending on whether the NG instability 
threshold precedes the A instability threshold or coincides with it. The multiplicity of global modes is mentioned 
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and the stability of all global modes is determined numerically. The response of (1) to an excitation of constant 
amplitude applied at the origin is examined in Section 4 where it is demonstrated that the system acts as a spatial 
nonlinear amplifier in the NC region. In Section 5, we verify the genericity of the above results by examining 
two other potential densities "9(A) corresponding to a supercritical bifurcation and to a transcritical bifurcation 
that breaks the A --+ - A  symmetry, and by considering the case of the van der Pol-Duffing-like system with an 
additional nonlinear term A2OA/Ox in (1). In particular, we demonstrate that even for a supercritical bifurcation, 

the system may become NG unstable in regions of parameter space where the instability is C. 
We recall here the set of abbreviations we are going to use throughout this paper: S, C, A denote linearly 

stable, linearly convective, and linearly absolute, respectively. NS, NC, NA denote nonlinearly stable, nonlinearly 
convective, and nonlinearly absolute, respectively. All these notions refer to an infinite domain and only NG, denoting 
nonlinear global, refers to the semi-infinite domain. 

2. Front propagation and absolute instabilities 

For the sake of clarity, it is convenient to emphasize once more the distinction between the laboratory frame in 
which the mean advection velocity is U0, oriented to the right and the advectedframe with no mean advection. We 
then describe the different possible fronts by their velocity vf in the advected frame and Vf in the laboratory frame, 
oriented from right to the left. We recall that this somehow nonintuitive orientation is identical to the one classically 
adopted in the literature with vf taken positive when pointing from the bifurcated region to the basic state region. 
In front studies, the bifurcated region is located to the left but in our case, the mean flow being taken to the right, 
the front we have to consider for the NC/NA instability determination separates the basic state on the left from the 
bifurcated state on the right. To preserve the mean flow classical orientation and the results from the front literature, 
we have decided to adopt this counter intuitive orientation for vf and Vf. In the alternative, we would have been 
obliged to transform all the results from the front literature carrying unpractical minus sign in all the formulas. The 
velocity vf is connected to its counterpart Vf in the laboratory frame, through the relation 

vf = u0 + vf (3) 

2.1. Front velocity selection criteria: A concise review 

In the Rayleigh Bfnard experiment, when the temperature difference between the upper and the lower surface 
of the fluid layer is abruptly increased above threshold, the convection establishes itself by displacement of a 
convection front which is correctly determined by the theory developed below [22]. Similar phenomena occur in a 
Couette-Taylor flow. When the rotation rate is abruptly increased, the bifurcating state starts invading the diffusing 
state from the boundary forming a vortex front experimentally studied by Ahlers and Cannel [23] and numerically 
by Liicke et al. [24]. Front propagation also appears in chemical reactions as shown by Hanna et al. [25] or in 
population genetics [26]. The determination of the front velocity in these various configurations and the analysis of 
the related pattern selection mechanism has motivated a whole group of theoretical studies. In particular, linear and 
nonlinear theories for front propagation have been developed [ 15-17,19,20]. The measurement of front velocities by 
Fineberg and Steinberg [22] and by Ahlers and Cannel [23] are in good agreement with the linear predictions. The 
nonlinear theory is not a pathological mathematical case and its validity has been experimentally illustrated in the 
work of Hanna et al. [25] on chemical waves in the iodate oxydation of arsenous acid systems. Their measurements 
of front velocities correspond to the nonlinear predictions of the transcritical model of Section 5.3. Palffy-Muhoray 
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et al. [27] also measured front velocities corresponding to the nonlinear predictions of  the subcritical model  in a 

nematic liquid crystal. 

The mathematical  analysis of  Eq. (1) by Aronson and Weinberger [26,38] demonstrates that for a large class of  

potential functions ) ; (A) and for sufficiently localized initial conditions the front velocity asymptotical ly approaches 

a constant value vf. Dee [15,16], Ben-Jacob et al. [17], and van Saarloos [19,20] showed that this selected velocity 

corresponds to neutrally stable linear perturbations in the reference frame moving with the front. Huerre and 

Monkewitz [ 1] noticed that this problem is equivalent to the determination of  the trailing edge velocity of  the linear 

wave packet issuing from an impulsive initial perturbation (Green function). For a system invariant with respect to 

time translation and space translation in the x-direction,  the l inear dynamics is described by a dispersion relation 

D(oo, k) ---- 0, (4) 

where w and k are the complex frequency and complex wave number corresponding to a Fourier mode of  the form 

e i(kx-°~t). On each ray moving at velocity v to the l e f t x / t  --= - v  in the (x, t)  plane l (see Fig. 1), the asymptotically 

selected wave (k v, w v) is such that 2 

D(o~ v, k v) = O, (5) 

OD/Ok c° v 
( , k ~) ---- v. (6) 

On this ray, the growth rate equals 

a ( v )  = coy + k~v. (7) 

The trailing edge of  the wave packet corresponds to the ray x / t  = - v  1 on which the selected wave is neutral: 

a (v 1) = 0. Therefore, the l inearly selected front moves at velocity v 1. 

Van Saarloos [19,20] has noticed that for sufficiently localized initial conditions, "nonlinear" marginal stability 

may select a faster nonlinear front, van Saarloos and Hohenherg [18] have formulated the following conjecture: 

nonlinear selection occurs when there exists a discrete front with a velocity v nl and a spatial decay rate 3 knl 

satisfying 

knl[ v I < v nl and [kll < i • (8) 

This conjecture allows van Saarloos and Hohenberg to determine explicit ly the front velocity of  the complex 

Ginzburg-Landau equation. 

2.2. Frontsolutions in the real Ginzburg-Landau equation 

In this section, we describe uniformly translating fronts for the real Ginzburg-Landau equation. The profusion 

of  details that follow might appear unnecessary as we only recover published results [15-17,19,20,28,29] in this 

section but the precise description of  the phase space structure corresponding to the front solutions will be necessary 

for the determination of  the global  modes in Section 3. 

Let  us recall some classical results [28] on the real Ginzburg-Landau model  (1) and (2). 

t The minus sign comes from the convention for the sign of front velocity which is positive when the front moves toward the x negative. 
2 The supplementary pinching condition is not developed here (see [1]). 
3 k/nl is defined as (l /A) dA/dx at x ~ -o~.  Although its value may be determined by linearizing an amplitude equation around the 

basic state, k nl depends on the properties of the front solution in the whole domain as illustrated in Section 2.2, since the nonlinear 
selection involves the whole domain. 
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In the "advected" frame with Uo = 0, Eq. (1) reads 

OA a2A 3])(A) 

Ot OX 2 8A ' (9) 

and admits a Lyapunov functional 12 

/2(A) ---- f d + V(A) dx. (10) 

One notes that/2 is minimum for uniform solutions that minimize the potential density 12(A) given by (2). When 
/x < - 1 / 4 ,  A0 =- 0 is the single minimum. When - 1 / 4  < /z < 0, there exists three minima at A0 ----- 0 and 
A2 -- 4-(1/2 + ~ f f - T - l ~ ) l / 2 .  The amplitudes A1 = :t:(1/2 -- ~ ) 1 / 2  correspond to a maximum of V(A) 
and therefore to a linearly unstable solution. The parameter value/z M = - - 3 / 1 6  defines the Maxwell point at which 
the solutions A0 and A2 possess equal potential density. When ]~M < ~ < 0, A 0 is said to be metastable (M) and A2 
is stable (S): a droplet of state A2 embedded in an ocean of basic state Ao expands. When/z passes 0, Ao becomes 
a maximum of 12(A), i.e. unstable, A1 disappears, and A2 becomes the only stable solution. 

A front represents a uniformly translating solution moving at velocity v of the fo rm 4 A(x  -b vt).  The front 
velocity satisfies the nonlinear eigenvalue problem 

dA ~V d2A 
v d ~  --  6 A  q- dx 2 (11) 

with boundary conditions 

A ( - c ~ )  = A0 = 0, A(+c~) = A2. (12) 

As noticed by many authors [15-17,19,20], for Eq. (11) with boundary conditions (12), the eigenvalue v is not 
unique and one has to determine which one is dynamically selected. In the phase space (A ,  d A / d x ) ,  front solutions 
correspond to a heteroclinic orbit linking the basic state A0 to the bifurcated state A2. The front corresponding to 
the linear selection criterion [18] possesses the velocity v 1 (/~) and a spatial decay rate k] (/z) given by a (v 1) = 0 
where a ( v )  is given by (7) and D ( w ,  k) = - i w  + k 2 - IZ: 

vl(/z) = 2 ~ ;  k](/z) = - q r ~ .  (13) 

The linear front selection may only hold for/z > 0. For the determination of nonlinear fronts, we have to describe 
the trajectories of (11) in the phase space. Phase portraits can be obtained by using a mechanical analogy. When x 
is formally interpreted as - t ,  Eq. (11) may be viewed as a dynamical system for a particle in a potential - '~ (A)  
with friction coefficient v. A detailed description of the phase portrait is given in Appendix A. Only general trends 
are discussed below, typical phase portraits being presented in Fig. 2. The arrows indicate increasing x and should 
be inverted according to the transformation x ~ - t  when the particle analogy is used. The real orbits have been 
computed by a variable step Runge-Kutta integration of the associated first-order differential system 

dA 
= u, (14a) 

dx 
du ~12 

- -  = v u  + - - .  (14b) 
dx 3A 

4 By convention, the front velocity is oriented to the left whereas x is oriented to the right. This explains the unusual plus sign in 
A(x + vt). 
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Fig. 2. Phase portraits pertaining to a specific region of parameter space in Fig. 3: Each line corresponds to a constant value of be and 
a decreasing velocity from left to fight. (a)-(c): be < 0. (d)-(f): 0 < be < 3/4. (g)-(i): be > 3/4. In the first column (a), (d) and (g) 
correspond to the white region in Fig. 3; in the second column, (b) corresponds to the line vnl(be) for be < 0, (e) corresponds to the line 
vnl(be) for 0 < be < 3/4, and (h) corresponds to the line vl(be) for be > 3/4. In the third column, (c) corresponds to the light gray region, 
(f) to the medium gray region and (i) to the dark gray region in Fig. 3. 

Unstable manifolds are obtained using forward x-integration whereas stable manifolds are obtained by backward 

integration. The front solution exists when the stable manifold of A2 (asymptotic to A2 as x --+ +co )  connects 

to Ao to form an heteroclinic orbit. In the following, the shape of this manifold in the phase space of dynamical 

system (14a) and (14b) is discussed. Each phase portrait presented in Fig. 2 is typical of a region in parameter space 

(see Fig. 3). 

Metastable region beM < be < 0. At fixed be, the stable manifold of A2 issues from A 1 (Fig. 2(a)). For a particular 

value v~ of v (Fig. 2(b)), the stable manifold of A2 connects with the unstable manifold of AO. Below Vl (Fig. 2(c)), 

it comes spiraling out from - A s .  For a still lower particular value v2, the stable manifold of A2 connects from the 

A < 0 side to the unstable manifold of Ao; below v2, the trajectory ending at A2 comes from A1. This sequence 

repeats itself indefinitely, each change between an origin at --A1 and A1 being separated by a particular value Vn 
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C ~ NS # A ( U o )  

/JM 0 3/4 

Fig. 3. Nonlinearly absolutely (NA) unstable domain (shaded regions) in parameter space. The dark gray region represents the linearly 
absolutely (A) unstable region which is totally embedded in the NA region. The system is NA unstable in the medium and light gray 
regions whereas it is linearly convectively unstable (C) or linearly stable (S). The system is nonlinearly convectively (NC) unstable in the 
white region. The nonlinearly stable (NS) region (~ </~M where/~M = --3/16 is the Maxwell point) is totally embedded in the linearly 
stable (S) region. Section 3 will show that an NG mode exists in the three shaded regions. 

for which the stable manifold of A2 connects with the unstable manifold of A0, with n - 1 about turns around A0. 
This multiplicity of solutions may appear strange when considering the saddle structure of A0. However, it may 
be easily checked by using the mechanical analogy. We leave it to the reader to transpose the discussion in terms 
of this mechanical analogy. Therefore, for #M < /~ < 0, one has to solve a discrete selection problem since the 
heteroclinic orbits linking A0 at x = - c ~  to A2 at x ---- +c~ exist for ordered discrete values vn. 

According to the conjecture of van Saarloos and Hohenberg, the selected front is the fas tes t  front  with the steepest 

fallout: it corresponds to the heteroclinic orbit depicted in Fig. 2(b), associated with the velocity vl and therefore 
called v hi. In Fig. 3, the selected front velocity is represented by the heavy curve vnl(/z) that separates white and gray 
domains. The corresponding particular solution may be sought in terms of a polynomial solution for u (A) = dA/dx, 
which satisfies 

du OV 
u - ~  - vu OA -- O, (15) 

with the boundary conditions 

u(Ao)  = O, u(A2) = 0. (16) 

As found by van Saarloos and Hohenberg, this solution only exists for the particular value v nj 

4 2 
Vnl(~) --~ Vl(/~) - -  --~/3-+" ~ ( A 2 ( / ¢ ) )  , (17) 

and it reads 

l 2 
u(A)  ---- - ~ a ( a  2 - a2). (18) 

This nonlinear front is associated with an asymptotic spatial decay rate given by 

knl(/z) ~- ~aodU _ _~3 (az(/z))2. (19) 
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Linearly unstable region/z > 0. It is quite remarkable that the above defined nonlinear front solution found for 
/z < 0 persists for /x > 0. The nonlinear and linear velocity curves vnl(/z) and vl(/z), plotted in Fig. 3, are tangent 
at /z  = 3/4. Therefore, we distinguish between three regions of  (v, /x) space as defined in Fig. 3: 

- White region where v > vnl ( /x) i f0  < /z < 3 /4  and v > v l ( # ) i f / x  > 3/4. In this region of parameter space, 
the corresponding stable manifold of  A2 issues, for any value of v, from A0 without spiraling out (Figs. 2(d) and 
(g)). 

- Medium gray region where vl(/z) < v < vnl(/z) in the range 0 < lz < 3 / 4 .  The heteroclinic orbit ending at 

A2 comes from At  after afinite number of  turns around A0 (Fig. 2(f)). Note that this number increases when 
parameters approach the curve v 1 (/z) delineating the dark gray region. Again, this multiplicity may appear strange 
when considering the node structure of  A0, but it is easily checked with the mechanical analogy. As in the light 
gray region, in the part of  the medium gray region between on and Vn+l, fronts makes n half about turns around 

At.  
- Dark gray region where v < v 1 (/z). The fixed point A0 of Eq. (11) is an unstable focus and the heteroclinic orbit 

ending at A2 comes from A0 after an infinite number of  revolutions around A0 (Fig. 2(i)). 
Therefore, for # > 0, an heteroclinic orbit linking A0 to A2 is associated to a front solution for every value 

of o. The selection problem is continuous in contrast with the discrete selection problem prevailing in the range 
/~M < /Z < 0. Whatever/x,  we have vnl(/z) > vl(/z) but for /z  < 3/4, the nonlinear front falls off faster than its 
linear counterpart (Ik hi(#) I > I kl (/z) I) and the nonlinear front is selected following the conjecture of  van Saarloos 
and Hohenberg. On the contrary, for /z  > 3/4, the linear front is selected as [knl(/x) l < Ik~(/z) l. 

2.3. Linear absolute instability, nonlinear absolute instability and front velocities 

Let us now introduce the laboratory frame characterized by a mean advection U0 different from zero. As argued 
in Section 1, the sign of the linear front velocity in the laboratory frame V 1 ---- v 1 - U0 determines whether the 
instability is linearly convective or absolute. Therefore, the curve U0 = vl(/z) delineates the linearly absolutely 
unstable region (in dark gray on Fig. 3). This curve corresponds to the NA instability threshold only when the 
linear front is selected, i.e. when /z  > 3/4. When/~M < //, < 3/4, the nonlinear front is selected and the curve 
U0 = v n~ (/z) defines the transition between NC and NA instability regions. 

Note that, in this NA region, the system is linearly stable when/ZM < /~ < 0 (light gray region in Fig. 3), C when 
vl(/z) < U0 < vnl(/z) (medium gray region in Fig. 3) and A when U0 < vl(/z) (dark gray region in Fig. 3). For this 
model, we verify that the region A is embedded within the NA region. 

Up to now, we have fixed/x and determined the nature of  the instability as a function of U0, but as U0 and/x may 
be viewed as two independent control parameters of  the system, it may be more convenient to consider U0 constant 
and determine the value/xA(U0) that defines the threshold between NC and NA. The expression keA(U0) obtained 
from the laws (13) and (17) for the selected front velocity reads 

if Uo < ~/3, 

if Uo > ~/-3, 

ttA(U0) = ttnl(u0) = U~ -- ~ U 0  - 1 , 

~A(Uo) = t~(Vo) V°2 
4 

(20a) 

(20b) 

The curve/znl(u0)  defines the N C / N A  transition for U0 < ~ and has no specific significance for U0 > x/3. 
Whatever U0, the curve/z l (u0)  corresponds to the C / A  transition but to the N C / N A  transition only for U 0 >  x/~. 
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3. Nonlinear global modes in a semi-infinite domain 

3.1. Nonlinear global modes and nonlinear absolute instability 

We consider stationary solutions of  (1) in a semi-infinite domain with Uo 7 ~ 0 and boundary condition A(0) = 0. 
As we have already noticed, this boundary condition breaks the Galilean invariance and unambiguously singles out 
the laboratory frame. Actually, it represents an idealized flow in which no disturbances are present at the entrance of  

the domain. For real flows, more realistic, but inevitably more complicated, boundary conditions should be studied 
case by case to see if our idealized solutions persist. An example will be given in Section 4 for the signaling problem. 
Nontrivial stationary solutions satisfy the equation 

d2A dA 
d x  2 Uo-d~- x + / x A  -t- A 3 - A 5 = 0, (21) 

with the boundary conditions 

A(0) = 0, A(-t-oo) = A2. (22) 

If  we replace Uo by v, Eq. (21) becomes identical to Eq. (11) but with a different boundary condition. A nonlinear 
global mode is represented by a trajectory in phase space linking a point where A(0) = 0 with dA/dx(0)  ¢ 0 to 
A2. Graphically, the existence of  global modes for the system can be deduced from the phase portraits (Fig. 2). For 

fixed parameters/z and U0, a global mode exists if the stable manifold of  A2 intersects the line A = 0 at a point 
different from A0. We shall notice that, in contrast with the selection problem faced when determining the front 
velocity as a function of /z ,  the problem is here the existence or nonexistence of  a solution with respect to both 

control parameters Uo and/x. 

In the range/~M < /z < 0, an NG mode exists only when U0 < vnl(/z) (light gray region in Fig. 3) as the orbit 

asymptotic to A2 crosses at least one time the axis A ----- 0 with d A / d x  7~ 0 (Fig. 2(c)). When Vn+l < U0 < Vn, n 
intersection points exist corresponding to n different NG solutions. When U0 > I) nl ( /~) (white region in Fig. 3), no 

NG mode exists since the stable manifold of  A2 comes from A 1 (Fig. 2(a)). 
In the range 0 < / z  < 3/4, the stable manifold of  A2 crosses at least one time the axis A = 0 with d A / d x  --/= 0 for 

U0 < v nl (/z) (Figs. 2(e) and (f)) and the number of  intersections increases when approaching the curve U0 = v l(/z). 
In the domain v 1 (/z) < U0 < v nl (/z), a finite number of  NG modes exist, as the orbit ending at A2 connect to Ao with 

a finite number of  revolutions around A0 (Fig. 2(e), medium gray region in Fig. 3). In the domain 0 < U0 < vl(/z), 
an infinite discrete number of  NG modes exists as the stable manifold of  A2 comes spiraling out from A0 (Fig. 2(d), 
dark gray region in Fig. 3). 

In the range/z  > 3/4, the orbit asymptotic to A2 crosses A = 0 only for U0 < vl(/~) when the fixed point A0 

becomes an unstable focus (see Fig. 2(f)). In this case, an infinite number of  global modes bifurcate at the same 
time (dark gray region in Fig. 3). 

These results may also be expressed fixing U0 and varying/z in which case a global mode exists when/z > /ZA (U0), 
where/XA is defined by Eqs. (20a) and (20b). The number of  NG modes is infinite above/x 1 (U0) (dark gray region 

in Fig. 3). 
It is quite remarkable that the determination of  the NA instability region based on the sign of  the front velocities 

in an infinite domain coincides with the NG instability region in a semi-infinite domain. This allow us to propose 
a new criterion to determine the front velocity selection: The selected front may be viewed as the marginal global 
mode, i.e. the global mode with zero slope at the origin and, therefore, v(/z) is such that/z =/ZA(V). 
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3.2. Existence of  global modes and scaling laws 

247 

Whereas the front selection is based on a conjecture, the existence of a global mode can be demonstrated rigorously 
by matched asymptotic expansions corresponding to the perturbative arguments sketched in Figs. 4(a) and (c) for 
U0 < ~ and Fig. 4(d) for U0 > V'-3. When U0 < V'3, at the NG threshold, the stable manifold of A2 connects 
with the most unstable manifold of A0. This solution is known [29] to be structurally unstable. This is shown in 
Fig. 4(c): the heteroclinic trajectory emanates from the most unstable eigendirection corresponding to the largest 
eigenvalue of Eq. (21) linearized around origin. A small change in the control parameter be around the value beA 
perturbs this orbit which can no longer be tangent to the most unstable eigendirection. For U0 < 1/~/-3, the other 
direction is stable and the perturbed trajectories are shown in Fig. 4(b). For 1/~/3 < U0 < ~/-3, A0 is an unstable 
node, the perturbed trajectory emanates from the least unstable eigendirection and, when be > beA, it makes one 
about turn around the origin in order to connect with A2. It crosses the axis A = 0 at a point where dA/dx  ~ O, and 

corresponds to a global mode. When U0 > V/3, the particular solution existing at be = ben~(u0) corresponds to an 
heteroclinic orbit tangent to the least unstable eigendirection at the origin which is structurally stable. Perturbation 
of this orbit through a variation of be still leads to trajectories that remain tangent to the least unstable eigendirection 
(Fig. 4(e)). In such an instance, no NG mode is obtained. 

In this section, we explicitly perturb the heteroclinic orbit prevailing at the bifurcation parameter be = beA (U0) 
for a fixed advection velocity U0. We demonstrate that a global mode exists as soon as be > beA ( w i t h  beA -~- benl(u0) 
when U0 < Vr3, and beA ~ bel(u0) when U0 > ~/3). Details of the calculations can be found in Appendix B.1. 

This allows us to establish scaling laws with respect to a departure from the nonlinear absolute instability threshold 
e = be - -  beA for the slope at the origin dA/dx(O) and for the characteristic size of the initial growth region of the 
global mode defined as the distance at which A = 0.99A2. 

In the parameter range U0 < ~ ,  the nonlinear selection criterion for the front velocity is expected to apply; the 
absolute instability threshold beA = benl ( U 0 ) ,  and the shape of the front at this value of the bifurcation parameter are 
known analytically (see Appendix B. 1). We determine the perturbed solutions in the following way: For be = beA Jr E 
with e << 1, the solutions of Eq. (21) with boundary conditions (22) are the functions with u(A) = dA /dx  which 
satisfy 

uu  1 - U 0 u + b e A d - A  3 - A  5 = 0 ,  (23) 

where the prime denotes differentiation with respect to A. Under this change of variable, the initially second-order 
equation (21) becomes first-order and the two boundary conditions (22) are transformed into 

u'(Ao) = Uo, u(A2(be)) = 0. (24) 

The first boundary condition u~(Ao) = Uo results from writing (23) at A = A0 and exploiting the original constraint 
u(Ao) ~ 0 on the existence of a global modes. One of the two boundary conditions has to be dropped in order 
to solve (23) and (24) in the singular limit e << 1 and an inner region of size e ~ has to be introduced in the 
neighborhood of the origin (see Figs. 4(a)-(c)). The inner solution satisfies the condition u'(Ao) = Uo whereas the 
outer solution satisfies the condition u ( A z ( b e ) )  = 0. The method of matched asymptotic expansions [30] is applied 
and the matching of inner and outer solutions imposes the size of the inner region to be e t~ with 

4 3  + Uo (25) 
¢~ -- 2 ( , / g -  Uo) 

This result is valid for/3 > 0, i.e. Uo < q~.  When Uo > vc3, the inner solution does not cross the axis A = 0 and 
no NG mode exists for be = benl(u0) + ~, E << 1. In Fig. 4(e) one sees that when Uo > ~/3, matching of the inner 
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dA 
I d / [~A q- E 
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(a) Outer  solution 

d z ~ " , . x t ~  A "k e 
dA O) ~ 

< 
-----.~#A + E 

A 

• . 

j -  
(b) Ao saddle, 0 < Uo < 1/v '~.  (c) Ao unstable node, 1 / V ~  < Uo < V~. 

(d) Ao unstable focus, Uo > V~. (e) Ao unstable node, (.To > V~, P = # , l .  

Fig. 4. Matching of inner and outer solutions. The solution drawn in continuous line is the basic solution at the nonlinear instability 
threshold. The solution drawn in dashed lines is the perturbed solution above/z A. The dotted line represents the solution for/z smaller 
than/z A. 
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and outer solutions is always possible but the inner solution remains tangent to the less unstable manifold at Ao 
with no revolution around Ao and never crosses the A = 0 axis. This confirms that the law for the global instability 
threshold /XA changes as UO exceeds v/3 since /znl(Uo) is no longer the threshold of NG instability when Uo 
exceeds V'-3. 

The slope u (Ao) is given as a function of the departure E from the absolute instability threshold by the expression 

u(Ao) "" v0~/~, (26) 

where the constant v0 is given by the matching (Eq. (B. 19) of Appendix B. 1). 
The characteristic growth size of the global mode is defined as the distance Ax such that A(Ax) = 0.99A2. 

It may be calculated by adding the x-thickness of the inner region and the size of the outer solution between the 
boundary of the inner layer (A = ~/~) and the point at which the amplitude reaches the value 0.99A2. Details of the 
calculation are given in Appendix B.2. The scaling law so obtained is given by 

4 
Ax _ ,,/-5 + U0 ( - f i  In E + In K),  (27) 

where the constant K is found by the matching (Eq. (B.26) of Appendix B.2). If U0 is set to zero and only the 
dominant term is taken into account, the result of Coullet et al. [31] valid for U0 = 0 is recovered. 

In the parameter  range U0 > ,,/'5, the system simultaneously becomes NG and A unstable at the control parameter 
value/z I = U2/4.  The solution of Eq. (23) with boundary conditions (24) is known analytically as a series whose 

coefficients have to be determined numerically (see Appendix C. 1). Except for the fact that we are now dealing 
with an infinite series 5 for the order zero external solution instead of a polynomial, the subsequent steps of the 
method are the same as in the previous case: for a bifurcation parameter setting/z = /z 1 ÷ E, ~ << 1, Eq. (23) is 
solved subject to the boundary condition ut(Ao) = Uo in the inner layer and the condition u(Az(/z)) = 0 in the 
outer layer (see Fig. 4(d)). The inner solution may be calculated explicitly; the outer solution takes the form of a 
numerically determined series. Matching of the two solutions again leads to the determination of the inner layer 
thickness, to the scaling laws for the slope of the solution at the origin u(Ao) and for its growth size Ax, and to an 
additional solvability condition (Eq. (C. 12) of Appendix C. 1) which may be checked numerically. The scaling law 
for the slope at the origin is given by 

( u(Ao) ~-- roe exp -2~, .g  ] '  (28) 

where the term vo represents the slope at the origin of the inner solution d~/dx (~ being the inner variable), as 
given in Eq. (C. 14) of Appendix C. 1. The growth size of the solution is given by 

Ax _~ r r / 4 7 .  (29) 

The success of the matching procedure a posteriori proves that the NG instability threshold/zA indeed follows the 
linear criterion when U0 > v/3. Numerically, we are able to perform the matching only for U0 > ~-5 since for 
U0 < ~/5, the additional solvability condition (Eq. (C. 12) of Appendix C. 1) cannot be fulfilled. 

Each scaling law for the growth size of NG modes is characteristic of one kind of transition to an NG instability. 
Indeed, when the NG instability occurs while the system is convectively unstable (U0 < 4'3), the growth size of 
NG modes scales as ln(1/~) (Eq. (27)), whereas it scales as E -1/2 (Eq. (29)), when the NG instability occurs at the 
C/A transition (U0 > ~,/3). 

5 Which should be numerically estimated in each case. 
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(a) dA/dx(O) versus e (b) Characteristic growth size Ax of the 
nonlinear global modes 

Fig. 5. Scaling laws for the subcritical model with U 0 < ~e/3: (a) U 0 = 0. l, (b) U 0 = 0.5, (c) U0 = 1.0, and (d) U0 = 1.5. The dashed 
lines represent the numerical values. The continuous lines represent the theoretical values. In (a) and (b) numerical and theoretical values 
are almost identical. 

The above scaling laws (26)-(29) have been validated by direct numerical integration of  system (14a) and 

(14b). Numerical values of  u(Ao) and Ax for steady solutions are generated and compared with theoretical scaling 
predictions. The stable manifold of  A2 is obtained by backward variable step Runge-Kutta x-integration. 6 

The numerically computed value of  ln(dA/dx(x  = 0)) are displayed in Fig. 5(a) as a function of  the departure 
from criticality for four different advection velocities in the range U0 < ~ (U0 = 0.1, 0.5, 1.0, 1.5). The numerical 
values (dashed lines) of  ln( dA/dx  (x = 0)) are in excellent agreement with theoretical predictions (continuous lines) 

for small U0. It can be seen that, as the advection velocity U0 approaches V~, the domain of  validity of  scaling 
law (26) becomes restricted to a smaller neighborhood of  the threshold/z hi. 

In order to validate scaling law (27) for the characteristic growth size Ax of  global modes against the distance 

to the absolute instability threshold/~A, all integration space steps between the amplitudes A0 and 0.99 A2 were 
added together. Predicted values given by the theoretical scaling law (27) (continuous lines in Fig. 5(b)) are in very 

good agreement with their numerical counterparts (dashed lines) for small advection velocities. As U0 approaches 

V/-3, the agreement is restricted to small E. 
Scaling laws (28) and (29) giving the slope of  the global mode at the origin and its characteristic growing size 

in the range U0 > ~ are checked numerically in the same way. Corresponding results are gathered in Fig. 6. We 

indeed verify that In I In( dA/dx  (x = 0))1 and In Ax are linear as functions of  In e as long as e remains sufficiently 
small. For higher e, theoretical results and numerical values diverge in Fig. 6(a) due to the contribution of  higher- 

order terms in e. As detailed in Appendix C. 1, v0 is given by a series which converges very slowly. However, we 

do verify in Fig. 6 that the series is adequately converged. 
The solvability condition resulting from matching between inner and outer solutions takes the form 

o o  o o  

~--~ wk = 0 i fU0 > ~ ,  ~-]  wk ¢ 0 
o o 

otherwise, (30) 

6 In order to validate the scaling laws completely, we have to check that the computed stable manifold of A 2 is indeed dynamically 
selected in a temporal simulation of (1). This will be done in Section 4. 
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Fig. 6. Scaling laws for the subcritical model with U0 > ~/3: (a) U 0 = 3.0 and (b) U 0 = 2.0. The dashed lines represent the numerical 
values. The continuous lines represent the theoretical values. 
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Fig. 7. Zero-order of the matching versus U0: (a) N = 200, (b) N = 500, (c) N = 1000, and (d) N = 2000. 

where the numerical ly determined wk depend on U0 and beA(g0) (see Appendix  C.1). Fig. 7 indicates that y~N Wk 

is different from zero for U0 < ~/3 and zero for U0 > ~,/3. Note that e -15 nominally corresponds to zero in Fig. 7 

as determined by numerical  accuracy. The value of  }--~ Wk approaches closer to zero for U0 > ~ as the number 

of  terms N in the series increases. 

This result is important since it validates the linear criterion for the existence of  nonlinear  global  modes in the 

region U0 > ~/3, be > Ug/4. It also demonstrates that in the range U0 < ~'-J, the curve bel = Ug/4 does not signal 

the appearance of  a nonlinear global  mode since the matching cannot be done between an inner solution with vo 7 ~ 0 

and the series solution (C.2) at be = bel. It is worth noting again that in the region Uo < , / 3 ,  be < Ug/4, a nonlinear 

global  mode exists, despite the fact that the basic state is l inearly convectively unstable or l inearly stable. 
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Fig. 8. Numerically obtained values of A at x --+ +co and t ---> +oo versus the bifurcation parameter. 

3.3. Hysteresis loop in the control parameter space 

The study of  global modes has allowed us to predict the nonlinear solutions of  the system as a function of  the 
control parameters/z and U0 but not which one will be chosen. As pointed out by Chomaz [14], a hysteresis loop 
appears in the nonlinearly absolute range/ZA < /~ < 0. The response of  the system characterized by the amplitude at 
x = + o e  (Fig. 8(a) clearly shows the hysteresis loop between the unperturbed state and the NG mode. The hysteresis 
loop has been obtained numerically by computing the temporal solutions of  partial differential equation (1) with 

potential density (2). 
For U0 < dr3, let the system be in the initial uniform state A0. The parameter/z is then increased in a quasistatic 

manner while maintaining U0 constant in the range U0 < 1 / v ~  (see Fig. 8). As long as/z  < /zA,  a single solution 

exists (A0 everywhere). Above/ZA, a second global mode solution appears. In the absence of  a large perturbation, 
the system is observed to remain in the uniform state A0 until/~ = 0 because A0 is linearly stable. Past /z  = 0, 
the uniform solution A0 becomes linearly unstable, and the system tips over to the global mode which is now the 
unique stable solution. A s / z  is now decreased, the system remains on the global mode branch as long as/z  > /ZA 
and returns to the uniform state A0 when the global mode solution disappears at/z =/ZA. 

For U0 > 1/~/~, the hysteresis loop no longer exists. The transition between solutions takes place at /z  ----- /ZA 
now positive with no hysteresis but a jump in the value of  A(+oo)  from zero to its global mode value (see 
Fig. 8(b)). 

3.4. Multiplicity of  global modes 

In the previous perturbative approach, we have not taken into account a possible multiplicity of  global modes at 
given control parameter. In general, as mentioned in Section 3.1 there exist several solutions satisfying Eq. (21) and 
associated boundary conditions (22). 

As seen from the phase portrait sketched in Fig. 9(a), the global mode multiplicity is related to the number of  
turns around the origin of  the solution asymptotic to A2. As already explained in Section 3.1, when/z  > /zl(u0), 
the point Ao is an unstable focus and there exists a discrete infinity of  global modes linking the amplitude A0 = 0 
at x = 0 to A2 at x = +oo.  In the domain of  parameter space where the system is NG and C unstable (light and 
medium gray regions in Fig. 3), a finite number of  global modes exist as the stable manifold of  A2 makes a finite 
number of  turns around A0. This number increases when parameters are close to the curve/z = / z l (u0 ) .  
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Fig. 9. Multiplicity of global modes (/z > 0 in this figure). Only S O verifies Eq. (21) with boundary conditions (22) without oscillating 
around A 0. 
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Fig. 10. (a) Simulation starting from the solution such that A(0) = 0, A(+oo) = A2 and crossing zero twice. U0 = 0.1,/x = --0.01. 
(b) Simulation starting from the solution crossing zero four times. U0 = 0.1,/z = 0.001. 

The existence of  a Lyapunov functional Z: (A) given by  (10) trivially enables us to conclude that the steady solution 

with the smallest characteristic extent Ax,  i.e. the solution with no oscillations around the origin, corresponds to 

the absolute minimum of  £ ( A ) .  However, the linear stability of  the other solutions has to be determined. 

We make the following conjecture, which has been numerically verified for a large set of  temporal simulations: all 

the NG modes which oscillate around the origin before reaching A2 are unstable. In other words, for fixed boundary 

conditions, the only stable steady solution is the one with the smallest characteristic extent Ax.  

An example of  temporal simulation is presented in Fig. 10(a). For  # = - 0 . 0 1  and U0 = 0.1, the steady 

solution oscillating twice around the origin ($2 in Fig. 9), obtained by numerical integration of  Eq. (21) in 

the phase space with associated boundary conditions (22), is used as the initial state at t = 0 for the tem- 

poral  simulation. The solution is seen to evolve to the stable trajectory linking A0 to A2 with no oscillation. 
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Similarly, an NG mode oscillating four times around Ao freely evolves toward the NG mode with no oscillation in 
Fig. 10(b). 

4. Signaling problems 

In this section, we examine the response of the system to an external forcing at the origin. We therefore assume 

that the.system is forced at a constant steady amplitude A (0) ----- B at the origin (because of  the symmetry A -+ - A, 
B is assumed to be positive). We look for steady solutions of  (1) with potential density (2). As in the case of  

global modes, the existence of  a Lyapunov functional implies that A reaches an extremum of ~;(A) at +cx~, i.e. 
A(+cx~) = Ao or A2. The procedure used to find these forced solutions is similar to the determination of  NG modes. 

One may determine on the phase portraits (see Fig. 2) if the line A = B intersects the stable manifold of  either A2 
or Ao. In order to clarify the description of  the possible solutions in parameter space, the reader may refer to Fig. 11 

which summarizes the results obtained in the various regions of  the (/z, Uo) space discussed below. 
In the gray regions, solutions with A ( + ~ )  = A2 for A(0) ----- B exist but only for B ~ 0. In the light gray region, 

infinitely small B are sufficient whereas in the two darker gray zones, forcing has to exceed a threshold amplitude to 

obtain A(+o<~) = A2. In the darkest gray region, the threshold is different if the forcing is increased or decreased. 
In the NG region (/z > lZA(U0)), when the NG mode is triggered once, the system cannot relax back to Ao even 

if the forcing is removed. This behavior reflects the intrinsic response of  the system. In the NC region (gray regions 

with/z > /ZM), the system follows the variations of  the forcing and returns back to Ao when the forcing is removed 

(with hysteresis cycle in the dark gray region). 
This nonlinear spatial amplifier behavior was expected in the NC region, but it surprisingly persists in the NS 

region when /z  > /zs(Uo) (gray regions wi th /z  < /ZM). The system relaxes toward Ao for any forcing, only if 
/z </Zs (Uo). As a conclusion, the region of  parameter space where the system acts as a nonlinear spatial amplifier 
contains not only the NC region but also part of  the NS region. NC instability is only a sufficient condition to obtain 
a saturated response at infinity in the signaling problem. 

Uo 

s, 

- 1 / 4  #M 0 # 

Fig. 11. Regions of nonlinear global (NG) instability in the parameter space (white and/z > /ZM) and of NC instability (gray and/z > //-M)- 
The system acts as a nonlinear spatial amplifier in the gray regions. In the dark gray region, A1 is an unstable spiral (Appendix A) and 
hysteretic behavior is obtained. In the medium gray region, forcing must exceed a critical threshold to be efficient. In the light gray 
region, even small forcing amplitudes are amplified. The nonlinearly stable (NS) region (/z < /ZM) contains a subdomain (gray) where 
the physical behavior of the system with respect to forcing is identical to the one in the NC region. 
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4.1. Response to a forcing in the nonlinearly convective instability region 

4.1.1. Evaluation of the hysteresis loop with the forcing parameter 
When/z  > 0, A0 is an unstable node (see Appendix A). Therefore, whatever /z  and B ¢ 0, the forced solution 

A(0) = B will end up in A2 and no hysteresis is possible (Fig. 12(c)). W h e n / z  < 0, the stable manifold of  A2 
possesses a point of  minimum amplitude A~ (Figs. 12(a) and (b)). A solution asymptotic to A2 therefore exists if 
B > A~ (see Figs. 12(a) and (fl)). The stable manifold of  A0 possesses a maximum amplitude A~. Therefore, at 
least one solution asymptotic to A0 exists for a forcing amplitude B < A~. 

J 

A~ =_ A~ 

A2 

d A  

A=B 

A 

(a) /JM < /~ < 0 and A1 is an unstable node (medium gray region on 
Fig. 11). 

~ ~ ~ m  

I -  A~ A; 

dA 

S) 

' A 

A=B 

(b) /JM < P < 0 and A1 is an unstable spiral (dark gray region of Fig. 11). 

A ( + c ~ )  

I " A2 

B 

d A  
d:r 

~ A 2  

A=B 

A 

(c) p > 0 (light gray region of Fig. 11). 

Fig. 12. Response of the system versus the forcing parameter in the NC domain and the phase space corresponding to each case. 
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When A1 is an unstable spiral point (Fig. 12(fl)) (see Appendix A), we have A~ < A1 < A~. Two solutions 
coexist for a forcing amplitude A~ < B < A~: one relaxing toward A0, the other toward A2. When A1 is an unstable 
node, we may have A~ < At < A~, but for high advection velocities, we have A~ = A] ---- A~ and no multiple 
solution region exists (Fig. 12(o0). 

In order to check numerically for hysteretic behavior with respect to forcing amplitude, we follow a procedure 
similar to that of Section 3.3: The system is initially set to the uniform state A0 and integrated in time while/z is 
kept fixed and the forcing is gradually increased from B ---- 0 in a quasistatic manner. 

The system presents the response measured at x = + ~  depicted in Figs. 12(a) and (b): For/z < 0 in the dark 
gray region in Fig. 11, when the forcing parameter B remains below the threshold A~, the system is locked to the 
solution asymptotic to A0. When B exceeds A~, the system tips over to the solution asymptotic to A2 and remains 
locked to it as long as the forcing amplitude is kept above the lower threshold A~. 

The results of our numerical simulations are represented in Fig. 13 in order to illustrate this hysteretic behavior 
under forcing prevailing in the NC region when/z < 0; initially, the solution is A0 everywhere and B is increased 
quasistatically. In Fig. 13(a), the system travels along the lower branch of the hysteresis loop displayed in Fig. 12(b); 
in Fig. 13(b), it follows the upper branch. We indeed verify that the system tips over at the low and high threshold 
values A~ and A~ and therefore presents a clear hysteretic behavior to forcing. 

4.1.2. Scaling law 

A scaling law can be obtained for the minimum forcing amplitude A~ required to generate the bifurcated state A2 
at x = +~x~. The procedure is similar to the one followed for the determination of the scaling law for d A/dx (x = O) 

outlined in Section 3.2. I fe  = / z  n] - / z  denotes the distance to the NG instability threshold, the corresponding scaling 
law reads (Appendix B. 1) 

a~ "~ C*e/~, (31) 

where 

1t)  C* -~ A2(lzA)l-3fl(fl  -- 1) fl-1 \ 2 \2 /3 '  2 -- ~ , (32) 

fi is the previously introduced constant (Eq. (25)) and/3 denotes the beta function [32]. 
The response of the system in the NC region f o r / z  > 0 as a function of forcing amplitude is represented in 

Fig. 12(c). Either B > 0 and the system is locked to the mode asymptotic to A2, or B ---- 0 and the system is 

A t A,t 

l 0  20 0 

A* 

x 
/o 20 

(a) Lower branch of the hys- 
teresis 

(b) Upper branch of the hys- 
teresis 

(c) Lower branch 

Fig. 13. Asymptotic response (t --+ ~ )  of the system versus the forcing parameter. Convective region/z < 0. 
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A(+e~) 
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A *  , I .~ ~IA*I 

~) d A  

~ ~ As 

A = B  

(a) NG domain pA < p < O. 

A ( + ~ )  
A 

_ _ _ <  T ~ ~ -- 

' 'JA I 
, B I ',/ + 

~) 
d A  

2 

As 
A 

(b) NG domain 0 < ~A < ~. 

Fig. 14. Response of the system as a function of the forcing parameter and the corresponding solutions in the phase space (a), (fl). 

locked to the trivial solution A = 0 for all x. The system does return to the uniform state A0, as the forcing is 
suppressed. 

4.2. Response to a forcing in the NG region 

A forced solution asymptotic to A2 exists for all B (even B = 0) in the NG region since the line A = B always 
intersects the stable manifold of  A2 (Figs. 14(o0 and (/3)). This solution is obtained continuously from the global 
mode defined in Section 3 (B = 0) by shifting the origin to x0 such that the amplitude of  the NG mode at x0 equals 

B. This weak effect of  a forcing is in accordance with the fact that the NG mode may be interpreted as the intrinsic 
response of  the system. 

4.2.1. In the NG region for  # < 0 

In this region, forcing has an irreversible effect. I f  the system is initially set to the uniform state A0 and the 

forcing is gradually increased from B = 0 in a quasistatic manner, the following sequence is obtained: the system 
keeps converging to A0 at x = + e c  until B = A~ where it flips irreversibly to the NG branch (Fig. 15(a)). This 
first branch is similar to the first magnetization branch of  ferromagnets. Then, even if B returns to zero, the system 
remains locked to A2. It is not possible to unlock it by removing the forcing (Figs. 14(a) and 15(b)). The system 
remains locked to the global mode asymptotic to A 2 for all B. 

If  one allows B to change sign, the system tips over to the global mode such that A(+e~)  = - A 2  for B = A~ 
(negative in the NG region), and remains locked to this mode as long as B < ]A~[. A hysteresis loop is therefore 

possible (dashed lines in Figs. 14(a), 15(b) and (c)) but the system never relaxes to the solution asymptotic to A0. 
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10 X20 A 2 ' ~ , /  i0 20 10 

- -1' ~ B - 

X, 
2O 

(a) The system becomes (b) Upper branch of the (c) Lower branch 
locked hysteresis 

Fig. 15. Asymptotic response (t ---> ~ )  of the system versus the forcing parameter. NG region/z < 0. 

4.2.2. In the NG region for  lz > 0 

In the NG region for/z > 0 (gray region in Fig. 11), the solution asymptotic to A0 no longer exists (Fig. 14(fl)). 
Therefore, the behavior of the system is similar to the case/z < 0 in the NG region but the branch which locks the 
system on the solution asymptotic to A2 coincides with the axis B = 0 (Fig. 14(b)). 

By contrast with the NC region, in the whole NG region, a nontrivial intrinsic response obtained by forcing the sys- 
tem remains even when the forcing is suppressed. The system never relaxes back to A0 when the forcing is removed. 
This behavior is in accordance with the interpretation of global modes as the intrinsic response of the system. 

4.3. Response to a forcing in the NS region 

In the NS region /z < /ZM, the stable manifold of A 2 possesses the same features as in the NC region for 
]z M < /z < 0: either its minimum amplitude A~ is merged into AI (as in Fig. 12(c0) or A~ < A1 (this happens if 
A1 is a spiral; see Fig. 12(fl)). 

The stable manifold of A0 may also possess the same features as in the NC region, i.e. its maximum amplitude A~ 
is either merged into A1 (Fig. 12(o0) or A~ > A1 (Fig. 12(fl)). But there exists a new region embedded within the 
NS region (white region of Fig. 11 for/z < /ZM) where the stable manifold of A0 possesses no maximum amplitude. 
This region is limited by a line 

/ 1 
~ ( 4  - (1 -- ~'3U0) 2) if U0 < 

,/5' 
# =/xs(U0) = 1 otherwise, 

(33) 

4 

on which a heteroclinic orbit links A2 to A0 in the phase space (with dA/dx  < 0). Note that such an orbit always 
exists for/x = - 1 / 4  if U0 > 1/~/-3, since A2 and A1 merge one into another (saddle-node bifurcation). 

In consequence, the response of the system in the NS region is the same as in the NC region if/x >/xs(U0) and 
corresponds to Fig. 12(a) if A1 is a node or to Fig; 12(b) if  A1 is a spiral. But if/x < Ixs(U0), the system cannot be 
forced regardless of the forcing amplitude and always relaxes back to A0. 

5. Generic i ty  

In order to test the genericity of the previous scenarios, we successively examine a supercritical bifurcating mode, 
a van der Pol-Duffing-like model, and a transcritical model: They all leave A0 = 0 as a solution of the system. In the 
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three cases, the formulation is chosen so that the linear absolute transition remains at the value/zl(Uo) = ug /4 .  In 
particular, we wish to demonstrate that linear absolute instability is only a sufficient condition for nonlinear global 
instability and that, even in the case of a supercritical bifurcation, the system may be nonlinearly globally unstable 
while being locally convectively unstable. 

5.1. Supercritical bifurcation 

In the case of a supercritical bifurcation, the potential density is taken to be 

12(a) -= - - t zA2/2  4- A4/4  (34) 

and the classical bifurcation diagram involves the basic state A0 = 0 and the bifurcated state A2(/z) = ~¢/-~. Upon 
substituting the expression for the potential density in Eq. (1), we obtain 

OA OA 02A 
0--7 q'- UO'-~x - -  Ox  2 -]- Iza -- A 3. (35) 

Note that the parameter U0 is superfluous because the change of scale (x --+ x / U o ,  t --+ t /U~ ,  A --> UoA, 
/z --+ uZ/z) rescales it to unity. Nevertheless, we keep it in the equation in order to draw a parallel with our 
previous study. In the supercritical case, there exists no domain of parameter space where the system becomes NG 
unstable while C unstable (see Fig. 16). The phase portraits of steady solutions of (35) are strictly analogous to 
those pertaining to the density potential (2) when U0 > ~/3. 

In the range/z < /~I(u0), the phase portraits are of type Fig. 17(a) while for /z  > /z~(U0) they are of type 
Fig. 17(b). The curve/z = /zl(u0) signals a change in local behavior of the trajectories around A0 (between an 
unstable node for/z </~1 and an unstable focus for/z >/zl) .  It also coincides with the transition to NG instability. 

Using matched asymptotic expansions, it is possible to show that the stable manifold of A2 crosses the A = 0 axis 
with d A / d x  ~ 0 only when/z > / z  1 (Appendix D). It is also possible to determine the scaling law for d A / d x  (x = O) 

as a function of the distance to the NA instability threshold, as has been done in the case of a subcritical bifurcation 
with U0 > ,¢/3. Details of the calculation are given in Appendix D. The final result is 

dA (0) ----- v(0)E exp ( -  UoJr "~ 
d--~- \ 2~/~]  (36) 

U0] NG 
I / r r  \ 

S 

0 # 

Fig. 16. Parameter space for the Supercritical model. NG modes exists inthe gray region which corresponds to the region of linear absolute 
instability for this model. 
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(a) C unstable region (b) A unstable region 

Fig. 17. Phase portraits of the supercritical model. 
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(a) dA/dx(O) versus e ; U0 = 1,0. (b) Characteristic growth size Ax of the 

global modes ; Uo = 1.0, Uo = 1.5,Uo = 2.0 

Fig. 18. Scaling laws for the supercritical model. The dashed lines represent the numerical values. The continuous lines represent the 
theoretical values. 

with the slope of  the inner solution v(0) ---- d~/dx given by Eq. (D.5) of  Appendix D (~ is the inner variable). The 

characteristic growth size of  the solution is given by 

Jr  
Ax _~ ~,/g. (37) 

Fig. 18 represents the comparison of  the theoretical scaling laws (36) and (37) with the numerically obtained values 

of  ln(dA/dx(x  = 0)) and Ax. F o r / z  close to/ZA, we compute the global  mode solution by backward integration 
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0 9 

Fig. 19. Parameter space for the van der Pol-Duffing model. NG modes exist not only in the region of A instability but also in the region 
of C instability. 

of  the system (14a) and (14b) with potential (34) in order to find the stable manifold of  A2. The predictions that 

In [ l n ( d A / d x  (x = 0))1 and In A x  are linear versus In e for the small values of  e are well verified. 

In phase space (A, d A / d x ) ,  a particular trajectory u(A)  = - ( 1 / v % A ( A  - A2) joining A0 at x ----- -cx~ to A2 

at x ---- +cx~ exists for the specific va lue /z  = 2U2/9.  As in the case of  the subcritical bifurcation for U0 > ~/3, 

this solution does not correspond to a change of  nature of  the instability. The slope at the origin ~ ---- Uo/3 of 

this part icular solution is actually the smallest cigenvalue at A = A0, whereas the largest eigenvalue is 2U0/3. As 

shown in Fig. 4(e), a perturbation of  this particular solution remains tangent to the eigenvector with the smallest 

eigenvalue without taking negative values. 

5.2. "Van der Pol-Duffing " model 

In this section, we add a nonlinear term A2OA/Ox to Eq. (35). The amplitude equation is thus given by the 

two-parameter  family known as the van der Pol-Duff ing model  

OA 2 OA O2A A3" 
~ -  + (U0 - A ) ~ x  --  0x 2 -}-/zA - (38) 

The search procedure for particular steady solutions of  Eq. (38) is carried out in the same way as before: we seek a 

polynomial  solution u(A)  asymptotic to A2 = v/-fi at x = + ~  and to A0 at x = -cx~ satisfying 

uu ~ -- (Uo -- A2)u -+-/zA - A 3 = 0. (39) 

This imposes /z  = / z n l ( u 0 )  ~- 3(U0 -- 3), the solution being 

u ( a )  = - - ½ a ( a  2 - a2) .  (40) 

The straight l i ne / z  = /zn1(u0) is tangent to the linear transition cu rve /z l (u0 )  ---- U2/4  for the parameters /z  = 

9, U0 = 6 (see Fig. 19). 

The heteroclinic orbit  l inking A2 from A0 comes out therefore from the eigendirection 7 corresponding to the 

smallest  eigenvalue when /z  < 9, whereas its outgoing direction corresponds to the highest eigenvalue i f / z  > 9. 

Therefore, an NG mode exists when /z  > /znl(u0) fo r /z  > 9, whereas an NG mode exists only when /z  > /zl(u0) 

7 The slope at the origin of solution (40) is A2/3 =/~nl/3 and the linear eigenvalues pertaining to Eq. (39) at A = A 0 are/z/3 and 3 for 
lz = lzn!(u0). 
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(~) 

dA 

d 

dA 

(b) (c) 

L, 
dA 

dA dA 

Fig. 20. Phase portraits of the van der Pol-Duffing model. (a): white C region in Fig. 19; (b) and (c): light gray C region; (d) and (e): 
dark gray A region. Phase portraits (c) and (e) are obtained for smaller advection velocities than (b) and (d), and display a limit cycle 
oscillation which do not alter the existence of NG modes. 

f o r / z  < 9. The numerically obtained phase portraits are shown in the Figs. 20(a)-(e).  In Figs. 20(a) and (e), the 

l imit  cycle of  the van der Pol oscil lator prevents the unstable manifold of  A0 from reaching  A2. However, these 

phase portraits, and the existence of  the l imit  cycle, are obtained for a bifurcation parameter  in the NG unstable 

region (gray region) in Fig. 19 far above the NG instability threshold. Therefore, an NG mode st i l l  exists and its 

nature is not changed since it links a point  of  the A = 0 axis with dA/dx  ~ 0 to A2. At  the NG threshold, the birth 
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of  the NG mode remains due to the presence of  a heteroclinic trajectory linking A0 to A2, and the limit cycle does 

not exist. 
For/z  > 9, the system becomes thus NG unstable in a region where it is C unstable. The existence of  NG modes 

could also be demonstrated by a matched asymptotic expansion for /z  > /xl(u0) when/z  < 9 and/z  > /znl(u0) 

when/z  > 9. 

5.3. Transcritical bifurcation 

In the present section we examine the case of  a supercritical bifurcation perturbed by a cubic term breaking the 

symmetry A ---> - A  in the potential. We keep the restabilizing order-4 term so that our model can be viewed as a 
perturbed supercritical case. This last model is similar to the model used by Ben-Jacob et al. [17] and Hakim [33] 

to illustrate the selection between linear and nonlinear front velocity. We choose the potential 

A 2 A 3 A 4 
12(A) = - / x  2 3 + - T '  (41) 

which, upon substitution into Eq. (1), yields 

OA OA OeA 
0--t- + U0 0--~ = ~x - - ~  + / z A  -I- A 2 - A 3, (42) 

where/z and U0 are the two control parameters as in the previous examples. The homogeneous steady solutions are 
A0 = 0 for all/x and A1 = 1/2 - (/x + 1/4) 1/2 and A2 = 1/2 + (/z + 1/4) 1/2 for /z  > - 1 / 4 .  

A steady particular solution of  Eq. (42) linking the point A0 to A2 is sought as a polynomial function u (A) which 

solves the equation 

uu' - Uou -I-/zA + A 2 -- A 3 = 0. (43) 

This imposes/z = / z  nl ( U0 ) = - 1/4 + (1/6 + ~,/2U0/3) 2 (see Fig. 21). The corresponding solution reads 

1 2  U° + ~/2 A (44) u (A)  = - ~ a  + 
~/ 2 

Uo 
C 

NG 

S2v , 
- 2 / 9  0 2 J.t 

Fig. 21. Parameter space for the transcritical model. 
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d A  
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(~) (b) 

dA dA 

(c) (d) 

Fig. 22. Phase portraits of the transcritical model. (a) corresponds to the white C region in Fig. 21 whereas (b)-(d) correspond to 
the dark gray A region. Phase portraits similar to (b), (c) and (d) with a node behavior around the origin are obtained in the light gray C 
region. 

and represents  the heterocl in ic  orbit  8'9 l inking A = A0 at x = - o 0  to A = A2 at x = q-o~. The  po lynomia l  

solut ion (44) or iginates  f rom the e igendi rec t ion  corresponding  to the largest  e igenvalue  fo r / z  < 2 and to the smallest  

e igenvalue  f o r / z  > 2. As  in the previous  case  a global  m o d e  exists in the parameter  space where  0 < # < 2 and 

U01 (lz) < U0 < Ug~(/z). We ver i fy  wi th  phase portrait  Fig. 22(b) that the system is N G  unstable  in this domain.  For  

# > 2, the N G  and A instabil i ty thresholds coincide.  

6. Conclusion 

First  we  have identified, using publ i shed  results,  the N C / N A  nature o f  the instabil i ty as a funct ion o f  the advect ion  

ve loc i ty  and the control  parameter  o f  the subcri t ical  G inzbu rg -Landau  model .  This  de terminat ion  only rel ies on the 

front  ve loc i ty  o f  a bifurcat ing state invading a basic  state, the select ion o f  which  has been  the object  o f  recent  studies. 

8 This solution admits a slope at the origin (U 0 + x/2)/3 = (1/2 + (/z + 1/4)1/2)/x/2 which has to be compared with the eigenvalues 
of Eq. (43) linearized at A = A0: - l /x , /~  - w/2(/z + 1/4) 1/2 and (1/2 + (/z + 1/4)1/2)/x/2. 

9 Another polynomial solution exists for U0 = 1/v'2 and for all/z > 0: u(A) = - ( A  2 - A - / z ) /x ,  r2 actually represents a heteroclinic 
orbit linking A = A2 from A = A1. This orbit brings no information as it is just a nonlinear global mode linking A2 from A = 0 but 
dA/dx # 0 in a semi-infinite domain. 
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The NA/NC definition based on the existence and selection of a front in an infinite domain is somehow formal 

as the laboratory is artificially singled out. For this reason, we next considered NG instability in a semi-infinite 
homogeneous domain with zero-amplitude upstream boundary conditien. This NG instability corresponds to the 
existence of a nontrivial nonlinear steady solution for which the direction of the advection has now to be considered 
as an eigendirection. The NG instability has been determined for the subcritical Ginzburg-Landau model and for 

three other variations on this theme: the supercritical Ginzburg-Landan model, the "van der Pol-Duffing" model, 
and the transcritical model. 

For these cases that are homogeneous everywhere except at the origin, the domain of existence of an NG mode is 

rigorously determined from matched asymptotic expansions, and is shown to coincide with the NA region determined 
from front velocity selection consideration. As predicted from the conjecture that a nonlinear front at least propagates 

at the linear front velocity, the NG instability (or equivalently here the NA) domain totally overlaps the A region. 

Thus, A instability is only a sufficient condition for NG instability and cases where the system is simultaneously S 
or C and NG unstable have been exhibited. 

Studying the signaling problem, i.e. the effect of adding a steady forcing at the origin, allows us to show how 

the NC and NA instability manifests itself by a particular behavior. We have shown that once triggered, the NG 
mode sustains itself forever and therefore represents the intrinsic behavior of the system in the NG region. On the 
contrary, a study of the signaling problem in the NC region demonstrates that the flow behaves as a nonlinear spatial 

amplifier of the incoming perturbation, exhibiting hysteretic behavior in some cases, but returning to zero when the 
forcing is removed. Surprisingly, the same behavior is observed in the NS region too. In this subcritical system, the 
advection associated with a strong forcing at the origin is able to lock on to a bifurcated solution. Therefore NC 

instability is only a sufficient condition for the flow to behave as a nonlinear spatial amplifier. 
The absolute or convective nature of a flow may be experimentally determined by investigating the response of 

the system to a forcing at the origin. It seems to us that an experimental quantitative confirmation of the theory could 
be made for example by adding a mean flow to a chemical reaction which exhibits nonlinear front selection (for 
example the one of Hanna et al. [25]). Plane Poiseuille flow, Couette flow between rotating cylinders, or swirling 

jet experiments are systems where these experimental validation could also be achieved. In an experimental setup, 
a comparison of the growth size of the NG modes with the two generic scalings 0n(1/E) and E -1/2) should allow 
a determination of whether the NG instability occurs while the system is C unstable or stable, or whether it occurs 
simultaneously at the C/A transition. 

The very remarkable feature given by the proof of existence of an NG mode by matched asymptotic expansions 

is that the scaling laws as functions of the departure from the NG instability threshold are radically different when 
the NG threshold is linearly or nonlinearly determined. When the NG threshold coincides with the A threshold, the 
growth size Ax (a kind of downstream correlation scale) has been shown to vary as E -1/2, E being the departure 

from criticality. This power law contrasts sharply with the much stronger ln(1/~) variation of Ax obtained when 
the NG mode is nonlinearly determined and thus arises while the system is C unstable or S. Extension of the present 
study to the complex Ginzburg-Landau equation [34] shows that the same scaling holds and the theoretically 
derived law (with no free parameter) is shown to coincide exactly with the law obserVed by Biichel et al. [35] for 

the Taylor-Couette problem with throughflow and by Mtiller et al. [36] for the Rayleigh-B6nard problem with an 
added Poiseuille flow. 
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Appendix A. Local behavior of solutions of Eq. (21) near the fixed points A0, A1, A2 

The study is restricted to the case/z > - 1 / 4 .  
At A = A0, the linearized equation (21) gives 

d2A dA 
U0--~- x -t-/zA = 0. dx 2 

The eigenvalues k ± are thus given by the expression 

k + U0 ~ 1/2 = -~- -t- --(U~ --4/z) 

(A.1) 

(A.2) 

They are: 
- complex conjugate with positive real part for/z > / z  1 = ug/4 (Ao is an unstable focus), 
- real positive for 0 < / z  < / z  1 (Ao is an unstable node), 
- real and of opposite signs for - 1 / 4  < / z  < 0 (A0 is a saddle). 
For/z = / j  l, A0 is an improper node. 

At A = A1, we find the two eigenvalues kl :k in the same way 

Uo 1 (  ~/-## 1 ) 1 / 2  
k~: = -~- -t- ~ U 2 - 8  + ~ + 16 / z+4  (A.3) 

They take the same value for/z = /ZM(1 4- 2(1 -- ug)u 2 - ½(1 - U2)). This equation bounds a domain of the 
parameter space (/z, Uo) in which A1 is an unstable spiral point, whereas it is an unstable node out of this domain. 
On the boundary of this domain, A 1 is an improper node. 

At A = A2, The two eigenvalues k f  are given by the expression 

k~=Uo4_l(ug ~ 1 ) 1 / 2  
-~- ~ + 8 + ~ + 16/z + 4 (1.4) 

They are always real and of opposite signs (A2 is always a saddle). 
These results are reported on the Fig. 23. 

-1 /4  0 
Fig. 23. Nature of the fixed points A0, A1, A 2 versus the parameters # and U0. A0 is an unstable focus in the dark gray domain, an 
unstable node in the white domain and a saddle for # < 0 (light and medium gray domain). A I is an unstable focus in the medium gay  
domain and an unstable node in the light gray domain. A2 is a saddle everywhere. 
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Appendix B. Singular per turbat ion  analysis of the subcrit ical  Ginzburg-Landau  equation in the vicinity of 
the curve tz =/znl(Uo) for U0 < 

B.1. Scaling law d A / d x ( x  = O) = f (e) wi th  e = / z  - -  ]z nl 

The absolute instability threshold is given by 

/ZA = / znl = /£M 1 --  ~ U 0  - -  • (B .1 )  

Throughout Appendix B we precise the dependence A2(/z) only if necessary. Otherwise we use the notations 
A2 ~ A 2 ( / z  nl) a n d  A2,t t  ~ d A 2 / d / z ( / z n l ) .  

We seek a solution u (A) of the Eq. (23) verifying boundary conditions (24). This function u (A) is known for the 
value St = St nl (see Eq. (18)). 

The order-1 equation (23) is compatible with a single boundary condition. We also assume the existence of an ~ 
sized boundary layer in the neighborhood of Ao in which an inner solution of the linearized equation (23) at A = 0 

satisfies the boundary condition u ' (Ao)  = Uo and out of which an outer solution of Eq. (23) satisfies the boundary 
condition u ( A 2 ( / z ) )  ~- 0.  

Outer  solution: Assuming that the solution u (A) takes the following form: 

u ( A )  ~_ uo(A)  + E u l ( A ) ,  (B.2) 

and expanding the second boundary condition u(A2(/z nl + E)) = 0 and Eq. (23) in powers of ~, by comparison at 
each order we obtain: 
- order 0 

u o d  o - UOUO -4-/znlA -4- A 3 - A 5 = 0, (B.3a) 

uo(A2) = 0, (B.3b) 

- order 1 

' ' - Uoul + A O, uOU 1 q-- UoU 1 

AZ,u u ~ ( A 2 )  + u l ( A 2 )  = 0.  

The solution uo(A)  is given by (see Eq. (18)): 

1 2 
uo(A)  = ----~A(A 2 - A 2) 

43 

(B.4a) 

(B.4b) 

(B.5) 

Upon substituting this solution in the system (B.4a) and (B.4b), and solving a first-order differential equation, we 
find 

A 

u I(A) ---= A ~' (A2 2 - -  A2)  )~2 ~ f a -~'' (A 2 - a 2)-;~2-1 da ,  

A2 

where 

~ - 1 - -  
- 1  + ~/3U0 - 1  - ,,/3Uo 

and )~2 - -  
1 + V o / 4 3  1 + Uo/v~ 

(B.6) 

( B . 7 )  
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Inner  solution: The inner variable ~ is connected to the outer variable A through the relation 

A 
= --~ (B.8) 

with fl as yet unknown. At the first order e3, the linearized Ginzburg-Landau equation at A = A0 yields the equation 
for the inner solution ~ (x). 

d2~ d-~ ~nl~ 
dx 2 U0 x + ----- 0. (B.9) 

Using the notation v(~) = d ~ / d x ,  the condition u~(Ao) = Uo yields 

v'(0) = U0 (B.10) 

and the solution of Eq. (B.9) takes the form 

~(x)  -- 2vO (er+X _ er-X) ' (B. 11) 
4~-Wo 

where r + = (Uo + V~)/4, r -  = (3Uo - V"3)/4 and vo remains unknown since the second-order equation (B.9) is - 
to be solved with only one boundary condition. 

The next step is the matching of the outer and inner solutions. Let us introduce 

A 
= - -  = ~e 3 . a  (B.12) ~ot 

into both solutions and expand the solutions in powers of E in order to make the identification 

u(  A ) =-- E~ v(~ ). (B.13) 

The expansion of the inner solution reads 

4 ~ r/)~l E (c~-fl)~l . (B. 14) 

The expansion of the outer solution yields 

A2 

A2 f u ( A )  = ~r/~2 ~ + V~A~a@IE c~)~1+1 a -xJ (A~ -- a2) -z2-1 da. (B.15) 

0 

Since A 2 / x / 3  = (U0 + ~ ) / 4 ,  the comparison at the order ea gives no information. The comparison at the following 
order yields the size of the boundary layer 

1 ~ + w 0  
fl -- -- (B.16) 

1 - -  ,kl 2 ( V ' 3  - -  Uo) 

and by insertion of the value vo, the sought scaling law reads 

u ( A o ) = v O E  ~, (B.17) 

where 

V0 = (A2-1-xl w/-3 (~-3 -- U°)  -z '  1 ~  f a -x' (1 --a2)-z2-I d a ) 3  

0 

( B .  1 8 )  
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Using the beta function [32], this expression may be succinctly written 

3/3-1/2 A~_4/~/3/~ (2  1 1 )  
v0--  2 ~  ~;2-- f l  " 

B.2. Scal ing law A x  = f (e) with • = I x - lz nl 

269 

(B.19) 

Integrating the equation 

dA 

u o ( A )  + eul(A) 

The inner solution is given by expression (B. 11). Thus, the first approximation of the inner characteristic size is 
given by the equation 

4 in ( ~ / 3 - -  U0~ (B.21) 

\ 1 
The value v0 is given by solution of Eqs. (B. 19) and (B. 16). 

The outer solution is given by the expression 

dA 
= u ( A )  = u o ( A )  + •ul(A).  (B.22) 

dx 

d A  U 1 (A) dA 
-- dx (B.23) 

u o ( A )  u 2 ( A )  

and neglecting terms of order ~, we obtain 

0"99f2(/x) ~r3 ( ~  1 1 ) d  A 

AXo = j ~ + 2(A2 - A) 2(A2 + A) 
E~ 

099A  ) 
= A2 log •~ I 1 _ (0.99) 2 -_2~ .99 )2A2 , . /A211 /2  , (B24) 

which yields the scaling law for the characteristic size by adding expressions (B.21) and (B.24), viz., 

A x  = A x i  + AXo = --4'3 (-13 log • + log K), 

where 

K = 0.992¢~A24¢~/3-#(2- 1/2/3; 1/2/3) 
/33~11 - (0.99) 2 - 2•(0.99)2A2,tx/A2[ 1/2" 

/3 is again the beta function. 

(B.25) 

(B.26) 

A ( x i )  = E ~ and A(xo)  = 0.99A2(IX). (B.20) 

The characteristic size of the front linking A0 to A 2  for/x = Ixnl -t- 6 is calculated in two parts: in the first part 
Ax i  is related to the inner solution; one has to calculate xi such as ~(xi )  = 1; in the second part Axo is related to 
the outer solution and verifies Axo = Xo - xi where 
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Appendix C. Singular perturbation analysis of the subcritical Ginzburg-Landau equation in the vicinity of 
# =/zl(U0) for U0 > 

C.1. Scaling laws dA/dx(O) --- f (e) and Ax  = f (e) with e = I~--IZ 1 and UO > ~/~ 

The absolute instability threshold is given by 

[1, A = lZ 1 = U2/4. (C.1) 

Throughout Appendix C we precise the dependence A2(/z) only if necessary. Otherwise we use the notations 
A2 ~ Az(/z 1) and A2,t~ --= dA2/d/z(/zl). 

We seek a solution of  Eq. (23) representing the stable manifold of  A2 as a series in the form 

u(a)  = - ~ Pk(/Z) (a2(/z) -- A) k . (C.2) 
k=l  

The boundary condition u(A2(/z)) = 0 is automatically verified since there is no zero-order term in the series. In 

order to calculate the coefficients Vk, one has to satisfy Eq. (23) at each order. The coefficients Vk are thus calculated 
from vl by the following recurrence formulas: 

vl -- 2 - ( U  2 - 4ffl) 1/2, (C.3a) 

VZk = \ / , (C.3b) 
U0 - (2k + 1)vl 

2k {x-,k-1 v2/2) FZk-1 ~/--,n=2 Pn P 2 k - n  "q'- "~- 
PZk-1 = (C.3c) 

Uo - 2kvl 

The coefficients Fk depend on the shape of  the potential and are given by 

( - 1 )  k dk+l]2 
Fk -- k ~ -  ~ (A2(/z))" (C.4) 

For the particular value/z  1 = U2/4, Eq. (C.2) represents the outer solution displayed by the continuous line in 
Figs. 4(a) and (d) at the absolute instability threshold. Therefore, we do not apply the boundary condition at A = A0. 
In the inner layer, the inner variable is ~ and the inner solution is calculated as a function of  the departure from the 
criticality ~ = / z  - / z  1, as a solution of  Eq. (23) linearized about A = A0 with the boundary condition ~(0) = 0: 

vo { Uo "x 
~(x) = ~ exp~-~--x)  sin ( ~ x ) .  (C.5) 

vo is the slope at the origin of  this solution v(~) = d~/dx and is not yet determined since only one boundary 
condition has been applied to a second-order equation. The matching between the inner solution v(~) = d~/dx and 
the outer solution u(A) = dA /dx  allows a determination of  v0. One has to choose the following scaling between 
the inner variable and the outer variable in order to make the matching tractable 

-1 { Uort UoA'] 
= E exp /~ - - -~  A. (C.6) 

\ z ~ / e  2v0e ] 
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In other words, the inner solution (C.5) reaches its maximum at a value Xi close to re / f ig  and both inner and oUter 

solutions overlap for x ~-- xi. Since the contribution of  the outer solution (C.2) to the growth size scales like log ~, 
the dominant term for the characteristic size is given by 

Ax "- (C 7) - -  : ~ ,  , 
7g 

We also choose an intermediate variable ~/such that 

A = ~ / e  ~ with½ < o r <  1. 

Expanding the inner and outer solutions in increasing powers of  e, we obtain the inner solution as 

(c.8) 

(Uo ~ ) (Uo~r Uoo~ ~-~) 
v(~) = ~ , T r / e  - vo,  e - l expk~-- -  ~ ~v0 : ' (C.9) 

and for the outer solution one finds 

u(A)  = - y~,  vk(lzl)A~ q- vk(lzl)kA~ -1 rlE ~ -- 
k=l \k= l  

(tzl)Ak q-kvk(tzl)A2,tzA k-1 e. 
k=l k Iz 

(C.lO) 

We use the following notations: 

wk = Vk(lzl)A§ -3 and z/c = ~ ( / ~ I ) A ~ -  
o/z 

The term-by-term identification of  the coefficients of  the expansion in E gives: 

- first solvability condition (order 0): 

(C.11) 

q-cx) q - ~  

y ~  wk = 0 if U0 > V'3, ~ wk ~ 0 otherwise, 
k = l  k = l  

(C.12) 

- second solvability condition (order ~ ) :  

-{-oo 
y ~  kwk -- UO 
k = l  2 - ~ 2  2 

(c.13) 

- sought after value of  v0 (order ~): 

q-o<~ 

vo = y~(Zk  + kwkA2A24z) .  
k = l  

(C.14) 

The scaling law for u(0) = d A / d x ( x  = 0) then reads 

[ u0~r'x 
u(0) = v0" e x p k - - ~ - - ~ ) .  (c.15) 

The numerical values obtained for Eqs. (C.12)-(C.14) are shown in Table 1 as functions of  the number of  
terms in the series for U0 = 2. The convergence of  the series is relatively slow. We find ~--~N wk "" 10 -8 and 
(2A2/Uo)  ~ N  kwk ~-- 0.96 for N = 40 000 terms. The solvability conditions seem, however, to be verified. 
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N 
N 'Y"~'k: 1 Wk ( 2 A 2 / U o ) ~ L l k W k  N 2 -- ~k=l (Z  k + kwkA2A2,l,) 

2 0 0  7 .551  × 10 - 6  0 . 9 4 9 2  3 . 8 2 8  × 10 - 3  

4 0 0  3 . 5 1 9  x 10 - 6  0 . 9 5 1 0  1.831 x 10 - 3  

6 0 0  2 . 2 5 4  × 10 - 6  0 . 9 5 2 0  1 .192  × 10 - 3  

800  1 .644  × 10 - 6  0 . 9 5 2 6  8 .798  × 10 - 4  

1000 1 .287 × 10 - 6  0 .9531  6 .953  x 10 - 4  

2 0 0 0  6 . 0 3 5  x 10 - 7  0 . 9 5 4 7  3 . 3 5 6  x 10 - 4  

4 0 0 0  2 . 8 3 4  × 10 - 7  0 .9561  1 .625 × 10 - 4  

6 0 0 0  1 .823 × 10 - 7  0 . 9 5 6 9  1 .064  × 10 - 4  

8 0 0 0  1 .333 × 10 - 7  0 . 9 5 7 5  7 .891  x 10 - 5  

1 0 0 0 0  1 .046  x 10 - 7  0 . 9 5 7 9  6 . 2 5 7  × 10 - 5  

2 0 0 0 0  4 . 9 3 8  × 10 - 8  0 .9591  3 . 0 4 8  × 10 - 5  

4 0 0 0 0  2 . 3 3 3  x 10 - 8  0 . 9 6 0 3  1 .488 × 10 - 5  

Appendix D. Singular perturbation analysis of  the supercri t ical  Ginzburg-Landau equation in the vicinity of  

= ~ ( u 0 )  

D.1. Scaling law d A / d x ( O )  = f (e) with e = I~ - i~1 

The absolute instability threshold is given by ~A = i~1 = U2 /4 .  The calculation of  the scaling law is the same 
as in the subcritical case with U0 > ~/3. We follow the same approach. We seek a solution of  the equation 

uu' -- Uou + AeA -- A 3 = 0 (D.1) 

as a series similar to (C.2). The coefficients uk are calculated using formulas (C.3a)-(C.3c). The inner solution takes 
the same form as in Eq. (C.5). In order to do the matching, the scaling law between the inner and outer variable 
has to be chosen in the form (C.6). The matching between the solutions is done by expanding the inner and outer 
solutions at orders 0, ~ ,  and e (with A = ~e~). Here we use the notations 

w~ = vk(lzl)Ak2-Z(Izl) and zk = -~ (# l )Ak2( / z l ) ,  (D.2) 

and by identifying the expansions of  inner and outer solutions at each order, we obtain: 
- at the order zero 

+ o o  

Wk = 0, (D.3) 
k = l  

- at the order E '~ 

+ c ~  

Z kWk = 1, (D.4) 
k = l  

- at the order e 

v 0 = Z  Z k +  • (D.5) 
k = l  
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Table 2 

N N N 
N ~ k = l  tvk Y~k=l kwk ff~k=l (Zk + kwk/2) 

200 8.117 × 10 -5 0.860 2.895 
400 3.419 x 10 -5 0.873 2.946 
600 2.072 x 10 -'5 0.879 2.971 
800 1.456 x 10 -5 0.884 2.987 

1000 1.109 × 10 -5 0.887 2.998 
2000 4.789 x 10 -6 0.895 3.029 
4000 2.087 x 10 -6 0.903 3.055 
6000 1.289 x 10 -6 0.907 3.068 
8000 9.178 × 10 -7 0.909 3.077 

10 000 7.056 × 10 -7 0.911 3.083 
20000 3.133 × 10 -7 0.917 3.102 
40000 1.400 x 10 -7 0.921 3.118 

Eqs.  (D.3) and (D.4) are solvabi l i ty  condi t ions  and Eq. (D.5) then yie lds  v0. The  sought  scal ing law takes exact ly  

the same form as in the subcri t ical  case, viz.  

{ 
u(0)  = rOE e x p t - - ~ - ~ J .  (D.6) 

Table 2 shows the numer ica l  values obta ined for  the solvabi l i ty  condi t ions  and the calcula t ion o f  vo as funct ions  

o f  the number  o f  terms in the series for  the advect ion  ve loc i ty  Uo = 1. The  convergence  o f  the series is re lat ively 

slow. For  N = 40 000 terms,  we  find ~--~N Wk ~ 10 -7  and y~N kwk ~-- 0.92. The  solvabil i ty  condi t ions  seem, 

however ,  to be  verified. 

Appendix E. Multiplicity of solutions 

Note  that in the N C  region and in the NS  region, there m a y  exis t  several  s teady solutions o f  Eq.  (1) wi th  potent ial  

densi ty  (2) sat isfying the requi red  boundary  condi t ions  A(0)  = B with  ei ther  A ( + o c )  = A2 or A ( + c ~ )  ----- Ao, 

dA 

dx 

- ~ , , c  2 

$1 
A(0)  = B 

4 
0 . 8  

0 . 6  

A 0 . 4  

d, d d f  
f'A,! v , , \ /  

' 

10 20 30 40 50 

(a) Phase portrai t .  (b) Forced solutions So, $1, $2 versus x. 

Fig. 24. Multiplicity of forced solutions in the NC region for tt < 0. Only SO verifies steady Crinzburg-Landau equation with boundary 
conditions A(0) = B and A(+oo) = A2 without oscillating around A1. 



274 A. Couairon, J.-M. Chomaz/Physica D 108 (1997) 236-276 

(~) (b) 

Fig. 25. Simulation in the NC region. (a) The starting solution crosses twice zero. B = A1 ;U0 = 0.1 ; p, ----/£A - -  0.01 = -0.164. The 
system relaxes to the solution SO of Fig. 24 asymptotic to A2. (b) The starting solution crosses three times zero. B = A1; U0 ~ 0.1; 
/z = -0.164. The system relaxes to the solution asymptotic to A 0 which does not oscillate around A 1 . 

dA 

dx 

• i 

I 

A ( 0 ) =  B 

A o 

-0 .5 

- i  

So $1 .$2 $3 

..z 
i ,.L '\ I./ 
'~ ' ~  "W ~ol' /3 'or ~#" ~o 
', X\ i / .  , -  \ I 
\ , , , ,  > , . .  \ j \ , ,  

6o X 

(a) Phase portrait. (b) Forced solutions So, $1, $2 versus x. • 

Fig. 26. Multiplicity of forced solutions in the NG region for/x < 0. Only So verifies steady Ginzburg-Landau equation with boundary 
conditions A(0) = B and A(+~)  = A2 without oscillating around B. 

and oscillating around A = A1. An example of multiplicity of solutions is shown in Fig. 24, A necessary condition 

for multiple solutions is that the stable manifold of A2 (or A0) oscillates around the amplitude A1. For example, 

i f /~ < 0, in the region o f  parameter space where A1 is an unstable focus (see Appendix A) multiple solutions 

asymptotic to A2 (or A0) exist if B > A~ (o rB  < A~); when A1 is an unstable node or when/~ > 0, there exists 

only one solution asymptotic to A2 (or A0) at A-~.  

In the simulation displayed in Fig. 25, an oscillating solution of Eq. (21) such that A(0) = B and A(+c~)  = A2 

becomes unstable and evolves to the steady solution without oscillation, that verifies the same boundary conditions. 

All numerical simulations we have undertaken indicate that oscillating forced solutiOns are unstable. Depending on 

the initial solution, they evolve either to the steady solution satisfying A (+cx~) = A2 with no oscillations (Fig. 25(a)), 

or to the steady solution satisfying A(+c~)  = A0 but still without oscillation (Fig. 25(b)).  
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(~) (b) 

Fig. 27. Simulation in the NG region. (a) The starting solution crosses twice zero. B = 0.25 ; U0 = 0. I ; /g = 0.001. (b) The starting 
solution crosses three times zero. B = 0.2 ; U 0 = 0.1 ; /z = -0.05. In (a) and (b), the system relaxes to the solution SO of Fig. 26(b) 
asymptotic to A 2. 

In the NG region, there  m a y  also exis t  severa l  s teady so lu t ions  o f  Eq. (1) wi th  po ten t i a l  dens i ty  (2) such  that  

A(0 )  = B and  A ( + e c )  = A2 as ske tched  in Fig. 26 .  

Al l  t empora l  s imu la t i ons  ind ica te  tha t  on ly  the non-osc i l l a t i ng  so lu t ions  are s tab le  (Fig. 27):  For  the p a r a m e t e r  

se t t ing  U0 = 0.1 and  # = 0.001 (iz = - 0 . 0 5 ) ,  the so lu t ion  $2 ($3) osc i l l a t ing  twice  in Fig. 26(a)  ( three  t imes  in 

Fig. 26(b) )  evo lves  to the  so lu t ion  So wi th  no  osc i l la t ion .  
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