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Abstract. This study is concerned with the numerical calculation of the maximum spatial growth
of Gortler vortices on a concave wall. The method is based on the direct computation of a discrete
approximation to the spatial propagator that relates the downstream response to the inlet perturba-
tion. The optimization problem is then solved directly by making use of the propagator matrix. The
calculated inlet optimal perturbations and the outlet optimal response are similar to those found by
Andersson et al. [2] and Luchini {14] in the case of the boundary layer on a flat plate. The only
noticeable difference is that the perturbation keeps growing downstream when the wall is curved,
whereas the growth is only transient when the wall is flat. The study of a simple “toy” model
problem demonstrates that the streamwise evolution of perturbations is essentially determined by
the non-normality of the spatial propagator.
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1. Introduction

Streamwise periodic counter rotating vortices, called Gortler vortices, are known
to grow in boundary layers along a concave wall. For instance, such structures have
been observed over the concave part of laminar flow wings and swept wings, on
the inner wall of supersonic nozzles, or in turbulent boundary layers over turboma-
chinery blades. Whereas the centrifugal instability between coaxial cylinders gives
rise to Taylor vortices that develop and saturate in time and are homogeneous in
space, the centrifugal instability in curved boundary layers gives rise to Gortler vor-
tices that are approximately steady but develop in space. Large amplitude Gortler
vortices are subject to secondary instabilities which may lead to transition to tur-
bulence [8, 13, 17, 19]. Quantifying their spatial growth is therefore a necessary
preliminary step if one is to arrive at a satisfactory description of the transition
process. The objective of the present investigation is twofold. First we want to
quantify the maximum streamwise spatial growth that may be experienced by a
disturbance between two stations in a concave boundary layer. Second, from the
knowledge of the maximum possible growth and of the associated optimal inlet
perturbations, we wish to understand the nature of the amplification mechanism.
Stability investigations of curved boundary layers began in 1941 with the pio-
neering work of Gortler [10] who, building on the analysis for the Taylor problem,
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computed the neutral curve by considering the basic flow to be parallel, i.e. ho-
mogeneous in the streamwise direction. A consistent set of non-separable partial
differential equations for the linear non-parallel stability problem, taking into ac-
count the growth of the boundary layer, was first obtained by Hall [11, 12] within
the limit of high Reynolds numbers and small curvature. This system was originally
derived by Floryan and Saric [9] but analyzed by these authors from a local point
of view, i.e. assuming perturbations in the form of normal modes. Hall [12] has
consistently argued that local stability analyses are formally justified only when
the boundary layer thickness is large compared to the spanwise wavelength of
Gortler vortices. When the boundary layer thickness is of the order of the spanwise .
wavelength or smaller, which is always the case in some upstream region near the
plate leading edge, the full non-separable set of equations has to be integrated by
resorting to a downstream marching technique. Since the spatial stability problem
is parabolic, the specification of the perturbations at a given upstream station fully
determines the disturbance field over the entire flow. The response of the boundary
layer, i.e. the streamwise evolution of perturbations along the concave wall, is then
very sensitive to inlet conditions [12]. This brought Saric [19] to state that the
dependence of the streamwise development on inlet conditions is so strong that
“somewhat universal charts ... of use to the designer or someone who is unwilling
to do the calculations” are not yet available. Even if different upstream perturba-
tions are examined, one cannot be sure to have identified the most “dangerous”
conditions, i.e. the ones which produce the largest amplitude at a particular down-
stream location: searching for the “optimal” upstream perturbations might require
an infinite number of simulations.

In the present article, an optimization technique is implemented to evaluate
the most dangerous inlet conditions associated with the largest spatial growth for
each downstream station. The technique, which relies on the definition of a spatial
“propagator” [7], is inspired by the methodologies used to evaluate optimal pertur-
bations in temporal stability problems. The temporal propagator for the evolution
of perturbations is here replaced by its spatial counterpart.

The linear receptivity of Gortler vortices to wall roughness and to free-stream
disturbances impinging the boundary layer at the leading edge, has recently been
addressed by Luchini and Bottaro [15]. Their method consists in the upstream in-
tegration of the adjoint linear stability equations from sufficiently far downstream, ’
in order to determine the “optimal”, i.e. most spatially amplified, inlet conditions.
Optimal perturbations maximizing spatial transient growth have been evaluated by .
Lundbladh et al. [16] for plane Poiseuille flow and the Blasius boundary layer,
assuming in the latter instance the basic flow to be parallel. In the fully non-
parallel case, Andersson et al. [2] and Luchini [14] have recently investigated the
maximum transient growth and associated optimal perturbations at the leading
edge of the Blasius boundary layer on a flat plate by resorting to an iterative
upstream-downstream marching procedure.
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The methodological point of view taken in the present study consists in
choosing an inlet station, for given values of the Gortler number and spanwise
wavelength, and in computing, as a function of downstream distance, the most
dangerous inlet conditions which maximize the gain, i.e. the growth in amplitude,
between the inlet and some downstream station. This is made possible by the use
of a “flexible” technique based on the post-processing of numerically computed
downstream evolutions from a complete set of linearly independent upstream per-
turbations. The method relies on a consistent discrete approximation, expressed in
matrix form, of the spatial propagator; the discrete adjoint propagator is simply
. obtained by transposing the propagator matrix. The approach is not limited to
parabolic systems of equations since it does not necessitate marching integrations.
It remains applicable to the full Navier—Stokes equations. As the optimization pro-
cedure is decoupled from the evaluation of the propagator, different metrics may
be computed at will.

The standard mathematical formulation of the Gortler instability problem is
recalled in Section 2 together with the basic optimization concepts, namely the
notions of gain curve, maximum gain curve and spatial propagator. The numerical
procedure, discussed in Section 3, allows us to determine the maximum gain expe-
rienced by the perturbations between an inlet station x and an optimization station
x. The physical implication of the numerically obtained results are discussed in
Section 4. A simple “toy” model is proposed in Section 5 to account for the sensi-
tivity of the amplitude of the downstream response to different inlet conditions. The
main conclusions are summarized and discussed in connection with recent related
investigations in Section 6.

2. Mathematical Formulation
2.1. DISTURBANCE EQUATIONS

The linear stability analysis is based on the non-separable set of partial differ-

ential equations derived by Hall [11, 12]. Consider the Blasius boundary layer,

with external velocity UZ in an incompressible fluid of kinematic viscosity v* and

density p*, over a wall of radius of curvature R* large compared to the boundary

- layer thickness. The analysis is limited to stationary disturbances, periodic in the

spanwise direction z* of wavenumber 8*. Given a typical streamwise reference
length L*, the Reynolds and Goértler numbers are defined as:

Re = UL L*/v*, (D
G? = Re/*(L*/R™). )
The streamwise coordinate along the wall is denoted by x*, the coordinate normal
to the wall by y*. The streamwise, normal and spanwise velocity components are

denoted respectively by u*, v*, w*, the pressure by p*. Following the Prandtl scal-
ing for the boundary layer, we rescale x* by L*, y* and z* by a length Re~!/2L*
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which is proportional to the boundary layer thickness at the streamwise location L*,
u*by UZ, v* and w* by Re~ /2y ; finally, p* is made dimensionless with respect
to p*U;‘oz. The asterisk is dropped for dimensionless variables. The Blasius self-
similar solution for the two-dimensional base flow is denoted by U (x, y), V(x, y).
Three-dimensional perturbations to the base flow are assumed to be periodic in the
streamwise direction of the form

u(x, y)cos(Bz), v(x,y)cos(Bz), w(x,y)sin(Bz), p(x,y)cos(fz), (3)

where 8 = g*Re /2L* is the nondimensional spanwise wavenumber. Upon as-
suming that Re > 1, (R*/L*) > 1 and G = O(1), we obtain, at leading order,
the linear partial differential equations derived by Hall [11, 12] and Floryan and
Saric [9]:

du  dv

u W s, 4)
dx Jy

du du U aU 3u

U—+V—+— —y - — 2u =0, 5
ox 3y+3xu+3yv 8y2+ﬂu )
v v v v % ap

U—+V—+— — - — 24+ = +2G°Uu =0, 6
8x+ 8y+8xu+8yv 3y2+ﬂv+8y+ y ©
ow dw 0w

U+ V——— +p*w—pp=0. Q)

ox dy  9y?

Elimination of the pressure and of the spanwise component of the velocity w, yields
the following system [12]:

ou ov

M(““)a——I—M(””)a——+—L("")u+L('“’)v =0, (8)
X X
(ou) O wn 3V (vu) (vv)

where x-derivatives have been explicitly isolated. The linear differential opera-
tors M@ and L and the associated boundary conditions for the perturbations,
which solely involve the base flow and its derivatives with respect to y, are specified -
in Appendix A. From the continuity equation (4), the spanwise velocity component
w can be expressed as a function of u and v in the form

Bw = — (M(uu))_1 L(uu)u _ |:(A]M(uu))_1 JAL 4 58_] v. (10)
y

As remarked by Hall [12], system (8-9) is parabolic in the streamwise variable
x and can be solved as an initial value problem in x once suitable initial conditions
at x, also called upstream forcing or “inlet conditions”, have been specified:

u(xo, y) = g1 (y),  v(xo, ¥) = Vi (y)- (11)
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The state vector sp,(y) at the streamwise station x is composed of the two
velocity components {u(x, y), v(x, y)}. Note that x being the evolution variable,
s1x(y) is considered as a function of y with x appearing as a parameter. The inlet
condition on the state vector is denoted by s;,,;(y) = {u(xo, y), v(xo, y)}.

2.2. SPATIAL GROWTH OPTIMIZATION

To quantify the downstream growth of perturbations, the gain g at the location x
is defined as the ratio of the disturbance outlet magnitude at location x to its inlet
- magnitude at location xg:

8(x0, Sixo1s X) = 1181 llout/ 18 xo) lin- (12)

" The inlet measure || - |3, may in all generality differ from the outlet measure || - |ou.
The gain also depends on the particular perturbation sy,,; applied at the inlet as well
as on the inlet and outlet locations x¢ and x. The optimization problem considered
here is the following: given an inlet location xy, a Gortler number G and spanwise
wavenumber 8, determine, for every “observation” station x, the inlet condition
S[x] that produces the maximum possible gain between xy and x

G(xo, x) = sup g(xo, Sixg)> X)- ' (13)
Sixgl #0
The maximum gain curve (xo, x) is therefore the least upper bound of the outlet
magnitudes ||splloue to all possible inlet conditions s, say of inlet norm unity
I5peillin = 1.
Since the problem is parabolic, the response sp,;(y) at x, to the inlet condition
Stxo1(¥) enforced at xo, is formally given by

Stx] = Ple,xolStxols (14)

where P ., 1s a linear operator called the spatial propagator. This operator maps

the inlet condition sp,,;(y) applied at xo, to the outlet condition si,;(y) at location

x, and it is such that P, ., = I, where I is the identity operator. This definition

is inspired by the theory of non-autonomous systems of ordinary differential equa-

tions [5] and it is analogous to the definition of the temporal propagator introduced

by Farrell and Ioannou [7] in the context of generalized temporal stability theory.
If definition (14) is substituted into Equation (13) one finds that

”P[x,xo]s[xo]”out

§(xo, x) = sup (15)

sug#0  15txolllin
The evaluation of the maximum spatial growth therefore reduces to an optimiza-
tion problem for the spatial propagator P, .,). The optimization depends on the
definition of the input and output disturbance measures. The inlet condition which
realizes the maximum gain between x, and the “observation” station x is referred
to as the xo — x optimal inlet condition.
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2.3. GROWTH MEASURES

The velocity components , v, and w considered so far have been scaled according
to the classical Prandtl boundary layer definitions. The most natural disturbance
measure is probably the “physical” perturbation energy with respect to unscaled
velocity variables as introduced by Andersson et al. [2]. In that case v and w must
be multiplied by Re™/2 in order to recover their unscaled value. The “physical”
perturbation energy is a norm which may be used to define a gain

Jo [y +Re7 (], + wip]dy

— , (16) .
Jo [ty + Re™ (wh) + wiy)] dy

2
gA(-x05 s[x()]’ x) =

where the subscript “A” stands for Andersson et al. [2]. Both the maximum spatial
growth and the optimal perturbations then seem to depend on the Reynolds number. '
Since the Blasius solution is asymptotically valid in the limit Re > 1, Luchini
[14] observed that in that limit, the energy at the outlet is given by the streamwise
velocity component # only and that the minimum inlet energy is obtained when
U[x,) = 0. Luchini therefore proposed to consider instead the leading order Re™)
spatial gain defined by:

0o 2
c fo u[x]dy
o2 2 ’
Jo (i + Wik dy

where the subscript “L” stand for Luchini [14]. The maximum spatial growth is
then

g2 (X0, Vjzg)» X) = R Ui = 0, (17)

o0 2
ur,d
Qi(xo, x) =Re sup fo x1 9y

) (18)
0
Vixg) 70,8 xp1 =0 fO (U[ZX()] + w[2x0]) dy

In this case, the optimal perturbations do not depend on the Reynolds number,
as the Reynolds number does not enter the optimization process, and the maxi-
mum spatial growth §y (xo, x) scales linearly with the square root of the Reynolds
number.

The numerical method implemented in the present study separates the compu-
tation of the spatial propagator from the optimization process. It therefore allows
to compute the optimal inlet perturbations and maximum spatial growths by a
simple postprocessing. In the following maximum spatial growths and optimal
perturbations are evaluated for the Luchini gain gy . )
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3. Numerical Method
3.1. DISCRETIZATION PROCEDURE

The downstream marching procedure proposed by Hall [12] is used to numerically
solve the parabolic system given by Equations (8), (9) under the inlet condi-
tion (11). The linear stability equations are rewritten in boundary layer similarity
variables (x, n) with n = y/(2x'/?) and discretized on a uniform grid

X = xo+kAx, k=0,...,N,;
nj = jAn, j=0,...,N,. (19)

At the kth streamwise station x; we denote by uy,,; the vector formed by the
"~ N, — 1 values u(n;) of the u-velocity component at the cross-stream stations 7;,
Jj =1,...,N, — 1. The values for j = 0 and j = N, are known from the
boundary conditions. The vectors vy, and wi,,; are similarly defined with respect
to the v- and w-velocity components. As a result of the parabolic nature of the
governing equations (8) and (9), it is possible to compute the vectors uy,, ;1 and
Vix,,,] Solely from the knowledge of the vectors upy,) and vi,,; by a semi-implicit
downstream marching procedure. The process is initiated at station xy where the
inlet condition (11) is specified. The reader is referred to Hall [12] for details of
the numerical method which is second order accurate in n and first order accurate
in x. The streamwise step used to numerically march downstream is Ax = 0.1.
The free-stream boundary conditions are enforced at ny, = 20 or ny, = 35 (to
minimize finite box effects) and the number N, of points in the normal direction
ranges from 200 to 350 so as to keep the cross-stream mesh spacing An close to
0.1.

3.2. DETERMINATION OF THE DISCRETE PROPAGATOR

Let sp,,) denote the state vector at the location x;, constructed with the N, — 1
discretized values of the u-profile and the N, — 1 values of the v-profile:

Sl = { Hed } : (20)

Vixgl

The discrete propagator Py, ,;, associated with the discrete system, is formally
" defined by the relation

Stxel = Plag.x018Tx01- (21)

The above matrix relation is the discrete counterpart of the continuous equa-
tion (14) defining the spatial propagator Py , . The 2(N, — 1) x 2(N, — 1) matrix
P(,,..x) effectively specifies a linear mapping between the discrete inlet condition
Six,) at the grid point x( and the discrete outlet response sy, at the grid point x;. As
for non-autonomous systems of ordinary differential equations [5], it is convenient
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to introduce the 2(N,, — 1) x 2(N,, — 1) fundamental matrix ®,,; of the discrete
system constructed as follows: 2(N,, — 1) linearly independent inlet conditions

s&], i =1,...,2(N, — 1), are selected and their evolution sgc)k] is numerically

determined. The ith column of ®y,,; is then the 2(N, — 1) vector s&]. As each
column of &/, satisfies Equation (21), the fundamental matrix satisfies a tensor

equation formally similar to (21):
Pt = Prayxg1 Pagl- (22)

Once @y, and P, are known, the discrete propagator may readily be retrieved .
from (22) via the relation
Proxo) = (I’[Xk]q)_l (23) .

[xo]"

In the present investigation, the inlet fundamental matrix has been chosen so that
®(,,; = L whereby Equation (23) reduces to Py, ,,j = @[ the fundamental
matrix at x; simply coincides with the discrete propagator Py, .-

In practice @, = I corresponds to the set of initial conditions such that either
the u- or v-velocity component is non-zero at a single grid point in . Every inlet
condition that may be considered in a numerical simulation can be expressed as
a linear combination of the above defined independent inlet conditions. Of course
other choices for the complete basis that spans the space of inlet conditions would
also be adequate for the present analysis.

3.3. SPATIAL GROWTH OPTIMIZATION

The discretization of the gain g; between the inlet station xo and the outlet station
x is detailed in Appendix B. The discrete counterpart of g;, defined in (17), is given
by Equation (51), i.e.

(24)

12 T
xk) / L AL

2
gL(-XO? v[xo]’ xk)/Re = <_ T T )
X0 Virg1Vixo) T Wixg Wixol

where the T superscript indicates the transpose and it has been assumed that uj,,) =
0. The term (x; /xO)l/ 2in(24)is a rescaling factor due to the fact that the mesh is -
fixed in the n similarity variable whereas the integrals in (17) are performed with
respect to y. Equation (21) may more explicitly be written as

(uu) (uv)

Wiy | P[Xk,xo] P[Xk,XO] U[x,]

A/ - (vu) (vv) v ’ (25)
bl Piiesor Plaero [xo)

with a straightforward definition for the various submatrices PE;‘:,)XO], .... The
discrete counterpart of Equation (10) similarly reads

wu wy Uy,
Wixgl = [ QEXO]) Qfxo]) ] { Lol } . (26)

Vixo]
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By substitution of (25) and (26) into (24) and bearing in mind that up,; = 0, it is
found that

12 o7 pav Tpv
Xk>/ Vi P P v Vixol @n

2 xol™ [xk.xo)
gL(anv[xO]’xk)/Re - <_ T .
T (wv) ' (wv)
%0/ v+ Qe Qi Vil
The maximum gain ¢, defined in Equation (18), is obtained by maximizing over
all possible inlet cross-stream velocities Vix,; # 0 the r.h.s. of Equation (27). The
_maximum is obtained [2, 14, 24] by finding the largest eigenvalue A(L" " of the
generalized eigenvalue problem
T T
[P TP Vi = A [T+ Qe Qe Vi (28)

[xk,x0l * [xk,xo0l [x0]

The numerically evaluated maximum gain is then given by

62 (xo, 1) /Re = (x¢/x0)'* A", (29)
and the corresponding eigenvector Vgé’]t) is the v-optimal perturbation. The w-
optimal perturbation is deduced from Equation (26): since ujy,; = 0, wgg]t) =

Q&’]’)vgg]o. Both LAPACK routines [1] and the power iterations method [18] have

been used in order to numerically determine A{**" and v{oy.

In Appendix C we briefly compare the computational cost of the direct approach
used here to the iterative direct-adjoint approach used by Andersson et al. [2] and
Luchini [14].

4. Optimal Inlet Conditions and Maximum Growth

The numerical results shown in the following pertain to the Gortler number
G = 0.224 and the spanwise wavenumber B = 0.069 considered by Hall
[12]. In order to compare results based on different reference lengths L* it is
customary to define a Gortler number based on the local streamwise position
G? = Rel/?(x*/R*) (with Re, = x*UZ /v,)and spanwise wavelength parame-
Cter A = (ULA*/v¥)(A*/R*)V/2. The followings relations hold: G, = Gx*/*,
A = G2r/B)%2. For the values of G and B specified above, A = 97.5. The
_ correspondence between the x values used in the following and the corresponding
G, is given in Table L.

Since the boundary layer thickness 8(x) increases as x'/2, the ratio of the
spanwise wavelength A to §(x) decreases both in dimensional and dimension-
less variables (recall that both the wavelength and the normal coordinate were
rescaled with respect to the same reference length Re™'/2L*). For instance, for
the considered wavenumber, the wavelength of the Gortler vortices is almost four
times the boundary layer thickness §(x) at x = 10, twice 8(x) at x = 40 and
decreases to less than 8(x) at x = 165 (the boundary layer thickness is where
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Table 1. Correspondence between the
values of the abscissa x most used in
the present study and the correspond-
ing Gy values (for G = 0.224).

x Gy
20 2.128
40 3.56
120 8.12
200 11.91
240 13.65

the streamwise component of the base velocity is 99% of the free-stream velocity
[20]). In the upstream region where the wavelength is larger than the boundary
layer thickness and where the boundary layer thickness varies rapidly, the local
weakly non-parallel approach does not apply [12]. Further downstream, say for
x > 165, the wavelength becomes smaller than the boundary layer thickness and
d(x) varies slowly, so that the local normal mode decomposition should apply and
the response to any inlet perturbation should converge to the most amplified mode
of the local theory, as pointed out by Hall [11-13], Day et al. {6] and Bottaro and
Luchini [4]. In particular, the latter authors have used a second-order development
in G;l to extend the range of applicability of local normal mode theory to larger
spanwise wavelengths than in earlier investigations.

Figure 1a displays, in the z—7 plane, the optimal inlet perturbation vector field
wieh -vieh’ which maximizes the g, gain between the inlet location xo = 20 and
x = 200. This inlet perturbation produces at the streamwise station x = 240,
considered by Hall [12], the u-field plotted in Figure 1b. Since uf,,; = 0, the
optimal inlet condition consists of periodic streamwise vortex pairs (Figure 1a)
which develops into periodic streamwise streaks with u[,,) 7 O (Figure 1b). These
streaks are alternating regions of high and low streamwise velocity u that may
strongly deform the Blasius velocity field, thereby leading to locally inflectional -
velocity profiles [22]. The optimization of the g, gain yields the purely streamwise
vortices of norm unity which are the most efficient in producing large-amplitude
streaks.

The effect of the optimization station x on the optimal inlet perturbation is
considered in Figure 2, where three different optimal inlet conditions at xo = 20
are shown that maximize the gain gy (xo, vy, x) respectively at (a) x = 40,
(b) x = 120 and (c) x = 200. Recall that in the definition of the g gain u[,,; = 0.

In the figure, v[(j;)]t) (n) and w[(;’g]t)(n) are normalized so that fooo(v[zx()] +w[2x0]) dnp = 1.

All optimal perturbations are seen to have a similar structure: a v-component with
one extremum and a w-component with two extrema of opposite sign. Optimal
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Figure 1. View in the z—7 plane of the transverse wiyy] — V[x,] velocity field associated
with optimal inlet conditions (a) and magnitude of the corresponding streamwise u-velocity
component generated at x = 240 (b) for the Luchini gain. The displayed optimal velocity
field corresponds to case (c) of Figures 2 and 3, i.e. optimal inlet conditions (a) are applied at
xo = 20 and the gain is maximized at x = 200, while their evolution (b) is shown at x = 240.
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Figure 2. Optimal inlet conditions applied at xg = 20 which maximize the gr. gain respec-
tively at (a) x = 40, (b) x = 120, (c) x = 200. Left: normal distribution of normal perturbation
velocity v[y,](n). Right: normal distribution of spanwise perturbation velocity wiy,j(n). The
curves corresponding to cases (b) and (c) nearly coincide.
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Figure 3. u-perturbation velocity profiles at x = 240, for inlet conditions (a), (b) and (c) of
Figure 2.

perturbations for the location x = 200 correspond to the vortices represented in
Figure 1a. As the optimization location x moves downstream, these vortices grad-
ually move away from the wall (Figure 2) and the v- and w-optimal perturbations
at the inlet xy = 20 appear to converge asymptotically to the same form.

The u-velocity profiles produced at the downstream location x = 240 by the
three inlet perturbations in Figure 2 are represented in Figure 3. The u-velocity
profiles are seen to differ in amplitude but not in shape. Solutions (b) and (c), opti-
mal at x = 120 and x = 200 respectively, are nearly undistinguishable at x = 240
whereas solution (a), optimal at x = 40, remains of slightly lower amplitude. As
already mentioned, this convergence of the downstream velocity field to a unique
shape may be attributed to the emergence of a most amplified downstream mode
given by local theory.

The maximum gain curve §p(xg,x) and the individual gain curves
81 (x0, V[x,], X) corresponding to the different inlet conditions specified in Figure 2
are represented on a semi-log plot in Figure 4. The gain curves associated with
inlet conditions (a), (b) and (c) that maximize the gain respectively at x = 40,
120 and 200 are seen to be tangent to the maximum gain curve § (xp, x) at these
stations as required by definition (13). The gain curves associated with optimal _
inlet conditions (b) and (c) almost coincide with the maximum gain curve G (xg, x)
over an extended streamwise range. As already noticed in the context of Figure 2,
whenever the optimization station is moved sufficiently far downstream from the
inlet station xo, the response and thus the gain curves gy, (xo, Vi), X) become nearly
insensitive to the optimization station.

In order to investigate the effect of the inlet location xj, computations have
been performed for the single fixed optimization station x = 200 and different
inlet stations xo. The v- and w-optimal inlet conditions pertaining to (d) xo = 10,
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Figure 4. Gain curves gp(xg, V[x,]» %)/ Re!/2 associated with inlet conditions (a), (b) and (c)
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Figure 5. Optimal perturbations with varying inlet station. Left: normal distribution of nor-
mal perturbation velocity v[y,](n). Right: cross-stream distribution of spanwise perturbation
velocity wy,(17) that optimize the gain at x = 200 for (d) xg = 10, () xo = 20, (f) xp = 40,
(8) xo = 120.

(e) xo = 20, () xo = 40, (g) xo = 120 are shown in Figure 5 as a function of
the similarity variable 7. The v- and w-optimal inlet perturbations are observed
to become localized further and further away from the wall, outside the bound-
ary layer, as the inlet station xo moves closer to the leading edge. This feature
demonstrates that the receptivity of the boundary layer changes with inlet location:
when the inlet station moves closer to the leading edge, optimal perturbations
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Table II. Elevation above the plate of the maximum of the
perturbation velocity v(;)p]t) optimal at x = 200, as a func-
tion of xg/x. The position of the maximum is indicated
both in terms of the similarity variable n and in terms of
the ratio of the non-rescaled variable y to the spanwise

wavelength A.

xo/x n y/x

0.6 1.91 0.325
0.2 2.74 0.270
0.1 3.35 0.233
0.05 4.29 0.210

are localized in the free-stream, outside the boundary layer. As the inlet station
moves downstream, optimal perturbations become localized within the boundary
layer. Surprisingly this shift is slow and at x, = 20 optimal perturbations are still
largely localized outside the boundary layer. This trend is clearly observable in
Table II where the elevation 7 above the plate of the maximum of the v-optimal
inlet perturbation (Figure 2) is specified in the second column versus the ratio xy/x
between the inlet and the optimization station (first column). The location 7 of the
maximum increases continuously as xo/x goes to zero. Also indicated in Table II
are the same data given in terms of the original variable y scaled with respect to the
spanwise wavelength A = 27 /8. The scaled elevation y/A of the maximum seems
to converge as xo/x goes to zero, thereby implying that the optimal perturbation
converges to a limiting form centered about a finite y/A elevation as the inlet station
xp approaches the leading edge xo = 0. The limitations imposed by the numerical
scheme have not enabled us to fully confirm this trend. As xo moves closer to
zero, the boundary layer thickness decreases while the optimal perturbation moves
outside the boundary layer. In order to capture both these phenomena the numerical
resolution must concurrently increase over a wider and wider domain. A conserva-
tive numerical formulation in x, y variables, similar to the one used by Andersson
et al. [2], and Luchini and Bottaro [15] would probably succeed in relaxing this
limitation. It is however clear that there is a progressive shift from receptivity to
free-stream perturbations to receptivity to boundary layer perturbations as the inlet .
station gradually moves downstream of the leading edge.

The maximum gain 4, that may be achieved between different inlet stations x
and the fixed downstream outlet station x = 200, is displayed in Figure 6. The
convergence to a finite value as xq moves closer to the leading edge is evident.
Moreover for the single spanwise wavelength tested § = 0.069, the maximum
gain slightly decreases between xy = 20 and x, = 10, thereby indicating that
perturbations upstream of xo = 20 do not lead to an increase of the downstream
perturbation energy. In weakly non-parallel flows the neutral point is usually de-
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Figure 6. Maximum gain §; (xo, x = 200)/Re!/2, associated with inlet conditions (d), (e),
...(h) of Figure 5.

fined as the streamwise station separating a stable region, where the spatial growth
rate of the disturbances is negative, from a region where it is positive. In that case
the neutral point is also the most effective inlet station in order to produce the most
amplified downstream response. In the present case the definition of a neutral point
using a sort of “local” spatial growth rate is meaningless. However, the station
x9 = 20, which seems to be the optimal inlet station for the parameter setting
used here, could be interpreted as the analogue of a neutral point for the strongly
non-parallel problem.

It is striking to note that the present optimal inlet conditions pertaining to the
Gortler instability (Figures 1a and 2) display a strong qualitative similarity with the
optimal inlet conditions found by Andersson et al. [2] and Luchini [14] in the case
of a flat plate boundary layer (G = 0, i.e. without the centrifugal instability arising
from the curvature). The global sensitivity to perturbations and the structure of
the response seem to be similar for the flat and the curved boundary layer in spite
of distinct local instability properties. Indeed, in the spatial range considered by
" Andersson et al. [2] and Luchini [14], the flat plate boundary layer is everywhere
locally stable while the boundary layer on a concave wall considered here is locally
. unstable. In the curved plate case, the streaks produced downstream emerge from
an instability, whereas in the flat plate boundary layer case, they arise from transient
spatial growth. In both cases however they may lead to transition. This resemblance
further supports the fact that locally parallel or weakly non-parallel analyses may
be misleading in determining the spatial growth of disturbances in the upstream
portion of boundary layers. Luchini and Bottaro [15] have computed the optimal
free-stream perturbations for the Gortler problem by choosing a metric which is
different from the present one: in their case, the inlet disturbance amplitude is
measured by its streamwise vorticity (roll receptivity) or by its streamwise velocity
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(streak receptivity), so that the present optimal perturbations cannot be directly
compared with theirs.

In earlier studies [2, 14, 15] the optimal perturbations were evaluated at the
leading edge of the plate (xo = 0), where the boundary layer has zero thickness,
while the optimal perturbations considered here are applied at a streamwise station
where the boundary layer has a finite thickness (xo > 0). At the leading edge
the optimal perturbations must be considered as free-stream perturbations, while
if the inlet station is sufficiently far downstream the optimal perturbations are
internal to the boundary layer. According to the present analysis it is clear that,
inbetween these two cases, optimal perturbations are a mix of external and internal
disturbances.

5. Non-Normality of the Spatial Propagator

The consistent asymptotic analyses of Hall [11, 12] have clearly emphasized the
essential role played by non-parallel effects in the streamwise development of
Gortler vortices. It is the purpose of this section to demonstrate that the main
features of the streamwise evolution of Gértler vortices, i.e. the difference between
the most downstream amplified mode and the optimal inlet conditions, the strong
sensitivity of the spatial gain to inlet conditions as well as the fast initial growth of
the optimal perturbations near the inlet station, may be essentially ascribed to the
non-normality of the propagator Py ..

Much attention has recently been given to temporal transient amplification
mechanisms in stable flows (see, for instance, Trefethen et al. [23] for a review).
Our goal here is rather different: we want to investigate the effect of the non-
normality of the propagator on the spatial dynamics in an unstable system. To
illustrate this point let us examine the simple linear two-dimensional “toy” system

ds
— = As, 30
dx S (30)
with
My Y
A= , 31
[0 m] (31)

which is analogous to the models considered for instance by Trefethen et al. [23],
Schmid and Henningson [21], and Farrel and Ioannou [7]. Since spatial evolution
is modelled rather than temporal dynamics, time ¢ has been simply replaced by
“streamwise” distance x. The most fundamental difference with the above analyses
is that we consider an unstable system with u; > 0.

The solution of Equation (30) is formally given by

Stx] = Pl xo1Sxo] (32)
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when an “inlet” condition s, is applied at xo. In the autonomous case, i.e. when
(11, (2, v) do not depend on x, the propagator is given by

o (x—xg) _ (x=x0)
P A(x—xp) et(x=x0) ¥ (eM26—0) i1 (=x0))
ool =€ = o —p

0 et (r—xo) (33)
Let us first summarize the properties of the propagator (33): its eigenvalues are
et —x0) i = 1, 2. We assume that i, > 0 and p, < 0 so that the first (second)
eigenvalue of P, ,, is greater (less) than unity in absolute value for all x > xo,
_thus implying instability (stability) of the corresponding mode. The associated
eigenvectors are YV = {1, 0} (spatially amplified), and ¥ @ = {y, (u2 — w1)}
(spatially decaying). When y = 0, the eigenvectors of Py, , are orthogonal and
+ Pl xo) 18 said to be a normal operator [23]. When y # 0, they are not orthogonal
and Py, . is said to be non-normal. The adjoint of the propagator with respect
to the Euclidean norm is obtained by simply transposing matrix (33). The adjoint
eigenmodes are 1/f(1)* = {(up — 1), —y} and lﬁ(z)* = {0, 1}.

When y # 0, the eigenvectors of the adjoint operator are seen not to coincide
with the eigenvectors of the original operator. Thus, the vector of (Euclidean) norm
unity that has the largest component along a given eigenvector, when expanded
on the basis of eigenvectors, is not this eigenvector but the corresponding adjoint
eigenvector. As a consequence, in the stable case, non-normal propagators, in con-
tradistinction with normal ones, may exhibit amplified transients in spite of the
fact that all the eigenvalues of Py, ,,; are of absolute value less than unity. Most
of the interest has so far been focused on counter-intuitive transient amplifications
in stable fluid systems such as Couette and Poiseuille flows. In the unstable case,
non-normality of the propagator may still induce large initial transient growths. The
feature we wish to illustrate and emphasize is that non-normality may be associated
with extra gain at large time or “streamwise” distance, i.e. a gain larger than the
integrated growth associated with the leading eigenvalue.

The effect of a rescaling of the state variables is now examined in the context
of the problem (30), (31). Let §; = s,, §, = Re™!/2s, denote the “physical” state
vector where s; is the analogue of the u-velocity component and s, the analogue of
the v-velocity component. The “physical” and the rescaled “boundary-layer” state
* vectors are related through a rescaling matrix R via the expression

0 Re™'/?

The expression of the propagator in “physical” variables can then be readily
obtained by substitution of (34) into (32) to obtain

§[x] = RS[X], R = |: ! 0 :| . (34)

Stx1 = Ppe xg1Sixols (35)
where
Re'”? (euz(X—xo)_eul(X—xo))
~ _ 1 (x—xp) 4
P[x,xo] =R 1P[)c,xo]ll = € H2—H] (36)
0 et2(x—x0)
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Figure 7. Maximum gain curves gA(xo,x)/Rel/2 of “toy” system (30), (31), with
w1 = 1/10, uy = —1/10, y = —3, for Reynolds numbers Re = 1, 102, 10%,

When the Reynolds number is finite the R matrix is non-singular. In this case it can
be easily seen that the propagators Py, ,; in “boundary layer” variables and IA’[X,XO]
in “physical” variables have the same eigenvalues. The effect of rescaling on the
propagator is merely to rescale y via an equivalent y = yRe!/?, i.e. to increase the
non-normality of the propagator.

The “physical” energy is given by the square of the (Euclidean) norm of §,;.
The analogue of the ga gain is based on the norm pertaining to the rescaled state
vector Sy

A 2 "2 2 1.2
181112 CStaa T Se S TR,

S YY) a2 - 2 -1.2 :
ISt ll®  Segnt 80012 Speor TRET S5

84 (%0, Sixgp, ) = 37
As the Reynolds number increases, an increase of non-normal effects is to be
expected. In Figure 7 the maximum spatial gain curves G, /Re!/? are displayed
for Re = 1, Re = 100 and Re = 10000. For Re = 1 the g4 gain coincides
with the gain of the propagator P, . in the “boundary layer” variables. The other .
two curves almost coincide except for the very upstream portion, since for x = 0
they start with the value 1/Re!/2. For large Reynolds numbers (in our example
Re > 100) the rescaled maximum spatial gain curves become almost Reynolds
number independent as yet observed by Andersson et al. [2] and the limiting value
is given by the g;. gain. The initial growth is seen to be very strong as observed in
Figure 4 for the Gortler system. The optimal inlet condition for large optimization

. . ~ (1 ,
stations x is given by the adjoint eigenvector 1/f( - {(uz — 1), —yRe!’?} while

. . . ~ (1)
the “optimal response” is proportional to ¥ ~ = {1, 0}. For large Reynolds num-
bers one recovers the result that the optimal inlet condition is nearly orthogonal to
the optimal response. This is exactly what happens when one uses Luchini’s gain
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in which the optimal inlet (with ug = 0) is orthogonal to the optimal ouput (with
v =0and w = 0) i.e. fooo uug + Re ! (vvg + wwp) dy = 0.

6. Discussion and Conclusions

A flexible numerical optimization technique has been used to determine the x—
Xo optimal inlet conditions which, applied at a given upstream inlet location xg,
maximize the amplitude of Gortler vortices at some downstream location x. In the

. linear approximation, perturbation velocity profiles at a given station x are related
to those imposed at the inlet x, through the spatial propagator of the system. A
numerical approximation to the spatial propagator has been constructed by using

* a set of numerical simulations of the downstream response associated with a com-
plete set of linearly independent inlet conditions. The parabolic system of equations
governing the spatial evolution of Gortler vortices has been solved numerically
with the downstream marching technique proposed by Hall [12].

In the present analysis the inlet station is taken at a finite distance from the
leading edge of the curved plate, where the boundary layer thickness is finite, and
the maximum spatial growth is computed. Even if the curvature starts at the leading
edge, perturbations may be introduced in the boundary layer by many different
receptivity mechanisms, not all known, and all not active just at the leading edge.
Therefore, the maximum spatial growth computed here decouples the leading edge
receptivity from the subsequent evolution of the perturbation and gives a global
upper bound for spatial growth between two spatial stations, no matter how the
disturbances entered the boundary layer upstream. The present analysis has shown
that close to the leading edge Gortler vortices are still receptive to free-stream
perturbations since the optimal inlet condition there has a large amplitude outside
the boundary layer. When the inlet station is selected to be further downstream, the
optimal inlet perturbation is entirely localized inside the boundary layer, indicating
that the amplification is not due to receptivity but to the instability of the boundary
layer. If one is interested in delaying transition to turbulence by optimal or robust
control it is essential to account for the possibility of transient growth and to evalu-
ate the norm of the open loop transfer functions between inlet disturbances and the

* selected performance measures [3]. These transfer functions can be obtained from
an optimization performed on the spatial propagator of the system.

Optimal perturbations have been determined by suitably postprocessing the
computed propagator. We have chosen the gain definition proposed by Luchini
[14] which consists, for infinite Reynolds numbers, in the ratio between the outlet
and inlet perturbation energy density. The optimal inlet perturbations are periodic
streamwise counter-rotating vortex pairs that generate streamwise streaks further
downstream. The optimal inlet condition as well as the corresponding downstream
response display a strong qualitative resemblance with the optimal perturbations
found by Luchini [14] and Andersson et al. [2] in the flat plate case. The flat plate
boundary layer analyzed by these authors was stable in the streamwise range which
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they considered, and the observed streamwise growth was necessarily of a transient
nature, while the concave wall boundary layer considered here is unstable and
perturbations keep growing downstream. Furthermore, the optimal perturbations
calculated by Luchini and Andersson et al. are given at the leading edge of the
plate, where the boundary layer has zero thickness, while the optimal perturbations
considered here are given downstream of the leading edge, where the boundary
layer has a finite thickness. It has been verified that as the inlet station is moved
upstream, the distribution of optimal inlet conditions moves outside the boundary
layer into the free-stream, and it seems to converge to a non-singular perturbation
distribution at the leading edge xo = 0. This result indicates that, for a fixed -
spanwise wavelength, optimal perturbations of the Gortler vortices do not scale
with the boundary layer thickness. When inlet perturbations are applied sufficiently |
far upstream, the optimal perturbations are located outside the boundary layer.
Downstream of the leading edge, the boundary layer is still strongly receptive to
free-stream disturbances. Thus, not only leading edge receptivity per se but also
receptivity to free-stream disturbances all along the boundary layer should be taken
into account.

The total gain strongly depends on the selected inlet condition so that the predic-
tion of transition stations based on critical gains, e.g. the widely used e”-method,
is expected to be very sensitive to different upstream forcings. Furthermore, the
optimal inlet conditions strongly differ from the most amplified mode that emerges
far downstream. Even if the non-parallelism of the base flow is known to be an
essential ingredient in the spatial dynamics of the Gortler instability and this effect
is taken into consideration to determine the spatial propagator, non-parallelism
alone does not necessarily account for the spatial evolution of Gortler vortices.
The non-normality of the associated spatial propagator is suspected to give rise
to long spatial transients that are then sustained downstream by the Gortler in-
stability, as illustrated on a simple “toy” dynamical system. Several qualitative
features of the Gortler flow are reproduced by the “toy” system and may be at-
tributed to the non-normality of the spatial propagator. In particular the strong
sensitivity of the perturbation evolution, the large additional gain generated by
optimal perturbations, when compared to local eigenmode perturbations, and the
wide differences between optimal inlet conditions and the far downstream re-
sponse, strongly support an interpretation of these effects in terms of non-normality
considerations.

Appendix A

Let D denote partial differentiation with respect to y. The operators appearing in
Equations (8) are then defined as follows:

M“ = U, (38)
M@ = 0, (39)
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(o) °U U
MY =2 +—D], (40)
axdy  dy
3*U
M® = — +UB* - DY, (41)
dy?
aUu
Le — (D — ’32) -, (42)
dx
ou
LW — _yp_ —, 43)
dy
v *U
L™ = ——(D*+ p%) + +2G°p2, (44)
0x 9x29y
v U
LW — (g2 _ p2)? :_pyy 2L
(8~ DY + (8 = %) 3+ 55
U
- VD + D+ 8°D. (45)
dxdy
Associated boundary conditions read:
u(x,0) =0, u(x,00)=0;
v(x,0) =0, v(x,00) =0
Dv(x,0) =0, Duv(x,00)=0. 46)

Appendix B

The objective of this appendix is to discretize the integrals used to define the gains
in Equations (16) and (17). First of all, a conversion from the normal physical
coordinate y to the normal boundary layer coordinate 7 is necessary because the
equations have been discretized in 7. For instance, the u’-integral gives

oo o0
/uzdy =2)cl/2/‘u2 dn. 47
0 0

Using a simple trapezoidal integration rule and taking into account boundary
- conditions (46), the integral can be further reduced to

00 Ny—1
fu2 dn = An Z u*(x,n;) = Anujqug, (48)
0 j=t

so that one obtains
o0

/ u*dy = 2x'? Anufjup. (49)
0
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In a similar way it is found that
x> xX
/ vV dy = 2x'2An v v, f w?dy = 2x'2An w] Wi (50)
0 0

By substitution into Equations (16) and (17) one finally obtains:

T
WUy

1/2
X
22 (X0, Vix]» X)/Re = (—) 5 (51)
[

T T :
X0 o1 Yxol T Wik Wixol

Appendix C

In this appendix we compare the computational cost of the direct (D) “discrete
propagator approach”, used here, to the iterative (I) “direct-adjoint approach” used
by Andersson et al. [2] and Luchini [14].

For the (D) approach we assume that a finite difference code is used in order
to march an inlet condition downstream and that this code requires kN, operations
to advance the solution by one spatial increment Ax. The first step consists in
the computation of the propagator at each streamwise station. As the number of
independent variables is 2, this requires the downstream integration of 2N, up-
stream conditions and thus 2kN§ N, operations. Assume then that a power iteration
method is used in order to compute the optimal perturbations and growth. The
operator P[T;ck,xo]P[xk,xo] is applied at each iteration. If ¢ is the number of iterations
required to converge the power iterations, as each iteration requires the evaluation
of the propagator and the adjoint propagator on a state vector, 2c(2N,)? operations
are needed for each optimization. If the optimals are evaluated at streamwise sta-
tions separated by pAx (i.e. in N,/p points), the total number of operations for
the optimization process is then 8cN3Nx/ p. Globally the (D) approach will thus
require (2k + 8¢/ p) N} N, operations.

In the (I) approach a power iteration method is also used. However, instead
of computing the propagator and its adjoint, one marches downstream the direct
equations (instead of applying P, ,) and marches upstream the adjoint equa-
tions (instead of applying P[Txk,xo]) at each iteration. We assume that the same finite _
difference code as for the (D) approach is used to perform the direct integration,
and that a similar code is used for the adjoint upstream marching. Of course, the
number ¢ of iterations required in order to converge the iterations is the same as
for the (D) approach. In order to compute the optimal perturbations and growth
at the x; = jAx streamwise station, the total number of operations will thus
be 2ckjN,. The number of operations needed by the (I) approach to evaluate the
optimal perturbations and the optimal growth at streamwise stations separated by

pAx is 2ckN, 3217 pj = (ck/p)N,N¢ (N, + p).



MAXIMUM SPATIAL GROWTH OF GORTLER VORTICES 391

The ratio of the operations required by the (D) to those required by the (I)
approach is therefore

(2k + 8¢/ p)N,
(ck/p)(Nx + p)

From Equation (52) one may observe, for instance, that the (D) approach requires
more operations than the (I) approach when the optimization stations are not far
from the inlet (N, <« N,) and/or when a small number of optimization stations is

. analyzed [p/N, = O(1)]. However, when many optimization stations are analyzed
(p/N, < 1) and when they are not too close to the inlet station (N, > N,), the

- (D) approach may, unintuitively, require less operations than the (I) approach. For

* instance, in the case analyzed in this article the average power iteration number
was ¢ = 4, the constant k was of the order of 5 and p = 1. In a typical simulation
N, =200 and N, = 2200. With this set of parameters, the ratio of operations used
here, compared to the number of operations required by a direct/adjoint approach
is, according to Equation (52), about 1/5. If we had decided to evaluate the optimal
growths and perturbation every 10 spatial steps (i.e. p = 10) the ratio would have
been about 3/5.

(52)
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