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The global linear stability of a three-dimensional compressible flow around a yawed
parabolic body of infinite span is investigated using an iterative eigenvalue method in
conjunction with direct numerical simulations. The computed global spectrum shows
an unstable branch consisting of three-dimensional boundary layer modes whose
amplitude distributions exhibit typical characteristics of both attachment-line and
crossflow modes. In particular, global eigenfunctions with smaller phase velocities dis-
play a more pronounced structure near the stagnation line, reminiscent of attachment-
line modes while still featuring strong crossflow vortices further downstream. This
analysis establishes a link between the two prevailing instability mechanisms on a
swept parabolic body which, so far, have only been studied separately and locally.
A parameter study shows maximum modal growth for a spanwise wavenumber of
β = 0.213, suggesting a preferred disturbance length scale in the sweep direction.

1. Introduction
The aerodynamic design of high-performance aircraft crucially depends on a sound

understanding of the compressible flow around swept wings. The details of the trans-
ition process from laminar to turbulent fluid motion play a dominant role in the de-
scription of this flow. Two instability mechanisms have been suggested to trigger trans-
ition: the amplification of perturbations in the swept attachment-line boundary layer
and of crossflow vortices in the three-dimensional boundary layer further downstream.
These two instability mechanisms have been studied separately, despite a general ac-
knowledgment that they coexist under realistic conditions. The subdivision of the flow
configuration and the resulting separate treatment of these two instability mechanisms
has been a necessary simplification of the complex flow problem in order to treat it
with classical tools of hydrodynamic stability theory. Owing to the recent progress in
computational resources and in global stability analysis, however, we are now able
to address a more realistic configuration that covers simultaneously attachment-line
and crossflow vortex instabilities. Note, however, that the notion of two independent
instability mechanisms has more of an historical than a physical origin.

First evidence for the interaction of instabilities near the leading edge with the
crossflow vortices further downstream came from the experiments of Gray (1952). He
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found that by increasing the sweep angle, the location where the onset of transition was
observed moved toward the attachment line. In following decades a great number of
experimental efforts addressed instability issues for both the attachment-line boundary
layer and, even more so, the three-dimensional boundary layer (see Bippes 1999; Saric,
Reed & White 2003 for a recent review). Among this body of literature, Poll (1979)
was the first to establish a distinction between crossflow-induced transition and
transition initiated by leading-edge instabilities. His measurements on an immersed
swept cylinder provided motivation for theoretical investigations.

A simplified model of the attachment-line boundary layer was studied by Hall,
Malik & Poll (1984) who demonstrated that this flow becomes linearly unstable to
wave-like disturbances propagating along the attachment line. This model was based
on swept Hiemenz flow, which represents a similarity solution of the incompressible
three-dimensional Navier–Stokes equations for swept attachment-line flow, and the
Görtler–Hämmerlin assumption, which takes the same linear x-dependence for
the perturbation and the base flow. Subsequently, Lin & Malik (1996) discarded the
restrictive Görtler–Hämmerlin assumption and uncovered additional linearly unstable
modes. They extended their analysis to compressible flows (Lin & Malik 1995) and
also assessed the influence of the leading-edge curvature on flow stability (Lin &
Malik 1997). A recent overview of attachment-line instabilities is given in Le Duc,
Sesterhenn & Friedrich (2006).

Further downstream, the presence of sweep and curvature significantly modifies the
flow. An imbalance between centrifugal forces and the streamwise pressure gradient
induces curved streamlines throughout the boundary layer, and the resulting crossflow
velocity gives rise to stationary or travelling crossflow vortices (Reed & Saric 1989).
In contrast to the attachment-line instability, the crossflow instability is of inviscid
type caused by an inflection point in the three-dimensional base velocity profile.
Numerous theoretical and numerical efforts have studied the stability of compressible
crossflow vortices for planar geometries, based on the parabolized stability equations
(e.g. Herbert 1997) or direct numerical simulations (e.g. Joslin 1995); for an overview
of the relevant literature see Saric et al. (2003) and the references therein.

Despite many studies of each instability, little is known to date about a connection
between the two. Starting from incompressible swept Hiemenz flow, Spalart (1988)
obtained solutions off the attachment line that are strongly reminiscent of crossflow
vortices and thus provide a first indication of a link between them. Bertolotti
(1999), using the parabolized stability equations, furnishes strong evidence for a
connection between attachment-line instabilities and crossflow vortices. By continuing
an attachment-line mode significantly far downstream, he finds a close match – both
in terms of growth rate and modal shape – with the least-stable crossflow mode. The
structure of the entire mode connecting the attachment-line and the crossflow neutral
point, however, was not examined.

This lack of a connecting mode as well as the findings above strongly suggest
a global treatment of the stability problem without limiting assumptions regarding
the geometrical domain of interest. Such an investigation allows the simultaneous
treatment of the attachment-line instability and crossflow vortices. Modern techniques
such as iterative eigenvalue methods (Edwards et al. 1994) in conjunction with direct
numerical simulations based on higher-order spatial discretization schemes provide
the necessary tools to address the global stability problem. In this article, we present
results from a global stability analysis of compressible flow around a swept parabolic
body which demonstrate a connection between the two prevailing local instability
mechanisms.
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Figure 1. Sketch of the three-dimensional flow configuration showing the relevant flow
parameters, the coordinate systems and the grid-point distribution.

2. Flow configuration, governing parameters and numerical method
The flow configuration, as displayed in figure 1, consists of a parabolic body (in

grey) about which a three-dimensional body-fitted grid (in blue) is mapped. The local
Cartesian coordinate system (in red) is given by the x-direction, the y-direction and
the spanwise z-direction pointing along the attachment line (in black), and the local
parabolic coordinate system (in orange) consists of the chordwise ξ -direction and the
normal η-direction pointing along grid lines in the downstream direction and normal
to the wall, respectively. The leading-edge radius of the parabolic body is denoted by
R. The incoming flow impinges on the body with a velocity q∞ and a sweep angle Λ

yielding a sweep velocity w∞ and a wall-normal velocity v∞. The subscript ∞ refers to
the flow state downstream of a detached bow shock which acts as the inflow boundary.

We define a viscous length scale δ, a sweep Reynolds number Res and a sweep
Mach number Mas as

δ =
(νr

S

)1/2

, Res =
w∞δ

νr

, Mas =
w∞

c∞
, (2.1)

respectively, where νr denotes the kinematic viscosity evaluated at recovery tempe-
rature, S is the strain rate at the wall, at the attachment line (x = 0), and c∞ is
the speed of sound. Alternatively, the Reynolds number Res can be reformulated to
display an explicit dependence on the leading-edge radius R and the sweep angle Λ.
We obtain (in accordance with Lin & Malik 1997, up to a scaling factor)

Res =

(
v∞R

2νr

)1/2

tan Λ. (2.2)

We consider the motion of a compressible fluid modelled as a perfect gas with
constant specific heat ratio γ = 1.4 and constant Prandtl number Pr = 0.71. The
compressible Navier–Stokes equations, the equation of state, Fourier’s law for the
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Figure 2. Streamlines (in blue) and pressure field of the computed steady base flow for
Res = 800 and Mas = 1.25. The pressure has been non-dimensionalized by the stagnation
pressure, and a leading-edge radius of R = 0.1 = 508δ has been used. The resolution is 128×255
points in the normal η-direction and the chordwise ξ -direction, respectively.

thermal conductivity and Sutherland’s law (at ambient conditions) for the viscosity
fully describe the flow. The equations are formulated based on pressure p, Cartesian
velocities (u, v, w) and entropy s and are solved on a time-dependent, curvilinear and
non-uniformly distributed grid, with a clustering of the grid points towards the wall as
well as in the leading-edge region, as shown in figure 1. The governing equations are
discretized using fifth- and fourth-order compact difference schemes for the inviscid
and viscous terms, respectively, and a resolution of 128 × 255 points was used to
resolve the characteristic length scales of the eigenmodes with more than six points
in the normal η-direction and approximately four points in the chordwise ξ -direction.
The temporal discretization is accomplished by a fourth-order Runge–Kutta scheme
(see Sesterhenn 2001; Le Duc et al. 2006, for details).

In the wall-normal direction, the computational domain is limited by a detached
unsteady bow shock which is incorporated through a shock-fitting mechanism (Fabre,
Jacquin & Sesterhenn 2001) and provides the inflow conditions via the Rankine–
Hugoniot relations (see Oswatitsch 1956). Along the surface of the body no-slip
boundary conditions and adiabatic wall conditions are applied. At the chordwise
edges of the computational domain, non-reflecting outflow boundary conditions are
imposed and, under the assumption of infinite span, periodic boundary conditions
are used in the z-direction.

3. Global stability analysis
The two-dimensional base flow φ0(x, y) is stable to two-dimensional perturbations,

which allows a simple time-integration toward a steady state and avoids more
sophisticated methods such as Newton iteration, arclength continuation or selective
filter techniques to compute the steady state. The obtained base flow forms the
foundation for the subsequent global stability analysis and is displayed, in terms of
streamlines and pressure field, in figure 2. The complexity of the base flow requires a
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global stability approach since the x- and y-coordinate directions can no longer
be separated. For this reason, a three-dimensional small-amplitude perturbation
φ′(x, y, z, t) is superimposed on the base flow, and the travelling-wave form

φ′(x, y, z, t) = φ̃(x, y)ei(βz−ωt) (3.1)

is assumed. In this expression, φ̃(x, y) denotes the complex amplitude and β the real
spanwise wavenumber of the perturbation. The temporal long-term evolution of this
disturbance is characterized by ω whose real part describes the frequency ωr with the
imaginary part as the corresponding growth rate ωi .

Under these assumptions, the global stability problem can formally be written as

ω φ̃ = J(φ0) φ̃, (3.2)

where J(φ0) represents the linear stability operator (the Jacobian), i.e. the Navier–
Stokes equations linearized about the base state φ0. The direct solution of this
eigenvalue problem is prohibitively expensive, and iterative solution techniques have to
be employed to extract pertinent stability information. To this end, an m-dimensional
Krylov subspace sequence

Km{φ, J(φ0)} = span{φ, J(φ0)φ, J(φ0)
2φ, . . . , J(φ0)

m−1φ}, (3.3)

consisting of repeated applications of the Jacobian matrix to a given initial flow field φ

is used in connection with the Arnoldi method (see Edwards et al. 1994 for applications
of iterative techniques in fluid mechanics) to project the full stability problem onto
a lower-dimensional system. The resulting lower-dimensional Hessenberg matrix
together with an orthonormalized basis of the Krylov subspace Km can then be used
to approximate the spectrum of the linearized compressible Navier–Stokes equations.

The form of the Krylov sequence (3.3) indicates that the Jacobian matrix does not
need to be formed explicitly; rather, only matrix–vector products are necessary to
build the reduced system. Such products are readily obtained from direct numerical
simulations via

J(φ0)φ ≈ F(φ0 + εφ) − F(φ0)

ε
, (3.4)

where ε is a small parameter, chosen as ||εφ||/||φ0|| =10−8, and F represents the
nonlinear Navier–Stokes equations. The independence of the results with respect to
the choice of the parameter ε has been corroborated over a range of many decades
of the value of ε. This approximation allows a Jacobian-free framework where the
direct numerical simulation provides the input for the iterative stability solver.

4. Results
The above iterative scheme is applied to simulations of the compressible flow

about the parabolic body depicted in figure 1. As the Krylov subspace is augmented
by subsequent calls to the direct simulation code, the Arnoldi method provides an
approximate spectrum that consequently increases in complexity but also in accuracy.

4.1. Spectrum and global modes

The global spectrum reflects the richness of physical processes present in the flow
configuration under investigation. It consists of acoustic branches that describe
the presence of sound waves, of wavepacket modes that capture the dynamics of
perturbations at the edge of the boundary layer, of continuous modes that represent
disturbances in the free stream, of modes that account for the interaction of the bow
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Figure 3. Global stability results of compressible swept flow around a parabolic body
(Res =800, Mas = 1.25, β = 0.314 =2π/Lz): (c) most unstable branch of the temporal
spectrum and (a, b) four associated global modes displaying the velocity distribution
v(x, y, z) = Re{ṽ(x, y) (sin βz + i cos βz)} of four eigenvalues depicted by circles in (c). The
normalized eigenfunctions are plotted using iso-surfaces with a value of 10−2 vmax (a) and
5×10−5 vmax (b), and eight wavelengths, stretched by a factor of two, in the spanwise direction
are used to visualize each mode (attachment line in black). See text for colour coding.

shock with the body’s leading-edge region, and of shear modes that express the flow
characteristics in the boundary layer. These latter modes are the most unstable ones
for the present flow configuration and are the focus of this study.

Concentrating on boundary layer modes, the global stability analysis reveals that,
for our flow parameters (Res = 800, Mas = 1.25, β =0.314 = 2π/Lz, with Lz as the
fundamental length scale, non-dimensionalized by δ, in the spanwise z-direction), a
three-dimensionally unstable discrete branch is present whose disturbance frequencies
ωr range from 41.1 to 81.2 (see figure 3c). The maximum growth rate ωi = 2.64
is achieved for a frequency ωr =60.1. Though barely visible in the figure, the
eigenvalues appear double – a consequence of the symmetry properties of the flow.
The associated global eigenmodes divide into symmetric and antisymmetric functions
with respect to the attachment line.

Figure 3(a, b) displays four global eigenmodes from this branch, visualized by iso-
surfaces (10−2 vmax (a) and 5 × 10−5 vmax (b)) of the normalized velocity v(x, y, z) =
Re{ṽ(x, y)(sin βz + i cosβz)}. They belong to the slowest moving mode (in red), the
second slowest moving mode (in orange), the most unstable mode (in green) and
the fastest moving mode (in blue). The amplitude distribution of the slowest moving
global mode clearly demonstrates a link between the attachment-line and the crossflow
dynamics (figure 3b). It convincingly shows that the global modes of the branch
depicted in figure 3(c) have typical attachment-line properties while still connecting
to the familiar crossflow pattern further downstream from the stagnation line.

For faster moving global eigenfunctions (modes with a higher phase velocity ωr )
the crossflow component is more pronounced and the dominant part of the global
mode lies further downstream from the leading edge. At the same time, owing to
the increasing base velocity in the boundary layer, global modes with higher phase
velocities prevail downstream from the attachment line.
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Figure 4. Spatial shape of the slowest moving global mode: (a) top view of the velocity
component v(ξ, η, z) near the attachment line in the chordwise ξ -direction at half the
boundary-layer thickness (R = 0.1 = 508δ); (b) top view of three-dimensional travelling mode
v(x, y, z) in an incompressible attachment-line boundary layer as presented by Joslin (1995) for
Re = 570 and ω =0.1249 (attachment line in black, relabelled coordinate system). (c) Shape of
the velocity component u(x, y, z) in the (x,y)-plane near the attachment line and (d) equispaced
cross-cut profiles of u(ξ, η, z) at six selected positions in the positive ξ -direction.

Near the attachment line the global modes display the well-known and well-
studied two-dimensional structure consisting of chordwise vortices with a specific
spanwise scale. This structure is more pronounced for slower moving modes (see
figure 3c). As an example, the spatial shape of the velocity component v(x, y, z) of
the slowest moving global mode (see figure 3b in red) is presented in figure 4(a).
This mode travels along the attachment line without significant three-dimensional
features. It is reminiscent of results from stability computations by Joslin (1995) (see
figure 4b) who computed the spatial evolution of three-dimensional disturbances in
an incompressible attachment-line boundary layer by direct numerical simulations for
the Reynolds number Re = 570 and the disturbance frequency ω = 0.1249. The same
types of structure has been determined by Guégan, Schmid & Huerre (2006) in studies
of optimal temporal disturbances in swept Hiemenz flow. However, the similarity
between these two incompressible results and our compressible result is only of a
qualitative nature. Further evidence linking the local behaviour of the global mode
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near the stagnation line to a typical local attachment-line mode is given in figure 4(c)
where the characteristic linear dependence in the chordwise direction of the velocity
component u(x, y, z) is visible over a significant range along the attachment line before
it saturates to connect to the crossflow behaviour further downstream. In addition,
figure 4(d) displays equispaced cross-cut profiles of u(ξ, η, z) at six selected positions
in the positive ξ -direction, which closely resemble the corresponding eigenfunction
shapes from a solution of a modal stability problem for swept Hiemenz flow.

Further downstream in the chordwise direction, the initially two-dimensional
structure of the global mode near the attachment line (see figure 4a) gradually
merges into a three-dimensional one (see figure 5a) until the vortical structures nearly
align with the external streamlines, resulting in co-rotating vortices (see figure 5b), a
feature that is specific to crossflow vortices as described by Reed & Saric (1989).

As detailed above, the compressible flow around a swept parabolic body is governed
by a large number of parameters describing various flow quantities, fluid properties
and geometric characteristics. Even though the above observations are expected to
hold for a wide range of parameters, we chose to present a parametric study of the
global stability properties with respect to the spanwise wavenumber β. The computed
temporal global spectrum consisting of growth rate ωi and frequency ωr is shown in
figure 6(a) for selected spanwise wavenumbers ranging from 0.090 to 0.314. The typical
parabolic shapes of the unstable boundary layer branch are clearly visible where
smaller phase velocities are observed for smaller spanwise wavenumbers. The growth
rates ωi appear to grow steadily up to a specific spanwise wavenumber before decaying
again. The spanwise wavenumber at which a maximum modal growth is observed has
been determined to be β = 0.213 (see figure 6b), thereby pointing toward a preferred
disturbance length scale (or scale selection mechanism) in the spanwise direction.

Parenthetically, one can see more clearly in figure 6(a) that the boundary layer
branch consists of double eigenvalues. For some parameter combinations, the
eigenvalue pairs at the edge of the parabola separate slightly, which is a typical
aliasing phenomenon caused by a marginal numerical resolution of the corresponding
global eigenfunctions.

5. Discussion and conclusions
A global stability analysis of compressible flow around a yawed parabolic body has

numerically established a link between attachment-line modes and crossflow modes.
Though for the parameters studied in this article the crossflow vortices represent the
largest amplitude component of the global boundary layer mode, eigenfunctions from
the slower part of the unstable branch displayed the characteristic two-dimensionality
and linear chordwise dependence (in the chordwise velocity) of a typical attachment-
line mode. We thus conclude that the global spectrum of flow around a swept
parabolic body contains combination modes that display typical features of both
local crossflow vortices and local attachment-line instabilities. In this sense, the
study of attachment-line or crossflow instabilities in a separate and local setting is
simply the respective local approximation of one of these global combination modes.
Consequently, this investigation adds to the previous study by Bertolotti (1999) in
establishing a link between attachment-line and crossflow modes. In addition, it
provides numerical evidence for the experimental observations of Gray (1952). A
most preferred spanwise scale has been found; since it is given by global modes
with a dominant crossflow component, it is expected that the crossflow vortices will
imprint their favoured spanwise length scale onto the entire flow.
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Figure 5. Spatial shape of the velocity component v(ξ, η, z) of the slowest moving global
mode in a body-fitted cut at half the boundary-layer thickness: (a) structure in the connection
region and (b) structure further downstream in the positive ξ -direction (iso-contour lines of
zero amplitude in black).
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Figure 6. (a) Temporal spectra from global stability calculations for selected spanwise
disturbance wavenumbers β; (b) temporal growth rate ωi as a function of β .

Besides the stability characteristics of the attachment-line and crossflow modes
presented in this article, the receptivity of the global modes to external excitations or
wall roughness distributions is important for industrial applications. An analysis of
this type (which is beyond the scope of this investigation) will reveal the mechanisms
that excite dominant structures in the flow about a blunt body, be it by direct excitation
of the crossflow modes or by forcing of structures near the attachment line that, in turn,
initiate the growth of crossflow vortices via the connection demonstrated in this study.

On a more methodological point, the combination of iterative eigenvalue
algorithms and direct numerical simulations has proved to be an effective tool in
addressing complex stability problems in their entirety instead of via piecewise local
approximations. Many more flow configurations of academic or technological interest
await analysis in the manner described in this article.
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