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Absolute and convective nature of the Eckhaus and zigzag instability
with throughflow
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The nature of the Eckhaus and of the zigzag instability is investigated for a periodic basic “flow”
(ay-periodic Stokes solutigrin the presence of a transverse or a longitudinal mean flow using the
two-dimensional extension of the absolute instability criterion. For each flow orientation, stability
diagrams are obtained numerically and analytically for a simple amplitude-equation model
considering both the Eckhaus and the zigzag instability. Analytical results extend and correct a
previous analysis by Mler and Tveitereid. In particular, for a longitudinal flow, the Eckhaus
instability is convective near its instability threshold and the absolute destabilization occurs at a
finite wave number. Similar results hold for the zigzag instability for a transverse throughflow which
is convective near threshold. In the presence of an arbitrarily oriented mean flow, the absolute
threshold for the Eckhaus instability is also numerically determined. Implications of these results for
real experiments are discussed. 1©99 American Institute of Physid$§1070-663(199)00511-5

I. INTRODUCTION once more, the dynamics of this secondary instability will

When considering the primary instability of an open depenq on its lapsolute/convective .naturg. Thi.s' qugstion,
flow, such as a wake, jet, mixing layer, or boundary IayerWh'Ch is more d.|ff|cult' thgn .for the primary instability since
over a flat wall or concave wallTollmien—Schlichting wave the basic flow is periodic in space, has been recently an-
or Gartler instability), it is well known that one has to refer Swered using Floquet theory by Brevdo and Brid{jes
to the concept of absolute and convective instabfiifii.e., second source of difficulty comes from the arbitrary orienta-
consider not only the growth of initial perturbations but alsotion of the basic flow with respect to the pattern, which
their ability to withstand the throughflow. If the impulse re- makes it necessary to consider the propagation of the second-
sponse decays to zero at a large time at any fixed location iary instability in two dimension&™"
the laboratory frame, while growing exponentially in some  Close to the threshold the dynamics of a flow for which
uniformly moving frame, the flow is said to be convectively the primary instability breaks translational invariance may be
unstable, whereas it is said to be absolutely unstable whedescribed by the Ginzburg—Landau equation. The saturated
the impulse response grows exponentially at any fixed locaperiodic primary structure is described by a Stokes solution
tion in the laboratory frame. In this case the flow is likely to that may be subject to the Eckhaus or the zigzag secondary
exhibit a self-sustained oscillation due to the saturation of thénstability. For the Ginzburg—Landau model, a change of
primary absolute instability as seems to be the case iRariables transforms the Floquet problem for the stability of
wakes;® hot jets"!° and mixing layers with counter flol.  the Stokes solution into a standard problem with constant
This pehavior cpntrasts with 'the conve'ctive case where peoeficients. Huerr® has determined the nature of the Eck-
turbations continuously fed in at the inlet of the unstabley s instability for small amplitude Stokes solutions when a
flow are amplified throughout their downstream jouriiley- transverse flow is added. In Ref. 1,"Mar and Tveitereid

moger;gou_s Jelt’ co(;‘l?lw m'_)]f'?g Ia?_berThe same pgen;)n;_(le_na dhave restricted their study to transverse flow for the Eckhaus
are active in closed flows It traveling waves are destabiiize Instability and to longitudinal flow for the zigzag instability.

Lo s 1214
as in binary convectiofr. The present study extends this pioneering work to arbitrary

Self-resonant flowgabsolutely unstable flowsor con- . . . : .
vectively unstable flows subject to a regular forcing usuallyorlentauon of the flow. For the first time, complete stability

give rise to a saturated state that consists of a periodic strugl—""lgr"’ms are presented for tranfsverse' or .I(')ng|tud|nal

ture either in the direction of the flofwvon Karman-street, throughflow, for both Eckhaus and zigzag instability.

single row of vortices in mixing layeysor transverse to it Following Muler and '.I'velztoerel'&, we shall consider the

(low-speed streaks, @er vortices or with an arbitrary ori- ~ Newell-Whitehead equatldﬁ; which describes the forma-

entation(inclined shedding behind a bluff bogyNaturally. ~ tion of anarbitrarily oriented periodic state issuing from the

one has to consider the stability of this periodic flow and,Primary instability of an extended system. For example let us
consider Rayleigh—Bward convection with an externally im-

osed mean flo¥* When a free-slip condition is assumed,
dAuthor to whom correspondence should be addressed. Present addre%: b
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France. Electronic mail: couairon@cpht.polytechnique.fr aligned alongx with a wave number along close toK,
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(whereK, is the wave number of maximum growth rate v ~ (a) v (b)
reads R L

0.4

(O udy+Vay ) A= pu+(a,— 952K °—|APIA. (D)

The amplitude equation has been rigorously deriviedm

the Boussinesq approximatipoenly close to the threshold
and without external shear flow added to the Rayleigh—
Benard problem, by Zippelius and Sigdialt is valid for \
large Prandtl number, since a term coupling with the vertical % 02 04 uo% 02 04
vorticity of the mean flow should be .be added in . for FIG. 1. Isolines of the absolute growth ratd (a) and angle of the wave
small Prandtl numbers. However, this term affects only theeciorq, with the x axis (b) as a function of the velocityu(v).

phase and we will not take it into account, since the main

physical effect we wish to highlight is already present in Eq.

(1). The external shear flow driven by a pressure gradient ofj eckHAUS INSTABILITY

moving boundaries appears in the convective nonlinearity

(u-V) and does not affect the basic state since it depends We will first consider the Eckhaus instability and, there-
only on the vertical coordinate, but it does affect the fluctuafore, restrict ourself t&>0 to avoid any interaction with the
tions, since the ternud,+vd, appears in their evolution zigzag instability. The classical Eckhaus instability in one
equation. Here we have made the simplification of applyinglimension €,=0) occurs atk=1/J3 when u=1 for g,
free-slip conditions on the upper and lower plates, as consid=0. In two dimensions, we see from E@) that the insta-
ered at first in the studies of mean-flow effects in Rayleigh-bility occurs atk=1/3 whenu=1, simultaneously on the
Bénard convectio? therefore, the throughflow of uniform parabolasy,= *q2/2K.

velocity (u,v) just corresponds to a Galilean transformation ~ Let us now determine for a fixgd andk in the Eckhaus

of the standard Newell-Whitehead equatipnis the depar- unstable domain, the limiting value in the advection-velocity
ture from the threshold. As discussed by IMu and (u,v) plane for which the Eckhaus instability is absolute.
Tveitereid? if no-slip upper and lower boundary conditions According to the theoretical proof given by Brevtfbpne
are considered, then all the coefficients in Ef.should be  has to look for double saddle pointa{,qg,qy) €2 verify-
assumed complex and extra terms breaking the rotationaihg the three complex relationglus a pinching condition
invariance in the advected frame should be added tqHg. not made explicit here but similar to the one-dimensional
It should be stressed that Ed) is not fully derived from a  casé?)

0.2

systematic expansion in any small parameter. Certainly other D(0°%q%q%)=0 (33
nonlinearities may be added to the same order. We have Ty '
merely tried to account qualitatively for the effects of mean  gD/dq,(°q2,q9) =0, (3b)
advection in convectiolisee Ref. 1 for a discussipn

In the present form, Eq1) may also receive an alterna-  @D/ddy(°,05,a5)=0. (30)

tive interpretation since in the absence of mean advection, ihe apsolute growth rate is then definedaﬁfy () and
describes rigorously the asymptotic evolution of the Green’spe flow will be absolute whewi0>0. In the present problem
function (the impulsg respon&aeon a particular rayx/t % is a function of (1,v,u,k,K,), rescaling of time and
=(u,v), with t, the time from the initial impulse applied at gpace allows us to remove two of the parameters while keep-
x=0. Determination of the selected frequency and waveng the diffusion coefficient as unity. Therefors, and u
number on each ray would then enable us to reconstruct thes set to one to draw Fig. 1, which may be rescaled for any
entire wave packéﬁ‘”_ _ _ other value ofu. In Figs. 2 and 3u has been kept to facili-
Equation (1) admits nonlinear Stokes solutiond  {ate comparison with experiments. Syste@® with the

=Acexp(k(y—vt)) representing convection rolls with a phinching condition is solved numerically using Matlab. Re-
wave vectorK=(0K.+k) and a saturated amplitud®  g,its are shown in Fig. 1 for=1, k=1/\/3+ 1/10.

=\u—k. We perturb this solution by These parameter values are in the Eckhaus unstable re-
ik(y—vt) g x—lot gt xtie*t gion. The value ofv? as a function of @,v) is given in Fig.
oA=e [0A€ + 0Ae Jtee, 1(a): The heavy line represents the zero iso contour that de-

lineates the absolutely unstable regidmecause of the sym-
ﬁ1etry only one quarter of the figure has been reproduced
Figure 1b) represents the angle of the wave vector with the
horizontal(i.e., = Arctg(:R(ay)/9R(ay))) versus (,v).

For an arbitrary orientation of the mean flow with re-
spect to the pattern, the transition from convective to abso-
lute instability given in Fig. (a) occurs for inclined wave

+(Af<‘+(U+— U_)%/4)Y?=0. 2 making an angle with the pattern as large~aé=/20 [maxi-
mum of A(u,v) on the curvew’(u,v)=0]. It is striking to
with U, =(k*=q,+ qf/ZKC)Z— k2. notice that, when the advection velocity is directed along the

where the star denotes complex conjugation. We obtain
system of two equations i8A; and §A, which leads to the

dispersion relatiorD (w,qy,d,) equivalent to that given by
Mlller and Tveitereid

D(w,0y,0y) =i —i(ud+vay) — A= (U, +U_)/2
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a longitudinal flow (1# 0, v=0) the solution of the paradox
lies in the imaginary part oqg, which stays finite whereas
the real part goes to zero whergoes to zero. It is important

to keep in mind, conversely to the assumption made in Ref.
1, thatq,#0 for the Eckhaus instability of a longitudinal
pattern, the true solution being an uniform compression wave
in'y (qy € R) growing exponentially ink (g i R).

A. Longitudinal flow

Figure 2 presents the complete stability diagram of the
pattern with wave vectoK.+Kk in the y direction with a
perpendicular throughflowu=0.5,v=0). The results con-
cerning the Eckhaus instability are obtained fkr0
whereas the results for the zigzag instabilikg<(0) will be
detailed in the next section. F&i>0, the boundary between
the convectivelyEC) and absolutelfEA) unstable regions
is computed numerically by solving systd). This bound-
ary has also been determined analytically in two limits.

(1) Near the neutral curve of the primary instability
=k?: systemg3b) and(3c) may be written as a polynomial
equation of degree 6 iqf(’ and solved using the fact that the

075 078 o081 amplitude A, of the pattern is small: The condition
»(q.0y)=0 expanded at first order iA, determines the
FIG. 2. Stability diagram for a longitudinal flow&0), with u=0.5 and boundary between absolute and convective regions when

@) R

K.=1. The pattern exists fqu>k?. For the Eckhaus instability, it is stable K2

(9 when u>3k?, convectively unstable in th€EC) region and absolutely m=

unstable in thEA) shaded region. The dashed line on the right side rep- 25/2 (UW— ks/z) 3/2) 514
resents the asymptotic threshold of absolute instakifyfor large u. The e~ K2+ c

enlargement(b) presents the asymptotic threshald) (dashed ling for 3W§ u\/K_c ' (4)

which the Eckhaus instability of the rolls becomes absolute near the neutral

curve u=Kk2. For the zigzag instability, the pattern is convectively unstable Which is represented by a dashed line in the close-up Fig. 2,

(zC) for kh,<k<0 and absolutely unstabl@A shaded regionfor — and is confirmed with numerical computation.

<k<kza- (2) For large enough control parameter and order-
one velocity(equivalent tou=1 and small enough), the

) ) solution of system(4) can be extracted using the scaling

y axis or on thex axis, the angle of the absolute wave numberissuing from a smalls expansiorf® and the boundary be-

is m/2 and therefore corresponds to a puré COMPressiofqqn apsolute and convective Eckhaus instability of the pat-
wave. This is natural when the advection is normal to thetern up to second order inreads

rolls but this is surprising when the advection is parallel to
the rolls. For this absolute versus convective instability with w~3k>—(1+ \/3—7)u2/8k. (5)

Therefore, the classical boundagy=3k? is affected by the
throughflow and shifted by a quantity proportionalut@k at
large k. This result is in agreement with the idea that the
Eckhaus instability propagates from a localized perturbation
at a finite speed in the transverse direction.

B. Transverse flow

This behavior is radically different for the Eckhaus in-
stability of a transverse flowu=0, v#0) (Fig. 3 for
k>0) for whichg,=0 (both real and imaginary parts z¢ro
and g, is complex with nonzero real and imaginary parts.
The boundary of absolutgeA) Eckhaus instability is deter-
mined by solving systert8) numerically. The dashed line in
Fig. 3 given by

w=2k2—v?/4, (6)

fG.3 S Fio. 2 but for t flaw(0) i b ot represents the asymptotic boundary between absolute and
. 0. Dame as rFlig. ut for transverse flayw( I.e., with pattern wave . . 2
vector K.+k parallel to the throughflow, withy=0.5 andK.=1. The convective regions near the neutral cupve k*, as found by

8 . . .
dashed lines represent the asymptotic boundaries between EC and EA rEluerrel_ by a smallA expansion similar ta4). _A largeu-
gions for largex [Eq. (7)] and for smallA [Eq. (6)]. expansion with order-one, similar to (5) (equivalent to a

-0.6
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smallv expansion allows determination of the shift from V. EXTENSION TO OPEN FLOWS
the classical Eckhaus boundamy=3k?, which is propor-
tional to k*3y?? as found in Ref. 1 All the above derived results have been obtained for a
1= 3K2— k323 R complex amplitude equation with real coefficients; it is not
' believed that the extension to complex coefficients will
wherea= (77— 17)"32*3, modify radically the phenomenology, as already demon-
strated by us in an exhaustive study of the secondary insta-
bility of saturated waves governed by the one-dimensional
. ZIGZAG INSTABILITY complex Ginzburg—Landau equatiéh.
) S Although derived from a model strictly valid for
For completen_ess_, let us now determine the stability d'ai?ayleigh—Beard convection with a small throughflow, the
grams of the Iongltud|n_al\(=(_)) and_ _Of the transverse flow present analysis enables us to propose experimental valida-
(u=0) subject to the zigzag instability, whén<0. The do- tions and interpretations of observations.
Ao ansoltie instabilit;(ZA_) of the zigzag unstablek( These new results for the Eckhaus unstable pattern with
=0) pattern has been determined analytically py sol\(B)g a longitudinal throughflow and for the zigzag unstable pat-
It should be noted that fok<— /3 the two-dimensional tern with a transverse flow show that a throughflow always

|qstablllty modes are of a hy_bnd type.between Eckhaus ar.‘?nakes it necessary to discriminate between absolute and
zigzag. The present analysis takes into account the entlrg

dispersion relation and. therefore. d not filter out anv in onvective instability of the pattern. In particular, when
Spersion refation and, theretore, does not fiter out any tRaerigh—E’Qeard convection rolls are formed parallel to the
stability mechanism. For simplicity and since the crossing ot

. : . inlet boundary(transverse throughflowthe zigzag instabil-
the Eckhaus domain frontiér< — +/u/3 does not modify the . :
absolute instability threshold, the instability flor-0 will be 1 Should affect the flow when the wave number is smaller

) ) . . than the absolute critical value given by E§). The zigzag
simply refered as the zigzag instability. instability is thus postponed to the region where it is absolute

A. Longitudinal flow and at the threshold, the absolute wavelength that dominates
the flow is finite. This should be easily verified in Rayleigh—
Benard experiment with throughflow by forcing at the inlet
boundary the appearance of rolls with a period larger than
the natural onéfor example by modulating in time the inlet
temperature Above a low forcing frequency threshold, a
zigzag instability, periodic along the rolls and growing in the
mean flow direction(transverse to the rolilsshould become
kb a=— au?3K 23, (8)  self-sustained, the spatial period being finite at threshold.
where« is the same constant as (). This limit, shown in Conyersely, it longitudinal Rayleigh—Berd rolls(normal to

the inlet boundaryare forced at a cross-stream wavelength

Fig. 2, is the one found by Mier and Tvetereid. Together ; " .
with the new results for the Eckhaus instability described incontrolled by the inlet boundary conditi¢modulation of the

the previous section, it gives the complete stability diagra temperature along the sparthey should be subject to an
€ P o LAl P y diagrant oy haus instability at finite perturbation wave number when
with a longitudinal flow(Fig. 2).

the basic flow periodicity is small enough.

Extension to wakes, jets or boundary layers is more haz-
ardous since the model does not apply in these cases, and
since temporal instability is known to involve other mecha-

As for the Eckhaus instability with a longitudinal flow, nisms such as pairing and translative instabilffigsat occur
the claim in Ref. 1 that, no matter what the velocitythe  at a finite wave number and that are only loosely connected
zigzag instability with a transverse flow is absolute, is not into Eckhaus and zigzag instabilities. However, Secondary in-
agreement with our result since we have performed a twostability of wakes such as the so-called mo#lethat is
dimensional analysis from which we obtain a shift of theknown from numerical analysis to be self sustaifedjay
absolute zigzag threshold given by N&u and Tveitered’s still be a remnant of the zigzag instability that becomes ab-
one-dimensional analysis. The absolute instabilf}\) re-  solute. Boundary layer flows may also show remnants of
gion (in Fig. 3) is bounded by the vertical line these phenomena, and secondary instability imtl&oflow

kL= —v/2 ) (flow over a concave wallmay show the existence of a

ZA ’ self-sustained Eckhaus instability with a finite wave number
given by the pinching-saddle point solution w'qﬁ real and that will induce periodic oscillations and transverse wander-
qg pure imaginary qu + \/—2kKC,q3= —iv/2). Whenv ing of the longitudinal vortices. Controlling the wave number
goes to zero, the boundary for the absolute instability of thef the Gatler vortices by periodic cross-jets or wall rough-
pattern goes to the classical bound#&ry O for the linear ness elements should show both the absolute Eckhaus insta-
instability of the rolls. bility, when the vortices are too close together, and the ab-

These solutions and the one obtained in the previousolute zigzag instability when the vortices are too far apart.
section yield the complete absolutely unstable dontBig.  As far as turbulence control is concerned, an optimal longi-
3) of a pattern with a transverse flow. tudinal vortex spacing will lie in between these two absolute

For a longitudinal flow ¢#0, v=0), the solution of
system (3) is q0=0 and q°=(6*2—uK?/2)(1R)eim6
+ 62+ uKkZ2)Wem176 with  s=u?KZ/4—8k3K3/27
(there is a symmetric solution found by replacim@6 by
57/6). The boundary for which the zigzag instability be-
comes absolute is given by the conditioﬁzo

B. Transverse flow
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