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The nature of the Eckhaus and of the zigzag instability is investigated for a periodic basic ‘‘flow’’
~a y-periodic Stokes solution! in the presence of a transverse or a longitudinal mean flow using the
two-dimensional extension of the absolute instability criterion. For each flow orientation, stability
diagrams are obtained numerically and analytically for a simple amplitude-equation model
considering both the Eckhaus and the zigzag instability. Analytical results extend and correct a
previous analysis by Mu¨ller and Tveitereid.1 In particular, for a longitudinal flow, the Eckhaus
instability is convective near its instability threshold and the absolute destabilization occurs at a
finite wave number. Similar results hold for the zigzag instability for a transverse throughflow which
is convective near threshold. In the presence of an arbitrarily oriented mean flow, the absolute
threshold for the Eckhaus instability is also numerically determined. Implications of these results for
real experiments are discussed. ©1999 American Institute of Physics.@S1070-6631~99!00511-5#
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I. INTRODUCTION

When considering the primary instability of an ope
flow, such as a wake, jet, mixing layer, or boundary lay
over a flat wall or concave wall~Tollmien–Schlichting wave
or Görtler instability!, it is well known that one has to refe
to the concept of absolute and convective instability.2–4 i.e.,
consider not only the growth of initial perturbations but al
their ability to withstand the throughflow. If the impulse r
sponse decays to zero at a large time at any fixed locatio
the laboratory frame, while growing exponentially in som
uniformly moving frame, the flow is said to be convective
unstable, whereas it is said to be absolutely unstable w
the impulse response grows exponentially at any fixed lo
tion in the laboratory frame. In this case the flow is likely
exhibit a self-sustained oscillation due to the saturation of
primary absolute instability as seems to be the case
wakes,5–8 hot jets9,10 and mixing layers with counter flow.11

This behavior contrasts with the convective case where
turbations continuously fed in at the inlet of the unsta
flow are amplified throughout their downstream journey~ho-
mogeneous jet, coflow mixing layer!. The same phenomen
are active in closed flows if traveling waves are destabiliz
as in binary convection.12–14

Self-resonant flows~absolutely unstable flows! or con-
vectively unstable flows subject to a regular forcing usua
give rise to a saturated state that consists of a periodic s
ture either in the direction of the flow~von Kármán-street,
single row of vortices in mixing layers! or transverse to it
~low-speed streaks, Go¨rtler vortices! or with an arbitrary ori-
entation~inclined shedding behind a bluff body!. Naturally.
one has to consider the stability of this periodic flow an
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once more, the dynamics of this secondary instability w
depend on its absolute/convective nature. This quest
which is more difficult than for the primary instability sinc
the basic flow is periodic in space, has been recently
swered using Floquet theory by Brevdo and Bridges.15 A
second source of difficulty comes from the arbitrary orien
tion of the basic flow with respect to the pattern, whi
makes it necessary to consider the propagation of the sec
ary instability in two dimensions.15–17

Close to the threshold the dynamics of a flow for whi
the primary instability breaks translational invariance may
described by the Ginzburg–Landau equation. The satur
periodic primary structure is described by a Stokes solut
that may be subject to the Eckhaus or the zigzag secon
instability. For the Ginzburg–Landau model, a change
variables transforms the Floquet problem for the stability
the Stokes solution into a standard problem with const
coefficients. Huerre18 has determined the nature of the Ec
haus instability for small amplitude Stokes solutions whe
transverse flow is added. In Ref. 1, Mu¨ller and Tveitereid
have restricted their study to transverse flow for the Eckh
instability and to longitudinal flow for the zigzag instability
The present study extends this pioneering work to arbitr
orientation of the flow. For the first time, complete stabili
diagrams are presented for transverse or longitud
throughflow, for both Eckhaus and zigzag instability.

Following Müller and Tveitereid,1 we shall consider the
Newell–Whitehead equation,19,20which describes the forma
tion of anarbitrarily orientedperiodic state issuing from the
primary instability of an extended system. For example let
consider Rayleigh–Be´nard convection with an externally im
posed mean flow.21 When a free-slip condition is assume

ess:

the equation for the amplitudeA of convection rolls nearly
aligned alongx with a wave number alongy close toKc

9 © 1999 American Institute of Physics
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~where Kc is the wave number of maximum growth rate!.
reads

~] t1u]x1v]y!A5@m1~]y2 i ]x
2/2Kc!

22uAu2#A. ~1!

The amplitude equation has been rigorously derived~from
the Boussinesq approximation! only close to the threshold
and without external shear flow added to the Rayleig
Bénard problem, by Zippelius and Siggia.22 It is valid for
large Prandtl number, since a term coupling with the verti
vorticity of the mean flow should be be added in Eq.~1! for
small Prandtl numbers. However, this term affects only
phase and we will not take it into account, since the m
physical effect we wish to highlight is already present in E
~1!. The external shear flow driven by a pressure gradien
moving boundaries appears in the convective nonlinea
~u•¹! and does not affect the basic state since it depe
only on the vertical coordinate, but it does affect the fluctu
tions, since the termu]x1v]y appears in their evolution
equation. Here we have made the simplification of apply
free-slip conditions on the upper and lower plates, as con
ered at first in the studies of mean-flow effects in Rayleig
Bénard convection;22 therefore, the throughflow of uniform
velocity (u,v) just corresponds to a Galilean transformati
of the standard Newell–Whitehead equation;m is the depar-
ture from the threshold. As discussed by Mu¨ller and
Tveitereid,1 if no-slip upper and lower boundary condition
are considered, then all the coefficients in Eq.~1! should be
assumed complex and extra terms breaking the rotati
invariance in the advected frame should be added to Eq.~1!.
It should be stressed that Eq.~1! is not fully derived from a
systematic expansion in any small parameter. Certainly o
nonlinearities may be added to the same order. We h
merely tried to account qualitatively for the effects of me
advection in convection~see Ref. 1 for a discussion!.

In the present form, Eq.~1! may also receive an alterna
tive interpretation since in the absence of mean advectio
describes rigorously the asymptotic evolution of the Gree
function ~the impulse response! on a particular rayx/t
5(u,v), with t, the time from the initial impulse applied a
x50. Determination of the selected frequency and wa
number on each ray would then enable us to reconstruc
entire wave packet.15–17

Equation ~1! admits nonlinear Stokes solutionsA
5Ak exp(ik(y2vt)) representing convection rolls with
wave vectorK5(0,Kc1k) and a saturated amplitudeAk

5Am2k2. We perturb this solution by

dA5eik~y2vt !@dA1eiq•x2 ivt1dA2e2 iq* •x1 iv* t#1c.c.,

where the star denotes complex conjugation. We obta
system of two equations indA1 anddA2 which leads to the
dispersion relationD(v,qx ,qy) equivalent to that given by
Müller and Tveitereid1

D~v,qx ,qy!5 iv2 i ~uqx1vqy!2Ak
22~U11U2!/2

1~Ak
41~U12U2!2/4!1/250. ~2!

3370 Phys. Fluids, Vol. 11, No. 11, November 1999
with U65(k6qy1qx
2/2Kc)

22k2.
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II. ECKHAUS INSTABILITY

We will first consider the Eckhaus instability and, ther
fore, restrict ourself tok.0 to avoid any interaction with the
zigzag instability. The classical Eckhaus instability in o
dimension (qx[0) occurs atk51/A3 when m51 for qy

50. In two dimensions, we see from Eq.~2! that the insta-
bility occurs atk51/A3 whenm51, simultaneously on the
parabolasqy56qx

2/2Kc .
Let us now determine for a fixedm andk in the Eckhaus

unstable domain, the limiting value in the advection-veloc
(u,v) plane for which the Eckhaus instability is absolut
According to the theoretical proof given by Brevdo,23 one
has to look for double saddle points (v0,qx

0,qy
0)PC3 verify-

ing the three complex relations~plus a pinching condition
not made explicit here but similar to the one-dimensio
case2,3!

D~v0,qx
0,qy

0!50, ~3a!

]D/]qx~v0,qx
0,qy

0!50, ~3b!

]D/]qy~v0,qx
0,qy

0!50. ~3c!

The absolute growth rate is then defined asv i
05I(v0) and

the flow will be absolute whenv i
0.0. In the present problem

v0 is a function of (u,v,m,k,Kc), rescaling of time and
space allows us to remove two of the parameters while ke
ing the diffusion coefficient as unity. Therefore,Kc and m
are set to one to draw Fig. 1, which may be rescaled for
other value ofm. In Figs. 2 and 3,m has been kept to facili-
tate comparison with experiments. System~3! with the
pinching condition is solved numerically using Matlab. R
sults are shown in Fig. 1 form51, k51/A311/10.

These parameter values are in the Eckhaus unstable
gion. The value ofv i

0 as a function of (u,v) is given in Fig.
1~a!: The heavy line represents the zero iso contour that
lineates the absolutely unstable region~because of the sym
metry only one quarter of the figure has been reproduc!.
Figure 1~b! represents the angle of the wave vector with t
horizontal~i.e., u5Arctg(R(qy

0)/R(qx
0))) versus (u,v).

For an arbitrary orientation of the mean flow with r
spect to the pattern, the transition from convective to ab
lute instability given in Fig. 1~a! occurs for inclined wave
making an angle with the pattern as large as;7p/20 @maxi-

0

FIG. 1. Isolines of the absolute growth ratev i
0 ~a! and angle of the wave

vectorq0 with the x axis ~b! as a function of the velocity (u,v).

Chomaz, Couairon, and Julien
mum of u(u,v) on the curvev i (u,v)50]. It is striking to
notice that, when the advection velocity is directed along the
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y axis or on thex axis, the angle of the absolute wave numb
is p/2 and therefore corresponds to a pure compres
wave. This is natural when the advection is normal to
rolls but this is surprising when the advection is parallel
the rolls. For this absolute versus convective instability w

FIG. 2. Stability diagram for a longitudinal flow (v50), with u50.5 and
Kc51. The pattern exists form.k2. For the Eckhaus instability, it is stabl
~S! whenm.3k2, convectively unstable in the~EC! region and absolutely
unstable in the~EA! shaded region. The dashed line on the right side r
resents the asymptotic threshold of absolute instability~5! for largem. The
enlargement~b! presents the asymptotic threshold~4! ~dashed line! for
which the Eckhaus instability of the rolls becomes absolute near the ne
curvem5k2. For the zigzag instability, the pattern is convectively unsta
~ZC! for kZA

l ,k,0 and absolutely unstable~ZA shaded region! for 2Am
,k,kZA

l .

FIG. 3. Same as Fig. 2 but for transverse flow (u50) i.e., with pattern wave
vector Kc1k parallel to the throughflow, withv50.5 and Kc51. The

Phys. Fluids, Vol. 11, No. 11, November 1999
dashed lines represent the asymptotic boundaries between EC and EA
gions for largem @Eq. ~7!# and for smallAk @Eq. ~6!#.
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a longitudinal flow (uÞ0, v50) the solution of the paradox
lies in the imaginary part ofqx

0, which stays finite whereas
the real part goes to zero whenv goes to zero. It is importan
to keep in mind, conversely to the assumption made in R
1, that qxÞ0 for the Eckhaus instability of a longitudina
pattern, the true solution being an uniform compression w
in y (qy

0PR) growing exponentially inx (qx
0P iR).

A. Longitudinal flow

Figure 2 presents the complete stability diagram of
pattern with wave vectorKc1k in the y direction with a
perpendicular throughflow (u50.5, v50). The results con-
cerning the Eckhaus instability are obtained fork.0
whereas the results for the zigzag instability (k,0) will be
detailed in the next section. Fork.0, the boundary between
the convectively~EC! and absolutely~EA! unstable regions
is computed numerically by solving system~3!. This bound-
ary has also been determined analytically in two limits.

(1) Near the neutral curve of the primary instabilitym
5k2: systems~3b! and~3c! may be written as a polynomia
equation of degree 6 inqx

0 and solved24 using the fact that the
amplitude Ak of the pattern is small: The conditio
v i

0(qx
0,qy

0)50 expanded at first order inAk determines the
boundary between absolute and convective regions w
m→k2

m;k21
25/2

33/2

~uA2Kc2k3/2!3/2k5/4

uAKc
, ~4!

which is represented by a dashed line in the close-up Fig
and is confirmed with numerical computation.

(2) For large enough control parameterm and order-
one velocity~equivalent tom51 and small enoughu!, the
solution of system~4! can be extracted using the scalin
issuing from a small-u expansion,25 and the boundary be
tween absolute and convective Eckhaus instability of the p
tern up to second order inu reads

m;3k22~11A37!u2/8k. ~5!

Therefore, the classical boundarym53k2 is affected by the
throughflow and shifted by a quantity proportional tou2/k at
large k. This result is in agreement with the idea that t
Eckhaus instability propagates from a localized perturbat
at a finite speed in the transverse direction.

B. Transverse flow

This behavior is radically different for the Eckhaus i
stability of a transverse flow (u50, vÞ0) ~Fig. 3 for
k.0) for which qx50 ~both real and imaginary parts zero!
and qy is complex with nonzero real and imaginary par
The boundary of absolute~EA! Eckhaus instability is deter
mined by solving system~3! numerically. The dashed line in
Fig. 3 given by

m52k22v2/4, ~6!

represents the asymptotic boundary between absolute
convective regions near the neutral curvem5k2, as found by

18

-

ral

3371Absolute and convective nature of the Eckhaus and . . .
Huerre by a small-Ak expansion similar to~4!. A large-m-
expansion with order-onev, similar to ~5! ~equivalent to a
re-
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small-v expansion! allows determination of the shift from
the classical Eckhaus boundarym53k2, which is propor-
tional to k4/3v2/3 as found in Ref. 1

m53k22ak4/3v2/3, ~7!

wherea5(7A7217)1/3/24/3.

III. ZIGZAG INSTABILITY

For completeness, let us now determine the stability d
grams of the longitudinal (v50) and of the transverse flow
(u50) subject to the zigzag instability, whenk,0. The do-
main of absolute instability~ZA! of the zigzag unstable (k
,0) pattern has been determined analytically by solving~3!.
It should be noted that fork,2Am/3 the two-dimensiona
instability modes are of a hybrid type between Eckhaus
zigzag. The present analysis takes into account the e
dispersion relation and, therefore, does not filter out any
stability mechanism. For simplicity and since the crossing
the Eckhaus domain frontierk,2Am/3 does not modify the
absolute instability threshold, the instability fork,0 will be
simply refered as the zigzag instability.

A. Longitudinal flow

For a longitudinal flow (uÞ0, v50), the solution of
system ~3! is qy

050 and qx
05(d (1/2)2uKc

2/2)(1/3)eip/6

1d (1/2)1uKc
2/2)(1/3)e2 ip/6, with d[u2Kc

2/428k3Kc
3/27

~there is a symmetric solution found by replacingp/6 by
5p/6!. The boundary for which the zigzag instability b
comes absolute is given by the conditionv i

050

kZA
l 52au2/3Kc

4/3, ~8!

wherea is the same constant as in~7!. This limit, shown in
Fig. 2, is the one found by Mu¨ller and Tvetereid.1 Together
with the new results for the Eckhaus instability described
the previous section, it gives the complete stability diagr
with a longitudinal flow~Fig. 2!.

B. Transverse flow

As for the Eckhaus instability with a longitudinal flow
the claim in Ref. 1 that, no matter what the velocityv the
zigzag instability with a transverse flow is absolute, is not
agreement with our result since we have performed a t
dimensional analysis from which we obtain a shift of t
absolute zigzag threshold given by Mu¨ller and Tveitered’s
one-dimensional analysis. The absolute instability~ZA! re-
gion ~in Fig. 3! is bounded by the vertical line

kZA
l 52v/2, ~9!

given by the pinching-saddle point solution withqx
0 real and

qy
0 pure imaginary (qx

056A22kKc,qy
052 iv/2). Whenv

goes to zero, the boundary for the absolute instability of
pattern goes to the classical boundaryk50 for the linear
instability of the rolls.

These solutions and the one obtained in the previ

3372 Phys. Fluids, Vol. 11, No. 11, November 1999
section yield the complete absolutely unstable domain~Fig.
3! of a pattern with a transverse flow.

Downloaded 13 Mar 2008 to 129.104.38.6. Redistribution subject to AIP
-

d
ire
-
f

n

-

e

s

IV. EXTENSION TO OPEN FLOWS

All the above derived results have been obtained fo
complex amplitude equation with real coefficients; it is n
believed that the extension to complex coefficients w
modify radically the phenomenology, as already demo
strated by us in an exhaustive study of the secondary in
bility of saturated waves governed by the one-dimensio
complex Ginzburg–Landau equation.26

Although derived from a model strictly valid fo
Rayleigh–Be´nard convection with a small throughflow, th
present analysis enables us to propose experimental va
tions and interpretations of observations.

These new results for the Eckhaus unstable pattern w
a longitudinal throughflow and for the zigzag unstable p
tern with a transverse flow show that a throughflow alwa
makes it necessary to discriminate between absolute
convective instability of the pattern. In particular, whe
Rayleigh–Be´nard convection rolls are formed parallel to th
inlet boundary~transverse throughflow!, the zigzag instabil-
ity should affect the flow when the wave number is smal
than the absolute critical value given by Eq.~9!. The zigzag
instability is thus postponed to the region where it is absol
and at the threshold, the absolute wavelength that domin
the flow is finite. This should be easily verified in Rayleigh
Bénard experiment with throughflow by forcing at the inl
boundary the appearance of rolls with a period larger th
the natural one~for example by modulating in time the inle
temperature!. Above a low forcing frequency threshold,
zigzag instability, periodic along the rolls and growing in th
mean flow direction~transverse to the rolls!, should become
self-sustained, the spatial period being finite at thresh
Conversely, if longitudinal Rayleigh–Be´nard rolls~normal to
the inlet boundary! are forced at a cross-stream waveleng
controlled by the inlet boundary condition~modulation of the
temperature along the span!, they should be subject to a
Eckhaus instability at finite perturbation wave number wh
the basic flow periodicity is small enough.

Extension to wakes, jets or boundary layers is more h
ardous since the model does not apply in these cases,
since temporal instability is known to involve other mech
nisms such as pairing and translative instabilities27 that occur
at a finite wave number and that are only loosely connec
to Eckhaus and zigzag instabilities. However, Secondary
stability of wakes such as the so-called modeA, that is
known from numerical analysis to be self sustained,28 may
still be a remnant of the zigzag instability that becomes
solute. Boundary layer flows may also show remnants
these phenomena, and secondary instability in Go¨rtler flow
~flow over a concave wall! may show the existence of
self-sustained Eckhaus instability with a finite wave numb
that will induce periodic oscillations and transverse wand
ing of the longitudinal vortices. Controlling the wave numb
of the Görtler vortices by periodic cross-jets or wall rough
ness elements should show both the absolute Eckhaus i
bility, when the vortices are too close together, and the
solute zigzag instability when the vortices are too far ap

Chomaz, Couairon, and Julien
As far as turbulence control is concerned, an optimal longi-
tudinal vortex spacing will lie in between these two absolute

 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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secondary instability limits. Of course the latter reflectio
are only speculative since open shear flows are not rotat
ally invariant and the phenomenological amplitude equat
to consider differs from Eq.~1!. Furthermore the use of am
plitude equation for open flows might not be appropria
since shear flows are subject to finite wave number seco
ary instabilities that depart strongly from the phase instab
ties ~Eckhaus and zigzag instabilities!, such as pairing, trans
lative, hyperbolic or elliptic instabilities.29,30 A direct
analysis of the convective or absolute nature of these sec
ary instabilities should be conducted for each particular
mary flow. A numerical procedure that makes such a g
feasible, based on a direct computation of the impulse w
packet, has recently been proposed by Brancher
Chomaz31 and used to determine the absolute instabi
threshold for the pairing and the translative instabilities o
infinite row of vortices described by the Stuart model.32
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