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The linear and the nonlinear dynamics of open unstable flow in a finite domain of sizeL is studied
on a modified supercritical Ginzburg–Landau equation. When the advection term is nonzero, the
bifurcation to a finite-amplitude state occurs when the instability is absolute, even for largeL. The
standard weakly nonlinear theory is limited to a control parameter domain of size varying asL25

due to the nonnormality of the linear evolution operator. The fully nonlinear solution is given and
two generic cases are discussed: a supercritical case in which the instability is absolute and a
subcritical case in which the instability is solely convective. The subcritical case gives a
mathematical example of a bypass transition due to transient growth. The supercritical case allows
a fully quantitative comparison, including the effect of the domain size, with results obtained by
Büchel et al. for the size of the bifurcated solutions in the Taylor–Couette problem with
throughflow. © 1999 American Institute of Physics.@S1070-6631~99!00510-3#
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I. INTRODUCTION

Linear and nonlinear pattern selection in the on
dimensional Ginzburg–Landau equation with homogene
boundary conditions on an interval of lengthL has been in-
vestigated for over one decade.1,2 This equation is meant to
model the dynamics of, for example, convection rolls in t
Rayleigh–Be´nard experiment or of chemical reaction wav
in the Belousov–Zhabotinsky experiment. Confinement i
box of sizeL was found to affect the bifurcation thresho
weakly by a term of orderL22 and the wave number selec
tion by orderL21. This has been understood in terms of t
correlation lengthl in an infinite domain which, generically
for a supercritical bifurcation, diverges asm21/2 ~wherem is
the bifurcation parameter!. Boundary conditions influence
the flow only over the correlation lengthl and therefore,
whenm@L22, their effect is limited to diffusive layers sma
compared toL.

Confinement effects are not so trivial when an advect
term is added to the Ginzburg–Landau equation and ca
be removed since the boundary conditions single ou
unique reference frame. This equation qualitatively descri
open flows such as the Rayleigh–Be´nard3 or Couette–Taylor
experiments4,5 with crossflow, or more classically jets
wakes, mixing layers, and boundary layers,6 for which the
mean advection is nonzero in the laboratory frame since fl
particles continually enter and leave the domain. A sim
equation holds in closed flows when the instability is trav
ing in the laboratory frame, as in binary convection.7

When order one advection is present, confinement i
box of sizeL,8–10 or spatial inhomogeneities due to slo
variations of the equation parameters,8,11–13delay the linear
threshold by an order one quantity since the instability
now to become absolute.6 Weakly nonlinearanalyses are o
little help to describe the bifurcation since their validity
limited to order (L25) departure from criticality in the finite

box case8,10 and to exponentially small departure from criti-
cality in the variable coefficient case.14
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The aim of this paper is precisely to lift these restr
tions, by illustrating on an elementary model generic bifu
cation diagrams which incorporatestrongly nonlinearef-
fects. More specifically, whereas the linear threshold in
finite box is related to the absolute nature of the instability
is demonstrated in the present study that this is not so for
nonlinear threshold. By invoking an argument similar to th
in Refs. 10, 15–17, the existence of a fully nonlinear solut
in a finite domain is expected to depend on the direction
propagation of the front separating the bifurcated state fr
the basic state in an infinite domain.18,19 When the front ve-
locity is linearly selected, a nonlinear solution exists on
when the instability is absolute, and the bifurcation is sho
to be supercritical. When the front selection is nonlinear
nonlinear solution exists whereas the instability is still co
vective and the bifurcation is shown to be subcritical. In th
case, because of the nonnormality of the linear evolut
operator,14,20–22 initial perturbations of exponentially sma
amplitude induce large transients which trigger the nonlin
transition.

The present study builds upon the results of Refs. 15–
where the concept of nonlinear absolute instability is int
duced and where solutions in a semi-infinite domain are a
lytically derived. To construct the fully nonlinear solution i
a finite domain, the solution in a semi-infinite domain det
mined by the method of matched asymptotic expansions16 is
used, allowing us to obtainanalytically the scaling laws
found numerically in Refs. 3, 5, 8, 10.

In a related study10 the bifurcation structure of the com
plex Ginzburg–Landau equation in a finite domain has b
numerically computed and interpreted in terms of a fro
solution. In that case, bifurcation is observed to be superc
cal and to occur solely when the instability is absolute. Fr
the present point of view, this corresponds to the fact tha
the supercritical complex Ginzburg–Landau model the fr

solution is alwayslinearly selected.19 In this respect the su-
percritical Ginzburg–Landau equation is not generic.

7 © 1999 American Institute of Physics
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In the present analysis, we examine instead the dynam
of the different states which prevail in a finite box in the ca
of an elementary model exhibiting anonlinearly selected
front solution. Many extensions of the real or compl
Ginzburg–Landau equation~see, for example, Ref. 16!
might have been suitable candidates. We have chose
study the van der Pol–Duffing type equation~1!, where the
mean advection effect includes a quadratic term in the p
turbation amplitude that accounts for nonlinear variations
the wave speed. It should be emphasized that this equati
considered here as a toy model. It is not rationally deriv
from the Navier–Stokes equations via a multiple scale
proach since the asymptotic expansion close to the abso
instability threshold becomes invalid when advection is or
unity.10 Indeed recent numerical simulations of bluff bod
wakes23 have demonstrated that such surprisingly large n
linear modifications to the mean flow are essential in orde
understand the structure of the bifurcated wake.

II. NONLINEAR MODEL

The Ginzburg–Landau equation describes the wave
plitude in a bifurcating spatially extended system and
been considered to model the transition of closed24 as well as
open25 fluid dynamical systems. For simplicity we discu
the real amplitude case, which corresponds to an instab
breaking a discrete symmetry, and add the termaA2 ]xA
which represents the lowest-order nonlinear contribution
the mean advection velocity consistent withA˜2A sym-
metry. The model reads:

] tA5mA2~U2aA2!]xA1]xxA2A3, ~1!

with A(x,t) the order parameter,U the mean advection ve
locity, m the bifurcation parameter. Rescalingx, t, A would
bring one of the parametersU or a to unity but we keep both
parameters to facilitate the discussion. Fora50 the standard
Ginzburg–Landau equation with real amplitude and real
efficients is recovered. Solutions of Eq.~1! are sought in a
finite domain (0,L) with boundary conditions:

A~0,t !5A~L,t !50. ~2!

III. LINEAR SOLUTION

Before applying the boundary conditions Eq.~2!, con-
sider an infinite domain for which infinitesimal amplitud
solutions of Eq.~1! represent instability waves of the form
R$exp(i(kx2vt))% with the wave numberk and the frequency
v linked by the dispersion relationv5Uk1 i (m2k2). The
system is linearly stable if any infinitesimal initial conditio
is damped. This is the case ifI(v),0 for anyk real, i.e., if
m,0. In the ‘‘laboratory’’ frame@but without applying the
boundary conditions Eq.~2!#, the group velocity vg

5dv/dk discriminates between convectively unstable flo
for which initial transients are advected downstream, a
absolutely unstable flow, for which initial transients grow
infinity with time at any fixed locationx. These concepts

2978 Phys. Fluids, Vol. 11, No. 10, October 1999
originally introduced in plasma physics,26 have been success-
fully applied to the understanding of open flow dynamics.6,27
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The wave of zero group velocity is characterized by the f
lowing absolute frequency and wave number:

v05 i ~m2U2/4!, ~3!

k052 iU /2. ~4!

The flow is convectively unstable ifI(v0),0, i.e., if m
,m t[U2/4, and absolutely unstable ifm.m t . To be con-
sistent with the literature,6 these notions pertaining to wave
in an infinite domain are calledlocal since they do not take
into account spatial inhomogeneities such as boundary c
ditions.

When the boundary conditions Eq.~2! are enforced, the
streamwise directionx becomes an eigendirection and th
linear solutions take the formA(x,t)5R(exp(2ivnt)fn(x)),
with vn the global frequency6 and fn(x) the linearglobal
mode ~the termglobal refers to physical space and not
phase space as in dynamical systems theory! given by

vn5 i ~m2U2/42p2n2/L2!5v02 ip2n2/L2, ~5!

fn~x!5exp@U~x2L !/2#sin~pnx/L !. ~6!

Equation ~5! shows that the global thresholdmG[U2/4
1p2/L25m t1p2/L2, at which the leading eigenvaluev1 is
destabilized, differs from the local instability thresholdm
50 by two terms: an order one termm t depending only onU
due to the advection, and an orderL22 term due to the finite
size of the box. Therefore, we obtain the seemingly pa
doxical result that, no matter what the length of the interv
theglobal bifurcated solution prevails form.m t , i.e., when
the instability islocally absolute, whereas when the interv
is taken to be infinite right from the start, the bifurcatio
takes place atm50, i.e., when the instability islocally con-
vective.

This singular behavior of the spectrum asL˜` has
been discussed, without referring to the concepts of lo
absolute or convective instability, by Reddy and Trefethe21

in their study of the advection-diffusion operator. It is relat
to the transient amplification of initial perturbations asso
ated with the nonnormality of the linear global operator.
other words, the linearized form of Eq.~1! with boundary
conditions Eq.~2! is such that its eigenmodes Eq.~6! are
nonorthogonal. A practical way to understand the phys
associated with nonnormality is to consider the respons
time-harmonic forcing at the real frequencyv. When the
flow is globally unstable, the amplification is infinite whe
forcing is applied at the global frequency. As noticed in R
22 it is finite but it is extremely large in a whole band ofv
when the flow is locally convectively unstable, and it
smaller than one~no amplification! when the flow is locally
stable. WhenL˜` the amplification goes to infinity forv
inside the unstable band (2Am, Am). When the Galilean
invariance is broken, then the linear global evolution ope
tor is nonnormal, and its spectrum bifurcates when a fin
domain becomes locally absolutely unstable. However, p

J.-M. Chomaz and A. Couairon
to this global bifurcation,e-pseudospectra for smalle cross
the realv-axis, when a convectively unstable region appears.
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IV. WEAKLY NONLINEAR SOLUTION IN FINITE
DOMAIN

We show that this nonnormality associated with lar
time-harmonic amplification has two effects on the nonlin
analysis: first it strongly limits the validity of the standa
weakly nonlinear theory;14 second, when the global bifurca
tion is subcritical, it allows the nonlinear solution to be e
cited by extremely low amplitude perturbations.

Since the linear global modes have well-separa
growth rates Eq.~5!, a naive idea consists in performing
weakly nonlinear analysis, as in Refs. 8, 10, 14, by introd
ing a small parameterh such thatm2mG5hDm. The solu-
tion is then expanded in powers ofh: A5S ih

iAi , and a
slow time scaleT5h2t is introduced. At first order we ob
tain A1(x,t,T)5R$a(T)f(x)exp(2ivt)% with the global
amplitudea(T) still unknown. Equations~5! and ~6! define
v[v1 and f(x)[f1(x). At third order the compatibility
condition imposes thata(T) obey the Landau equation

da/dT5Dma2ciai2a, ~7!

with

c5^cuf32af2 ]xf&/^cuf&, ~8!

where^u& stands for the usual inner product over the inter
0<x<L and c(x)[exp(2Ux/2)sin(px/L) belongs to the
kernel of the adjoint operator atm5mG . We obtain:

c5
12p4@12exp~2UL !#~42aU !

UL~4p21U2L2!~16p21U2L2!
. ~9!

Two limits are important: whenL goes to infinity andU is
finite c;12p4(42aU)(UL)25; when U vanishes~as in
Ref. 2! c;3/4. Note at this stage that the weakly nonline
nature of the instability changes from supercritical to su
critical whena exceeds 4/U.

In the above computation, the choice off specified in
Eq. ~6! is such that its maximum amplitude is unity~at lead-
ing order in 1/L). Therefore, if we assume the consistency
the expansion, thathA1!1 at any locationx, the weakly
nonlinear theory is limited, whenU is finite, to m2mG!c
;L25. This restriction, already given in Refs. 8, 10, is
fact due to the nonnormality of the global operator. It is
more severe than the usual restrictionm2mG!L22 given by
the separation in the global eigenvalues Eq.~5!. When m
2mG is small but larger than 12p4(42aU)(UL)25, the
Landau-type expansion becomes invalid and a different n
linear description should be used.

V. FULLY NONLINEAR SOLUTION IN FINITE DOMAIN

The basic idea underlying the fully nonlinear descripti
is that, whenL is large enough, the solution is similar to th
described in Ref. 15 for a semi-infinite domain. The solut
consists of a front separating the basic state from the bi
cated region downstream, which would have moved
stream had the domain been infinite, and is prevented f
doing so by the upstream boundary condition. This front
lution has recently been calculated for model problems

18,19

Phys. Fluids, Vol. 11, No. 10, October 1999
infinite domains. For an unstable basic state, an infinity
of front solutions corresponding to different velocities exis
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but a single one is dynamically selected.18,19 Two cases are
possible: either the front is selected by the linear margi
stability principle or it moves faster and is selected by
nonlinear criterion.19 To each of these cases is associate
different solution in a semi-infinite domain. According to th
results derived in Ref. 16, a solution in a semi-infinite d
main called a nonlinear global mode may be viewed a
stationary front~or a front able to withstand advection! with
a zero amplitude at some location.

It has been shown in Ref. 16 that the application of the
results to Eq.~1! leads to the two possible generic case
When a,6/U, the front is linearly selected in an infinit
domain. The threshold necessary to obtain a nonlinear glo
mode in a semi-infinite domain coincides with the absol
instability thresholdm t . In this case, the distanceDx re-
quired to reach saturation is given at leading order by:

Dx.p~m2m t!
21/2. ~10!

Physically, this scaling may be understood by consider
that close tox50 the amplitude is small and the solutio
may be viewed as the superposition of two waves of co
plex wave number differing only by an order (m2m t)

1/2

complex term.
When a.6/U, the front is nonlinearly selected in a

infinite domain. A nonlinear mode in a semi-infinite doma
may still be viewed as a front blocked by the upstrea
boundary, but now the nonlinear global mode thresholdm`

[3a21(U23a21) ~see Ref. 16 for details! is smaller than
m t . In this case, the distanceDx required to reach saturatio
is proportional at leading order to:

Dx. lnS 1

m2m`
D . ~11!

Physically, this size corresponds to the fact that the bound
condition atx50 is fulfilled by the linear superposition o
two waves, propagating, respectively, upstream and do
stream, with spatial growth rates differing by order uni
The value a56/U which distinguishes between the tw
cases is given by comparingm` with m t .

Equation~10! has been derived analytically in Refs. 1
17 and independently obtained numerically in Refs. 8,
The scaling law Eq.~11! has recently been observed in
Hele-Shaw cell experiment.28

Let us now discuss the implication of these scaling la
on the structure of fully nonlinear solutions in a box of fini
size. Intuitively, a solution confined in a box of sizeL will
resemble the solution in the semi-infinite domain modifi
by a diffusive boundary layer of width of order unity at th
downstream boundaryx5L if saturation is reached befor
x5L ~Fig. 1!. Therefore the condition ‘‘L large’’ is not suf-
ficient to insure that the saturation amplitude is indeed
tained, and we enforce insteadL2Dx@1. Whena,6/U,
we substitute Eq.~10! in the latter condition and we expan
the quantity m2m t in powers of 1/L: m2m t5p2/L2

1g/L3, where the first term on the right hand side mea
that the control parameterm is close to the thresholdmG ,

2979Against the wind
t
and g is still unknown. The conditionL2Dx@1 imposes
g@2p2 and therefore:
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m2m t2p2L225m2mG@2p2L23. ~12!

In that case the amplitude of the solution is constant at
valuem1/2 outside two boundary layers, one of sizeDx given
by Eq. ~10! at the upstream boundaryx50 and the other of
size unity at the downstream boundaryx5L.

The bifurcation diagram@Fig. 2~a!# is obtained by plot-
ting the maximum amplitude of the numerically determin
steady solution of Eq.~1! as a function ofm. The solution
has been computed forL5103p. The interval inm where
the flow is locally stable is marked byS, convectively un-
stable byC, absolutely unstable byA. GS marks the linearly
globally stable domain,m,mG[m t1p2/L2; W the domain
of validity of the weakly nonlinear theory,um2mGu
!48p4(UL)25 and K the domainm2mG@L23 where the
solution is obtained as a linear front blocked by the upstre
boundary condition. The terminologyK is used for Kolmog-
orov, since the linear front velocity selection was first d
covered in Ref. 18.

The bifurcation diagram@Fig. 2~a!# is in sharp contras
with the classical ‘‘easy bifurcation’’ case2 of a finite un-
stable system with no advectionU50: in the latter case, the
bifurcation takes place close tom50, the linear operator is
normal and the Landau constant is order unity.

With a finite advection (UÞ0), the bifurcation takes
place when the flow is absolutely unstable (mG.m t). Fur-
thermore, the Landau constant being orderL25, the domain
of validity ~W in gray! of the Landau model is extremel
limited and the strongly nonlinear saturated solution ta
over very rapidly~for m2mG larger than orderL23). It is
somewhat of a surprise that the domain of existence of
strongly nonlinear solution coincides with the domain of li
ear absolute instability.

This is no longer true whena.6/U since the nonlinear
solution in a semi-infinite domain16 exists form.m` which
includes the range ]m` ,m t@ where the basic state is still con
vectively unstable. In that case, because of the logarith
scaling forDx @Eq. ~11!#, the global mode in the box of siz
L exists whenm exceedsm` by an exponentially small quan
tity. In Fig. 2~b!, N marks the domain~in gray! where the
solution is obtained as a nonlinearly selected front bloc
by the upstream boundary condition~and not a linearly se-
lected front as in the region markedK). The bifurcation
diagram is radically different from the previous case since
the finite box, the basic stateA50 is linearly stable untilmG

and therefore the flow exhibits hysteresis@heavy lines and

FIG. 1. Nonlinear global mode in a box of sizeL. Dx is the distance
required to reach the saturation amplitudem1/2.

2980 Phys. Fluids, Vol. 11, No. 10, October 1999
arrows in Fig. 2~b!# betweenm` andmG . In this subcritical
range, an unstable solution~dash-dotted curve! exists and

Downloaded 13 Mar 2008 to 129.104.38.6. Redistribution subject to AIP
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connects the nonlinear solution which bifurcates~saddle
node bifurcation! close to m5m` to the basic state. The
basic state is destabilized via a subcritical pitchfork bifurc
tion at mG , with an orderL25 nonlinear coefficient in the
Landau equation.

To obtain the bifurcation diagrams of Fig. 2, the statio
ary solutions of Eq.~1! have been computed numerically a
trajectories in (A,dA/dx) phase space. They have been o
tained by perturbation of the nonlinear global modes alre
computed in the case of a semi-infinite domain in Ref.
The numerical procedure used to compute the stable and

FIG. 2. Numerically computed bifurcation diagrams~heavy line! for U of
order unity andL5103p large but finite.~a! a,6/U (a51, U54). ~b!
a.6/U (a51, U512). ~a1! Enlargement aroundmG in the casea,4/U
(a53, U51). ~a2! Enlargement aroundmG in the case 4/U,a,6/U (a
55, U51). ~b1! Enlargement aroundmG in the casea.6/U (a57, U
51).

J.-M. Chomaz and A. Couairon
stable branches of the bifurcations diagrams~Fig. 2! is a type
of shooting method: in a semi-infinite domain, a nonlinear
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global mode has a nonzero initial slopedA/dx(0). This par-
ticular value ofdA/dx(0) with A(0)50 is the single initial
condition which converges toA2[(Am,0) at infinity ~initial
condition on the stable manifold ofA2). When trajectories
are integrated forward in space using the boundary condi
at the origin A(0)50 and a smaller initial slopev0

5dA/dx(0) than that of the semi-infinite nonlinear glob
mode, the size of the solution is finite, i.e., there is a po
x5 l such thatA( l )50. The pointl is computed as a func
tion of the initial slopev0 and presents a concave sha
whenm`,m,mG ~Fig. 3!.

Coming back to the solution in a finite domain, the se
ond boundary conditionA(L)50 must be applied in order to
single out solutions of sizeL. These solutions are found b
intersecting the previously obtained concave curve~Fig. 3!
with the horizontal linel 5L. Therefore, two solutions o
sizeL exist if m`,m,mG : one possesses a very small in
tial slope vu @Figs. 3~b! and 4~b!# and corresponds to th
unstable branch of Fig. 2~b!. The second one correspondin
to the stable branch of Fig. 2~b! possesses an order one initi

FIG. 3. Principle of determination of the different nonlinear global mod
~a! Size l of solutions as a function of the initial slopev0 . L5p is one of
the box sizes we consider.~b! and~c! are enlargements around the interse
tion points each of which represents a solution in a domain of sizeL5p.

Phys. Fluids, Vol. 11, No. 10, October 1999
FIG. 4. Nonlinear global modes obtained at the intersection points of Fig.
~a! Stable mode with slopevs . ~b! Unstable mode with slopevu .

Downloaded 13 Mar 2008 to 129.104.38.6. Redistribution subject to AIP
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slopevs @Figs. 3~c! and 4~a!#. In this example for whichU
512, m536 anda51, the size of the boxL5p may be
considered as large, since the stable bifurcated solutio
extremely close to that obtained in a semi-infinite dom
@Fig. 4~a!#. The existence of the unstable branch with ord
one maximum amplitude@Fig. 4~b!# close tomG shows that
the system is strongly subcritical whena.6/U. This is not
in contradiction with the weakly nonlinear analysis in th
vicinity of mG , which predicts subcriticality for a differen
but smaller threshold 4/U @Eq. ~9!#. When 4/U,a,6/U, the
system is weakly subcritical with a small hysteresis lo
which exists in an extremely narrow band limited to theW
domain~its size measured in terms of the parameterm is of
orderL25) for m,mG . In this case, the bifurcation diagram
is similar to Fig. 2~a!, but with a negative slope atmG , as
shown in the enlargement@Fig. 2~a2!# of Fig. 2~a!.

The subcritical nature of the fully nonlinear instabilit
whena.6/U leads us to consider how noise may induce
transition. The new kind of global mode in the rangem`

,m,mG exists not because the linear wave of zero gro
velocity is destabilized~linear absolute instability! but be-
cause the nonlinear front is able to withstand the advect
Numerical simulations of the evolution equation~1! with
boundary conditions Eq.~2! show that such global modes a
triggered only if the amplitude of the initial perturbation
large enough for the transient to reach an amplitude of or
unity in the finite domain. From the global point of view, th
amplification of the initial transient is a linear effect asso
ated with the nonnormality of the global operator. The a
plification factor is known20 to be comparable to the time
harmonic amplification mentioned in the first part of th
paper and to increase exponentially withL. It may therefore
be expected that the ‘‘activation amplitude’’@symbolized by
the small black region in Fig. 2~b!, which has been widened
to make it visible#, i.e., the minimum amplitude of the initia
perturbation sufficient to trigger the nonlinear global mod
will decrease exponentially withL. Numerical results are in
very good agreement with this interpretation: We have c
sen initial perturbations possessing a uniform amplitude
space. For a box sizeL510p, the amplitude of this initial
condition must exceed 3.4310241 to trigger a nonlinear
front which moves upstream and saturates in a global mo
If the box length isL55p, this threshold becomes 9.
310220 and if L52p, it becomes 7.131027. If such a non-
linearly self-sustained global mode were present in a r
experiment, this activation amplitude would be too small
be detected since initial and entrance noise, which are sa
order 1024 in a precise experimental setup, would gener
order unity transients even for a moderate box sizeL. In any
case, the entrance noise determined by the precision of
experimental setup exceeds by several orders of magni
the threshold to trigger a large nonlinear response. The
furcation would therefore seem to effectively take pla
close tom` as in the semi-infinite case.

VI. DISCUSSION AND COMPARISON WITH OPEN
FLOW EXPERIMENTS

.

2981Against the wind
This type of bifurcation induced by transient amplifica-
3.
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tion of initial noise is associated with the nonnormality of t
linear evolution operator; it has been invoked to explain
namics in Couette and Poiseuille flow.20 The present pape
shows that a fully nonlinear analysis must be undertake
order to determine the dynamics of open flows and that
notion of nonnormality only quantifies how the system m
be triggered by noise, but tells us nothing about its ultim
response. An elementary partial differential equation~1! has
been studied for which two extremely different bifurcatio
scenarios have been identified, depending on the nonline
present in the system~as measured by thea parameter!, but
without any change in the nonnormality of the linear ope
tor.

Several open flows which follow the bifurcation scena
depicted in Fig. 2~a! have been identified experimentally o
numerically: as an example of linearly determined bifurc
tion scenario, we have analyzed the Taylor–Couette prob
with throughflow, within the framework of the comple
Ginzburg–Landau equation and we have shown that the
namics in an open geometry of sizeL is similar to that in a
semi-infinite domain.17 In particular, the flow behaves like a
oscillator when the Taylor number~i.e., the bifurcation pa-
rameter which measures the rotation of the inner cylind!
exceeds the absolute instability threshold. For this probl
Büchel et al.5 have compared numerical simulations of t
Navier–Stokes equation with those of the Ginzburg–Lan
equation in a system of finite length. In Ref. 17, we ha
demonstrated that when the threshold of absolute instab
m t is approached, the scaling law Eq.~10! is in good agree-
ment with numerical calculations of the length~i.e., the dis-
tance necessary to reach order one amplitude! of the modes
obtained above threshold by Bu¨chelet al. This indicates that
the system possesses the intrinsic dynamics of a semi-infi
system; the influence of the outlet boundary condition is
stricted to a very narrow domain near the outlet but does
affect the global dynamics of the system. This analysis
valid because the system considered is sufficiently long
the present analysis determines precisely whether the re
obtained by Bu¨chel et al. fall within the range of validity of
scaling law Eq.~10!. A global mode cannot be obtained
the departure from the threshold of absolute instabilitym t is
smaller thanp2/L2. But otherwise, the system behaves as
a semi-infinite domain and a global mode which has sa
rated over a distance comparable to the size of the bo
obtained only if the bifurcation parameter exceeds the glo
instability thresholdmG by an additional quantity 2p2/L3

@see Eq.~12!#. The domainm2m t@p2(1/L212/L3) where
the scaling law Eq.~10! pertaining to the semi-infinite inter
val remains valid for the finite interval is indicated in Fig.
by vertical dashed-dotted lines for different values of the s
L of the system used by Bu¨chel et al. Numerical results for
the size of the modes obtained by Bu¨chel et al. are also re-
ported. For a box lengthL550 andL525, all of their data
are found to be inside the domain of validity of the scali
law Eq. ~10! drawn as a continuous line. Even for a sho
system of lengthL510, the data of Bu¨chel et al. lie practi-
cally all to the right of the corresponding dashed-dotted li
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However, the scaling law Eq.~10! should be valid over a
shorter range since the departures from criticality in this win
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dow are greater than e22;0.14; this corresponds to the ob
servation of Bu¨chel et al. that for L510, no bulk region
where the flow saturates is observed.

Rayleigh–Be´nard convection with throughflow,3 bluff
body wakes,29 and resonant hot jets30 also belong to the clas
for which the bifurcation scenario of Fig. 2~a! holds. Open
flows which bifurcate following the fully nonlinear scenar
@Fig. 2~b!# are not so common, the only known exceptio
being the shear flow experiment in a Hele-Shaw cell28 where
the scaling law Eq.~11! has recently been reported and f
which the nonlinear transition seems to precede the abso
instability threshold. Several experimental situations co
cerning the problem of front propagation, for examp
chemical systems,31 are known to exhibit nonlinear front se
lection. Adding a throughflow in this chemical experime
should yield an experimental open flow which bifurcates
cording to the nonlinear scenario@Fig. 2~b!#.

In conclusion, we emphasize that the main ingredi
sufficient for the subcritical bifurcation to occur in a finit
box is the nonlinear selection of the front velocity. In th
respect, model equation~1! displays the necessary minima
features but other models would exhibit similar qualitati
dynamics.
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