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The stability of a tluidized bed is investigated with respect to spatially growing disturbances. A 
general linearized model is derived from the theories of Anderson and Jackson and of Batchelor. The 
absolute and convective nature of the instability is analyzed using the mathematical framework of 
the open flow linear stability theory. The results of the analysis provide the domains of absolute and 
convective instabilities, Q 1994 American Institute of Physics. 

I. INTRODUCTION 

A fluidized bed consists of a suspension of solid particles 
supported against gravity by an upward flowing fluid.’ A 
fluidized bed can be considered as an ensemble of sediment- 
ing particles referred to different reference frames and hence 
as a stationary sedimenting suspension. Under some condi- 
tions, stable expansions have been found experimentally 
over a fmite interval of flow rates beyond the minimum flow 
rate for tluidization.2’3 However, the ideal, uniform, and ho- 
mogeneous state of fluidization is rarely realized in practice. 
Instead, fluidized beds exhibit different regimes of complex 
motion depending upon the flow rate of the injected fluid. 
Gas-fluidized beds are usually very unstable and rapidly at- 
tain a turbulent regime traversed by rising bubbles, i.e., re- 
gions essentially devoid of particles which rise through the 
bed when the flow rate is increased (see, for instance, the 
reviews of Clift and Grace” and Davidson et aL5). Liquid- 
fluidized beds present voidage instability waves.6-8 This first 
wavy instability destabilizes and leads to secondary instabili- 
ties such as transversal structures when the flow rate is 
increased.gs10 Further increase of the flow rate leads to turbu- 
lent and bubbly regimes.* 

Although fluidized beds have been studied and practi- 
cally used for a long time, the underlying physical mecha- 
nisms are still poorly understood. One of the main difficul- 
ties lies in the complete understanding of particle-particle 
and particle-fluid interactions. There is still no general con- 
sensus regarding the governing dynamical equations of flu- 
idized beds. Schematically, two different approaches have 
been developed. Over the past two decades, two-phase con- 
tinuum modeling has been applied to this problem (see, for 
instance, the reviews of Jackson” and Homsy12). Most of 
these models considered the linearized hydrodynamic stabil- 
ity of an uniform and infinite fluidized bed and the hydrody- 
namics of an isolated idealized bubble. More recently, a new 
theory of the instability of a uniform, infinite, and one- 
dimensional fluidized bed was proposed by Batchelor.t3 The 
governing equations have been established from a physical 

picture of the system as a suspension of particles interacting 
with a tlowing fluid. 

Since the occurrence of bubbles is an important and 
practical feature of fluidized beds, numerous studies have 
been devoted to their investigation. However, the origin of 
the bubbly regime is still unknown. Experimental observa- 
tions suggest that bubble formation is linked to the secondary 
instabilities of the voidage instability waves.7’g A recent con- 
jecture is that bubbles originate from a gravitational over- 
turning instability caused by the first wavy disturb- 
ance.10P13F14 It is, therefore, relevant to investigate the differ- 
ent instabilities of a fluidized bed and the transition toward 
the turbulent and bubbly regimes. The investigation of the 
first wavy instability, which is an interesting problem in it- 
self, is the first step toward the understanding of bubble for- 
mation. 

Experimental studies of the first wavy instability have 
been conducted in liquid-fluidized beds. The measured dis- 
turbances have been shown to grow exponentially upwards 
along the bed and eventually to lead to a saturated finite 
amplitude. 6*7 Although a dominant instability mode was 
clearly evidenced, the power spectrum of the voidage fluc- 
tuations was found to be very broad. These experimental 
findings suggest that the first wavy instability is convective 
in nature and that the fluidized bed behaves as a spatial noise 
amplifier where any small perturbation created at the en- 
trance of the bed is amplified along it. Fluidized beds belong, 
indeed, to the open flow class where fluid elements continu- 
ously enter and leave the experimental system. Therefore, the 
theory of instability waves in fluidized beds should take into 
account the open flow features, i.e., the spatial origin of the 
flow and the mean advection. 

Temporally growing disturbances have only been con- 
sidered in theoretical work.‘1-13Y’5-Z This temporal descrip- 
tion has provided valuable quantitative information such as 
the stability condition, the dominant wavelength, and the 
temporal growth rate. However, when theoretical predictions 
were compared with experimental results, the spatial growth 
rate was approximated as the temporal growth rate multi- 
plied by the mean velocity.6,7 Advances in open flow stability 
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theory should provide an accurate description of the spatial 
growth of the wave instability (see, for instance, the reviews 
of Briggs,?3 Bers,24 and Huerre and Monkewitz=). It should 
also yield information on the convective or absolute nature 
of the instability. 

The specific purpose of this paper is to investigate the 
stability of a fluidized bed with respect to spatially growing 
disturbances and to look for conditions under which a tran- 
sition between convective and absolute instabilities can be 
identified. To accomplish this goal, we consider in Sec. II a 
general linearized model derived from the theories of Ander- 
son and Jackson,18’26 and of Batchelor.r3 Linear stability is 
investigated in Sec. III using the mathematical framework of 
the open flow theory. The marginal stability condition as well 
as the convective/absolute instability transition condition are 
determined. The conditions for convective and absolute in- 
stabilities are put into the physical parameter framework in 
Sec. IV and conclusions are drawn in Sec. V. 

II. THEORETICAL MODEL 

In this section, we consider the general form of the lin- 
earized equation for small perturbations of the particle vol- 
ume fraction. The fluidized bed is assumed to be one- 
dimensional and unbounded. The tluidizing fluid may be 
either a liquid or a gas, with a density pf and with a viscosity 
ps. The solid particles are supposed to be non-Brownian 
monodisperse spheres, with diameter d, and density ps . 

T%o-phase flow modeling uses equations of motion 
based on a continuum picture of the suspension. The usual 
procedure is to write the continuity and momentum equa- 
tions for each of the two phases of the system, the particles, 
and the fluid. At this stage, these equations formally contain 
a force representing the interaction between the two phases 
and the stress tensors associated with the fluid and particle 
phases. In order to close the equations, it is necessary to 
postulate expressions for these terms. Since this can only be 
done on a heuristic basis, it is here that the greatest differ- 
ences arise among equations proposed in the literature. For 
the purpose of the present work, the model of Anderson and 
~~~~~~~~~~~~~~ has been chosen. In this model, the force ex- 
erted by the fluid on the particles contains two terms. The 
first term is a drag force depending on the particle volume 
fraction 4 and the relative velocity of the two phases. The 
second term represents virtual mass effects and is propor- 
tional to the relative acceleration of the phases. The virtual 
mass coefficient, whose value would be l/2 for an isolated 
sphere, is a function of the particle volume fraction C(4). 
The stress tensors associated with the fluid and the particle 
phases are independent and both have the Newtonian fluid 
form. Although the pressure, the bulk, and shear viscosities 
have a clear meaning for the fluid phase, the pressure ps and 
the bulk and shear viscosities A’ and ,u”, respectively, for the 
particle phase cannot be easily estimated or measured. Nev- 
ertheless, these governing equations have been used to write 
a linearized equation for the small perturbation of the particle 
volume fraction & [Eq. (19) in Anderson and Jackson’8]. 

Batchelor’s approach is rather different.13 He considers 
the general form of the equations that govern the mean mo- 
tion of the particles in the vertical direction. He assumes that 

the particles and fluid are incompressible and that there is no 
acceleration of the mixture as a whole. The velocity of the 
mixture is therefore space and time independent. The gov- 
erning equations express the conservation of the particle and 
momentum. In the approximate form for small departures 
from uniformity, the rate of change of particle momentum is 
equal to four terms [Eq. (3.10) of Batchelort3]. The first term 
describes the acceleration reaction of the particles. It is again 
necessary at this stage to introduce the virtual mass coeffi- 
cient C(4). The second term is the fluid drag-weight term. 
The third term can be identified as a viscous term. This term 
contains a coefficient 17 which has the dimension of a diffu- 
sivity (or a kinematic viscosity) and is termed as the particle 
viscosity. The last term is proportional to the spatial gradient 
of the particle volume fraction. The coefficient Q of the gra- 
dient can be interpreted as an effective bulk modulus of elas- 
ticity of. the particle configuration divided by the particle 
mass by unit volume of the mixture. It represents the sum of 
two different effects, one arising from the transfer of particle 
momentum by velocity tluctuations analogous to the Rey- 
nolds stress in turbulence and the other being the hydrody- 
namic particle diffusion down a concentration gradient. This 
gradient diffusion which arises from random fluctuations in 
the particle velocity is estimated to provide the largest con- 
tribution to Q and to be responsible for the stability of the 
bed. The two governing equations are then written for small 
perturbations as Eqs. (3.13) and (3.14) in Ref. 13. It is im- 
portant to mention that the reference frame used by Batch- 
elor is the usual reference frame of sedimentation where the 
mean velocity of the mixture is zero. For the completion of 
the present spatial stability analysis, the appropriate refer- 
ence frame is that of the fuidized bed where the mean ve- 
locity of the particles is zero. The linearized equations of 
Batchelor for small perturbations have thus been written in 
this latter reference frame. 

To complete the presentation of the two models, it is 
important to discuss the origins of the stabilizing and desta- 
bilizing mechanisms in fluidized beds. Particle inertia was 
recognized early as the destabilizing mechanism.” The effect 
of inertia produces some delay in the adjustment of particle 
velocity to a change in the local concentration and hence can 
promote the growth of the wave. Conversely, the physical 
origin of the stabilizing mechanism is still controversial. 
Schematically, two physical origins for stability have been 
invoked, one being the solid contact forces between particles 
and the other being the hydrodynamic gradient diffusion of 
the particles due to particle velocity fluctuations. In the work 
of Anderson and Jackson,‘* the bed was always found un- 
stable. Later, it was recognized that the bed could be stabi- 
lized for a sufficiently large value of dpsld+.lg Since 
dp’/d 4 measures the rate of change of particle pressure with 
concentration, it represents a bulk modulus of elasticity of 
the particle phase. In Batchelor’s model,r3 the elastic behav- 
ior of the particle configuration is represented by the param- 
eter Q. The elasticity of the particles hinders the growth of 
the waves by homogenizing the concentration gradients and 
can cause the bed stability. 

Both models give the same form for the linearized equa- 
tion for small perturbations of the particle volume fraction 
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4r. It is convenient to recast this equation into the form of a 
wave hierarchy equation,228P2g in the fluidized bed reference 
frame, and with the vertical axis Ox, oriented upward and 
with the time t: 

The coefficients 7, cr, c2, and v differ for the two theories 
and are given in the Appendix. The waves of different orders 
are displayed by the factored operators on the left-hand side 
of Eq. (1). The lowest order wave is the linearized form of 
the kinematic concentration wave found by Kynch to de- 
scribe the propagation of the front separating the clear fluid 
and the suspension in sedimentation.30 The kinematic wave 
speed is identical in both theories and is equal to 
co= - [ +(dU/d+)], where U(4) is the mean velocity of the 
mixture, which is usually called the superficial velocity, in 
the homogeneous state labeled 0. A widely used correlation, 
called Richardson and Zaki correlation, gives the relation- 
ship between U and 4 as U(4) = Uo(l - 4)n, where the 
index it varies monotonically with the particle Reynolds 
number (Re=d,Uop$pf) and U, is the Stokes velocity of a 
single sphere for small Reynolds numbet31 The higher order 
waves are usually termed dynamic waves. In the absence of 
virtual mass effects as in gas-fluidized beds, the dynamic 
waves speeds cr and ca reduce to +&‘” in Batchelor’s 
model and the physical origin of the waves lies in the physi- 
cal processes represented by Q. Otherwise, the physical pro- 
cesses involved are less clear. The term on the right-hand 
side of Eq. (1) can be interpreted as a higher order viscous 
term. Although the wave-hierarchy interpretation of fluidized 
bed instabilities may not be completely relevant, Eq. (1) has 
been used to perform the stability analysis because of its 
compactness. 

111. INSTABILITY PROPERTIES OF THE LINEARIZED 
MODEL 

Equation (1) contains five coefficients. This number can 
be reduced to three by making the variables dimensionless. 
We therefore put T= t/r and X=x/(7/to). We also consider 
a small perturbation of the particle volume fraction that var- 
ies as exp[i(KX-- QnT)]. In the (X,T) variables, the disper- 
sion relation can be written as 

(cl-Kc)(Q+Kcf )+i(n-K)+iaRK2=0, (2) 

where c = cl/co, f= - cz/cl which can be termed a dissym- 
metry parameter, and a= v/(&) which represents the in- 
verse of a Reynolds number based on a velocity scale co and 
a length scale 7co. 

A. Temporal stability anhysis 

Temporal stability analysis relates to the time evolution 
of a spatially homogeneous wave defined by a real wave 
number, K, , but a complex frequency, a=!&+ ifin,. Hence 
flzi>O gives the temporal growth rate of unstable distur- 
bances. Since temporally growing disturbances have been 

considered in numerous theoretical studies,1’-13715-22 the ma- 
jor findings of the analysis are briefly presented in this sec- 
tion. 

The disturbances of greatest relevance to stability ques- 
tions are those of long wavelength and therefore the stability 
condition does not depend on the coefficient a. At marginal 
stability, the most unstable wave number is K,=O and the 
stability criterion can be written as2928729 

-fc<l<c. (3) 
This stability criterion simply states that the kinematic wave 
speed lies between the two dynamic wave speeds and is 
similar to that derived by Wallis. This stability criterion is 
also equivalent to that of Batchelor13 [his Eq. (4.12j] which 
in the present formulation is N,=[fc”+c(l -f )I-r<l. 

The dependence of the temporal growth rate sli on K, 
can also be investigated. The temporal branch relevant for 
stability question is shown in Fig. 1 for c= 1.2 (al), 0.48 
(a2), and 0.44 (a3) and for a = 1 and f=l. For c>l, the 
fluidized bed is stable and the temporal branch lies under the 
real K axis. For ccl, the range of wave numbers for which 
&>O is O<K,<K:, where K=O and K: are the neutrally 
unstable wave numbers. This later neutrally unstable wave 
number is given by K: = [ (1 - c)lac] “’ which corresponds 
to a frequency fip = cK,“. The most temporally unstable wave 
number Ktm corresponds to the maximum temporal growth 
slim and the most temporally unstable frequency fiFm. 

B. Spatial stability analysis 

Spatial stability analysis considers the response of the 
flow to a localized harmonic forcing with steady amplitude. 
This type of analysis is particularly well suited for the noise 
forcing problem at the spatial origin of tluidized beds. In 
contrast to temporal stability analysis, the wave frequency is 
kept real, C&, while the wave number is complex, 
K= K,+iKi . Hence -K,>O only gives unstable distur- 
bances propagating upwards.33 

The two spatial branches are plotted in the (K,, - KJ 
plane in Fig. 1 for the same values of the coefficients a, f, 
and c as those used for the temporal branch. For c>l, the 
spatial branches do not cross the real axis but lie on either 
side of it [Fig. l(bl)]. Since the flow is stable, the response 
to forcing is damped. The branch in the upper K domain 
(Kf) corresponds to energy propagation to the right-hand 
side of the harmonic source (located at X=Oj toward +w 
while the branch in the lower K domain (K-) corresponds to 
propagation toward --M, [Fig. l(cl)]. The instability is asso- 
ciated with the crossing of the real K axis by one spatial 
branch when c<l [Fig. l(b2)]. Since no topological change 
occurs for the spatial branches at the instability transition, by 
using a continuity argument it can be shown that each spatial 
branch is associated with the same propagation direction as 
in the stable case [Fig. l(c2)]. The wave propagating toward 
+a is then amplified for O<K,<K:, while the wave propa- 
gating to --co is still damped. The unstable spatial branch 
presents a maximum at -KT”’ which corresponds to a wave 
number Kcm and a frequency a;“. This continuity argument 
becomes unvalid when the two spatial branches issuing from 
the upper and lower real K half-plane (K+ and K-) collide 
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FIG. 1. Temporal branches (a), spatial branches (b), and responses to a forcing localized in space and harmonic in time (c): Stable case, c= 1.2 (l), 
convectively unstable case, c  =0.48 (Z), and absolutely unstable case, c=O.44. For all cases, a = 1 and f= 1. 

[Fig. l(b3)]. Since no propagation direction can be associ- 
ated with the spatial branches, the response to the source 
cannot be defined [Fig. l(c3)]. It should be noticed that no 
topological change is observed for the temporal branches 
[Fig. l(a3)]. This transition occurs when the saddle point 
(Cl”,Ko) of the dispersion relation [Cl”=fl(Ko), 
dfi/dK(K’)=O] crosses the R real plane (@=O). 

grow both temporally and spatially at the onset of absolute 
instability. 

C. Convective/absolute transition 

As a summary of the spatial analysis, while the maxi- 
mum imaginary part of the temporal mode fly”’ defines 
through its sign the stability of the flow, another quantity, 
termed the absolute growth rate @ , determines the ability to 
define the response to a localized source. When @ ‘<O, this 
response is defined and the flow is said to be convectively 
unstable. When @-0, the instability is absolute and the 
response to forcing cannot be defined. The disturbances will 

In the above section, two classes of spatially evolving 
flow have been defined. Convectively unstable tlows behave 
as spatial amplifiers of the incoming perturbations whereas 
absolutely unstable flows have an intrinsic behavior since 
they are insensitive to localized forcing. The change in the 
behavior of open flows when the flow becomes absolutely 
unstable has been demonstrated in numerous experiments 
and numerical simulations (see, for instance, the review of 
Huerre and Monkewitz=). 

In the case of the present linearized model of fluidized 
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FIG. 2. (a) Domains of absolute and convective instabilities in the (a,~) 
plane. (b) Isolines of the threshold value of c as a function of a and f. 

beds, the convective/absolute transition condition dR/dK=O 
with Cl:=0 is written as 

-2af[2 @+c(l-f )].[4a+4fcZ+c2(1-f )2]=0 
(4) 

and the absolute frequency which is real at threshold is 

.no= 2 fc*+c(l-f ) 1’2 
r 

I 2a I . 
The domains of absolute and convective instabilities are 

shown in the (a,~) plane in Fig. 2(a) for f= 1. The isolines 
of the threshold value of c are also plotted as a function of a 
and f in Fig. 2(b). The variation of the threshold value of c, 
which characterizes the onset of the absolute instability, de- 
pends weakly upon the dissymmetry parameter f. 

D. Properties of the dominant waves 

Since the onset of the absolute instability depends 
weakly upon f, the parameter f has been set to unity in the 
following discussion. In this case, the convective/absolute 
transition corresponds to the threshold value 
CA={[(a2+a)1’2-.]/2} . 1’2 ~The absolute growth rate 0: is 
positive for c<cA . This condition defines the absolutely un- 
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FIG. 3. (a) Effect of the coefficient c on the most temporally unstable 
frequency fltrn (l), the most spatially unstable frequency a;“’ (2), and the 
absolute frequency @ (3) with a =f= 1. (b) Effect of the coefficient c on 
the temporal maximum growth rate aim (l), the spatial maximum growth 
rate -Kfm (2), the spatial absolute growth rate -KY ,(-3, and the temporal 
absolute growth rate fly (4) with a = f= 1. 

stable domain. In order to compare the results of the tempo- 
ral and spatial analyses, the viscous parameter a is set equal 
to unity for convenience, and c remains the only free param- 
eter. Other values give the same qualitative behavior. Figures 
3(a) and 3(b) show the dependencies on c of the frequencies 
and the wave numbers of the most unstable temporal wave 
(K;” ,f$“+ifLfm), the most unstable spatial wave 
(K:m+iKfm ,a;“‘), and the absolute wave (Kzf iKy, 
a:+ i@). It should be mentioned that the maximum spatial 
growth rate -krfm and the corresponding frequency a;“’ are 
only defined in the convective domain (c > cA) . 

These frequencies and wave numbers have been investi- 
gated in the neighborhood of the critical condition (c=l). 
Asymptotic analysis for K,-0 gives the following scalings: 

J1-c 
fism- r nf” -0.7 - 

&’ 
(6) 
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6’ 
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Near critical condition, the same value for the frequency (or 
the wave number) of the most unstable mode is obtained by 
the temporal and spatial analyses. Moreover, the value of the 
spatial growth rate -Kfm is close to the value of the tempo- 
ral growth rate a:“‘. It is of interest to notice that since the 
growth rates vary as (1 -c j2, the wave grows rather slowly 
near the threshold. The values of the spatial and temporal 
growth rates differ when approaching the convective/ 
absolute threshold. Near the onset of the absolute instability 
(c=cA), the spatial growth rate -K:m tends toward the ab- 
solute growth rate -KY in the convective domain. 

IV. INSTABILITY PROPERTIES IN THE PHYSICAL 
PARAMETER FRAMEWORK 

The above linear stability analysis has determined the 
conditions under which the instability occurs and then be- 
comes absolute, as well as the instability properties for the 
convective and absolute regimes. This section deals with the 
question of whether the convective and absolute instability 
conditions are realized in practice. This requires expression 
of the instability properties in terms of the various physical 
parameters of a fluidized bed, e.g., the particle volume frac- 
tion, the particle diameter, the particle and fluid densities, 
etc. Since the instability properties have been expressed in 
terms of the dimensionless coefficients, a, c, and f, it is thus 
necessary to formulate these coefficients in terms of the 
physical parameters through the use of the theories of 
Batchelor13 and Anderson and Jackson.1x726 Since some of 
the quantities in both models are difficult to measure experi- 
mentally or to compute theoretically, only rough estimates 
are given by these authors. Therefore, the results given in 
this section depend upon the specific relations for these 
quantities, i.e., the elastic term, the added mass term, the 
particle viscosity and drag, etc., that are given by the theo- 
ries. Improved estimates of these quantities will yield more 
precise computations of the instability properties. 

A. Batchelor’s theory 

The case of a gas-fluidized bed in which the fluid is air at 
normal temperature and pressure is considered first. Figure 
4(a) shows the domains of absolute and convective instabili- 
ties in the plane (d, ,&,) with the rest of the parameters kept 
constant (& is the mean particle volume fraction!. The val- 
ues of the parameters are given in Table I and correspond to 
those given by Batchelor13 in his Sec. V. It should be men- 
tioned that, as indicated by Batchelor,13 the particle viscosity 
17, the elastic coefficient Q, and the Richardson-Zaki index 
n are regarded as invariant with &, and the virtual mass 
effects are negligibly small in this case. The marginal stabil- 
ity curve displayed in Fig. 4(a) corresponds exactly to the 
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FIG. 4. (a) Instability domains for a gas-duidized bed from Batchelor’s 
theory. (b) Instability domains for a liquid-fluidized bed from Batchelor’s 
theory. 

stability conditions shown in Fig. 3 of Batchelor.r3 It should 
be noted that the stable region decreases with increasing par- 
ticle diameter. 

Consider the behavior of the flow for a fixed particle 
diameter, for instance d,=lOO w [trajectory 1 displayed in 
Fig. 4(a)]. When the llow rate is large enough to fluidize the 
bed, Cpo is close to its maximum value and the flow is stable. 
As the flow rate is increased, & decreases and the flow can 
become convectively unstable and then absolutely unstable. 
The flow becomes convectively unstable and then stable 
again at even higher flow rates and smaller values of 40. 

The evolution of the spatial branches along the trajectory 
1 of Fig. 4(a) is displayed in Fig. 5. At the convective/ 
absolute transition, a saddle point appears. The branch 
switching corresponds to the disappearance of the spatially 
amplified wave and to the outbreak of the absolute instabil- 
ity. It should be noted that the absolute frequency is surpris- 
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TABLE I. Values of the parameters given by Batchelor (Ref. 13) for gas-fluidizcd and liquid-fluidized beds. 

Parameter 
I)r VJ UO Q 17 

(g ctc3) (g cmm3) &cm -1 s-1) (cm s-l) n Y (cm2 s-3 (cm’ s-l) a44 

Gas-fluidized 
bed 1 1.29XW3 1.85X1O-4 - . APs-PJX s 5 1 

187~ 

4 b--P/ 
~~YLT---T 

Ps 
PWW’(44> 0 

with cu=l with p= 1 

Liquid-fiuidized 
bed 

? 
L. 5 1 10-2 

0.63 4 Ps-PJ 1+2+ &--Pf)$ 
5.5 

J;;; 

18~~ 
If ayYg-’ P(d,I’W(d), - 

4.9+0.63& 
PI X1-4) 

with (r= 1 with p= 1 

ingly large (-80 Hz) for the set of parameters chosen by 
Batchelor.13 

The same qualitative behavior is obtained for a liquid- 
fluidized bed where the fluid is water, as displayed in Fig. 
4(b). The values of the parameters given by Batchelor13 in 
his Sec. V are indicated in Table I. Again, the particle vis- 
cosity 7, the elastic coefficient Q, and the Richardson-Zaki 
index n are supposed constant with &,. The expression for 
the virtual mass function C(4) is that suggested by Zuber.34 
The drag-slope parameter y is defined by Eq. (3.3) of Batch- 
elor with the empirical expression for the drag coefficient 
C,=(O.63+4.90 Re ) [ . . -” 2 Eq (5.27) of Batchelor]. It should 
be noticed that the convectively unstable region is larger for 
a liquid-fluidized bed than that for a gas-fluidized bed. 

B. Anderson and Jackson’s theory 

The same type of analysis has been conducted with the 
use of Anderson and Jackson’s theory.” The case of a bed of 
beads fluidized by water is only considered in this case since 
estimates of the parameters inferred from the comparison 
with experimental observations are available in this case. 
Figure 6 shows the domains of absolute and convective in- 
stabilities in the plane (dp’/d+,&) with the rest of the pa- 
rameters kept constant. The values of the parameters given 
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FIG. 5. Effect of the decrease of the particle volume fraction on the spatial 
growth rate of the wave from Batchelor’s theory: &,,=0.60 (a), +“=0.42 (b), 
&=0.40 (c). The particle diameter is d,=lOO pm and the fiuidizing fluid is 
air. 

by Anderson and Jackson” in their Table I are indicated here 
in Table II. The particle bulk and shear viscosities X” and /J? 
and the Richardson-Zaki index n are supposed independent 
of ho, because of lack of information. The value of the vir- 
tual mass C(4) coefficient is l/2 which corresponds to that 
of an isolated sphere. The “dead zone” indicated in Fig. 6 
corresponds to a set of parameters for which no solutions can 
be found for the dispersion relation and thus to an unphysical 
set of parameters. 

Since dps/d+ represents an elastic behavior of the par- 
ticle phase, it measures the stabilizing parameter. For a small 
value of dpsldrJ (trajectory 1 displayed in Fig. 6), when the 
flow rate is increased enough to Ruidize the bed, & is large 
but the flow is always convectively unstable. As the flow rate 
is increased, & decreases and the flow can become abso- 
lutely unstable. The flow becomes convectively unstable and 
then stable at larger flows rate and smaller values of 4. 
Conversely, for a larger value of dps/dq3 (trajectory 2 dis- 
played in Fig. 2), the flow is first stable at large values of &,. 
When the flow rate is increased, the flow becomes convec- 
tively unstable and then stable again. In this case, no abso- 
lutely unstable region is accessible. For even larger values of 
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FIG. 6. Instability domains for a liquid-fluidized bed from Anderson 
Jackson’s theory. 
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TABLE II. Values of the parameters given by Anderson and Jackson (Ref. 18) for a liquid-fluidized bed. 

4 PS 
ig cmm3) (g c”nw3) (g cm” s-r) 

uo AS, + 413 /Lu"o 
Parameter (cm) (ems-‘) n (g cm-‘swl) C(4) 

Liquid-fluidized 
bed 0.086 2.5 1 10-2 14.14 3.104 10 0.5 

dp”fd+, the flow is always stable. The parameter dpsldq5 
has been supposed constant when &, is varied. 

The evolution of the spatial branches along the trajectory 
1 of Fig. 6 is displayed in Fig. 7. Again the pinching of the 
spatial branches indicates the onset of the absolute instabil- 
ity. The absolute frequency is low (-2 Hz) which corre- 
sponds to a long wavelength wave. 

V. CONCLUSIONS 

In the present work. the spatial growth of the wave in- 
stability of fluidized beds has been examined. A general lin- 
earized equation for the small perturbation of the particle 
volume fraction, namely a wave hierarchy equation, has been 
derived from the theories of Anderson and Jackson18>26 and 
of Batchelor.13 The spatial stability analysis of this linearized 
model reveals new features of the wave instability of fluid- 
ized beds. Two classes of spatially evolving flows, i.e., con- 
vectively and absolutely unstable tlows, have been found. In 
the convective regime, the fluidized bed behaves as a spatial 
noise amplifier of the incoming perturbation whereas, in the 
absolute regime, the instability has an intrinsic behavior and 
the perturbation grows both temporally and spatially. The 
properties of the amplified disturbances have also been in- 
vestigated. In the vicinity of the stability threshold, the spa- 
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FIG. 7. Effect of the decrease of the particle volume fraction on the spatial 
growth rate of the wave from Anderson and Jackson’s theory: &=0.48 (a), 
&=0.40 (b). The particle diameter is d,=860 pm, the elastic parameter is 
dps/dqJ=30g cm t s-‘, and the fluidizing fluid is water. 

tial and temporal analyses give the same result for the 
growth of the wave. However, far from this threshold (and in 
particular, near the absolute instability threshold), the results 
of the two theories differ. This finding shows that the spatial 
analysis provides an accurate description of the spatial 
growth of the wave and thus can yield a precise comparison 
with experimental observations. 

The instability conditions and the wave properties have 
also been expressed in terms of the physical parameters of 
ftuidized beds. This has required the use of estimates of 
quantities such as the elastic term, the added mass term, the 
particle viscosity and drag, etc., given by the theories of 
Anderson and Jackson18’26 and of Batchelor.r3 The domains 
of stability, convective instability, and absolute instability 
have been found in realistic and accessible ranges of physical 
parameters. However, these results depend upon the specific 
expressions that are adopted in the theories. Therefore, the 
results obtained from the dimensionless analysis given in 
Sec. III should be considered as the important primitive re- 
sults of the present study. Moreover, these primitive results 
are applicable to other systems which are described by a 
wave hierarchy equation such as Eq. (1). 

Finally, an important result of the spatial stability analy- 
sis is the possibility of absolutely unstable flow. The remain- 
ing question is whether the absolute instability can be ob- 
served in practice. Indeed, nonlinear effects or secondary 
instabilities may hinder the onset of the absolute instability. 
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APPENDIX: COEFFICIENTS OF EQ. (1) 

1. Batchelor’s theory 

III+ ~((6)lUPs 
?-= YdPc--Pf) ’ (Al) 
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c1*c2=- I+q+>’ 
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“=iT&g 

with e(4)=(pp~,)C(4>, S(~)=(~fIp~)~(dCld~), and 
WI where y is the drag-slope parameter defined by Eq. (3.3) of 

Batchelor.13 

(A41 
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2. Anderson and Jackson’s theory 
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