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The internal gravity wave field generated by a sphere towed in a stratified fluid was 
studied in the Froude number range 1.5 < F < 12.7, where Fis  defined with the radius 
of the sphere. The Reynolds number was sufficiently large for the wake to be turbulent 
(Re~[380,30000]). A fluorescent dye technique was used to differentiate waves 
generated by the sphere, called lee waves, from the internal waves, called random 
waves, emitted by the turbulent wake. We demonstrate that the lee waves are well 
predicted by linear theory and that the random waves due to the turbulence are related 
to the coherent structures of the wake. The Strouhal number of these structures 
depends on F when F 5 4.5. Locally, these waves behave like transient internal waves 
emitted by impulsively moving bodies. 

1. Introduction 
A detailed knowledge of internal gravity waves is essential to improve our 

understanding of geophysical flows. In the atmosphere, internal waves play an 
important role in the transfer of energy, and more generally gravity waves control 
orographic flows. In the ocean, internal waves interact with the mean ocean circulation 
and are intimately related with mixing processes (Garret & Munk 1979). 

In the present paper, we consider the internal wave field produced by a horizontally 
moving sphere in a linear stratified fluid. The waves emitted depend on the Froude 
number F, defined by the ratio of the advection frequency to the Brunt-Vaisala 
frequency N ( N  = (-g/p, dpldz);). In our experiments, performed with a sphere of 
radius R, moving at a velocity U, the Froude number is F = U/NR.  Four main sources 
of internal waves in the lee of the sphere can, in general, be identified: the waves 
generated by the sphere itself, called lee waves; waves emitted by the wake collapse; 
waves produced by the instabilities of the recirculation zone acting as a moving 
excitation; and waves produced by the turbulence which we call ‘random waves’. The 
three latter wave sources are controlled by the near wake, which has been described in 
an accompanying paper (Chomaz, Bonneton & Hopfinger 1993, hereinafter referred to 
CBH) and also by Lin et al. (1992). 

The lee waves, dominant at small Froude numbers (0.1 5 F 5 1.5), are of great 
interest in mesoscale orographic flows (Smith 1989) and were experimentally 
investigated by Hunt & Snyder (1980) and Castro, Snyder & Marsh (1983) for three- 
dimensional hills, and by Stevenson (1973), Bonneton, Chomaz & Perrier (1990), Lin 
et al. (1992) and by CBH for a sphere. Numerical simulations of the lee wave field of 
a sphere at small Reynolds numbers (Re = 200) were made by Hanazaki (1988). In 
these papers, it was shown that the wake is controlled by the lee waves when F < 1.5. 
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Peat & Stevenson (1975), Makarov & Chashechkin (1981) and Chomaz et al. (1991) 
found good agreement between the lee waves produced by a moving sphere and the lee 
waves generated by horizontally moving point sources, computed from Lighthill’s 
theory for dispersive waves (Lighthill 1978). Most of these studies focused on the shape 
of the phase lines only and a few of them tried to determine the wave amplitude, which 
requires taking into account the finite dimension of the body. Smith (1980), using the 
hydrostatic approximation, studied the flow over a bell-shaped mountain at large 
Froude numbers and derived an asymptotic formula for the vertical displacement of 
the isopycnal lines. Smolarkiewicz & Rotunno (1989) considered a three-dimensional 
bell-shaped obstacle and inviscid fluid. 

When the characteristic length of the body is small with respect to the wavelength 
2nU/N, the stratification effects are weak. This led Miles (1971) to assume that in the 
neighbourhood of the body, the flow is locally potential and can thus be represented 
by a dipole. He was able to calculate in this way (without using the hydrostatic 
approximation) the waves in the far field of a horizontally moving body. The results 
obtained were confirmed by Janowitz (1984) who developed the Green-function 
solution of the velocity disturbance due to a flow over a shallow, isolated topography. 

Schooley & Stewart (1963) and Lin & Pao (1979) showed that turbulent wakes 
initially grow in a stratified fluid as if in a unstratified fluid. The turbulent mixing in the 
wake causes an increase of the potential energy of the wake which at a certain distance 
downstream collapses, generating internal waves. To investigate these waves, Wu 
(1969) analysed the collapse of a two-dimensional mixed region. He showed that the 
wave field is mostly due to the initial impulsive collapse of the wake. For a self- 
propelled body, Gilreath & Brandt (1985) demonstrated that a two-dimensional linear 
theory (for instance, Hartman & Lewis 1972) gives a good representation of the wave 
field generated by the wake collapse. However, this theory, which assumes that the 
wake is fully mixed and temporally invariant in the moving frame, cannot be applied 
to a towed sphere. Indeed, the mixing in the wake is weak, possibly because there is no 
propeller which enhances mixing, and wave energy emitted from the global collapse of 
the wake is negligible. 

CBH showed for F > 1.5 and when the Reynolds number (Re = 2RU/v, where v 
is kinematic viscosity) is sufficiently large, that the wake of a sphere is characterized by 
vortex shedding and asymmetric modes. In particular for F > 4.5, the close wake is 
unaffected by the stratification and a regular spiral instability occurs with a fixed 
Strouhal number of 0.17. In this case, random waves are emitted by the small-scale 
turbulence, and also by the collapse of coherent structures which are released fairly 
periodically. Gilreath & Brandt (1985) were the first to demonstrate experimentally 
that the turbulence in the wake generates random internal waves which are 
superimposed on the lee wave field. 

In the present paper we present novel visualization techniques of internal waves, 
which allow us to differentiate lee waves from random waves. Results are presented for 
F E  [ 1.5,12.7] and Re E [380,30000]. The transition from a dominant lee wave regime to 
a random wave regime was determined and the results focus on the characteristics of 
the random waves, relating them to the wake instabilities. 

2. Theoretical consideration of internal gravity waves 
The introduction of buoyancy forces in a fluid, owing to an incompressible variation 

of the basic density (thermal or saline stratification) breaks the axisymmetry of the flow 
and implies the addition of a new internal degree of freedom. A stable stratification 
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leads to the existence of internal gravity waves. These waves carry energy vertically and 
horizontally inside the fluid. Their dispersive and anisotropic aspects result in very 
complicated three-dimensional wave patterns. To make the interpretations of the 
experiments easier, it is useful to present theoretical concepts based on Lighthill’s 
(1978) theory. A dispersive wave is characterized by the dispersion relation. In a frame 
of reference at rest in the fluid, the gravity waves dispersion relation takes the simple 
form 

where w, is the wave pulsation frequency and 0 the angle between the wave vector k 
and the horizontal plane. We note that the propagation of the internal waves is 
governed by the characteristic frequency N which constitutes a cut-off frequency 

The group velocity Vh which carries wave energy and the phase velocity V i  are 

o, = NCOS 8, (1) 

(w, < N). 
perpendicular : 

where e, = k /k ,  e, is the vertical unit vector and e, is the unit vector colinear to 

The energy propagates parallel to the surfaces of constant phase which make an 
angle 0 = arccos ( o , / N )  with the vertical. The group velocity increases linearly with the 
wavelength A. 

The essential properties of lee waves are given by the linear theory of internal waves 
emitted by material point P moving horizontally with velocity U (Peat & Stevenson 
1975; Lightill 1978). The features of this theory important to the present experiments 
are given in $2.1. Unlike these waves, the random waves emitted by the collapse of the 
coherent structures in the turbulent wake have a non-deterministic behaviour. But, 
referring to Wu’s (1 969) results concerning analogies between the wave field generated 
by the two-dimensional wake collapse and a two-dimensional impulsive wave, it is of 
interest to examine the random waves in the light of the transient wave field behaviour 
generated by the impulsive motion of a source. The time dependence of these waves is 
described in 52.2. 

2.1. Linear theory of lee waves 
In a frame of reference moving with the point source, the dispersion relation becomes : 

and the group velocity in this frame is 

ek A (ez A ek)-  

wo = N C O ~  e- u. k,  (3) 

(4) 
N sin B VG = -7 e,- U. 

The material point is supposed steady in the moving frame (w,, = 0). Following the 
group velocity theory, at each point M the selected wave vector a is the one which has 
carried information from the material point P to M .  PM is therefore parallel to VG and 
in the same direction, 

with 01 a positive function of M. The local phase $,,, observed at the location M is given 

= P M - k ,  
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FIGURE 1. Experimental configuration. 

which gives, finally, the equation of the isophase surface in the form (see e.g. Makarov 
& Chashechkin 1981): 

where x = (x, y, z )  is defined in figure 1. 

and the axis x is given by 

In the vertical central plane, phase lines are semicircular and centred on P. According 
to (3)’ 5 = 0 imposes a selected wavelength h equal to 27tU/N. We note that specifying 
a velocity U and a Brunt-Vaisala frequency already defines the wavelength of the lee 
waves independently of any characteristic length. 

To determine the lee wave amplitude it is necessary to include the effect of the finite 
dimensions of the body. To model the body disturbances, theoretical treatments 
generally use the disturbances produced by a dipole (Miles 1971 ; Janowitz 1984; Voisin 
1991a). The asymptotic vertical displacement field 5 generated by a moving sphere 
modelled as a mass source 2~cR’UU6(x)S(y)S(z), is written in the moving frame (see 
Voisin 1991a, 1993) 

with 

In a horizontal plane, phase lines are hyperbolic. The angle between their asymptote 

,!I = arcsin (lz,l). (6) 

a x ,  YY 2 )  - Q(X> Y ,  4 cos ($(XY Y ,  41, (7) 

where c0 and q5 are respectively the amplitude and the phase of the lee wave. 
The phase structure of the lee wave $(x, y ,  z )  is still described by the group velocity 

theory. We note from (8) that far downstream the lee wave amplitude is inversely 
proportional to the Froude number : 

5n 1 
R FxlR 
--- 
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reaches its maximum in the vertical median plane at x = z :  

27 

and that 

coma% - 1 
R 2FzlR' (9) 

For large Froude numbers, the lee wave amplitude decreases like 1/F and, as we will 
demonstrate, can become smaller than the random wave amplitude. 

2.2. Impulsive wave field 
Waves emitted at to by a turbulent burst at P, will reach the point M at time 

t - to = PMI v;. 
In the frame at rest, using the group velocity expression (2),  we find that the wavelength 
and the phase velocity vary with time as 

2nr 1 
sin O N(t  - to) ' 

A=-  

where r = PM-e,. 

find for the amplitude (see e.g. Zavol'skii & Zaitsev 1984): 
Developing Lighthill's theory for internal waves generated by a point disturbance we 

sin e[N(t - to) 1 cos 011; 
(2~):  Nr 

cos(N(t- t , )  (cosOl-&). C N  

The vertical displacement reaches a maximum for 0 = arctan 2/2, which corresponds 
to the frequency w,/N = l /d3 .  We note that, at a fixed position, < grows indefinitely 
with time. In reality, the finite dimension of the impulsive source disturbance 
introduces a cut-off wavelength /Imia. The wave amplitude increases with time until 
Nt = Nt, +(27cr/sin Ohmi,) (see Lighthill 1978). Recently, Voisin (1991 b) studied 
theoretically the impulsive wave field generated by a sphere. For large Nt, he found that 
destructive interference between internal waves emitted from different locations on the 
sphere, leads to a decrease of wave amplitude with time as t d .  

3. Experimental set-up 
The experiments were performed in the towing tank facility of the MCtCo-France. 

The large size of this tank (1 x 3 x 22 m3) is of interest because confinement effects on 
the wave field are reduced and are negligible within a few wavelengths downstream. A 
few observations in the vertical plane of the wave field close to the body were also 
obtained in a small tank (0.5 x0.5x4m3) entirely made of glass. The linear 
stratification is obtained by a computer monitored filling process which takes 8 hours 
for the large tank and 2 hours for the small one, N E  [0,2rd/s]. 

Different techniques of sustaining the sphere were tested, in particular towing by a 
continuous horizontal wire, and support by horizontal rod and profile. These types of 
support perturb the flow, either close to the sphere or in the far field. Finally, we 
adopted the three-wire configuration presented in Chomaz et al. (1991). Reynolds 
numbers associated with the supporting wires, of 0.01 cm in diameter, range from 0.8 
to 40 and therefore no vortex shedding from them occurred and perturbations were 

2-2 
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FIGURE 2. Gravity wave visualization: side view of the fluoresceine plane, the laser sheet and the 
corresponding light intensity. (a) Respective positions at rest; (b )  respective positions when a wave 
deforms the fluoresceine plane. 

negligible. Three spheres of radius R = 1.12, 2.5 and 3.6cm ballasted with lead 
beads were used. Careful image analysis showed that in the velocity range used 
( U E  [ 1,50 cm/s]) no measurable oscillations of the sphere were present. 

When, for a given stratification and a given sphere, the velocity is varied, the two 
dimensionless numbers F and Re vary together; the linear relation is Re(F) = Re(l)F, 
where Re(1) = 2R2N/v is the Reynolds number when I; = 1.  The ratio of sphere 
radius/half-depth of the channel (RID)  was small in the present experiments, ranging 
from RID = 0.022 to 0.072. Confinement effects on the flow structure are, therefore, 
likely to be negligible within a few wavelengths downstream. The conditions for 
confinement to be negligible in stratified flows were discussed in CBH. 

3 . 1 .  Visualization techniques 
Two techniques were used to visualize the near wave field. A classical shadowgraph 
technique and particle streak photographs. In the latter, neutrally buoyant particles of 
mean density 1.08 and of diameters between 0.1 and 0.3 mm were illuminated by a laser 
light sheet. The very slow sedimentation velocity (2  cm/day) assured fairly uniform 
seeding of the fluid. 

To visualize the internal wave field in a horizontal plane, outside the turbulent wake, 
we used a laser-induced-fluorescence technique described in Chomaz et al. (1991). A 
horizontal fluorescent dye sheet of thickness C is introduced in the fluid by towing 
horizontally through the fluid a cotton thread soaked in fluoresceine dye and stretched 
on a frame. The fluoresceine dye layer is illuminated by a laser light sheet of thickness 
L (figure 2a) .  The radius of curvature of the light sheet is large enough (20 m) for the 
curvature effect to be neglected over a width of about 1 m. At rest, the whole plane 
is uniformly bright. When the isopycnal lines are displaced by wave motions, the 
brightness varies (figure 2b). The iso-intensity lines characterize the isophase lines of 
the internal gravity wave field. The light intensity is related to the wave amplitude. 
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FIGURE 3. Vertical displacement 5 of the lee wave in a horizontal plane at I zI =3R below the centre of the 
sphere, for F=lO/n and Re(l)=253 (R=1.12 em, N=1.17 rad/s.) (a, b) Experimental visualization at Nt=O 
and 11.7; (c,  d) calculated from ].inear theory at Nt=O and 11.7. The scale is 46.5Rx32R. Increasing downward 
motions (resp. upward motions) are colour coded from yellow to red (resp. dark blue to light blue). The sphere 
or source is moving from left to right in the x-direction. 

BONNETON, CHOMAZ & HOPFINGER (Being p. 29) 



Internal waves produced by the turbulent wake of a sphere 29 

When the wave amplitude exceeds the distance between the laser sheet and the 
fluorescent plane, the single-valued relation between intensity and displacement is lost 
and only isophases are visualized. 

The light source was a 5 W Argon laser, and a vibrating mirror was used to produce 
a vertical or horizontal light sheet. The laser plane and the camera were fixed, or 
moving with the sphere depending on the phenomena of interest. 

Images, obtained by any of these techniques, were recorded on a super VHS video 
recorder, using a black-and-white high-resolution CCD camera. Images were treated 
on line or from the VCR by an image processing PC (board), allowing many standard 
manipulations. In particular we subtract from each image a reference picture taken at 
the start of the experimental run, to remove fixed echos. In all the images shown, 
Nt  = 0 refers to the time when the sphere just leaves the visualization domain. 

3.2. Probe measurements 
Probe measurements were carried out in the large tank, because long time series are 
necessary to detect characteristic frequencies of the flow. A single-electrode 
conductivity probe was pulled behind the sphere, 80R downstream, and 3R above its 
centre. This one-point conductivity probe consists of a platinum wire, 25 pm in 
diameter, covered with platinum black, having a frequency response of about 100 Hz 
and a spatial resolution of 0.2 mm. It was calibrated in situ, by moving it vertically in 
the linear stratification. The density signal was processed with a processing board 
connected to a PC. Spectra were calculated using a fast Fourier transform algorithm. 

Some measurements of the vertical velocity w and the density p at the same location 
inside and outside the wake are reproduced from work by Thual et al. (1987). 

4. Perturbation of the lee wave pattern by random waves 
The fluorescent dye technique allows the wave isophases (see Chomaz et al. 1991) to 

be determined accurately, and the vertical displacement field to be estimated 
qualitatively, as explained in the previous section. Figure 3 (plate 1) shows a 
comparison between the observed wave pattern, in a horizontal plane, for 
F = 1O/n (Re(1) = 253), and the vertical displacement field calculated from (7).  An 
arbitrary scale for the vertical displacement was used. Except for small-scale wave 
disturbances in the experiments, particularly visible at Nt = 11.7, figure 3 (b), there is 
good agreement between the observed wave pattern and linear theory. In particular, 
the extrema of wave amplitude are correctly determined. 

The time dependence of the wave field, for F = lo/% is illustrated on figure 4 for 
two different spheres of radius 1.12 and 3.6 cm, corresponding to Re(1) = 253 and 
Re(1) = 2614. The dimensions of the pictures are scaled by the radius of the sphere. 
Just behind the sphere, the wave field is dominated by the lee waves (see figures 4a  and 
4e). The long-time or far wave field is a superposition of two types of waves with two 
distinct wavelengths. The first type are the lee waves whose measured phase velocity 
and wavelength are constant and equal, respectively, to U and 20R. In the case of the 
small sphere, the angle between the phase line and the x-axis is also in agreement with 
the theoretical angle (equation (6)). In the case of the large sphere, this angle decreases 
with Nt but is much larger than the theoretical angle. This phenomenon is well 
illustrated in figure 5 .  At long times reflections on the boundaries occur and modify the 
lee wave pattern. This effect is stronger when FD = F('(R/D) (D  is half the fluid layer 
depth) is larger and is certainly a confinement and not a Reynolds number effect. From 
(4) we deduce that the maximum of the vertical group velocity YFfz is equal to N/2k .  
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FIGURE 4. Visualization of the lee waves in a horizontal plane at 1z( = 3R below the centre of the 
sphere for F =  1O/rc. (a-d) Re(1) = 253 (R = 1.12 cm): (a) N t  = 0 ;  (b) Nt = 11.7; (c) Nt = 23.4; (d)  
Nt = 35.1. (e-h) Re(1) = 2614 (R = 3.6 cm): (e)  Nt = 0 ;  ( f )  Nt = 11.7; (g)  Nt = 23.4; (h) Nt = 35.1. 
LW, lee wave; SCC, semicircular concentric wave. 
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FIGURE 5. Visualization of the lee waves in a horizontal plane at (zI = 3R below the centre of the 
sphere, for I: = 10/x, Re(1) = 1354 and Nt  = 37.8 ( R  = 2.5), showing the increase in phase angle B 
due to confinement effects. The sphere is moving from left to right. 

The first reflection of the lee wave occurs when D/ t ,  z Vgtz ,  which is when 
Nt ,  = 2/F;,. We observe that whatever the Reynolds number the modification of the lee 
wave structure occurs when Nt is greater than Nt,. The second wave type appears as 
pieces of semicircular concentric (SCC) phase line patterns, which are superimposed on 
the lee waves. Their frequency is close to the Brunt-Vaisala frequency and their 
wavelengths decrease as N t  increases. This wavelength, A,, is much smaller than the lee 
wave wavelength and, consequently, the phase velocity 5 is much smaller than U .  So, 
unlike the lee wave, these waves are not stationary in the moving frame and are neither 
emitted by the moving sphere nor by the three-dimensional recirculating zone attached 
behind the sphere. These waves are attributed to the collapse of the coherent structures 
in the turbulent wake. At Nt = 35.1, the random waves have nearly disappeared for 
Re( 1) = 253 (figure 4d) ,  but remain strong for Re(1) = 2614 (figure 4h) .  This is because 
the random waves possess more energy at large Reynolds numbers. 

Figure 6 shows the evolution, as a function of Froude number, of the wave fields at 
Reynolds number, Re(1) = 253, for N t  = 0, 11.7, 23.4 and 35.1. For F =  1O/n 
and 4 (figure 6a,  b), the lee waves are always present with superimposed random waves 
at later times, while in figures 6(d )  and 6(e) random waves are dominant from the 
beginning. The change from one regime to another clearly takes place between F = 4 
and 5. The transition between the lee-wave-dominated (I; 5 4.5) and the random- 
wave-dominated ( F  2 4.5) regimes is the same for the two other parameter com- 
binations (Re( l ) ,  RID) studied, (1358,0.05) and (2614,0.072). This indicates that the 
transition neither depends on Reynolds number nor is a consequence of confinement 
effects. 
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FIGURE 6. Temporal evolution of the visualization of the internal waves in a horizontal plane 
Iz] = 3R ( R  = 1.12cm) below the centre of the sphere, for Re(1) = 253. Nt = 0, 11.7, 23.4, 35.1. 
(a) F = 10/n; (b) F = 4; (c) F = 5 ;  (d )  F = 20/n; (e) F = 30/n. The scale is 46.5R x 32R. 

To determine quantitatively the evolution of the internal wave amplitude as a 
function of F (figure 7) we measured the density fluctuations outside the turbulent wake 
(lzl = 3R), at 80R downstream of the sphere. The conductivity probe, towed with the 
sphere, detects the random waves, but not the lee waves which are stationary in the 
moving frame. In figure 7 measurements of the maximum lee wave amplitude &,,, at 
121 = 3R are also included, determined from particle streak trajectories. It seems that 
this amplitude evolves like l / F  in accordance with the law predicted by the linear 
theory (equation (9)) which is, for IzI = 3R, 

The amplitude of the random waves increases with the Froude number. The wave 
amplitudes have been measured at fixed x / R  and not at fixed Nt.  In the experiments 
the random waves first appear at height z / R  = 3 at a distance downstream of 
x / R  = NtF x 1OF. The measurement station x / R  = 80 is, therefore, about 4 times 
further downstream or equal to the position of the first manifestation of the random 
waves and the wave amplitude might evolve with distance. Nevertheless, according to 
the measurements of the random wave amplitude by Gilreath & Brandt (1985), this 
variation in wave amplitude with x / R  at a given height z / R  is weak. Taking all this into 
account, the amplitude of the random waves seems, according to figure 7, to increase 
more like F 2 .  We do not have satisfactory theoretical explanation for this dependence 
on F. The purpose of these measurements was mainly to determine the Froude number 
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FIGURE 7. Internal wave amplitude 6, normalized by R, as a function of Froude number, measured 
at 3R above the centre of the sphere and 80R downstream. Re(1) = 2614; ----, linear theory of lee 
wave; 0, lee wave amplitude; A, random wave amplitude. 

at which the lee waves and random waves are of about equal amplitude. The Reynolds 
number in figure 7 also varies like Re = Re(1) F, that is, in the range Re E [2350,24950] 
and the question arises as to whether the amplitude of the random waves depends on 
Reynolds number. This dependence, if any, should be weak and remains within 
experimental error. The reason is that the amplitude is determined by the scale of the 
energy-containing eddies in the wake at onset of collapse, and this scale is proportional 
to x / R  which itself varies with Froude number only, provided the homogeneous wake 
structure before stratification effects set in, and is independent of Re (a reasonable 
assumption when Re > lo3). The evolution of the ratio of lee wave energy to random 
wave energy is difficult to determine because it depends on the Froude number and Nt.  

5. Random-wave regime 
The wavelengths of the random waves A,, measured by flow visualization in a 

horizontal plane, for F = lO/n:, 4 and 5 ,  and Re(1) = 2614, are plotted versus Nt in 
figure 8. We note that this wavelength decreases roughly like 1/Nt,  characteristic of 
internal waves emitted by a local impulse (see (10)). In a horizontal plane located at 
lzl = 3R below the wake axis, the horizontal wavelength deduced from (10) is 

3n: 1 A2 - - _  
2R sinOcos20N(t-t,)' 

We note that the random waves are generated by the same mechanism for F smaller 
or greater than 4.5. The scatter of data is because waves detected at one time can be 
emitted at different locations and have different angles of propagation. The random 
wave field can be interpreted like the superposition of several impulsive waves. In figure 
8 we also included the wavelength of coherent waves which appear at Nt w 50. We 
illustrate these waves in figure 9(c, d) ,  showing their phase lines at a horizontal plane 
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FIGURE 8. Wavelength of the random waves, normalized by 2R, as a function of Nt.  Re(1) = 2614; 
A, F = 10jn; 0, F = 4; a, F = 5.  The solid line shows equation (12). 

z = 3R. In figure 9(b), taken at Nt = 35.1, only SCC waves are visible. At later times, 
Nt = 52.6, figure 9(c), longer-wavelength waves appear with the SCC waves 
superimposed. At still later times, Nt = 87.7, figure 9(d),  the SCC waves have 
disappeared and fairly regularly structured (coherent waves) remain. Figure 8 shows 
that their wavelength decreases like (Nt)-l. At present we are not able to interpret the 
origin and the evolution of these waves. 

The coherent structures in the turbulent wake of the sphere generate upward and 
downward turbulent motions. These motions have a vertical development limited by 
buoyancy effects and their collapse generates gravity waves. This sequence is illustrated 
in figure 10, for F = 20/7c. The set of pictures are shadowgraph side views. The non- 
uniformity of the lighting was corrected and a histogram equalization algorithm was 
applied in order to make the gravity waves more visible. The coherent structures of the 
turbulent wake are first affected by stratification at Nt z 2.5, but random wave fringes 
(phase lines) are first visible on shadowgraph when Nt 2 8. In figure 10, the black and 
white fringes seen outside the turbulent wake and associated with the waves generated 
by the collapse of each upward and downward part of the coherent structures are 
orientated predominantly in the direction of the sphere motion. The growth of the 
isophase length can be interpreted as the internal wave energy propagation away from 
the turbulent bursts. The angle 8 between the vertical and isophase lines increases with 
Nt and reaches, at around Nt x 15, a constant value 8 x 55" close to the theoretical 
value 8 = arctan 4 2  obtained for an impulsive wave field. 

In CBH we have shown that the coherent structures in the turbulent wake occur 
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FIGURE 9. Visualization of the random-coherent waves in a horizontal plane, IzI = 3R (R = 3.6 cm) 
below the centre of the sphere, for F = 5 and Re(1) = 2614. (a) Nf = 0; (b) Nt = 35.1 ; (cj Nt = 52.6; 
(d )  Nt = 87.7. CW, coherent wave; SCC, semicircular concentric wave. 

quasi-periodically. In figure 11 (a)  we present the spectrum of the vertical velocity 
fluctuations for F = lO/x, measured with a hot film located at the axis of the turbulent 
wake at x = 4R (or Nt = 1.2). The spectrum exhibits a significant peak which 
corresponds to a dimensionless frequency or Strouhal number of 0.2. The quadrature- 
spectrum between the vertical velocity fluctuations w’ and the density fluctuations p’ at 
the same location, shown in figure 11 (b), is close to zero and the co-spectrum is large. 
This implies that w’ and p’ are correlated inside the turbulent region. The same 
measurements taken outside the wake at lzl = 2R and x = 24R (or N t  = 7.5) show the 
existence of internal waves. In figure 11 ( c )  the frequency spectrum of w’ is plotted and 
in figure 11 ( d )  the quadrature- and co-spectra between w’ and p’. The fact that the co- 
spectrum is very large compared to the quadrature-spectrum indicates that w’ and p’ 
oscillate in phase quadrature as required for internal waves. The spectra presented in 
figure 11 ( d )  as well as the power spectrum of w‘, figure 11 (c), show two peaks. The 
lower-frequency peak f, corresponds to the wake instability frequency. This indicates 
that the turbulent wake periodically generates turbulent bursts which emit gravity 
waves with the same periodicity. This frequency does not correspond to the wave 
frequency, but to the modulation frequency of the waves. 

The phase velocity of the random waves being much smaller than U, the measured 
frequency f is related to the wavelength h by h x U/’ From this relation we deduce 
that the second frequency f, in figures 11 (c) and 11 ( d )  corresponds to the wavelength 
hJ(2R) = 2.8 at Nt = 7.5. This wavelength is in agreement with those reported in 
figure 8 measured from visualizations. The relation between frequencies f, and f, is 
sketched in figure 12. 
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FIGURE 10. Shadowgraph side views of the wake of the sphere, corrected by a histogram equalization 
algorithm to make the gravity waves more visible, for F = 20/n and Re(1) = 1983 (R = 2.5 cm). (a) 
Nc = 0; (b) Nt = 11.0; (c) Nt = 22.1; (d) Nt  = 33.1. The sphere is moving from right to left. 

In figure 13 we have plotted the smallest dimensionless frequency (St, = 2RfJU)  as 
a function of the Froude number. The agreement with the Strouhal number St of the 
wake instabilities measured at the centre of the wake and Nt < 2.5 indicates that the 
random waves emitted by the collapse of the coherent structure are periodically emitted 
from the wake at frequencyf,. The relation between St and St, can be shown by 
writing the dispersion relation (3) in the moving frame: 

-- - Ncos 0+ Uk,. 
R 

If F B 1/7tSt we can write: 
k, St, = 2R- x St.  
27t 

The phase velocity is then 

V 1 ~ = c o s B  -- z-1 .  U (7tFst,  1 )  

In the moving frame, the phase velocity is thus of the order of the sphere velocity, so 
that in the fluid reference frame the random wave pattern appears nearly fixed in space. 
The random waves in the wake of a moving obstacle are, therefore, in the vertical plane 
within a wedge of half-angle y (see figure 12) which is given by 

y = arctan(V&.e,/U). 
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FIGURE 11. Spectra of the turbulence and wave field, for F = lO/x (Re(1) = 1218, R = 2.5 cm and 
N = 1.13 rad/s). (a) Power spectrum of w' measured at the location z = 0 and x = 4R;  (b) co-spectrum 
(solid line) and quadrature-spectrum (dashed line) of w' and p' measured at the location z = 0 and 
x = 4R;  (c) power spectrum of w' measured at the location z = 2R and x = 24R; (d )  co-spectrum 
(solid line) and quadrature-spectrum (dashed line) of w' and p' measured at the location z = 2R and 
x = 24R (Nt  x 7.5).  

Substituting for VL from (2) we get 

(sin6';osB _ _  h 1) 
2RF y = arctan 

We note from figure 8 that the first measurable wavelength is about 4R. Using the 
theoretical angle 6' = arctan(d2) we find that 

y x arctan (0.3/F).  
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FIGURE 12. Schematic representation of internal waves emitted by the turbulent wake. 

0.4 4 
1 St 

I * 

* *  
* 

t 

0 L 1 10 

F 
FIGURE 13. Strouhal number as a function of the Froude number. A, St,  measured outside the wake 

at x / R  = 80; *, Strouhal number of the wake instability measured inside the wake at Nt < 2.5. 

These waves appear at z / R  = 3 around Nt z 10, so 

which confirms the validity of this law. 
This formula is similar to the one obtained by Gilreath & Brandt (1985) through 

totally different reasoning. Our coefficient is, however, smaller by a factor of two. We 
underestimate y because our visualizations overestimate the time of wave appearance 
and therefore underestimate the first wavelength. 
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6 .  Conclusion 
The appearance of random waves in the lee of moving bodies in stratified fluid is here 

clearly demonstrated. Compared with the only previous studies of such random waves 
by Gilreath & Brandt (1985), who showed that these waves are confined within a wedge 
of angle 27, we were able to determine the transition from a lee-wave-dominated to a 
random-wave-dominated regime, visualize the phase lines and relate the properties of 
the random waves to the structure of the turbulent wake. 

Preliminary results on the transition between wave regimes were reported by 
Chomaz et al. (1991) and Hopfinger et al. (1991). Here we show that the amplitudes 
of the lee waves decrease as 1/F and that random waves, whose amplitude increases 
with F, possess a nearly equivalent amplitude when F = 4.5. This transition Froude 
number value does not seem to depend on Reynolds number, at least not in the range 
380 < Re c 30000 studied. More energy is however transferred from the turbulence 
into the random waves when Re is large, as indicated by figure 4. The observations 
shown in this figure are also consistent with an energy wedge of the random waves: the 
waves reach a certain position z at a distance x downstream given by z/x = tany. 

From the visualizations of the phase lines it was also possible to determine the 
wavelengths of the random waves and the angle of energy propagation in the vertical, 
which is 55" with respect to the z-axis. The wavelength decreases with time according 
to (Nt)-l ,  consistent with impulsive wave theory. The waves which arrive first at a 
position z have a dominant horizontal wavelength A, z 4R. This is much less than the 
wavelength of the lee waves ( A  = 2nFR with F > 4); in the fluid reference frame the 
phase velocity of the random waves is thus much less than U. The random wave 
packets are emitted at a frequencyf, corresponding to a Strouhal number close to the 
Strouhal number of the spiral mode of the wake, St z 0.17. The properties of the 
random waves, determined from flow visualizations, are confirmed by spectra and co- 
spectra of velocity and density fluctuations obtained from hot film and conductivity 
probe measurements. 

Although there are indications that the random waves have properties of transient 
waves, it is hoped that the present results will help in developing more complete models 
of random waves emitted by turbulent wakes and by turbulence in a stratified medium 
in general. 

This work was financially supported by MCtCo-France and by the DRET, contract 
number 90-233. Without the help and encouragement of M. Perrier, A. Butet, B. 
Beaudoin, J. C. Boulay, C. Niclot, M. Niclot, S. Lassus-Pigat and H. Schaffner this 
work could not have been accomplished. 

REFERENCES 
BONNETON, P., CHOMAZ, J. M. & PERRIER, M. 1990 Interaction between the internal wave field and 

the wake emitted behind a moving sphere in a stratified fluid. In Proc. Conf. Engng Turbulence 
Modelling and Experiments, Dubrovnik, Yugoslavia, (ed. W. Rodi & G. Ganic), pp. 459-466. 
Elsevier. 

CASTRO, 1. P., SNYDER, W. H. & MARSH, C .  L. 1983 Stratified flow over three-dimensional ridges. 
J.  Fluid Mech. 135, 261-282. 

CHOMAZ, J. M., BONNETON, P., BUTET, A., HOPFINGER, E. J. & PERRIEK, M. 1991 Gravity wave 
patterns in the wake of a sphere in a stratified fluid. In Proc. Turbulence 89: Organized Structures 
and Turbulence in Fluid Mech. (ed. M. Lesieur & 0. Mitais), pp. 489-503. Kluwer. 

CHOMAZ, J. M., BONNETON, P. & HOPFINGER, E. J. 1993 The structure of the near wake of a sphere 
moving in a stratified fluid. J .  Fluid Mech. 254, 1-21 (referred to herein as CBH). 



40 P.  Bonneton, J .  M .  Chomaz and E. J. Hopfinger 
GARRETT, C. & MUNK, W. 1979 Internal waves in the ocean. Ann. Rev. Fluid Mech. 11, 339-369. 
GILREATH, H. E. & BRANDT, A. 1985 Experiments on the generation of internal waves in a stratified 

HANAZAKI, H. 1988 A numerical study of three-dimensional stratified flow past a sphere. J. Fluid 

HARTMAN, R. J. & LEWIS, H. W. 1972 Wake collapse in a stratified fluid: linear treatment. J.  Fluid 

HOPFINGER, E. J., F L ~ R ,  J. B., CHOMAZ, J. M. & BONNETON, P. 1991 Internal waves generated by a 

HUNT, J. C. R. & SNYDER, W. H. 1980 Experiments on stably and neutrally stratified flow over a 

JANOWITZ, G. S. 1984 Lee waves in three-dimensional stratified flow. J .  Fluid Mech. 148, 97-108. 
LIGHTHILL, M. J. 1978 Waves in Fluids. Cambridge University Press. 
LIN, J. T. & PAO, Y. H. 1979 Wakes in stratified fluids. Ann. Rev. Fluid Mech. 11, 317-338. 
LIN, Q., LINDBERG, W. R., BOYER, D. L. & FERNANDO, H. J. S. 1992 Stratified flow past a sphere. 

MAKAROV, S. A. & CHASHECHKIN, Yu. D. 1981 Apparent internal waves in a fluid with exponential 

MILES, J. W. 1971 Internal waves generated by a horizontally moving source. Geophys. Fluid Dyn. 

PJ~AT, K. S .  & STEVENSON, T. N. 1975 Internal waves around a body moving in a compressible 

SCHOOLEY, A. H. & STEWART, R. W. 1963 Experiments with a self-propelled body submerged in a 

SMITH, R. B. 1980 Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 32, 

SMITH, R. B. 1989 Hydrostatic airflow over mountains. Adv. Geophys. 31, 1 4 1 .  
SMOLARKIEWICZ, P. K. & ROTUNNO, R. 1989 Low Froude number flow past three-dimensional 

obstacles. Part I: Baroclinically generated lee vortices. J.  Atmos. Sci. 46, 11541 164. 
STEVENSON, T. N. 1973 The phase configuration of internal waves around a body moving in a density 

stratified fluid. J .  Fluid Mech. 60, 759-767. 
THUAL, O., BUTET, A., PERRIER, M. & HOPFINGER, E. 1987 Sillage d’une sphkre en milieu stratifie. 

Rapport DRET 85/105. 
VOISIN, B. 1991 a Rayonnement des ondes internes de gravid. Application aux corps en mouvement. 

PhD thesis, Paris 6 University. 
VOISIN, B. 1991 b Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and 

point sources. J .  Fluid Mech. 231, 439-480. 
VOISIN, B. 1993 Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources. 

J .  Fluid Mech. (submitted). 
Wu, J. 1969 Mixed region collapse with internal wave generation in a density-stratified medium. 

J .  Fluid Mech. 35, 531-544. 
ZAVOL’SKII, N. A. & ZAITSEV, A. A. 1984 Development of internal waves generated by a 

concentrated pulse source in an infinite uniformly stratified fluid. J.  Appl. Mech. Tech. Phys. 25, 

fluid. AIAA J .  23, 693-700. 

Mech. 192, 393419. 

Mech. 51, 613418. 

moving sphere and its wake in a stratified fluid. Exps Fluids 11, 255-261. 

model three-dimensional hill. J.  Fluid Mech. 96, 671-704. 

J .  Fluid Mech. 240, 315-354. 

density distribution. J. Appl. Mech. Techn. Phys. 22, 772-779. 

2, 63-87. 

density-stratified fluid. J. Fluid Mech. 70, 673-688. 

fluid with a vertical density gradient. J .  Fluid Mech. 15, 83-96. 

348-364. 

862-867. 




