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The nonlinear evolution of a constant angular momentum accretion disk subject to Papaloizou and
Pringle (1984: hereafter PP) instability is investigated. The analysis is performed on an inviscd
incompressible two-dimensional model using a formalism suitable for Hamiltonian systems. Only the most
unstable modes are taken into account. It is found that relevant nonlinear terms have a stabilizing
influence on the system. This supports recent numerical experiments showing a transition towards a
quasi-stable planet configuration. The extension of the method to fat disk instabilities, more relevant to
AGN disks, is discussed.
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1. INTRODUCTION

Accretion Disks are a generic feature in the vicinity of compact objects-black holes,
neutron stars and white dwarfs. They are also found in symbiotic systems, and in
star-forming regions. Disks around white dwarfs are used to explain the cataclysmic
variables (CVs; Horne 1991). These disks are geometrically thin and consequently
Keplerian (Qcc R ™¥?). Since their angular momentum decreases outwards, they are
locally linearly stable with respect to axisymmetric disturbances (Rayleigh, 1880;
Dubruile and Knobloch, 1992). Disks around putative black holes (M g = 10°7M )
in the central regions of the active galaxies (AGNs), e.g. radio galaxies and quasars,
are thought to be vertically thick, i.e. tori. Pressure gradients then cause the rotation
law to depart from Keplerian: Q~r7% ¢>3/2 (see Ulrich 1989 for a survey of the
multi-frequency observations, and Blandford 1991 for a fine introduction and survey of
AGN theory). However, as long as their rotation index ¢ is less than 2, Rayleigh
criterion is still satisfied and these accretion tori are also linearly stable to axisymmetric
perturbations.

It was however discovered by Papaloizou and Pringle (1985) that thick tori whose
rotation index satisfies q>\/§ can be unstable with respect to linear, global
non-axisymmetric perturbations. The principal mode of instability occurs on a
dynamical time-scale Q7. It is therefore likely to disrupt the torus, or at least to
generate sutficiently efficient angular momentum to preclude the existence of jets as
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in quasar models. This explains the interest generated by the discovery of this
instability and the amount of effort put into the understanding of unstability. Drury
(1983), Blaes (1983), Goldreich et al. (1986) and Glatzel (1987a, b) clarified the nature
of the principal branch of PP instability. Thev showed that the unstable modes are
the result of the coupling of two edge waves across a forbidden region around
corotation. Neither compressibility nor Kelvin-Helmholtz mechanism enter into
consideration. Goldreich et al. also proved that in an incompressible three dimensional
torus, with inner radius #_, outer radius r, and orbital radius r,, vertical hydrostatic
equilibrium is an excellent approximation for low § {ff ==mr/r,, m being the azimuthal
wave number). Therefore, two-dimensional hydrodynamic calculations may suffice
to describe the non-linear evolution of these long wavelength (low m) modes laying
on the principal branch of PP instability.

Even with this approximation, the investigation of the non-linear regime of PP
instability 1s not simple. Most analytical investigations are performed in the limit of
“slender™ tori, for which (r, —#_)r, 15 small, using this ratio as an expansion
parameter. Interesting results are also obtained by numerical investigation of the
nonlinear development of the instability in slender compressible (Hawley 1987, Blaes
and Hawley 1988) or self-gravitating tort (Christodoulou and Narayan, 1992). It was
found that a torus in which a single mode with azimuthal wavenumber m is excited
breaks up into m blobs which orbit around the central mass at the same velocity Q
as the original torus. These blobs, called “planets™ by Hawley, seem to persist for a
relatively long time. This led Goodman et al. (1987) to postulate that the planet
configuration might be a new underlving equilibrium of the two-dimensional
configuration. In this hight, PP instability would be only the consequence of the
bifurcation from one equilibrium solution to another. However, the planet
configuration itself 1s subject to various instabilities. Longer integration of the
solutions proves that the planets eventually merge, and a new, roughiy axisymmetric
structure emerges,but with changed rotation profile (g < 1.8). This result is consistent
with results obtained by Zurek and Benz (1986) using a smooth-particle hydro-
dynamics code with 1000 particles to follow the evolution of a three-dimensional
thick torus orbiting a Newtonian point mass. Within two orbits, a constant angular
momentum torus is found to redistribute angular momentum so that the average
rotation index approaches 1.75. This seems to prove that, at least in the slender case,
PP instability eventually saturates and turns intto a stable configuration.

The purpose of this work is to confirm and clarify this point via an analytical
investigation of the nonlinear regime, Contrary to previous studies we shall not use
the (small) width of the torus as an expansion parameter, but rather the amplitude
of the perturbation as in standard bifurcation methods. This method can therefore
be applied in more general cases, such as in “fat” tori (see discussion in Section 4).
To make the analysis tractable, we shall use results derived by Goldreich er al. (1986).
For low azimuthal modes, a “not too fat” torus can be made equivalent to
compressible two-dimenstonal cylindrical shells by height averaging. Moreover,
compressibility is not an essential ingredient of the instability. Blaes {1985) showed
that growth rates for the incompressible and compressible models only differ by a
factor of order unity. This suggests that a simple, two-dimensional incompressible
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model may keep the feature of a three-dimensional torus. We shall therefore use the
model presented by Blaes and Glatzel (1986), which focuses on incompressibie
constant angular momentum cylinders.

An interesting feature of PP instability is the occurrence of a sort of “bifurcation”
as the width of the torus is varied. Such a feature is conserved in Blaes and Glatzel
(Section 2.2). The bifurcation bears some analogy with a standard Hopf bifurcation:
it occurs when complex imaginary eigenvalues cross the imaginary axis. In dissipative
systems, this bifurcation is well documented and its normal form can be computed
via methods based on the “Central Manifold Theorem™ (e.g. Krylov-Bogolyubov-
Mitropolsky method, see Thual, 1988). This normal form reads to lower order

A=+iQ)A4—aid]*A, )

where A is the complex amplitude of the perturbation, i*= — I, v is the bifurcation
parameter and x a complex number. The sign of the real part of alpha determines
whether the first order non-linearities stabilize [Re(x)> 0] or destabilize [Re{a) < 0]
the system. Only when Re(x) >0 do the linear and weakly non-linear analysis describe
correctly the behaviour of the bifurcating solution. When Re(x) <0, finite amplitude
perturbations may destabilize the system in the linearly stable regime.

In our analysis, we shall however use a non-dissipative (non-viscous) model, in
which energy is conserved. In this case, the word bifurcation cannot be strictly applied
to the crossing of imaginary eigenvalues because the notion of “attractor” is irrelevant.
If the system admits an Hamiltonian function, such crossing is referred to as
“resonance”. In the special scenario we are considering, it is also customary (however
not rigorous) to speak about an “Hamiltonian Hopf bifurcation”. Methods have
been developed to study this resonance. Van der Meer (1982) proved that the
non-linear fate of the system in the vicinity of the resonance depends only on a
parameter, a,, which is the analog of the parameter « in (1) (Section 2.3). He also
gave an algorithm to compute this parameter. To be abie to use this algorithm, it
will be necessary to re-express the model of Blaes and Glatzel, summarized in Section
2.1, using an Hamiltonian formulation. This is done in Section 2.4, using the analogy
of our model with surface gravity waves on sea, for which work has been done by
Miles (1977). The algorithm of Van der Meer, described in Section 2.3, is then applied
to our system and the parameter relevant to the non-linear evolution is computed
in Section 2.4. Various approximations used during the computation are discussed
in Section 3. Interpretation of our results and connection with previous works are
finally provided in Section 4. ’

2. THE HAMILTONIAN HOPF BIFURCATION
2.1 The mode!

As in Blaes and Glatzel (1986), the model consists of an incompressible disk of fluid
rotating around a Newtonian potential well produced by a central point mass (sez
Figure 1}. The structure parallel to the rotation axis is ignored and thus perturbations
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Figure 1 Geometry of the problem. The equilibrium state (solid lines) consists of an annulus. The
perturbed state (dashed line} is defined by its inner (r.) and outer (r,) boundaries.

are only two-dimensional. Since the ordinary viscosity in the accretion torus is usually
very small, we shall restrict our investigation to the inviscid regime. In that case,
both the vorticity and the total energy of the fluid are conserved. After a suitable
shift in the central potential well, the fluid can therefore be taken irrotational. The
velocity field is then the gradient of a scalar potential, ®. Because of the
incompressibility condition, @ must satisfy the following condition throughout the
fluid:

AD=0. (2)
The two-dimensional Navier-Stokes equation describing the evolution of the fluid
reduces then to the Bernouilli equation:

S D+YVOR VL P=C, (3)

where C is a constant, P is the pressure and V is the gravitational potential due to
the central mass M:

Vir)==GM/r,
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and V 1s the gradient operator. To complete the description of the system, two
boundary conditions corresponding to the inner {—label) and the outer surfaces
(+label) must be added to (3). Those surfaces are physically defined as the location
where the pressure vanishes. In polar coordinates (r, 8), they can be specified by the
equations r=¢ (8, t) and r={ . (8, 1). If we assume that the two surfaces are free, the
boundary kinematics is:

Vb-ds, =d.(, d0 at the boundaries. (4)

Here, ds is the element of surface area at the boundary, oriented along the unit
normal vector n, . The latter are given by:

[LHIVEL T 20, =~ 0l s 8,
so that

ds,
e do

=[14+IV5L P12

The set of equations (3) and {2) impiemented with the boundary conditions (4) admits
a stationary solution which is characterized by a constant specific angular momentum
distribution, that is:

u=(so/r)ey,
P(ry=C+(GM;r)—1(so/r)*, )

corresponding to a velocity potential ® = 5,8. The inner and outer surfaces are located
at radius r_ and r, such that:

C= %("ofrr )y - (ro/r+ ), (6)

where 7, is the radius at which the pressure 1s maximum. The single parameter ¢
(0<€e< 1), defined by: .

refro=1/(1Fe), (7)

characterizes then the basic solution. The two limiting cases e =0 and ¢= | correspond
respectively to infinitely slender and infinitely fat tori. In the sequel, we shall take ¢
as the bifurcation parameter.

2.2 Linear stability analysis

The linear stability analysis of the model can be performed using a Fourier expansion
for the surface deformations d. =J.r. and an harmonic expansion for the velocity
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Figure 2 The 1:1 non-semisimple resonance. Before the bifurcation (2a), the spectrum consists of two
pairs of imaginary conjugated cigenvalues, At the bifurcation (2b), the two pairs collapse onto the imaginary
axes. After the bifurcation {2c¢), the two pairs of cigen values escape orthogonally from the imaginary axes.
The spectrum is then made of quaternions.

potential (see e.g. Blaes and Glatzel, 1986). {t is then found that when the parameter
¢ is smaller than the critical value ¢, =0.52, the annulus becomes unstable with respect
to non-axisymmetric perturbations. The first mode to be destabilized is the
fundamental (m= 1) mode. The instability occurs when two pairs of pure imaginary
eigenvalues, moving as a function of ¢, meet together at ¢ =g, and escape orthogonally
from the imaginary axis (see Figure 2). Our purpose is now to study the non-linear
evolution of the instability in the vicinity of the bifurcation.

2.3 Description of the method

Since we are working on an mviscid model, the total energy is conserved and the
system 1s Hamiltonian. We will therefore use the Hamiltonian Hopf bifurcation
method. In this section, we outline the procedure to be used. A more detailed account
of this can be found in van der Meer {1982).

Let us decompose the Hamiltonian of the system, H as

H=H,+Hy+H,+ ..., (8)

where H,. H,, ... correspond respectively to quadratic, ternary . .. interactions. These
components may for example correspond to successive terms in a Taylor expansion
of the original Hamiltonian. Because of the Hamiltonian nature of the system, the
eigenvalues of the matrix associated with H, must obey the conditions ensuring
conservation of area in phase space: if 4 Is an eigenvalue, so is its opposite, —A4.
Moreover, since the initial problem is real, if an eigenvalue 4 is complex, its conjugate,
+* is also an eigenvalue. In other words, the spectrum is composed only of pair of
conjugated imaginary eigenvalues (Figure 2a), or quaternions {Ai= + 4, +ix;) (Figure
2¢), where 4, and «; are the real and imaginary parts of 4.

Let us focus on the case of the purely imaginary eigenvalues which occur at the
bifurcation. By a suitable change of variable, one can show that they arise from only
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two different generic quadratic interactions; the first one has terms like
A+ )+ Al +y7), (9)
while the second has terms like
%% ¥y =X Vi) — 3¢ + 7)), (10)

where x and y are the canonical variables, and n= 4 1. For both interactions, one
can investigate the stability of the system by writing down the Hamilton equations
associated with the generic Hamiltonians (9) and (10) and compute the eigenvalues
of the corresponding matrix. In the first case (9), the eigenvalues are +id, and +iA,.
In the second case (10), only two imaginary eigenvalues exist, 4 ix, with multiplicity
two. The corresponding eigenspaces is of dimension one, and the matrix cannot be
put under a pure diagonal form. Therefore, the simplest expression for the matrix
corresponding to the first case (9) would be

0 4 O 0
. (11)
-4 0
0 — A

(12)

i
2
SR I <

In Hamiltonian systems, instabilities occur via resonances between the eigen-
frequencies. There are two kinds of resonances, according to whether the eigenvalues
arise from quadratic interaction of the type (9) or (10).

In the case (9}, a resonance occurs whenever two eigenfrequencies are linked through
the relation ;

qiy—ply =0,

where p and ¢ are integer. In the Hamiltonian theory terminology, this case is known
as a semisimple p:g resonance. In the case (10), one speaks of a non-semisimple 1:~1
resonance.

The Hamiltontan Hopf bifurcation occurs when an Hamiltonian system goes
through a non-semisimple resonance by a suitable continuous tuning of one physical
parameter of the system (in our case, the width of the torus, ). This bifurcation is
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achieved for example in the Hamiltonian H

H, = a{x, y;~x3 9, )= (X7 + x3)+ 3v(yi + y3). (13)

The eigenvalues of (13) are given in Figure 2, according to the sign of yv. The behavior
of the system in the vicinity of an Hamiltonian Hopf bifurcation is found by
transforming H, ., into its normal form:

Hv:()::f(xﬂ’z”x2Y1)”21*’7(x§+-’€§)+a1(x;yZ‘”xz.VL)2

a, (I +y3r +a (Vi + ¥y —xa ). (14)

Before the bifﬁrcat‘ion, that is when nv <0 (Figure 2a), theoriginisa Liapounbv«stable
stationary point for the system. The behavior of the solutions after the bifurcation
(nv>0, Figure 2c) depends only on the sign of the coefficient —#a,:

for —na,; >0 solutions starting near zero are bounded: the non-linear interactions
stabilize the system.

for —na, <0, solutions run off to infinity: the non-linear interactions have a
destabilizing effect. '

The dependence of the non-linear evolution on the parameters can be understood
using a simple argument: in the vicinity of the bifurcation (small v), the equations
giving the evolution of x,, x,, ¥y, and y, are

)'Ci == "_Q.IX2”+'Uy1 +4a2y{,
X=X, +vy,+4d,v3,

V= —ay, +nxg,

Va=ay; +nx,, (15)

where- we have used (I4) and (13), and neglected the terms in a, and a,. These
equations can be combined to give L

j}ZZ(nv—az)yl+4i~7a3y‘z'-—-23cr]_‘c2. (16)

Let us neglect the last term of (16). The resulting equation bears some strong
resemblance with the normal form of Hopf bifurcation (1). It can be seen immediately
that linear destabilization occurs only for v > 0. This destabilization is either amplified
or weakened by nonlinear terms according to the sign of sa,. Only when xa, <0
does the solution saturate at an amplitude of the order \/v/4a..

The purpose of the next section is to put the two-dimensional disk stability analysis
into the Hamiltonian formalism and to compute the coefficient a,.
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2.4 Finding a Hamiltonian for the system

The first step of the computation is to find an Hamiltonian formulation of the system
described in Section 2.1. Formally, our system is analog to the problem of surface
gravity waves on sea. In that case, it has been shown by Miles (1977) that an
Hamiltonian formulation was available provided one uses canonical coordinate the
surface elevation and the value of the potential at the surface, both regarded as a
function only of time and of the lateral coordinate (with respect to the surface). The
physical reason for this, is that, when the bulk fluid is irrotational, the whole velocity
field is determined solely by the movements of the fluid surface. The equation of
motion in the fluid interior [namely, the Bernoulli equation (3)] can be viewed as
the equation enabling the computation of the pressure throughout the flow.

The model described in Section 2.1 can then be reformulated as follows: let us call
¢, the values of ® at the inner and outer surfaces. But construction, ¢, depends
only on ¢ and t:

$(0,0)=D(r, 0,00 = 6.0 (17)

From now on, we drop the subscript + on the functions except in situations where
a mixing of the + and the — component could occur in the same equation.

The values of the derivative V,¢ and V,® at the surface, where V,={"'8,, are not
the same, but are linked by

(Vy®)y == Vo — (Vi Jv,, (18)

where v, is the value of the radial velocity at the surface. In the same way, the two
normal derivatives of ® and ¢ are related by (Milder, 1990, Henyey et al. 1983))

?(an))rﬁgzvr_v{id)*(va‘:)zurv (19)

where 7 and V,, the normal derivatives have been defined in Section 2.1. Using (18)
and (19), one can then transform the kinematic and the dynamic conditions at the
surface [{(4) and (3}] into

Bs = — (Vg U Vo) + v, L1+ (V7]

0up =C + 3o [ 1+ (V)1 — (Vo)) + V(D). (20)

The equations are self-contained when the radial velocity at the sufrace v, is expressed
in term of ¢ and {. In general, this can be done only via an expansion procedure,
where v, is developed in a power series in {. —r, !

I Z an.-w((pj;)(;Jr ~7r. )
a=1{
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For moderate surface slope, a good approximation to t, can be obtained by truncating
the series at finite order m:

g = Z Qo (P oe —r )

One can then substitute this quantity into the exact equations (20) to approximate
the dynamics, but the resulting ystem is no longer canonical (Milder, 1990). That is
why we are going to use another procedure: we shall truncate the Hamiltonian to a
given order and let the truncated Hamiltonian define the approximate field equations.
The meaning and the relevance of such a procedure will be discussed in the third
section. For the moment, we proceed to find the Hamiltonian of the system.

We start by decomposing the velocity potential ® and the surface elevation { into
a mean part corresponding to the basic solution and a perturbed quantity. Using
the radius of maximum pressure as characteristic length [see (6)] and relabelling the
adimensional quantity as r, we note that

(D:SOB‘}'W
:*:ra. +5I" (21)

where the equilibrium values r. are given by (7). The values of the perturbed velocity
potential ¥ at the perturbed surface { will be denoted .

Following Miles {1977), we write the Hamiltonian H as the sum of the kinetic and
potential energy of the system:

H=T+V, (22)
with

TmJ ) do l HV @) r dr,
0

V-——f do E LTS O L PN I

o] n

g )= (1/nhEentr ™), - .. (23)

Using the Green's formula and the incompressibility (2), one sees that

~on I i
} 9 f YV Vrdr= J LbY D ds,

o 0 v;_

=j%( P Cpe L —r_d G0 )dE. (24)
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One can then check that ¢ - and h. = £+, . are the two pairs of canonical variables
for which the perturbed field equations can be derived from the Hamiltonian equations

oH
éth_,.‘”'—'":‘:‘“‘““*
= Ol,ff:
oH
C s = ——. (25
b= =5 (25)

To be able to use the Hamiltonian bifurcation method described in Section 2.2, we

need now to convert our continuous Hamiltonian into a discrete version. This can

be achieved using a modal expansion in orthogonal functions. Then, by virtue of

Parseval’s theorem, the mode coefficients will obey the discrete canonical equations.
Since W satisfies (2), it is natural to expand it in harmonical functions:

W(r,0)= 3 (A0"+Br "explint)+c.c, (26)

n=1

where A4, and B, are complex coefficient and c.c means “complex conjugated of the
former expression™. It is then logical to expand both . and h_ as Fourier series

hy = Z d. ,(t)exp(ind)+c.c,

n=1

i, = i o a(trexp(ingd)+c.c. (27)

ne=l

The expansions (26) and {27) enable the computation of the radial velocity v, . in
function of the coefficients f. , and d. , via an iterative procedure. Schematically
(see West er al., 1987 for further details), one writes the Taylor expansion:

Vo =¥{ri)—0ud W a — ... (28)

Fxpanding the quantities in Fourier series via (26) and (27) and using the quantity
d . ,assmall parameters, one can then solve (28) recursively and express the coeflicient
A, and B, in term of the f, , and the 4. ,. This expression can then be used to
compute the expansion of v, . via:

o= 3 n[dry +0_ T =B, r. +d.)" " Pexpinit) +c.c. (29)

LR
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2.3 Results

The procedure described in the previous section was used to compute the discrete
{modal) Hamiltonian of the system as a function of f. ,, d.. , and their complex
conjugated values. At the critical value ¢=0.52, the only resonant mode is the mode
m=1. We shall therefore restrict our attention to this peculiar mode. From now on,
the quantities f_ and d_. referto f. | and d_ .

The m =1 mode can only react onto itself via mono. termary . . . (“odd-interactions”)
50 in our case, the only terms appearing in the decomposition (8) are H, and H,.
The expression of the former is given in the Appendix. As for H,, it is made of more
than forty terms and we judged it unnecessary to include it in the Appendix. The
equations of motion corresponding to this truncated level can be found via the
canonical equations:

do =E(H,+H)afs,
fo=—E(H,+H,)cd*.
In this equation, d% and f¥ stands for the complex conjugate of d, and J+. They
obey the corresponding complex equations. Note also that since 4. and f, are

complex, the system has still 8 degrees of freedom. The matrix of the linearized system
[only the contribution of H, in (30)] is

M 0
A= : (31)
0 M+
where M is the 4 by 4 complex matrix
i r—}.%— %. _2 S i
-3 0 ) ! ‘1 1r ’ B
F —FFrL —r 4
i —2r_r.  ri4rt
0 — s %
re e T T A e N}
M= | o : (32)
—1+r, i
—- - 0 e 0
i r
—14%r_ [
0 T 0 —
i rt o

r, and r_ being given by equation (6) with r, = 1. Before the bifurcation, M has four
distinct purely imaginary eigenvalues (Figure 2a). At the critical value, ¢ =
1~ 1/(2.067946097672506), two imaginary eigenvalues of M collapse onto the value
A= —0.67071i, corresponding to the nonsemisimple resonance (Figure 2b). We then
use the linear change of variable described in Burgoyne and Cushman {1974) to
transform the Hamiltonian H, into its normal form. In the new coordinates, denoted



STABILITY OF ACCRETION DISKS 247

(X1, V1 X0, Va0 -5 X4, Va), H, becomes
H,=0.0308642(x? + y7)+ 1.89355(x3 + p3) -+ 0.67071 (x5 v, —~ x4 y3) + 0.5(x3+x2). (33)

We see from this expression that the coordinates x,., y, and x,, y,, which have been
normalized so that the numer appearing in front of their square is half the modulus
of the corresponding (imaginary) eigenvalue, decouple from the dynamics of the
resonance. They just correspond to regular diagonal blocs in the diagonal form of
the matrix M, which translates into regular oscillatory motions in the physical space.
In that sense, they do not participate into and do not contribute to the dynamics of
the resonance and can be subsequently ignored.

Following van der Meer (1982) we then proceed to compute a,, the coefficient of
the polynomia (y3+ y3)?, which determines the behaviour of the system near the
resonance. The final result is

a,=0.580036>0.

Note that all the computations implied in the procedure we used involved a great deal
of formal algebric manipulations using enormous expressions (e.g. because of the
complexity of H,). We therefore resorted to a formal algebric manipulator software
(Mathematica) to handle the computation.

3. DISCUSSION

Before discussing the astrophysical implications of the result, we shall discuss the
approximations made at various stages of the computation.

The first approximation we made was to model a compressible, slender,
three-dimensional accretion torus by an incompressible, two-dimensional disk.
Justification of such an approximation was already given in the introduction: since
neither compressibility, not three-dimensionality appear to be crucial in the occurrence
of the instability, such a model probably keeps the main feature of the bifurcation.
The advantage of the simplified model is that it can be used for tractable analytical
computations. .

The second approximation performed was to use an inviscid model. This is because
the PP instability mechanism does not appear to be a viscous one. Moreover, since
the actual viscosity in an astrophysical accretion disk is usually very small, one can
consider viscous mechanisms as slight perturbations, which do modify shghtly the
final result, but not its generic features.

The Hamiltonian of the system was found by an expansion procedure using the
relative deformation of the equilibrium surface, 0. /r. . It is clear that this expansion
will be rapidly converging only for small values of this parameter, that is near the
linear regime. Moreover, another level of approximation was introduced at this stage
by describing the approximate dynamics of the solution through this truncated
Hamiltonian rather than via the truncation of the expansion of the equations of
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motion {see Section 2.2). The effect of such a truncature procedure has been discussed
recently by Milder (1990), in the case of surface waves. It was found that this expansion
procedure was able to generate very nonlinear, realistic-looking solutions, even when
the Hamiltonian is truncated to low order-two or three terms in its slope expansion.
However, an unphysical behavior was found at wavenumber greater than g/w?, where
g and w are respectively the gravity and the local normal velocity. The introduction
of one more term in the Hamiltonian was sufficient to mitigate the numerical
instability, extending the regime of validity of the procedure to smaller wavenumbers
and higher slopes. In our expansion procedure, we retain terms up to fourth order,
which means that we are working in this extended regime. In our case, the normal
velocity is of the order of {4.|0, , where 4, is the critical eigenvalue at the bifurcation
(A.= —0.607i) and g/k (k being the wave number) is of the order of the gravitational
potential 1/r, —1/(2r2). The regime of validity extends then at least up to relative
surface elevation of the order of [A7(r. —0.5)] "'~ 1.4 atr, and 14 at r _. This regime
extends therefore well into the non-linear regime that we are studying.

In restricting our investigation to the dynamics of the linearly resonant mode m=1,
we have neglected possible nonlinear resonances. However, as pointed out by
Chirikov (1979), oscillations induced by nonlinear resonances are always bounded.
The possible explosive instabilities can therefore only come from linear resonances.
This justifies our approximation, since we are only concerned with the answer to the
question: does the instability found in accretion tori saturate?

4. ASTROPHYSICAL IMPLICATIONS

The main result of this paper is that nonlinear interactions stabilize a system subject
to PP instability. Our result holds for perturbations of amplitude of order unity and
for configurations in which the specific angular momentum is conserved. Our finding
that ponlinear interaction stabilizes the system suggests the following scenario for
the nonlinear regime of PP instability: unstable modes undergo a regime of linear
growth which is limited by non-linear interactions. The system then sets up onto a
stable homoclinic orbit around the origin, with an amplitude modulation of order
unity. In the physical space, this translates into a single modulation of the surface
{a “planet”), with amplitude variations of order unity. This configuration can persist
for several dynamical times. However, because the number of degrees of freedom
(relevant modes) is not too large, it is possible that the homoclinic orbit returns to
the origin in a finite time. One would then observe the disappearance of the planet
and resurgence of the basic, unperturbed stage. This would be again followed by the
reappearance of the planet, as the system drifts away from the origin along the
homoclinic orbit. Such behaviour has been predicted for Kelvin-Helmholtz waves in
a tilting tank, which undergoes a similar resonance (Weissman, 1979). If we now allow
the viscosity to operate as a small perturbation, the scenario can change slightly. In
that case, the specific angular momentum is not strictly conserved and can change
moderately along the evolution. In that case, one would still be able to observe the
appearance and disappearance of the planet, but the state of the system “without
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planet” will be now characterized by a slightly different angular momentum
distribution. as it has changed in the evolution.

Such a scenario, applied to a systemn in which the mode m=m, becomes unstable
first, could therefore explain the appearance of m, planets, which would persist on
several dynamical times, and can disappear to leave room for a new, axisymmetric
structure, with a rotation profile slightly changed from the original one (due to real
or numerical viscosity). Such a scenario could for example explain the evolution of
model 1 of Christodoulou and Narayan (1992), in which a m=3 PP instability is
excited.

Note however that for m> 1, the planet configuration can be subject to secondary,
pairing instability in which all the planets merge into a single large planet. This
evolution would however be definitely different from the one described above, for
one would not see that disappearance of all the planets together, but a slow decrease
of the number of planets present in the system.

However, the astrophysically interesting case is that of giant tori with a ratio of
the outer radius to the inner radius of order 10%. For two-dimensional models with
such a ratio, PP instability is not relevant anymore and compressibility effects become
predominant. Glatzel (1987a,b), studyving shear flows in compressible cylinders,
showed that at the critical width at which PP instability disappears, compressible
modes take over via probably a simple mode crossing. This behaviour cannot of
course be captured by our incompressible treatment. Some nurmerical investigation
of the behaviour of this instability has been undertaken by Frank and Robertson
(1988) and Kojima (1986) in the three-dimensional case. The computations were
limited to an aspect ratio of the order of 40, still far away from interesting
configurations. However, these computations have shown that the growth rate of the
instability was decreasing with the size of the torus. A similar behaviour is found for
shear flows in compressible cylinders (Glatzel, 1987a,b) but the solution of the
eigenvalue problem for a cylinder of infinite radial extent shows that the growth rate
is small, but finite. If giant accretion tori tend towards cylindrical flows, the same
behaviour is likely to be expected. The study of the nonlinear regime is therefore of
prime importance to determine the possible viability of models of fat accretion tori.
Interesting configurations are still bevond computational possibilities but 1t might
be possible to get some results via an analysis of the type used here. The major
conceptual difficuities involve establishing the bifurcation framework and finding an
Hamiltonian [or the system. The fact that the growth rate of unstable modes tends
to a finite value when increasing the width of the torus, precludes the use of the latter
as a bifurcation parameter, as we did in this paper. However, the work of Glatzel
suggests that to take ¢, the rotation indice as the bifurcation parameter, for its tuning
enables us to stabilize modes one by one. The problem of finding an Hamiltonian
for such a framework however still remains.
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APPENDIX: EXPRESSION OF THE HAMILTONIAN

The expression for the second order term H, in the expansion of the Hamiltonian
of the system is given by
NH,=d_d*r® —d d*rSr, —d d*rtrs + —id% [ rSri +id, fFr0r2
+d dirt e —d d et d _dr e —idr ot
+id_ frrbet pid® fortet —id  fE el L SR
Ff frrrt 23S S Rt d dR S —d_dr_rS
+id* forirS —id_ frArieS 4 SRS 4 L fEr S (A.1)

where

N=—{rty+rtrS. (A.2)






