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In this paper, a numerical investigation of three-dimensional round jets subjected to streamwise 
and azimuthal perturbations is reported. The main objective of the study is to give a consistent 
scenario for the breaking of rotational symmetry in such flows which may ultimately lead to the 
production of intense side jets. In particular it is shown that the development of the Widnall 
instability on the primary vortex rings and the evolution of the Bernal and Roshko [J. Fluid 
Mech. 170, 499 (1986)] streamwise vortices generated by the instability of the braid could be 
deeply intertwined. A comprehensive discussion of the vortex induction mechanisms leading to 
the reorientation of the initial vorticity both in the ring and braid regions and to the deformation 
of the rings is presented. The recent analysis by Monkewitz and Pfizenmaier [Phys. Fluids A 3, 
1356 ( 1991)] is confirmed in the sense that strong radial ejection of fluid is not directly linked 
to the deformation of the vortex rings but rather to the occurrence of coherent streamwise vortex 
pairs. However, the final relative position of the streamwise vortex pairs with respect to the 
deformations of the vortex rings differs slightly from Monkewitz and Pfizenmaier’s proposition. 

I. INTRODUCTION 

Recent experiments have shown that low-density 
round jets undergoing global oscillations’-3 display a dis- 
tinctly different spatial development from naturally evolv- 
ing homogeneous jets. Such synchronized flows are sub- 
jected to a primary instability of the Kelvin-Helmholtz 
type resulting in the axisymmetric roll-up of the jet shear 
layer into highly regular vortex rings, which are phase 
locked to the global oscillations. Moreover, a new mode of 
entrainment is then observed in the near field of the jet: the 
radial ejection of fluid into secondary side jets normal to 
the main jet axis and distributed azimuthally in the form of 
quasiplanar sheets. Further experiments’.294’5 have con- 
firmed that the same phenomenon takes place in homoge- 
neous jets strongly forced at Strouhal numbers of around 
0.4. The synchronization of the primary vortex rings there- 
fore seems to be the key feature for the generation of strong 
side-jets. 

Different secondary instability mechanisms have been 
proposed as possible candidates for side-jet production. 
Monkewitz’ first suggested that the Widnal16 instability of 
the vortex rings themselves might be responsible. This az- 
imuthal instability giving birth to lobes was expected to 
induce ejection of fluid away from the jet axis. But the 
recent numerical study of Martin and Meiburg7 and quan- 
titative measurements by Monkewitz and Pfizenmaier’ and 
Liepmann and Gharib* have indicated that the side-jet 
phenomenon may bring into play pairs of streamwise vor- 
tices resulting from the instability of the region between the 
rings (the “braid”), which are the analog of the Bernal and 
Roshko’ vertical structures in the plane shear layer. 

One can find an interesting discussion on the second- 
ary instabilities of a temporally developing mixing layer by 
Metcalfe et al. lo Their direct numerical simulations con- 
firmed the conjecture of Bernal and Roshko, namely the 
existence of three-dimensional instabilities in the form of 
counter-rotating streamwise vortices. These structures are 

responsible for the mushroom-shaped features observed in 
the experiments,’ of which the side jets could be the am- 
plified form. But to our knowledge, there have been few 
numerical studies focusing on the origin of these stream- 
wise structures in the round jet case and their role in the 
side-jet phenomenon. So, in order to identify the respective 
iniluences of the secondary instabilities and to study the 
vortex induction mechanisms involved, we have numeri- 
cally investigated the temporal evolution of a homogeneous 
round jet. The present direct numerical simulations are 
conducted in the same spirit as Martin and Meiburg’s in- 
viscid vortex filament computations.7 They turn out to 
confirm some of their results while allowing to go further 
into the nonlinear regime and to take viscous effects into 
account. 

II. NUMERICAL METHOD 

The incompressible Navier-Stokes equations are inte- 
grated in a three-dimensional (3-D) periodic box using a 
pseudospectral code developed by Vincent and 
Meneguzzi. * ’ 

The vorticity form of the Navier-Stokes equations for 
incompressible flow is 

au at=ux,-~+&u, P (1) 

v*u=o, (2) 

where u is the velocity, o =VXu the vorticity, p the den- 
sity, II=p+$(u* II) the pressure head, and Y the kine- 
matic viscosity. 

In Fourier space, Pqs. ( 1) and (2) can be reduced to 

auk 
x=P(k) l (u&l,)k-d&k, (3) 

where the tensor P is the projector on the space of solenoi- 
dal fields: 
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PU(k) =6i/-k&j/k2. (4) 

The right-hand side of Eq. (3) is computed by means 
of a pseudospectral method. A detailed review of the pseu- 
dospect.ral techniques is given for instance by Canuto 
et al. l2 The time stepping is done using a second-order 
finite-difference scheme. An Adams-Bashforth scheme is 
used for the nonlinear term while the dissipative term is 
integrated exactly. 

The calculations were done with 643 Fourier compo- 
nents on a Cray-2. The collocation points are distant by 
Sx=2n/64 and the time step is chosen to be equal to 
6t= 10V2 to fulfill the convergence conditions of the nu- 
merical scheme (the optimal time step given by the Cou- 
rant criterion is observed to stay between 1.18 X 10e2 and 
1.38~ 10V2 in all the simulations). The choice of viscosity, 
imposed by the spatial resolution, leads to a Reynolds 
number Re based on the jet radius of about 500. Care has 
been taken to avoid numerical artifacts. Thus, in order to 
suppress the artificial symmetries of the discrete grid, the 
jet axis was slightly shifted from the center of the box. The 
lateral periodic boundary conditions may also influence the 
dynamics. A radius equal to 1 for a box length L of 27~ has 
been taken for which the effect of the periodicity was not 
noticeable. Indeed the natural evolution of the jet flow did 
not present spurious symmetries and an initial n=3 azi- 
muthal symmetry imposed at t=O persisted up to 30 turn- 
over times as described later. Finally, no significant quan- 
titative change in the flow development was observed 
during a test simulation with a 12g3 resolution (see Sec. 
III), thereby indicating that the 643 discretization was suf- 
ficient to bring out the main physical mechanisms involved 
in the side-jet phenomenon. Intensive three-dimensional vi- 
sualizations of both velocity and vorticity fields were per- 
formed with the software EXPLORER on a Silicon Graphics 
workstation. 

The basic flow is taken to be the axisymmetric velocity 
profile studied from a spatial point of view by Michalke:13 

U(r)=0.5{1+tanh[O.5R/B(l--r)]}, 

where the radial distance t and the streamwise velocity U 
are nondimensionalized with respect to the jet radius R 
and the axial jet velocity Vi. Consequently time t is non- 
dimensionalized with respect to R/Uj. This velocity pro- 
file depends on the nondimensional parameter R/8, where 
8 is the momentum thickness of the shear layer. A prelim- 
inary inviscid temporal linear stability analysis of this pro- 
file was performed numerically. A shooting method is used 
to integrate the linearized Rayleigh equation in cylindrical 
coordinates so as to generate the unstable linear eigen- 
modes pertaining to the basic flow U(r) . Each mode can be 
characterized by its azimuthal wave number m and its 
Strouhal number St = R/A, where /z denotes the streamwise 
wavelength. A standard test of numerical methods is the 
comparison between the growth rates predicted by linear 
stability theory and those obtained with the three- 
dimensional temporal calculations. Table I compares the 
growth rates am calculated from linear theory for different 
values of R/9 and St and oNs obtained from the direct 

TABLE I. Growth rates of jet Row predicted by the linear stability anal- 
ysis and obtained with the direct simulations. 

St R/B 

0.40 11.3 
0.36 22.6 
0.81 22.6 

aLT uNS E 

0.042 29 0.0416 +0.0163 
0.032 81 0.0325 +0.0094 
0.046 41 0.045 1 +0.0282 

simulations initialized with the corresponding unstable 
mode determined from linear theory. One can notice the 
good agreement between both sets of results with the rel- 
ative error E= ( aNs - or,r) /oLT varying between 0.9% and 
2.8%. 

In the present paper, we focus on the particular basic 
flow at R/8= 11.3. For this profile, the axisymmetric 
eigenmode m=O corresponding to St=0.4 happens to be 
the most unstable and it is therefore the one that appears 
naturally. In all the numerical simulations to be presented 
here, the basic velocity profile R/8= 11.3 is initially per- 
turbed by the most unstable axisymmetric eigenmode ac- 
cording to linear theory with an amplitude level equal to 
1 u,, [ /Uj- 3%. In this way a regular development of the 

primary instability is induced which is similar to the syn- 
chronization observed experimentally in forced spatially 
developing jets. 

The development of the secondan, instabilities is trig- 
gered by adding to the previously defined initial conditions 
three different types of symmetry-breaking perturbations. 

l In the first set of simulations referred to as the INN” 
case, no additional secondary disturbances are imposed at 
t=O and the jet is only subjected to the numerical noise 
produced by discrete grid effects and the influence of the 
periodic lateral boundary conditions. The most unstable 
eigenmode at m =O then gives rise to a periodic array of 
rotationally symmetric vortex rings. The NN simulation is 
used as a reference case for the axisymmetric development 
of the primary instability. 

l In the second set of simulations referred to as the 
“WN” case, white noise with an amplitude level equal to 
I 4lax I /Uj - 5% is added to the initial conditions to mimic 
the random fluctuations that are present in all experimen- 
tal situations. A gradual breakdown of axisymmetry is then 
observed to occur “naturally.” 

l To control its evolution, a third kind of direct sim- 
ulation denoted “AP” is carried out, whereby a well- 
defined azimuthal perturbation of the basic flow is intro- 
duced at t=O. More specifically a small radial 
displacement is initially applied to the inflection point of 
the basic velocity profile so that at time t=O, 
Uo(r,~)=U{r[l+~cos(n~+S~)]}, where q is the azi- 
muthal angle, L&p a phase reference, and E the amplitude of 
the deformation. Such a modulation produces the same 
effect as the corrugated nozzle used experimentally.4 A 
similar scheme with n = 3 has been used in the experiments 
of Monkewitz and Pfizenmaier5 to stabilize the planes of 
the side jets at fixed azimuthal angles. In the same fashion, 
Martin and Meiburg7 chose n = 5 in their vortex filament 
computations. According to the analysis of Pierrehumbert 
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FIG. 1. Temporal evolution of the root mean square values of the radial 
(solid lines) and azimuthal (dashed lines) velocity for the WN (thin 
lines) and AP (thick lines) cases. For clarity, the NN radial velocity is 
not plotted but its evolution exactly coincides with the corresponding WN 
curve. The NN azimuthal velocity is represented by dotted lines. 

and Widnall, 14*15 the primary Kelvin-Helmholtz vortices 
of plane shear layers are most unstable to secondary per- 
turbations of the translative kind with a spanwise wave 
length equal to two-thirds of the basic streamwise wave- 
length, a value which is in good agreement with the 
experimental observations of Bernal and Roshko.’ If this 
result is extrapolated to the periodic array of vortex rings 
at St =0.4, one obtains n =3 as the most unstable second- 
ary mode. This is fully consistent with the fact that the 
n=3 mode indeed appears “naturally” during the WN 
simulations. For this reason, the n=3 modulation was se- 
lected as input for the AP simulations. 

Ill. RESULTS 

Figure 1 presents the time evolution of the root mean 
square values of the radial and azimuthal velocity over the 
extent of the periodic box for the three classes of simula- 
tions: 

1 
U,(t)= 2 d sss u~kY,z,w dy dz, 

u$(x,y,z,t)dx dy dz, 

where L is the size of the computational box; u, and ug, are, 
respectively, the contributions of the radial and azimuthal 
components to the total kinetic energy per volume unit in 
the computational box. In a concern for the clarity of the 
figure, the radial velocity in the NN case has not been 
represented because it is undistinguishable from the corre- 
sponding WN curve all along the NN simulation until 
t=20. 

First we focus on the history of the radial velocity uI, 
which is associated with the primary instability and the 
formation of the vortex rings. In all three simulations, the 
radial velocity grows linearly during the first time steps. Its 
initial growth rate is in adequate agreement with linear 

theory (Table I), which validates the numerical method. 
Saturation occurs around t=6, corresponding to the for- 
mation of coherent vortex rings. The slow decrease in the 
NN and WN simulations is due to viscous dissipation. In 
the NN case, the velocity field is observed from 3-D visu- 
alizations to stay nearly axisymmetric until the end of the 
simulation. The very weak departure from axisymmetry 
may be measured by the root mean square value of the 
azimuthal velocity ua, which is observed to stay two to 
three orders of magnitude below its radial counterpart, 
thus suggesting that the breaking of axisymmetry due to 
the periodicity of the lateral boundaries is negligible. By 
contrast, in the WN case the azimuthal velocity u+, rapidly 
increases, beyond an early transient adjustment phase, and 
reaches around t=25 the same order of magnitude as the 
radial velocity u,. In the AP simulation, the breakdown of 
axisymmetry is seen to be much more sudden and appears 
even before the saturation of the primary instability, 
thereby suggesting a loss of axisymmetry on the part of the 
rings themselves. During the last iterations of the WN sim- 
ulation and above all at the end of the AP case, one can 
observe a renewed increase of the radial velocity, as the 
azimuthal velocity reaches comparable magnitudes. We 
will see that this excess of the radial velocity content over 
the WN case is no longer attributable to the rings but to 
the radial ejection of fluid away from the jet axis. The test 
simulation with the same conditions as the AP case but a 
1283 resolution was performed up to ten turnover times. 
The u, and uQ corresponding curves match with the AP 
ones within 0.074% and 0.55%, respectively, thereby al- 
lowing us to be confident in the results of the 643 simula- 
tions. 

Figure 2 presents side views of the jet flows at time 
t=25 for the WN case [Fig. 2(a)] and at time t= 16 for the 
AP case [Fig. 2(b)]. Isosurfaces of azimuthal (light gray) 
and streamwise (dark gray) vorticity are outlined. One can 
notice the similarity between these two figures which dis- 
play the same qualitative features. In both, the azimuthal 
vorticity, associated with the primary vortex rings, is still 
coherent though strongly distorted azimuthally and longi- 
tudinally, as revealed by the presence of streamwise vor- 
ticity in the rings themselves. One can clearly observe re- 
ceding outer lobes on the vortex rings, as in all experiments 
with side-jet production according to Raghu et al. I6 It 
must be emphasized that, in the case of Fig. 2(b), these 
lobes do not correspond to the initial corrugation of the 
basic flow but are r-out-of-phase with it, as explained later. 

Another interesting feature is the presence of strong 
streamwise Bernal and Roshko’ vertical structures, associ- 
ated with dark isosurfaces of streamwise vorticity “knit- 
ting” between two consecutive vortex rings and aligned 
with the deformation of the rings. A detailed study of their 
signs indicates their gathering into pairs of counter- 
rotating round vortices. The cross sections in the braid 
region of the radial velocity field U, in the WN [Fig. 3(a)] 
and AP Fig. 3(b)] cases both display a nonaxisymmetric 
distribution of positive radial velocity (white areas). Sim- 
ilar sections at different streamwise locations present the 
same features suggesting that this radial velocity field cor- 
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lobe 

trough 

FIG. 2. Isosurfaces of the azimuthal (light gray) and streamwise (dark 
gray) vorticity at a threshold value corresponding to 40% of the respec- 
tive maxima. For clarity, only the foreground is displayed: (a) WN sim- 
ulation at t=25 (0,=1.2, o,=O.9); (b) AP simulation at t=16 
(cop= 1.9, o,= 1.6). 

responds to the ejection of fluid into coherent side jets. 
Comparison with the previous 3-D visualizations leads to 
the conclusion that the secondary jets are located in the 
troughs of the distorted rings, in good agreement with 
Liepmann and Gharib.’ This configuration is consistent 
with the fact that streamwise vortices also lie in pairs 
within the troughs of the rings. They are of such a sign as 
to induce strong outward velocities in the troughs (white 
areas of Fig. 3) and weak inward velocities in the lobes 
(black areas of Fig. 3). Such a velocity field tends to fold 
back the receding outer lobes of the rings toward the jet 
axis and corresponds to the engulfing of external fluid be- 
tween the side jets, as observed in previous experiments.*92 
One should note the importance of mode 3 in the WN case, 
which is a justification for the choice of the AP initial 
conditions, as discussed previously. The exploitation of 
similar visualizations during the entire AP simulation al- 
lows us to propose the following scenario leading to side-jet 
generation. 

Until t=6, the initial azimuthal vorticity of the basic 

(aj WN 

FIG. 3. Cross sections of the radial velocity field in the braid region. The 
gray scale ranges from less than -0.3 (black) to more than 0.3 (white): 
(a) WN case; (b) AP case. 

flow concentrates into ring regions while the regions in 
between (braid regions) become depleted. As observed 
experimentally, I6 the whole azimuthal vorticity field occu- 
pies a cone-shaped zone with axis aligned with the flow and 
apex pointing downstream. At t= 6, the primary instability 
has just saturated in the form of coherent vortex rings. The 
corresponding streamwise location would be x/R = 2 to 3 if 
one relates streamwise distance to time via the real part of 
the phase velocity according to linear theory, assuming 
that the velocity profile at the jet nozzle is given by the 
basic flow with R/8= 11.3. 

While the primary instability grows, the initial corru- 
gation imposed on the jet flow leads to the reorientation of 
vorticity both in the ring and braid regions. Figure 4(a) 
displays a cross section of the streamwise vorticity field in 
the braid region at the beginning of the simulation (t= I ) . 
One can observe an azimuthal distribution of streamwise 
vorticity which is synchronized with the initial corrugation 
in the form of weak sheets of alternatively positive (white) 
and negative (black) values. At a later time (t=2), the 
braid region on Fig. 4(b) presents the same distribution as 
Fig. 4(a) though more concentrated and amplified when 
compared with the initial azimuthal corrugation. By con- 
trast, the streamwise vorticity in the ring region at t= 1 
[Fig. 4(c)] is distributed in quite the same way but it is 
r-out-of-phase with the corresponding configuration in the 
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Braid 

Braid 
(a) t = 1 (b) t = 2 

Ring 

(C) t=1 (d) t=2 

FIG. 4. Cross sections of the streamwise vorticity field; AP simulation; in 
the braid: (a) t=l, (b) t=2; in the ring: (c) t=l, (d) t=2. The gray 
scale ranges from -0.06 (black) to 0.06 (white) at t=l (a), (c) and 
from -0.13 (black) to 0.13 (white) at t=2 (b), (d). 

braids [Fig. 4(a)]. Thus, at the same azimuthal location, 
the sign of the streamwise vorticity is reversed between 
rings and braids. Finally, at t=2, an additional distribution 
of streamwise vorticity appears in the ring region [Fig. 
4(d)] at the outer periphery of the previous one. A closer 
examination of 3-D visualizations reveals that this vorticity 
comes from the braid region located immediately down- 
stream which begins to roll up around the ring. 

In the following, we appeal to vortex induction argu- 
ments in order to account for the arrangement of the vor- 
tical structures. The sketches in Fig. 5 summarize the dif- 
ferent induction mechanisms taking place both in the rings 
and in the braids. Each of the four diagrams provides an 
interpretation of the corresponding streamwise vorticity 
distributions displayed in Fig. 4. In the braid region [Fig. 
5 (a)], global induction by the array of vortex rings on the 
slightly corrugated azimuthal vorticity field tends to make 
the inner parts travel faster (circled dots) and the outer 
parts travel slower (circled crosses). This mechanism gives 
birth to an azimuthal distribution of streamwise vorticity 
with alternate sense of rotation indicated by the + and - 
signs in Fig. 5(a). Such a configuration is qualitatively 
similar to the computed results displayed in Fig. 4(a). In 
turn, the velocity field [arrows in Fig. 5 (a)] induced by this 

f 

Cc) 
Ring 

Cd) 

FIG. 5. Vortex induction mechanisms in the braid (a), (b) and ring (c), 
(d) regions. The relative motions are represented by arrows, circled 
crosses, and circled dots while + and - symbols refer to the sign of the 
local streamwise vorticity, the + sign corresponding to the vorticity di- 
rected downstream. 

newly created streamwise vorticity tends to increase the 
initial deformation as shown in Fig. 5 (b) [to be compared 
with Fig. 4(b)]. 

A similar reasoning, based this time on local induction 
arguments, may be applied in the ring region, as indicated 
in Fig. 5 (c). Because of their higher curvature, the outer 
lobes of the deformed vortex rings tend to travel faster 
(circled dots) while the inner troughs travel slower (cir- 
cled crosses). The ensuing relative motion creates a distri- 
bution of streamwise vorticity of alternate + and - sign, 
which displays a P phase shift with respect to the corre- 
sponding distribution in the braid region of Fig. 5 (a). Note 
the good qualitative agreement with the computed results 
of Fig. 4 (c) . In turn, the streamwise vorticity in the rings 
induces a radial motion indicated by the arrows in Fig. 
5 (c), which, at a later time, tends to turn the receding 
troughs into receding outer lobes and the advancing lobes 
into advancing troughs as shown in Fig. 5 (d). This stage in 
the evolution is typical of elliptical vortex filaments as de- 
scribed for instance in Liu et al. l7 Finally the configuration 
of Fig. 5 (d) is maintained in quasiequilibrium by the ex- 
istence of an outer layer of streamwise vorticity issuing 
from the braid region located immediately downstream: 
the induction effect associated with this outer layer coun- 
teracts the velocities produced by the streamwise vorticity 
in the rings themselves. At this stage, the rings display 
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receding outer lobes that are n-out-of-phase with the initial 
corrugation [compare Figs. 5(b) and 5(d)]. As in Martin 
and Meiburg,7 we have noted, during this early phase of 
the simulation, that the streamwise vorticity in the braids is 
much more intense just downstream of the ring region than 
it is immediately upstream. 

As the primary instability saturates, the initially weak 
sheets of streamwise vorticity in the braids resulting from 
the previous induction mechanisms are stretched by the 
increasing extensional strain field due to the vortex rings 
and they begin to roll to form streamwise vortices. This 
stretching mechanism is similar to the one described by 
Corcos and Lin’* and Neulg in the case of plane shear 
layers. More specifically, these authors have demonstrated 
that an array of alternating weak vortices undergoing 
stretching in the axial direction collapses into pairs of 
counter-rotating concentrated circular vortices. Thus, at 
t= 12 in the present simulation, all the streamwise vorticity 
in the braid appears to be concentrated into three pairs of 
counter-rotating streamwise vortices folding alternatively 
around the upstream and downstream primary structures, 
each pair lodging itself within the troughs of the vortex 
ring (cf. Fig. 2). The streamwise vortices are kept inwards 
close to the jet axis by the entrainment of the primary 
vortex rings. But the influence of the rings is gradually 
counterbalanced by the increasing self-induction of the in- 
tensified vortex pairs which tends to expel them outwards. 
This increasing self-induction may be related to the expo- 
nential growth regime of the u,(AP) curve beyond t= 5 on 
Fig. 1. In this connection, one can observe a similar inter- 
mediate exponential increase in the NN and WN cases as 
well, with identical slopes, suggesting that the same mech- 
anism is also present in these two simulations. At t= 14, as 
shown in Fig. 1, the azimuthal velocity u,(AP) reaches 
the same order of magnitude as u,(AP): the streamwise 
structures have become coherent and strong enough, rela- 
tive to the primary rings, to “free themselves” from the 
rings influence. Strong positive radial velocity is found all 
along the jet axis corresponding to the expulsion into sec- 
ondary planar jets of the fluid located in the vicinity of the 
streamwise vortex pairs. The strength of this phenomenon 
can be measured by comparing the u, curves of the AP and 
NN cases after t= 14 in Fig. 1. If the real part of the phase 
velocity is used to convert time into streamwise distance, 
this production of side jets should take place, in spatially 
developing jets, at a streamwise location of about x/R = 6, 
in good agreement with experiments.‘.‘6 Figure 6, which is 
adapted from a cartoon by Monkewitz and Pfizenmaier,’ 
summarizes the configuration of the different vertical 
structures involved in the side-jet generation process, as 
synthesized from Figs. 2 and 3: the side jets are induced by 
pairs of counter-rotating streamwise vortices (hatched 
structures in Fig. 6) that connect two consecutive distorted 
vortex rings (white structures). For clarity, only one pair 
of streamwise vortices is represented. In contrast with the 
suggestion of Monkewitz and Pfizenmaier, the side jets are 
located within the advancing troughs of the distorted rings 
and not around their receding lobes. 

Vortex ring 

Stream&e vortices 

FIG. 6. Vertical structures involved in the side-jet generation process. 
Only a single streamwise pair is represented (hatched structures) while 
two consecutive vortex rings are sketched (white structures). The radial 
ejection of fluid is symbolized by the two black arrows emerging from the 
streamwise pair. 

IV. CONCLUSIONS 

The very good agreement found with theory and ex- 
periment leads us to conclude that temporally evolving 
simulations of corrugated jet flows subjected to initial 
streamwise perturbations reproduce the essential features 
of side-jet generation. A qualitative description of the side- 
jet production mechanism has been proposed. Three- 
dimensional visualizations of both the vorticity and veloc- 
ity fields have shown the spreading of the jet through 
secondary planar jets as observed experimentally.’ These 
side jets come from velocity induction by pairs of counter- 
rotating streamwise vortices located in the braid region 
connecting two consecutive primary vortex rings, in a con- 
figuration that slightly differs from previous 
propositions. is Though the mechanisms at the origin of 
the streamwise vorticity giving birth to these longitudinal 
vortices are still not clearly understood in the “natural,” 
purely circular. jet case, a complete scenario for the pro- 
duction of such streamwise vorticity both in the braid and 
ring regions in the corrugated jet case has been proposed, 
which is consistent with present numerical simulations. 

ACKNOWLEDGMENTS 

We wish to thank A. Vincent and M. Meneguzzi for 
making available to us their numerical code. One of us 
(P.H.) would like to thank M. Abid and M. E. Brachet for 
having adapted his two-dimensional eigenvalue code to the 
axisymmetric case. Thanks are extended to J. P. Brancher 
for several stimulating discussions about vortex dynamics. 
Financial support of this work by the Direction des Re- 
cherches, Etudes et Techniques (D.R.E.T.) under Grant 
Nos. 90-040 and 92-1543 is gratefully acknowledged. All 

Phys. Fluids, Vol. 6, No. 5, May 1994 Brancher, Chomaz, and Huerre 1773 

Downloaded 03 May 2001 to 129.104.34.3. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



computations were performed on the Cray-2 of the Centre 
de Calcul Vectoriel pour la Recherche (C.C.V.R.). 

‘P. A. Monkewitz, B. Lehmann, B. Barsikow, and D. W. Bechert, “The 
spreading of self-excited hot jets by side jets,” Phys. Fluids A 1, 446 
(1989). 

‘P. A. Monkewitz, D. W. Bechert, B. Barsikow, and B. Lehmann, “Self- 
excited oscillations and mixing in a heated round jet,” J. Fluid Mech. 
213, 611 (1990). 

‘K. R. Sreenivasan, S. Raghu, and D. Kyle, “Absolute instability in 
variable density round jets,” Exp. Fluids 7, 309 (1989). 

4J. C. Lasheras, A. Lecuona, and P. Rodriguez, “Three-dimensional 
structure of the vorticity field in the near region of laminar co-flowing 
forced jets,” in The Global Geometry of Turbulence, edited by J. Jimenez 
(Plenum, New York, 1991). 

‘P. A. Monkewitz and E. Pfizenmaier, “Mixing by side jets in strongly 
forced and self-excited round jets,” Phys. Fluids A 3, 1356 (1991). 

‘S. E. Widnall, D. B. Bliss, and C.-Y. Tsai, “The instability of short 
waves on a vortex ring,” J. Fluid Mech. 66, 35 ( 1974). 

7J. E. Martin and E. Meiburg, “Numerical investigation of three- 
dimensionally evolving jets subject to axisymmetric and azimuthal per- 
turbations,” J. Fluid Mech. 230, 271 ( 1991). 

‘D. Liepmann and M. Gharib, “The role of streamwise vorticity in the 
near-field entrainment of round jets,” J. Fluid Mech. 245, 643 (1992). 

9L. P. Bemal and A. Roshko, “Streamwise vortex structures in plane 
mixing layers,” J. Fluid Mech. 170, 499 (1986). 

‘OR. W. Metcalfe, S. A. Orszag, M. E. Brachet, S. Menon, and J. J. Riley, 
“Secondary instability of a temporally growing mixing layer,” J. Fluid 
Mech. 184, 207 (1987). 

“A. Vincent and M. Meneguzzi, ‘The spatial structure and statistical 
properties of homogeneous turbulence,” J. Fluid Mech. 225, 1 (1991). 

“C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral 
Methods in Fluid Dynamics (Springer-Verlag, Berlin, 1988). 

13A. Michalke, “Survey on jet instability theory,” Prog. Aerosp. Sci. 21, 
159 (1984). 

14R. T. Pierrehumbert and S. E. Widnall, ‘The two- and three- 
dimensional instabilities of a spatially periodic shear layer,” J. Fluid 
Mech. 114, 59 (1982). 

15C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. 
Fluid Mech. 16, 365 (1984). 

t6S. Raghu, B. Lehmann, and P. A. Monkewitz, “On the mechanism of 
side-jet generation in periodically excited axisymmetric jets,” in Ad- 
vances in Turbulence 3, edited by A. V. Johansson and P. H. Alfredsson 
(Springer-Verlag, Berlin, 1991). 

r7C. H. Liu, J. Tavantzis, and L. Ting, “Numerical studies of motion and 
decay of vortex filaments,” AIAA J. 24, 1290 (1986). 

‘sS. J. Lin and G. M. Corcos, “The mixing layer: Deterministic models of 
a turbulent flow. Part 3. The effect of plain strain on the dynamics of 
streamwise vortices,” J. Fluid Mech. 141, 139 ( 1984). 

19J C Neu, “The dynamics of stretched vortices,” J. Fluid Mech. 143, . . 
253 (1984). 

1774 Phys. Fluids, Vol. 6, No. 5, May 1994 Brancher, Chomaz, and Huerre 

Downloaded 03 May 2001 to 129.104.34.3. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


