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A general theoretical account is proposed for the zigzag instability of a vertical
columnar vortex pair recently discovered in a strongly stratified experiment.

The linear inviscid stability of the Lamb–Chaplygin vortex pair is analysed by a
multiple-scale expansion analysis for small horizontal Froude number (Fh = U/LhN,
where U is the magnitude of the horizontal velocity, Lh the horizontal lengthscale
and N the Brunt–Väisälä frequency) and small vertical Froude number (Fv = U/LvN,
where Lv is the vertical lengthscale) using the scaling of the equations of motion
introduced by Riley, Metcalfe & Weissman (1981). In the limit Fv = 0, these equa-
tions reduce to two-dimensional Euler equations for the horizontal velocity with
undetermined vertical dependence. Thus, at leading order, neutral modes of the flow
are associated, among others, to translational and rotational invariances in each
horizontal plane. To each broken invariance is related a phase variable that may
vary freely along the vertical. Conservation of mass and potential vorticity impose at
higher order the evolution equations governing the phase variables that we derive for
Fh � 1 and Fv � 1 in the spirit of phase dynamics techniques established for periodic
patterns. In agreement with the experimental observations, this asymptotic analysis
shows the existence of an instability consisting of a vertically modulated rotation and
a translation of the columnar vortex pair perpendicular to the travelling direction.
The dispersion relation as well as the spatial eigenmode of the zigzag instability are
determined. The analysis predicts that the most amplified vertical wavelength should
scale as U/N and the maximum growth rate as U/Lh.

Our main finding is thus that the typical thickness of the ensuing layers will be
such that Fv = O(1) and not Fv � 1 as assumed by Riley et al. (1981) and Lilly
(1983). This implies that such strongly stratified flows are not described by two-
dimensional horizontal equations. These results may help to understand the layering
commonly observed in stratified turbulence and the fundamental differences with
strictly two-dimensional turbulence.

1. Introduction
A striking and prominent feature of strongly stratified turbulence observed in

experiments (Lin & Pao 1979; Browand, Guyomar & Yoon 1987; Hopfinger 1987;
Lin et al. 1992; Chomaz et al. 1993; Flór & Heijst 1996; Fincham, Maxworthy &

† Present address: Météo–France CNRM Toulouse, 42 avenue Coriolis, F–31057 Toulouse,
France.
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Spedding 1996; Spedding, Browand & Fincham, 1996; Spedding 1997; Bonnier, Eiff
& Bonneton 2000) and numerical simulations (Riley, Metcalfe & Weissman 1981;
Métais & Herring 1989; Herring & Métais 1989; Staquet & Riley 1989; Kimura &
Herring 1996) is the emergence of coherent horizontal pancake vortices organized in
decoupled layers. Layers and turbulent patches are also widely observed in the oceans
(Gregg 1987) and atmosphere. As reflected by the term ‘pancake’, these vortices are
highly anisotropic with predominantly horizontal motions. The dissipation as well as
the vertical fluxes of energy and mass of stratified turbulent flows depend crucially on
the dynamical properties of this ‘lasagne’ structure. Up to now, no theory has been
able to describe this layering process and predict the layer thickness.

Layering may be observed after three-dimensional turbulence has collapsed owing
to the gravitational restoring force (Stillinger, Helland & Van Atta 1983; Itsweire,
Helland & Van Atta 1986; Browand et al. 1987; Métais & Herring 1989). Layers may
also emerge from an initially vertically coherent flow as shown by Herring & Métais
(1989) in numerical simulations of forced stratified turbulence. With the purpose of
investigating the spectral dynamic of forced stratified turbulence, a turbulent flow
has been forced only two-dimensionally. Initially, this flow is vertically uniform, i.e.
purely two-dimensional. Interestingly, a three-dimensional perturbation subsequently
added has been observed to grow exponentially, leading to the formation of decoupled
layers. An intriguing feature that remains unexplained is that the growth rate of this
instability is independent of the Brunt–Väisälä frequency.

Fincham et al. (1996) (see also Spedding et al. 1996) have experimentally observed
decoupled layers behind a rake of vertical bars. During the time evolution, the shed
vortices quickly decorrelate and several decoupled layers of quasi-two-dimensional
vortices are produced. The resulting vertical shear is observed to account for 90% of
the dissipation of kinetic energy.

In the different context of quasi-geostrophic flows, i.e. strongly stratified and rapidly
rotating flows, Dritschel & Torre Juárez (1996) have reported in numerical experiments
that an instability is also responsible for the vertical decoupling of initially columnar
multi-vortex flows. This instability eventually produces vortices with a height-to-width
ratio about f/3N, where f is the background vorticity and N the Brunt–Väisälä
frequency.

In order to characterize the physical mechanism for the layering, we have investi-
gated the dynamic of a columnar vertical vortex pair in a stratified fluid (non-rotating,
i.e. f = 0). This experimental study (Williamson & Chomaz 1997; Billant & Chomaz
2000a) confirms that the layering may arise from an instability when the fluid is
strongly stratified. Along the vertical, the columnar vortex pair, initially uniform,
is sinusoidally twisted and bent perpendicularly to the travelling direction. Such an
instability, called the zigzag instability, generates no appreciable change in the dipole
structure in any horizontal cross-section; the dipole appears only to be translated and
turned as a solid body. Ultimately, the columnar vortex pair is literally chopped into
thin independent ‘pancake’ dipoles.

All these observations support the idea that the layering may arise from an
instability. As a first step toward an understanding of this layering phenomenon,
it is instructive to consider the scaling analysis proposed by Riley et al. (1981)
and Lilly (1983) to describe strongly stratified flows. When inertial forces are small
in comparison with buoyancy, i.e. when the horizontal Froude number is small
Fh = U/LhN � 1, where U is the magnitude of the horizontal velocity and Lh
horizontal lengthscale, and when the vertical scale Lv is large in comparison with the
buoyancy length U/N, i.e. when the vertical Froude number is also small Fv � 1, the
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scaled equations for the horizontal velocity reduce to two-dimensional incompressible
Euler equations with undetermined vertical dependence while the vertical velocity
goes to zero.

A physical interpretation of the results of this scaling analysis may be given. In
contrast with homogeneous flows where vorticity fluxes through material surfaces
are conserved and vorticity tubes are simply advected by virtues of Kelvin and
Helmholtz theorems respectively, the vorticity in stratified flows is not conserved
since the baroclinic torque may create vorticity. The only invariants we are left with
in the Boussinesq approximation are the mass, the density and the scalar quantity
Π = ω · ∇ρ (where ω is the vorticity and ρ the density) known as Ertel’s potential
vorticity. When the flow is strongly stratified, the deformations of the isopycnal
surfaces are of the order FvU/N. Therefore, if we assume as Riley et al. (1981) and
Lilly (1983) that Lv � U/N, then the isopycnal surfaces are flat at leading order. The
Ertel theorem thus implies the conservation of vertical vorticity and mass conservation
imposes that the horizontal velocity be non-divergent in the horizontal plane. The
dynamic in each layer is therefore governed by the incompressible two-dimensional
Euler equations.

Therefore, the analysis of Riley et al. (1981) and Lilly (1983) accounts for the
observed quasi-two-dimensional motion, each superposed two-dimensional horizontal
flow being free to evolve independently of the others. However, at leading order,
there is no tendency for a stack of horizontal flows which are initially vertically
coherent to decouple rather than to remain vertically rigid. As shown by Majda &
Grote (1998), vertical decoupling occurs if a mean horizontal flow varying along the
vertical direction is added to a vertically coherent flow. It is important to note that
the magnitude and the vertical shear of this mean horizontal flow can be chosen
arbitrarily and are externally imposed in the Majda & Grote (1998) study. However,
in the vortex pair experiments, the zigzag instability develops in the absence of a
vertically sheared mean horizontal flow so that the analysis of Majda & Grote (1998)
is not adequate to explain this spontaneous layering.

Since horizontal layers of two-dimensional flow evolve independently in the zero
Froude number limit Fv = 0, the origin of the spontaneous layering must be sought
in non-zero Froude-number effects. This is the aim of the present paper in the case
of the columnar vortex pair in an attempt to explain the zigzag instability described
above. Although applied to the vortex pair case, our approach is general and could
be applied to any steady horizontal flow which is initially vertically uniform in
a strongly stratified fluid. The stability problem is solved asymptotically for small
Froude numbers using the scaling of Riley et al. (1981) for strongly stratified flows.
At leading order, the zero Froude number limit is recovered and the perturbations are
governed in each horizontal plane by the linearized two-dimensional Euler equations.
Because nothing couples the two-dimensional horizontal flows together, infinitely
small horizontal translation and rotation of the basic flow in any horizontal plane
are neutral perturbations at leading order. Although there are several neutral modes
associated to each of the invariances of the equations of motion, we focus in the
present case of a columnar vortex pair on the neutral perturbation deriving from
the translational invariance in the direction perpendicular to the dipole travelling
direction, i.e. in the y-direction (figure 1). To obtain the mathematical structure of
this neutral mode, let us denote by ψ0(x, y) the basic state streamfunction of a dipole
expressed in the co-moving frame of reference (figure 1). The translational invariance
in the y-direction implies that ψ0(x, y− η), where η is a constant, is an exact solution
of the nonlinear Euler equations. Physically, η corresponds to the y location of the
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Figure 1. Definition of the relevant phase parameters involved in the instability: the y position η
and the angle of propagation φ of the dipole. The unperturbed dipole initially propagates along
the x-axis with η = 0 and φ = 0.

dipole centre (figure 1). The vertical decoupling in the limit Fv = 0 means further
that η can be chosen arbitrarily in each layer and therefore may have any vertical
dependence, η ≡ η(z). For an infinitesimal translation η(z) � 1, the streamfunction
can be Taylor expanded, keeping only the first order

ψ0(x, y − η(z)) = ψ0(x, y)− η(z)
∂ψ0

∂y
. (1.1)

Interpreted in the linear stability framework, the first term is the basic state whereas
the second term is an infinitesimal perturbation consisting of a small translation
perpendicular to the travelling direction which is neutral since (1.1) is a solution of
the full nonlinear equations in the limit Fv = 0. Therefore, ψ̃(x, y, z) = η(z)∂ψ0/∂y is
the neutral ‘phase’ mode associated with the translation invariance in y.

In order to determine the effect of small Froude number on the stability of
the stack of horizontal sheets with respect to a small y translation perturbation,
we insert the neutral perturbation ψ̃ = η∂ψ0/∂y for zero Froude numbers into the
full linearized inviscid equations. As we solve successively the iteration equations,
solvability conditions yield evolution equations over slow timescales for the phase
variables governing the neutral modes.

This multiple-scale analysis is similar to the phase techniques widely used to study
the stability of cellular flows which arises in Rayleigh–Bénard convection or Couette–
Taylor flows and to describe pattern dynamics in time periodic chemical reactions
(Pomeau & Manneville 1979; Kuramoto 1984; Fauve, Bolton & Brachet 1987; Fauve
1987; Manneville 1990). All the observed long-wavelength instabilities of convective
rolls have been recovered with the phase dynamics method (Pomeau & Manneville
1979; Cross 1983; Cross & Newell 1984; Fauve et al. 1987). The Eckhaus and zigzag
instabilities are well-known examples.

For the present strongly stratified columnar vertical vortex pair, this approach leads
to two coupled linear evolution equations for the y position of the dipole η(z, t) and
the angle of propagation φ(z, t) (see figure 1) which read in non-dimensional form

∂η

∂t
= φ, (1.2)

∂φ

∂t
= (D + F2

h g1)F
2
v

∂2η

∂z2
+ g2F

4
v

∂4η

∂z4
, (1.3)

up to fourth order in Fv and (FvFh)
1/2. The characteristic velocity and horizontal

lengthscale are chosen as the propagating velocity and radius R of the dipole.
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The vertical coordinate z is non-dimensionalized by Lv so that the vertical Froude
number Fv measures the magnitude of the vertical wavenumber. The only way
in which this multiple-scale analysis differs from classical phase techniques is that
disturbances are assumed to have a long wavelength compared to the buoyancy
length U/N whereas usually, the disturbance wavelength is assumed to be long
relative to the characteristic horizontal scale Lh of the pattern. The coefficients
appearing in (1.3), D = −3.67, g1 = −56.4, g2 = −16.1, are computed exactly from
the solvability conditions using the Lamb–Chaplygin solution (Lamb 1932; Batchelor
1967; Meleshko & van Heijst 1994) as a dipole model.

Most interestingly, we shall see that equations (1.2)–(1.3) describe an instability
with a behaviour closely resembling the zigzag instability observed experimentally
(Billant & Chomaz 2000a).

The paper is organized as follows. The general stability problem is formulated in
§ 2. The governing equations are recalled in § 2.1 and then non-dimensionalized in § 2.2
following the scaling of Riley et al. (1981). The Lamb–Chaplygin dipole is presented
in § 2.3 and the full linearized stability equations are outlined in § 2.4. In § 3, the
multiple-scale analysis leading to (1.2)–(1.3) is carried out. This asymptotic analysis
provides also a clear physical explanation for the instability mechanism. The stability
of (1.2)–(1.3) is next analysed in § 4.

2. Stability problem
2.1. Governing equations

The flow is assumed to satisfy the Boussinesq approximation for the Euler equation

Du

Dt
= − 1

ρ0

∇P − g ρ
′

ρ0

ez, (2.1a)

together with the incompressibility condition

∇ · u = 0, (2.1b)

leading to
Dρ

Dt
= 0. (2.1c)

where u = (ux, uy, uz) is the velocity vector in Cartesian coordinates (x, y, z), with z
along the vertical direction, P the pressure, g the gravity, ez the unit vector pointing
upward and the density

ρ(x, t) = ρ0 + ρ̄(z) + ρ′(x, t), (2.2)

is expressed as the sum of a constant reference density ρ0, a linear mean density
profile ρ̄(z) and a perturbation density ρ′(x, t). Viscous and mass diffusion could be
taken into account in the analysis although the algebra would be more cumbersome.
An important quantity conserved by (2.1a–c) following the motion is Ertel’s potential
vorticity Π = ∇× u · ∇ρ. In what follows, we use either Cartesian coordinates or
cylindrical coordinates (r, θ, z) with x = r cos θ and y = r sin θ.

2.2. Scaling analysis

We begin by non-dimensionalizing the equations when buoyancy effects are dominant
following the well-known scaling analysis used by Riley et al. (1981). We denote by
U a characteristic horizontal velocity scale, Lh a horizontal lengthscale (Lh will later
be the dipole radius R) and Lv a vertical lengthscale (Lv will be taken to be the
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order of magnitude of the vertical wavelength of the disturbances). The timescales
Lh/U and 1/N characterize horizontal advective motions and internal gravity waves,

respectively, where N =
√−(g/ρ0)∂ρ̄/∂z is the Brunt–Väisälä frequency. The ratio of

these two time scales defines a horizontal Froude number

Fh =
U

LhN
, (2.3)

which measures the effect of inertial forces in comparison with buoyancy force. Since
the basic state consists of two-dimensional vortices, we choose T = Lh/U as timescale.
When Fh is small, this effectively filters out fast internal waves from slow horizontal
advective motions. The pressure scale ρ0U

2 is deduced from the horizontal momentum
equation. The density equation imposes that the magnitudes of the vertical velocity W
and density perturbations R are related by W = R(gFh/ρ0N). Inserted in the vertical
momentum equation, this scale for the vertical velocity indicates that when Fh � 1,
the vertical acceleration term is negligible compared to the buoyancy term. Thus, the
only way to balance the vertical pressure gradient is by density perturbations giving
R = ρ0U

2/(gLv) and W = FhFvU, where the vertical Froude number

Fv =
U

LvN
, (2.4)

compares the vertical scale Lv to the buoyancy length Lb = U/N. The length Lb can
be interpreted as the vertical displacement of a fluid parcel if all its kinetic energy
were converted to potential energy.

Keeping the same notation for the dimensionless variables, the non-dimensional
equations are

∂uh
∂t

+ uh · ∇huh + F2
v uz

∂uh
∂z

= −∇hP , (2.5a)

F2
h

(
∂uz

∂t
+ uh · ∇huz + F2

v uz
∂uz

∂z

)
= −∂P

∂z
− ρ′, (2.5b)

∇h · uh + F2
v

∂uz

∂z
= 0, (2.5c)

∂ρ′

∂t
+ uh · ∇hρ′ + F2

v uz
∂ρ′

∂z
− uz = 0. (2.5d)

where uh and ∇h are the horizontal components of u and ∇. In practice, it will be more
useful to express the horizontal velocity in term of the vertical vorticity ζ = (∇×uh)ez
by taking the curl of (2.5a)

∂ζ

∂t
+ uh · ∇hζ − F2

v

[
ζ
∂uz

∂z
− uz ∂ζ

∂z
+

(
∇huz × ∂uh

∂z

)
ez

]
= 0. (2.6)

2.3. Basic state: the Lamb–Chaplygin dipole

Since the vortex pair measured experimentally closely resembles the Lamb–Chaplygin
vortex pair (Billant & Chomaz 2000a), we choose this exact solution of the Euler
equations as the basic state for the stability analysis†. In a co-moving frame, the

† Note that the Lamb–Chaplygin dipole is not an exact solution of the Navier–Stokes equations,
even with the time decay factor exp (−µ2

1t/Re), because of a discontinuity in the radial derivative of
the vorticity at r = 1. However, several studies (see, for instance, the recent study by Sipp, Jacquin
& Cossu 2000) and the resemblance with experimental dipoles seem to indicate that this dipole
with an appropriate time decay factor is almost a solution of the Navier–Stokes equations so that
the discontinuity is likely to be of minor importance.



Zigzag instability of a vertical vortex pair in a stratified fluid 35

y

x

Figure 2. Streamlines of the Lamb–Chaplygin dipole.

non-dimensional streamfunction ψ0 and vertical vorticity ζ0 = ∆ψ0 of the Lamb–
Chaplygin vortex pair are defined by (Lamb 1932; Batchelor 1967; Meleshko & van
Heijst 1994)

ψ0 = − 2

µ1J0(µ1)
J1(µ1r) sin θ, ζ0 = −µ2

1ψ0, (2.7a)

inside a circular region r 6 1 and by

ψ0 = −r
(

1− 1

r2

)
sin θ, ζ0 = 0, (2.7b)

outside r > 1. J0 and J1 are the Bessel functions of zero and first order and
µ1 = 3.8317 is the first zero of J1. The velocities and distance have been normalized
by the propagating velocity U and the radius of the dipole R. The streamlines of the
Lamb–Chaplygin dipole are shown in figure 2. The corresponding two-dimensional
velocity field is given by uh0 = −∇× (ψ0ez).

2.4. Linearized equations

We subject this basic flow to infinitesimal perturbations denoted by a tilde

(uh; ζ;P ; ρ′; uz) = (uh0; ∆ψ0;P0; 0; 0) + (ũh; ζ̃; P̃ ; ρ̃′; ũz), (2.8)

and linearize the equations of motion to obtain governing equations for the distur-
bance quantities

∂ζ̃

∂t
+ uh0 · ∇hζ̃ + ũh · ∇h∆ψ0 − F2

v ∆ψ0

∂ũz

∂z
= 0, (2.9a)

F2
h

(
∂ũz

∂t
+ uh0 · ∇hũz

)
= −∂P̃

∂z
− ρ̃′, (2.9b)

∇h · ũh + F2
v

∂ũz

∂z
= 0, (2.9c)

∂ρ̃′

∂t
+ uh0 · ∇hρ̃′ − ũz = 0, (2.9d)

with the following boundary conditions:
(i) As r →∞, the disturbances decay.
(ii) At r = 0, the solution is non-singular.
(iii) The kinematic condition specifies that the boundary of the dipole continues
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to be the boundary. This is equivalent to requiring that the normal velocity ur be
continuous at r = 1.

(iv) The dynamic condition is that the pressure is continuous at the boundary
of the dipole. Since the velocity of the dipole basic flow and its first derivative
are continuous, this is tantamount to continuity of the tangential velocity of the
perturbation uθ at r = 1.

Note that the stretching of the basic state’s vertical vorticity ζ0 = ∆ψ0 is the only
three-dimensional effect which linearly affects the conservation of vertical vorticity in
the linearized vertical vorticity equation (2.9a). In this respect, another way of writing
(2.9a) is in terms of the linearized potential vorticity Π̃ = ζ̃ − F2

v ∆Ψ0∂ρ̃
′/∂z which is

conserved following the motion

∂Π̃

∂t
+ uh0 · ∇hΠ̃ + ũh · ∇hΠ0 = 0, (2.10)

where Π0 = ∆Ψ0 is the potential vorticity of the basic state. The potential vorticity
will be useful in interpreting the instability mechanism.

3. The asymptotic problem
So far, the stability problem has been formulated generally. We now expand

the perturbations in the small horizontal and vertical Froude numbers. It should
be emphasized that the smallness of these two numbers has different meanings:
Fh � 1 indicates that buoyancy dominates over inertial forces while Fv � 1 indicates
that disturbances have a characteristic vertical wavelength Lv long compared to the
buoyancy length U/N. In other words, Fv is the rescaled order of magnitude of the
vertical wavenumber. Accordingly, the perturbation quantities should be expanded
in both Fv and Fh. For the sake of simplicity, we shall consider the vertical Froude
number Fv as the main small parameter of the expansion whereas the horizontal
Froude number Fh will be expressed in terms of Fv and the aspect ratio δ = Lv/Lh
through the relation Fh = δFv . The aspect ratio δ will be formally considered as a free
parameter of order one even if Fh and Fv have different magnitudes. This technical
assumption does not detract from the rigour of the analysis provided that Fh is small
and leads to the same result as if a double series solution in terms of Fv and Fh were
developed. The perturbations are thus expanded in the form

(ũh; ζ̃; P̃ ; ρ̃′; ũz) = (ũh0; ζ̃0; P̃0; ρ̃
′
0; ũz0) + Fv(ũh1; ζ̃1; P̃1; ρ̃

′
1; ũz1) + · · · . (3.1)

Inserting this expansion into (2.9a–d), we obtain at leading order

∂ζ̃0

∂t
+ uh0 · ∇hζ̃0 + ũh0 · ∇h∆ψ0 = 0, (3.2a)

∇h · ũh0 = 0, (3.2b)

−∂P̃0

∂z
− ρ̃′0 = 0, (3.2c)

∂ρ̃′0
∂t

+ uh0 · ∇hρ̃′0 − ũz0 = 0. (3.2d)

As discussed in § 1, the horizontal perturbation vorticity at the zeroth order satisfies
linearized two-dimensional Euler equations with undetermined vertical dependence.
Thus, the phase mode with the streamfunction ψ̃0 = −η(z)∂ψ0/∂y deriving from the
translational invariance in the y-direction is a neutral solution of (3.2a–b).
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Because of the rotational invariance, a more general neutral perturbation solution
of (3.2a–b) consists of both a translation η in the y-direction and a rotation by an
angle φ of the basic dipole

ψ̃0 = −η(z, t)
∂ψ0

∂y
+ φ(z, t)

∂

∂θ
(ψ0 + y). (3.3)

The term y added to ψ0 in the last derivative reflects the fact that only the basic
flow in the laboratory frame is rotated and not the apparent flow resulting from the
displacement of the reference of the frame. The last term in (3.3) corresponds merely
to a dipole propagating at the velocity φ in the y-direction such that

∂η

∂t
= φ, (3.4)

∂φ

∂t
= 0. (3.5)

The origin of the neutral perturbation (3.3) and the associated phase equations (3.4)–
(3.5) may be understood as follows: if the propagation direction of the dipole is
turned slightly by an angle φ from the negative x-direction (figure 1), then the dipole
begins to propagate in the y-direction at the velocity sin φ ≈ φ to first order in
φ since the propagating velocity is normalized to one (equation (3.4)). In contrast,
the angle φ must remain constant to satisfy momentum conservation (equation
(3.5)). This coupling between translational and rotational invariances is similar to the
coupling between translational and Galilean invariances in the oscillatory instability
of convection rolls (Coullet & Fauve 1985; Fauve et al. 1987). A more formal way
to derive the neutral perturbation (3.3) is by calculating, by means of a Galilean
transformation, the flow of a dipole with arbitrary location (x = ξ, y = η) and
orientation φ expressed in the frame of reference moving with the unperturbed dipole
with ξ = η = φ = 0. The infinitesimal neutral perturbation (3.3) is then obtained by
considering the limiting case ξ = 0 and η, φ� 1.

However, the multiple-scale analysis requires that the phase variables η and φ
evolve on slow timescales T1 = Fvt, T3 = F3

v t, . . . decoupled from the fast advective
timescale T0 = t and treated as independent variables

∂

∂t
= Fv

∂

∂T1

+ F3
v

∂

∂T3

+ · · · . (3.6)

Because of the relation (3.4) between η and φ, this slow evolution assumption
effectively requires that the angle of rotation φ be one order smaller in Fv than η.
Therefore, at leading order, the perturbation solution of (3.2a–b) is simply taken as
the translational mode

ũh0 = −η(z, T1, T3)
∂uh0
∂y

, (3.7a)

ζ̃0 = −η(z, T1, T3)
∂∆ψ0

∂y
, (3.7b)

P̃0 = −η(z, T1, T3)
∂P0

∂y
, (3.7c)

while the rotational mode will be obtained at next order O(Fv) and could have been
found without anticipating it from the structure of the invariance group.
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Figure 3. (a) Isosurfaces of the density field ρ(z) + ρ̃′0 where ρ̃′0 is given by (3.8), on either side of a
sinusoidal bend η in the y-direction. The amplitude of the deformations is arbitrary and has been
exaggerated. The vortex pair propagates toward the reader. (b) Contours of the vertical velocity ũz0
given by (3.9) owing to the isopycnal deformation shown in (a) Shaded regions indicate downward
motions. The vertical arrows show the direction of the vertical velocity. The larger horizontal arrows
indicate the direction of the potential flow along the x-axis that is generated at order F2

v in order
to satisfy mass conservation. As established in § 3.2, both this potential flow and the stretching of
the dipole vertical vorticity by the vertical velocity impart a rotation to the middle dipole so that
it turns clockwise. Owing to the propagation of the dipole, this twist tends to increase the initial
y-displacement so that it will increase further in an unstable fashion.

We focus on these particular perturbations because they resemble the basic motions
characterizing the zigzag instability in the experiment. Of course, there exist other
phase modes deriving from the translational invariance in the x-direction or from the
existence of parameters, such as the dipole radius and travelling speed along the x-axis,
describing continuously the family of solutions†. However, these modes are entirely
decoupled from those considered in (3.3). This decoupling arises simply because
normal modes separate into two independent classes: symmetric and antisymmetric
in the y-direction, since the basic flow is symmetric in the y-direction. It turns
out that the perturbation (3.3) is antisymmetric while the other phase modes are
symmetric.

With the solution (3.7a–c), the density perturbation ρ′0 is next obtained from the
hydrostatic balance (3.2c)

ρ̃′0 =
∂P0

∂y

∂η

∂z
, (3.8)

† In contrast with infinite periodic patterns, the neutral modes which consist of a uniform velocity
field and derive from the Galilean invariance are not considered here because they do not satisfy
the requirement that the perturbation velocity decays at infinity. The fact that the basic dipole is
spatially localized is responsible for this difference.
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which inserted in the density equation (3.2d) yields the vertical velocity

ũz0 = ∇h ·
(
∂P0

∂y
uh0

)
∂η

∂z
, (3.9)

Figure 3(a) illustrates this leading-order dynamic and will allow us to easily understand
the next order effects. Two isopycnal surfaces ρ̄(z) + ρ̃′0 = constant are depicted on
either side of a sinusoidal bend η = ε sin(2πz/λ) of the vortex pair. These surfaces
are distorted by hydrostatic balance toward negative anomalies of pressure produced
by the bend of the low-pressure vortex cores. For instance, the left-hand part of the
lower isopycnal surface is brought upward because, above, the left-hand vortex is
displaced to the left and, below, to the right.

To conserve density, fluid parcels are constrained to follow these distorted isopycnal
surfaces. Therefore, a vertical velocity (3.2d) is created reflecting the fact that the fluid
parcels, rotating around the vortex centres, rise and fall following the ‘peaks’ and
‘valleys’ of the isopycnal surfaces. Some examples of trajectories are sketched on the
lower isopycnal surface in figure 3(a). Vertical velocity contours at the same level as
the isopycnal surfaces are shown in figure 3(b). These contours display a quadrupole
structure. By the above reasoning, the direction of the vertical velocity, sketched by
vertical arrows, can be directly deduced from figure 3(a). The direction of the vertical
velocity is reversed for the upper and lower contours since isopycnal deformations
are opposite. At order O(F2

v ) (§ 3.2), this symmetric vertical velocity field will stretch
the vertical vorticity of the basic state and induce secondary horizontal motions in
order to satisfy mass conservation. These effects turn out to be at the origin of the
instability.

3.1. Order Fv problem

Equating terms of order Fv gives

uh0 · ∇hζ̃1 + ũh1 · ∇h∆ψ0 =
∂∆ψ0

∂y

∂η

∂T1

, (3.10a)

∇h · ũh1 = 0, (3.10b)

0 = −∂P̃1

∂z
− ρ̃′1, (3.10c)

uh0 · ∇hρ̃′1 − ũz1 = − ∂ρ̃
′
0

∂T1

. (3.10d)

The solution to (3.10a–b) is the phase mode associated with the rotational invariance

ũh1 = − ∂η

∂T1

∇×
[(

∂

∂θ
(ψ0 + y)

)
ez

]
, (3.11a)

ζ̃1 =
∂η

∂T1

∂∆ψ0

∂θ
, (3.11b)

P̃1 =
∂η

∂T1

∂P0

∂θ
. (3.11c)

Thus, the perturbation at order O(Fv) corresponds simply to a rotation of the basic
flow by an angle φ1 defined by

∂η

∂T1

= φ1. (3.12)
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Figure 4. (a) Isosurfaces of the density field ρ(z) + ρ̃′1 where ρ̃′1 is given by (3.13) above and below
a sinusoidal twist φ1. The amplitudes of the deformations is arbitrary and have been exaggerated.
The vortex pair is propagating toward the reader. (b) Contours of the vertical velocity ũz1 given by
(3.14). Shaded regions indicate downward motions. The vertical arrows show the direction of the
vertical velocity. The larger horizontal arrows indicate the direction of the potential flow along the
y-axis that is generated at order F3

v in order to satisfy the divergence equation. Both this potential
flow and the stretching of the dipole vertical vorticity by the vertical velocity tend to displace
the middle dipole in the negative y-direction. Thus, the induced motions reduce the effect of the
twist perturbation which, in contrast, generates a slight component of propagation in the positive
y-direction. The induced motions in the case of a twist perturbation are therefore stabilizing, in
contrast with the case of a bend perturbation.

The definition of the phase variable φ1 is only a convenient notation which is not
at all imposed by solvability conditions. Its advantage is that it distinguishes the
different effects due to the bend and the twist of the vortex pair and will provide a
clearer physical understanding of the instability mechanism.

As was the case for the previous order, the hydrostatic equation (3.10c) gives next
the density perturbation, using the definition (3.12),

ρ̃′1 = −∂P0

∂θ

∂φ1

∂z
. (3.13)

As in figure 3(a), two isopycnal surfaces, perturbed only by ρ′1 are displayed in figure
4(a) on either side of a small sinusoidal twist of the vortex pair φ1 = ε sin(2πz/λ).
Their deformations are again due to the horizontal displacement of the low pressure
vortex cores. The vertical velocity (figure 4b) is obtained from the density equation
(3.10d), using (3.8) and (3.13),

uz1 =

[
−∇h ·

(
∂P0

∂θ
uh0

)
+
∂P0

∂y

]
∂φ1

∂z
. (3.14)
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The first term in (3.14) is the vertical velocity necessary for fluid parcels moving with
the basic horizontal velocity to follow the undulations of the isopycnal surfaces owing
to the twisting of the vortex pair (figure 4a). As indicated by the vertical arrows, a
squeezing on the left and a stretching on the right are produced at the mid-level of
the left vortex. The vertical velocity in the right vortex is spatially distributed as in the
left vortex. The second contribution in (3.14) comes from the slow evolution of the
zeroth-order density perturbation ρ̃′0 over the timescale T1 in (3.10d). If the bending
deformation is amplifying, i.e. if ∂η/∂T1 = φ1 > 0, the isopycnal distortions shown
on figure 3(a) will steepen. Therefore, this term produces also a squeezing on the left
and a stretching on the right at the midlevel of each vortex. As for the previous order,
we anticipate that, at order F3

v , this vertical velocity field will stretch the basic state
vertical velocity in order to conserve potential vorticity and produce a horizontal flow
so as to satisfy mass conservation.

3.2. Order F2
v problem

At the order F2
v of approximation, we have

uh0 · ∇hζ̃2 + ũh2 · ∇h∆ψ0 = ∆ψ0

∂ũz0

∂z
− ∂ζ̃1

∂T1

, (3.15a)

∇h · ũh2 +
∂ũz0

∂z
= 0, (3.15b)

δ2 (uh0 · ∇hũz0) = −∂P̃2

∂z
− ρ̃′2, (3.15c)

uh0 · ∇hρ̃′2 − ũz2 = − ∂ρ̃
′
1

∂T1

. (3.15d)

Contrary to previous orders, non-trivial forcing terms appear in the vertical vorticity
and divergence equations (3.15a–b). The zeroth-order vertical velocity stretches the
basic-state vorticity (first term on the right-hand side of (3.15a)) and appears as a
forcing term in the divergence equation (3.15b).

In order to solve (3.15a–b), the horizontal velocity can be first separated into
rotational and irrotational components with a streamfunction ψ2(r, θ, z, T1, T3) and a
potential function χ2(r, θ) in the form

ũh2 = −∇× (ψ2ez) + ∇hχ2

∂2η

∂z2
. (3.16)

In this case, using expression (3.9) for the vertical velocity ũz0, the divergence equation
(3.15b) becomes:

∆hχ2 = −∇h ·
(
∂P0

∂y
uh0

)
= D2. (3.17)

The function D2 is written out in Appendix D. The solution is of the form

χ2(r, θ) = χ
(2)
2 (r) sin 2θ + χ

(4)
2 (r) sin 4θ, (3.18)

where the potential functions χ(2)
2 and χ(4)

2 are computed numerically with the boundary
conditions (i)–(iv) (see § 2.4), i.e. the velocity ∇hχ2 vanishes as r → ∞, is non-singular
at r = 0 and continuous at r = 1. The functions χ(2)

2 and χ
(4)
2 are plotted in figure 5.

These functions are mainly confined to the rotational region r 6 1 and decay in the
potential region.

The streamfunction ψ2 is next determined by substituting the expression (3.16) in
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boundary between the rotational and potential regions.

the equation for the vertical vorticity (3.15a), using (3.9), (3.11b) and (3.12)

L(ψ2) = −∇h · (∆ψ0∇hχ2)
∂2η

∂z2
− ∂∆ψ0

∂θ

∂φ1

∂T1

(r 6 1), (3.19)

∆hψ2 = 0 (r > 1), (3.20)

with the boundary conditions (i)–(iv) and where L is given by

L(ψ2) ≡ J(ψ0,∆hψ2 + µ2
1ψ2) ≡ 1

r

∂ψ0

∂r

∂(∆hψ2 + µ2
1ψ2)

∂θ
− 1

r

∂ψ0

∂θ

∂(∆hψ2 + µ2
1ψ2)

∂r
,

(3.21)

where J denotes the Jacobian. The operator L corresponds to the advection of the
basic state’s vertical vorticity (with ∆ψ0 = −µ2

1ψ0) by the horizontal rotational velocity
of the perturbation and the advection of the perturbation vorticity by the basic flow.
The right-hand side of (3.19) consists of forcing terms determined at previous order.
The first forcing term is the sum of the stretching of the basic state vertical vorticity
by the zeroth-order vertical velocity and the advection of the basic-state vorticity by
the potential flow ∇hχ2.

Equation (3.19) will have a solution if and only if the right-hand side is orthogonal
to the kernel of the adjoint operator L† for the scalar product consisting of integration
over the domain r 6 1

〈f|g〉 =

∫ 2π

0

∫ 1

0

fgr dr dθ. (3.22)

where f and g are functions. We begin by treating the more general case of a steady
basic state ψ0(x, y) such that ∆ψ0 = F(ψ0), without any particular choice for the
functional F, for which the corresponding operator L is

L(ψ) = J(ψ0,∆hψ)−F′(ψ0) J(ψ0, ψ). (3.23)

In Appendix A, the adjoint operator L† is obtained as

L†(ψ̃) = −∆h(J(ψ0, ψ̃)) +F′(ψ0) J(ψ0, ψ̃). (3.24)

It is straightforward to see that any arbitrary function of ψ0 is in the kernel of
L†. It is almost as easy to show that the functions ψ̃a = r2, ψ̃b = x = r cos θ and
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ψ̃c = y = r sin θ are also solutions of L†(ψ̃) = 0 for any functional F. For example,
taking the case of ψ̃b, we have J(ψ0, ψ̃b) = −∂ψ0/∂y so that

L†(ψ̃b) = ∆h

∂ψ0

∂y
−F′(ψ0)

∂ψ0

∂y
=

∂

∂y
(∆hψ0 −F(ψ0)) = 0. (3.25)

These solutions reflect the translational and rotational invariances of the Euler
equation. It can be demonstrated that for the Lamb–Chaplygin dipole, i.e. when
F(ψ0) = −µ2

1ψ0, there is no other null vector of the adjoint operator. Moreover, ψ̃b,
ψ̃c and any arbitrary function of ψ0 satisfy the adjoint boundary conditions obtained
in Appendix A, but ψ̃a does not. Therefore, denoting by H the right-hand side of
(3.19), the solvability conditions demand that

〈ψ̃b|H〉 = 0, (3.26)

〈ψ̃c|H〉 = 0, (3.27)

〈G(ψ0)|H〉 = 0, (3.28)

where G stands for any arbitrary function of ψ0. The two last conditions are auto-
matically fulfilled in the case of (3.19) while the first condition will be satisfied only
if

∂φ1

∂T1

= D
∂2η

∂z2
, (3.29)

where the coefficient D is

D = −〈ψ̃b|∇h · (∆ψ0∇hχ2)〉〈
ψ̃b|∂∆ψ0

∂θ

〉 . (3.30)

After integration by parts and by evaluating the denominator, we find that

D = − 1

2π

〈
∆ψ0|∂χ2

∂x

〉
. (3.31)

Another expression in terms of Bessel functions is obtained after further integration
by parts and manipulations

D = − 3
4
− 1

J4
0 (µ1)

∫ µ1

0

(
J ′22 (u)J2

1 (u) + 4J2
2 (u)J ′21 (u)

) du

u
, (3.32)

from which we infer that the coefficient D is negative. Numerical integration gives
D = −3.67.

We pause for a moment to examine the equations that we have obtained so far
over the slow time T1. Using the definition (3.12) of φ1, (3.29) becomes

∂2η

∂T 2
1

= D
∂2η

∂z2
, (3.33)

Because D is negative, perturbations of the form η = η0e
σT1+ikz , where k is the

wavenumber along the z-axis, are amplified with a growth rate given by σ2 = −Dk2.
This demonstrates that the columnar dipole is unstable for a dimensional wavelength
that is long compared to U/N in the limit Fh = 0.

The physical mechanism of the instability can be easily understood from figure 3. At
zeroth order, we have seen that the small bending η(z, T1) of the vortex pair distorts
the isopycnal surfaces by hydrostatic balance (figure 3a). In order that density be
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conserved, a slight vertical velocity is then generated (figure 3b). At order F2
v , we see

now that the convergence–divergence pattern implies a potential horizontal velocity
∇hχ2∂

2η/∂z2 (indicated by large arrows in figure 3b) to satisfy mass conservation.
As shown by dashed arrows in figure 3(b), this secondary flow tends to rotate the
basic dipole at the midlevel in a clockwise direction by advection. In addition, the
zeroth-order vertical velocity stretches and squeezes the basic-state vertical vorticity
(figure 3b). In order to conserve potential vorticity, the squeezing–stretching pattern
tends, respectively, to decrease and increase the magnitude of the vertical vorticity at
the midlevel of the front and the rear of the left vortex. The situation is reversed for
the right vortex. Hence, the tendency in the vertical vorticity equation (3.15a) resulting
from this effect is also a clockwise rotation of the basic dipole at the midlevel. The
two effects, namely the advection by the secondary potential velocity field and the
stretching–squeezing of the basic vertical vorticity, therefore act in the same way and
indeed appear together in the expression (3.31) of the coefficient D. This convenient
expression indicates that D is negative when ∂χ2/∂x is of the same sign as the vorticity
distribution ∆ψ0 inside the dipole. Therefore, D is negative when the net macroscopic
effect of the velocity (∂χ2/∂x)(∂2η/∂z2) is to advect the dipole so as to rotate it
clockwise (counterclockwise) if ∂2η/∂z2 is negative (positive); see figure 3b. Owing
to the propagation of the dipole, this twist φ1 of the travelling direction tends to
increase the initial displacement η through (3.12) so that it will increase further in an
unstable fashion.

At this level of approximation, the growth rate increases without bound with
wavenumber. To see if stabilization might occur at high wavenumber, we shall
proceed to the next orders. To this end, we return to the determination of ψ2.
Inserting the phase equation (3.33) in (3.19), we are now able to find ψ2 since all
solvability conditions are satisfied

L(ψ2) = −
[
∇h · (∆ψ0∇hχ2) + D

∂∆ψ0

∂θ

]
∂2η

∂z2
≡ H2

∂2η

∂z2
(r 6 1),

∆hψ2 = 0 (r > 1).

 (3.34)

In order to solve this equation, the streamfunction ψ2 is written in the form

ψ2 = Ψ2(r, θ)
∂2η

∂z2
. (3.35)

The first step is to find a function G such that

J(ψ0, G) = H2, (3.36)

for r 6 1, as in Appendix B.1. Then, an integral form of (3.34) is

M(Ψ2) ≡ ∆hΨ2 + µ2
1Ψ2 = G+K(ψ0) (r 6 1),

∆hΨ2 = 0 (r > 1),

}
(3.37)

where M is the Helmholtz operator and K(ψ0) is any arbitrary function of ψ0. The
major difficulty arising in this equation is the choice of the free function K(ψ0). In
Appendix B.2, we demonstrate thatK(ψ0) is determined on the basis of a solvability
condition at order F3

v . Once K(ψ0) has been determined, the Helmholtz equation
(3.37) can be solved numerically by expanding the solution as a Fourier series

Ψ2(r, θ) = Ψ
(0)
2 (r) +Ψ

(2)
2 (r) cos 2θ +Ψ

(4)
2 (r) cos 4θ +Ψ

(6)
2 (r) cos 6θ · · · . (3.38)

The first three Fourier functions Ψ (0)
2 , Ψ (2)

2 and Ψ
(4)
2 are shown in figure 6. The
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Figure 6. Streamfunctions at order F2
v : Ψ (0)

2 , Ψ (2)
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in (C 9). The dashed vertical line indicates the boundary between the rotational and potential regions.

following functions Ψ (2n)
2 , (n > 3) have also been determined but it turns out that

they are very small (i.e. max (Ψ (6)
2 ) = 0.025, max (Ψ (8)

2 ) = 0.009) so that they are not
plotted. This is because the forcing term in (3.37) contains mainly the components
(n < 3). The following forcing components (n > 3) are very small and come only from
the function K(ψ0).

The pressure P̃2 is written in the form

P̃2 = Π2(r, θ)
∂2η

∂z2
, (3.39)

and using (3.9), the density ρ̃′2 is obtained from the vertical momentum equation
(3.15c)

ρ̃′2 = −Π2

∂3η

∂z3
− δ2uh0 · ∇h

[
∇h ·

(
∂P0

∂y
uh0

)]
∂η

∂z
. (3.40)

The first term in (3.40) represents the hydrostatic adjustment of isopycnal surfaces
to the pressure field P̃2. Calculations show that this term will be stabilizing at order
O(F4

v ). The second term in (3.40) corresponds to the horizontal advection of the
vertical velocity ũz0 by the basic flow. It is easy to deduce that this term will be
destabilizing at order O(F4

v ).
The vertical velocity is next determined from the density equation (3.15d), using

(3.13), (3.33) and (3.40)

ũz2 = −
[
∇h · (Π2uh0) + D

∂P0

∂θ

]
∂3η

∂z3
− δ2uh0 · ∇h

[
uh0 · ∇h

[
∇h ·

(
∂P0

∂y
uh0

)]]
∂η

∂z
.

(3.41)

The first and third terms in (3.41) come from the advection of the density perturbation
ρ̃′2 by the basic flow. The second term is the slow evolution of ρ̃′1 over the timescale
T1. Its effect can be easily inferred: if the twist of the vortex pair increases, i.e. if
∂φ1/∂T1 > 0, the isopycnal deformations shown in figure 4(a) will steepen. Therefore,
at the midlevel, there will be a stretching at the front of the left-hand vortex and a
squeezing at the rear. The situation is reversed for the right-hand vortex. Hence, the
generated vertical velocities are opposite to those of figure 3(a) and will contribute to
stabilizing effects.
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3.3. Higher-order problems

The perturbation problems up to order O(F4
v ) are solved in Appendix C using the

same method as for the second order, i.e. by separating the perturbation velocity into
potential and rotational components. To find a solution to the O(F4

v ) problem, the
solvability conditions demand that

∂φ1

∂T3

+
∂φ3

∂T1

= g1δ
2 ∂

2η

∂z2
+ g2

∂4η

∂z4
, (3.42)

where the coefficients are g1 = −56.4 and g2 = −16.1 and where we have defined, as
for the first order, a third phase variable φ3

∂η

∂T3

= φ3. (3.43)

The coefficient g2 is negative, indicating that the fourth vertical derivative of η
provides stabilizing effects. Although there are several complex effects contributing
to this coefficient, one simple stabilizing effect can be intuitively understood from
figure 4. As for the second order, the convergence–divergence pattern resulting from
the twist of the vortex pair at order O(Fv) produces at order O(F3

v ) a potential
horizontal velocity field. As indicated by large horizontal arrows (figure 4b), this
induced horizontal potential flow tends to advect the midlevel dipole toward the
right. The local stretching and squeezing of the basic-state vorticity also generate a
tendency in the vertical vorticity equation which results in a shift of the midlevel
dipole toward the right. This tends to reduce the effect of the twist which, on the
contrary, shifts the dipole leftward (figure 4b).

4. Linear phase dynamics analysis
The slow time variables are first rescaled and expressed in terms of a single time

variable t such that
∂

∂t
= Fv

∂

∂T1

+ F3
v

∂

∂T3

. (4.1)

Then, (3.12), (3.29), (3.42) and (3.43) can be combined to give

∂η

∂t
= φ, (4.2)

∂φ

∂t
= F2

v (D + F2
h g1)

∂2η

∂z2
+ F4

v g2

∂4η

∂z4
+ O(F6

v , F
4
v F

2
h , F

2
v F

4
h ), (4.3)

where D = −3.67, g1 = −56.4, g2 = −16.1. These phase equations are expected to
be valid when Fh and Fv are sufficiently small. They resemble closely those describing
the original zigzag instability of convective rolls (Pomeau & Manneville 1979) except
that, because of the time-reversibility of the Euler equations, the dynamic is second
order in time instead of first order. This similarity is not fortuitous but rooted in
the symmetry breaking of the instability. Following this consideration and the fact
that the vortex pair indeed exhibits a zigzag deformation, we have also used the term
zigzag to describe the present instability.

The structure of (4.2)–(4.3) in the two-dimensional limit Fv = 0 derives from the
coupling between translational and rotational invariances (see § 3). The additional
terms in the right-hand side of (4.3) are in powers of the small horizontal and vertical
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Figure 7. Non-dimensional growth rate σ (a) as a function of the non-dimensional vertical
wavenumber k̃ and (b) as a function of Fhk̃ for —–, Fh = 0.1; −−−, Fh = 0.05; − ·−, Fh = 0.033.

Froude numbers and correspond to weak three-dimensional effects obtained by the
multiple-scale perturbation analysis. The form of (4.2)–(4.3) could have been deduced
solely by symmetry considerations. We first observe that the equations are invariant
under the transformation η → η + c where c is a constant. This reflects translational
invariance. The invariance under the transformations (φ → φ + c, η → η + ct),
although reminiscent of the Galilean invariance, derives from the fact that the dipole
travelling direction and speed can be chosen arbitrarily. The invariance under the
transformations (η → −η, φ→ −φ) and z → −z reflect space-reflection symmetries.
Finally, the invariance under (t→ −t, η → −η) reflects time reversibility of the Euler
equations. Although these symmetry constraints could allow us to guess the form of
the nonlinear terms, we focus herein on the linear dynamic described by (4.2)–(4.3).

4.1. Linear stability analysis

We investigate the linear stability of (4.2)–(4.3) with respect to perturbations of the
form

(η, φ) = (η0, φ0)e
σt+ikz, (4.4)

which leads to the dispersion relation

σ2 = −(D + g1F
2
h )F2

v k
2 + g2F

4
v k

4. (4.5)

Sufficiently long waves (Fv � 1) are always unstable because the coefficients D and
g1 are negative. There is, however, a stabilization at large wavenumber since g2 is
negative.

To study quantitatively (4.5), it is convenient to abandon Lv , which measures the
order of magnitude of the vertical wavelength. We now scale the vertical wavenumber
by the horizontal lengthscale Lh = R. This new dimensionless wavenumber is denoted
by k̃ where k̃ = kR/Lv , k being the previous wavenumber non-dimensionalized by Lv .
In this case, (4.5) becomes

σ2 = −(D + g1F
2
h )F2

h k̃
2 + g2F

4
h k̃

4. (4.6)

This dispersion relation is quantitatively valid only for Fh � 1 and k̃ � 1/Fh, i.e. when
the wavelength is long compared to U/N. In order to study the qualitative behaviour
of this approximation, the growth rate of the whole unstable wavenumber bandwidth
has been plotted in figure 7(a) for various small horizontal Froude numbers. The most
striking feature is that the growth rate curves are shifted to high wavenumbers as Fh
decreases. The maximal growth rate does not decrease with Fh but remains almost
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constant. These properties are an immediate consequence of the fact that k̃ appears
in (4.6) always associated to Fh in the form (Fhk̃)

m multiplied by O(1) coefficients
with O(F2

h ) corrections. Thus, when represented as a function of Fhk̃, the growth rate
curves almost gather on a single curve, as shown in figure 7(b). The similarity is not
perfect because of the presence of the term g1F

2
h in (4.6). This term is, however, small

in comparison with the coefficient D since Fh � 1.
Therefore, (4.6) predicts that the wavenumber k̃m of the most amplified disturbance

k̃m =
1

Fh

√
D + g1F

2
h

2g2

, (4.7)

is proportional to 1/Fh as Fh → 0, while its growth rate

σm = −D + g1F
2
h

2
√−g2

, (4.8)

is independent of Fh when Fh → 0. These two expressions are, of course, not quan-
titatively valid since they violate the long-wavelength assumption k̃ � 1/Fh used to

obtain (4.6). In the next section, we show, however, that the predictions k̃m ∝ 1/Fh
and σm = constant when Fh → 0 are qualitatively correct. Only the proportionality
constants are not valid.

4.2. Extension of the dispersion relation

A careful inspection of the nature of the expansion shows that if we had carried it
out for an infinite number of terms, we would have obtained a power series of the
form

σ2 =

∞∑
n=1

a2n(Fhk̃)
2n +

∞∑
n=3

a′2n(Fhk̃)
2n ln (Fhk̃)

+F2
h

( ∞∑
n=1

b2n(Fhk̃)
2n +

∞∑
n=4

b′2n(Fhk̃)
2n ln (Fhk̃)

)
+ F4

h

∞∑
n=1

c2n(Fhk̃)
2n + · · · (4.9)

where we have determined the first coefficients of this serie: a2 = −D, a4 = g2, b2 = g1.
(It turns out that terms of the form (Fhk̃)

2n ln (Fhk̃) would arise for n > 3 in order
to make the expansion uniformly asymptotic at large r.) The series can be more
conveniently written in terms of functions fi of Fhk̃

σ2 = f0(Fhk̃) + F2
h f2(Fhk̃) + F4

h f4(Fhk̃) + · · · , (4.10)

which indicates that, when Fh → 0, the growth rate becomes a function of Fhk̃ only

σ2 = f0(Fhk̃) + O(F2
h ), (4.11)

as in the approximation (4.6). Therefore, the self-similarity of the growth rate with
respect to the variable Fhk̃ is not a spurious consequence of the long-wavelength ap-
proximation. According to (4.11), the wavenumber of the most amplified disturbance
will be in the limit Fh → 0

k̃m = dm/Fh, (4.12)

where dm is the value at which the function f0 is maximal. The corresponding
maximal growth rate (non-dimensionalized by the turnover frequency U/Lh) becomes
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independent of the horizontal Froude number

σ2
m = f0(dm). (4.13)

The independence of the growth rate of the three-dimensional instability with re-
spect to the Froude number is in agreement with the numerical simulations of forced
stratified turbulence by Herring & Métais (1989). As discussed in § 1, a turbulent
flow, initially vertically uniform, was forced two-dimensionally. Subsequently, a three-
dimensional perturbation was introduced. Despite the fact that the basic state differs
widely from that considered here, this disturbance was also observed to grow expo-
nentially at a rate independent of the Brunt–Väisälä frequency. Unfortunately, the
vertical wavenumber was not reported in this study, so that it is unknown if it scales
as 1/Fh. After the exponential growth regime, saturation occurred when a statistical
equilibrium between forcing and dissipation was reached. At this stage, the flow
was organized into decoupled horizontal layers as a result of the three-dimensional
instability. However, in this regime, the layer thickness was no longer selected by the
instability mechanism but was governed by the equilibrium between dissipation by
vertical shearing and input of kinetic energy by the two-dimensional forcing. This
final layer thickness was reported to be independent of the Brunt–Väisälä frequency
but this result cannot be compared to the previous predictions for an unforced flow.

4.3. Comparison with experiments

The most compelling agreement with experiment concerns the qualitative behaviour
of the zigzag instability (Billant & Chomaz 2000a). As observed experimentally, the
unstable perturbation at leading orders consists both of a vertically modulated rota-
tion φ(z, t) and translation η(z, t) of the vortex pair perpendicular to the propagation
direction.

In contrast, we do not expect agreement between the observed wavelength and
the most amplified wavelength predicted by our asymptotic analysis since, as already
stated, the long-wavelength hypothesis Fhk̃ � 1 is no longer valid for such wave-
lengths. Furthermore, the scaling λ/R ∝ Fh has not been observed in the experiments
because the Froude-number range is narrow and the wavelength fluctuations are
large. Nevertheless, we can check that the asymptotic analysis predicts the correct
order of magnitude for the most amplified dimensional wavelength. In the experi-
ment, the wavelength is about λ/R ≈ 1.7 but fluctuates between 1.1 and 2.5 in the
Froude-number range 0.13 < Fh < 0.21. In this range, the most amplified wavelength

λm/R = 18.6Fh/
√

1 + 15.4F2
h obtained by the asymptotic analysis varies between

λm/R = 2.2 and λm/R = 3. These values differ but are nonetheless of the same order
of magnitude as the wavelength measured experimentally.

Moreover, viscous effects have not been taken into account in the asymptotic
analysis while in the experiments, the initial Reynolds number is relatively low,
between Re = 250 and Re = 400. Although the algebra is more complicated if a weak
viscosity (i.e. 1/Re = O(F2

v )) is taken into account in the asymptotic analysis, the final
result is simple: the dispersion relation (4.6) becomes(

σ +
1

Re
(k̃2 + µ2

1)

)2

= −(D + g1F
2
h )F2

h k̃
2 + g2F

4
h k̃

4, (4.14)

where Re is the Reynolds number. As usual, the viscous diffusion of the basic state has
been omitted to obtain (4.14). It should be mentioned, however, that because of the
discontinuity in the radial derivative of the vorticity at r = 1 of the Lamb–Chaplygin
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Figure 8. (a) Growth rate σ given by (4.14) as a function of Fhk̃ for Re = 400 and for the same
Froude numbers as in figure 7. (b) Maximum growth rate σm and inverse of the most amplified
wavenumber 1/k̃m obtained from (4.14) as a function of Fh for Re = 400 (——) and for the inviscid
case (- - - -).

dipole (see § 2.3), only the inviscid boundary conditions (iii)–(iv) (see § 2.4) have been
applied to the perturbations at r = 1. As testified by the physically reasonable form of
the viscous correction obtained in (4.14), this simplification should not be detrimental
at least to the qualitative features of the dispersion relation which are discussed below.

As seen from (4.14) and figure 8, viscous effects break the self-similarity for low
Reynolds number and large wavenumber because the growth rate is no longer
approximately a function of the single variable Fhk̃. In practice, inviscid stability
curves will be unaffected by viscous effects only if the Reynolds number is large:
Re� 1/F2

h . Figure 8(b) shows also that viscous effects introduce a Froude number
threshold below which the instability is damped, as observed experimentally. For
large Reynolds number, this critical Froude number varies as Fhc ≈ 2µ1/(

√−DRe).
Slightly above Fhc, there is a significant decrease of the most amplified wavenumber
relative to the inviscid case (figure 8b).

5. Conclusions and discussion
In this paper, we have performed a multiple-scale stability analysis of a columnar

Lamb–Chaplygin vortex pair in a stratified fluid for small horizontal and vertical
Froude numbers. The smallness of the horizontal Froude number means that buoy-
ancy is dominant over inertial forces while Fv � 1 implies that disturbances have a
long vertical wavelength compared to U/N. In the limit Fv → 0, the zigzag instability
has been shown to be a phase instability deriving from the breaking of translational
invariance in the y-direction and rotational invariance in the horizontal plane. Pe-
riodically along the vertical, the columnar vortex pair will therefore be twisted and
bent in the y-direction, i.e. perpendicularly to the travelling direction. These motions
are those characterizing the zigzag instability observed in the experiments (Billant &
Chomaz 2000a).

The perturbation approach provides a clear physical understanding of the instability
mechanism. If the columnar vortex pair is vertically bent in the y-direction, the
resulting vertical pressure gradient distorts by hydrostatic balance the isopycnal
surfaces. In response, a vertical velocity field is generated in order to conserve density.
This vertical velocity field stretches the basic vertical vorticity and induces secondary
horizontal motions in order that mass be conserved. These two effects induce a
twisting of the vortex pair which modifies the travelling direction in such a way as to
increase the initial bend, thus leading to instability.
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The long-wavelength dispersion relation indicates that the instability survives in
the limit of strong stratification Fh → 0. The maximal growth rate is predicted to
scale as U/Lh, i.e. independent of the horizontal Froude number, and the most
amplified dimensional vertical wavelength as U/N. Since the zigzag instability is
observed experimentally to be responsible for the formation of decoupled horizontal
layers with a thickness corresponding to the initial wavelength, the vertical Froude
number in the resulting flow is such that Fv = O(1) in contradiction to the assumption
Fv � 1 of Riley et al. (1981) and Lilly (1983). Setting Fv = 1 in the non-dimensional
equations (2.5a–d) shows that the horizontal flow does not satisfy two-dimensional
Euler equations at leading order in Fh but instead the equations

∂uh
∂t

+ uh · ∇huh + uz
∂uh
∂z

= −∇hP , (5.1a)

0 = −∂P
∂z
− ρ′, (5.1b)

∇h · uh +
∂uz

∂z
= 0, (5.1c)

∂ρ′

∂t
+ uh · ∇hρ′ + uz

∂ρ′

∂z
− uz = 0, (5.1d)

which are similar to the primitive equations often used in weather forecasting and
ocean modelling. The sole approximation allowed by Fh � 1 is the hydrostatic equi-
librium in the vertical momentum equation (5.1b). The vertical velocity is still small,
scaling as FhU, but its smallness is exactly balanced by the largeness of vertical
gradients ∂/∂z = O(1/FhLh). The limit Fv → 0 considered by Riley et al. (1981) and
Lilly (1983) is singular because the thicknesses of the horizontal layers decrease as the
stratification increases. Therefore, even if the motion is horizontal at leading order,
vertical gradients are sufficiently strong to transport mass and to stretch the potential
vorticity. A direct consequence is that such strongly stratified flows are not expected
to be governed by two-dimensional horizontal Euler equations.

In this paper, we have focused on the most striking prediction of the asymptotic
analysis. However, this is only a foretaste since our analysis provides extensive
quantitative results, notably the dispersion relation and the spatial structure of the
zigzag eigenmode, which deserves a complete test. To this end and to extend the
present analysis to finite horizontal Froude number, wavenumber and Reynolds
number, a numerical stability analysis is carried out in a companion paper (Billant
& Chomaz 2000b). For high Reynolds number, this investigation fully confirms
both qualitatively and quantitatively the present asymptotic analysis while, for low
Reynolds number, the numerical results agree with experimental measurements.

As a final remark, it may be noted that the present long-wavelength analysis could
be carried out for arbitrary horizontal Froude number. However, the calculations
would be far more difficult. Nonetheless, the problem in the limit Fh →∞ is tractable
as shown in Appendix E. This analysis indicates that the zigzag instability does
not occur in homogenous fluid in the long-wavelength limit. Therefore, the zigzag
instability is likely to be peculiar to strongly stratified fluids Fh � 1 as indeed observed
experimentally (Billant & Chomaz 2000a).

The authors wish to thank L. S. Tuckerman for her fruitful comments and careful
reading of the manuscript. This work has benefited from stimulating discussions with
Olivier Thual and Stephan Fauve.
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Appendix A. Adjoint L†

The adjoint operator L† is defined by

〈ψ̃|L(ψ)〉 = 〈L†(ψ̃)|ψ〉 (A 1)

where L is defined in (3.23) and the scalar product is defined in (3.22). After some
integrations by parts, the following is obtained:

〈ψ̃|L(ψ)〉 =

∫ 2π

0

∫ 1

0

ψ[−∆(J(ψ0, ψ̃)) +F′(ψ0)J(ψ0, ψ̃)]r dr dθ

−
∫ 2π

0

[
r
∂ψ

∂r
J(ψ0, ψ̃)− ψr∂J(ψ0, ψ̃)

∂r

]1

0

dθ

−
∫ 1

0

[
1

r

∂ψ

∂θ
J(ψ0, ψ̃)− ψ

r

∂J(ψ0, ψ̃)

∂θ

]2π

0

dr. (A 2)

Therefore, the adjoint operator is

L†(ψ̃) = −∆(J(ψ0, ψ̃)) +F′(ψ0)J(ψ0, ψ̃), (A 3)

and the adjoint boundary conditions will be chosen such that the boundary integrals
disappear in (A 2).

To obtain these adjoint boundary conditions, we must first consider those for ψ.
Clearly, ψ and its derivatives must be 2π periodic in θ. Thus, ψ̃ is also chosen to
be 2π periodic in θ. In order to derive the boundary condition at r = 1 for ψ, the
streamfunction ψ is written as

ψ =

∞∑
m=0

ψ(m)
c (r) cosmθ +

∞∑
m=0

ψ(m)
s (r) sinmθ. (A 4)

For r > 1, the perturbation streamfunction ψ must be potential, ∆hψ = 0. The
solution which remains bounded at r = ∞ is of the form

ψ =

∞∑
m=0

cm

rm
cosmθ +

∞∑
m=0

dm

rm
sinmθ, (A 5)

in which solutions of the form rm cosmθ and rm sinmθ have been discarded because
the associated perturbation velocity is unbounded at r = ∞. The solution ψ = ln r
is not included because it is inconsistent with the requirement, derived by integrating

(2.9a), that the circulation
∫ 2π

0

∫ 1

0
∆hψr dr dθ of the perturbation at r = 1 be zero at

all times. Therefore, the boundary conditions (iii) and (iv) (see § 2.4) impose

mψ(m)
c (1) + ψ(m)′

c (1) = 0, (A 6)

for ψ(m)
c for each m. The same boundary condition applies for ψ(m)

s . To find the adjoint
boundary condition at r = 1, we also write ψ̃ =

∑∞
m=0

(
ψ̃(m)
c (r) cosmθ + ψ̃(m)

s (r) sinmθ
)
.

The adjoint boundary conditions for ψ̃(m)
c which make zero the first boundary integral

in (A 2), are for m > 2

(m− 2)[(m− 1)ψ̃(m−1)
c (1)− (m+ 1)ψ̃(m+1)

c (1)] + (m− 2)ψ̃(m−1)′
c (1)− (m+ 2)ψ̃(m+1)′

c (1) = 0,
(A 7)
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and

ψ̃(1)
c (1)− ψ̃(1)′

c (1) = 0, (A 8)

2ψ̃(2)
c (1)− 3ψ̃(2)′

c (1)− 2ψ̃(0)′
c (1) = 0. (A 9)

The same boundary condition applies for ψ̃(m)
s .

The boundary condition (ii) (see § 2.4) at r = 0 are that ψ be non-singular.
Accordingly, ψ̃ is also chosen to be non-singular at r = 0.

Appendix B. Determination of ψ2

B.1. Solution of (3.36)

Using (2.7a–b) and (3.18), the right-hand side H2 of (3.36) for r 6 1 can be easily
written in the form

H2 = H
(1)
2 (r) cos θ +H

(3)
2 (r) cos 3θ +H

(5)
2 (r) cos 5θ, (B 1)

where

H
(1)
2 = − µ1

rJ0(µ1)

[
2DrJ1(µ1r) +

(
rJ1(µ1r)χ

(2)′
2

)′ − 2χ(2)
2

J1(µ1r)

r

]
, (B 2)

H
(3)
2 = − µ1

rJ0(µ1)

[(
rJ1(µ1r)

(
χ

(4)′
2 − χ(2)′

2

))′
+ 6

(
χ

(2)
2 − 2χ(4)

2

) J1(µ1r)

r

]
, (B 3)

H
(5)
2 = − µ1

rJ0(µ1)

[
−
(
rJ1(µ1r)χ

(4)′
2

)′
+ 20χ(4)

2

J1(µ1r)

r

]
. (B 4)

Let G be of the form

G = G(0)(r) + G(2)(r) cos 2θ + G(4)(r) cos 4θ. (B 5)

Then, equation (3.36) becomes a system of first-order differential equations

J1(µ1r)G
(4)′ − 4µ1J

′
1(µ1r)G

(4) = rµ1J0(µ1)H
(5)
2 ,

J1(µ1r)G
(2)′ − 2µ1J

′
1(µ1r)G

(2) + J1(µ1r)G
(4)′ + 4µ1J

′
1(µ1r)G

(4) = rµ1J0(µ1)H
(3)
2 ,

2J1(µ1r)G
(0)′ + J1(µ1r)G

(2)′ + 2µ1J
′
1(µ1r)G

(2) = rµ1J0(µ1)H
(1)
2 ,

which is solved successively, e.g. G(4) is first determined, then G(2) and finally G(0).
The numerical integration is started at the singular point r = 0 by using asymptotic
expression of the solutions.

B.2. Determination of the function K(ψ0)

In this appendix, we show that K(ψ0) is determined on the basis of a solvability
condition at order F3

v . The equation at order F3
v for the streamfunction ψ3 is (see

(C 5))

L(ψ3) = − [∇h · (∆ψ0∇hχ3) + ∆hΨ2]
∂2φ1

∂z2
+
∂∆ψ0

∂y

∂η

∂T3

(r 6 1). (B 6)

The only solvability condition pertaining to this equation which is not automatically
satisfied is 〈

(∇h · (∆ψ0∇hχ3) + ∆hΨ2)
∂2φ1

∂z2
− ∂∆ψ0

∂y

∂η

∂T3

|G(ψ0)

〉
= 0, (B 7)
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where G(ψ0) stands for any function of ψ0. This condition reduces to

〈∆hΨ2|G(ψ0)〉 = 0, (B 8)

since the first and last terms in (B 8) integrate to zero while the vertical derivative
of φ1 can be taken out of the scalar product. In order to obtain a more convenient
expression for this constraint, we use streamline coordinates with orthogonal unit
vectors (T ,N ), where T is tangent to the local direction of the basic velocity uh0
and N the principal normal to the streamline of the basic state. If (s, n) represent
coordinates measuring the distance in these two directions, respectively, we have

〈∆hΨ2|G(ψ0)〉 =

∫ ∫
D

∆hΨ2G(ψ0) ds dn, (B 9)

where D is the domain defined by r 6 1. Instead of using the variable n, it is more
convenient to use the streamfunction ψ0 which is a function of n only. The variations
of n and ψ0 are simply related by ∂ψ0/∂n = −u0 where u0 =

√
uh0 · uh0. Using now

the variables (s, ψ0), the previous expression becomes

〈∆hΨ2|G(ψ0)〉 = −
∫ ψ0 max

ψ0 min

[∮
γ(ψ0)

∆hΨ2

u0

ds

]
G(ψ0) dψ0, (B 10)

where γ(ψ0) denotes a contour corresponding to a value of the streamfunction ψ0 and
ψ0 min and ψ0 max = −ψ0 min are the minimum and maximum values of ψ0 inside the
circle r = 1. Hence, a necessary and sufficient condition guaranteeing (B 8) for any
function G(ψ0) is ∮

γ(ψ0)

∆hΨ2

u0

ds = 0, (B 11)

for each closed contour γ corresponding to a value of the streamfunction ψ0 inside
the circle r = 1. The solution of (3.37) for r 6 1 can be formally written as
Ψ2 = M−1(K+ G) which substituted in (B 11) gives a linear equation for K∮

γ(ψ0)

∆hM
−1(K)

u0

ds = −
∮
γ(ψ0)

∆hM
−1(G)

u0

ds, (B 12)

for ψ0 min 6 ψ0 6 ψ0 max. This equation determines completely the functionK(ψ0) up
to a constant. Without loss of generality, this constant is set to zero. The numerical
procedure used to solve this equation is explained in Appendix B.3. When the
streamlines are circular, the curvilinear coordinate s is the azimuthal coordinate s ≡ θ
and the solvability condition (B 11) is an average over θ. This particular condition is
often encountered in various asymptotic studies of vortices (see, for instance, Moffatt,
Kida & Ohkitani 1994). If K(ψ0) satisfies (B 12), it is demonstrated in Appendix B.4
that a solution to (3.37) does exist. Once K(ψ0) has been determined, the Helmholtz
equation (3.37) can be solved numerically with a solution of the form (3.38). Note
that since any function of the form ∂ψ0/∂y may be added to the solution Ψ2, the
normalization condition 〈

Ψ2|∂ψ0

∂y

〉
= 0, (B 13)

is further imposed. For r > 1, the solution is potential and the Fourier components
are of the form Ψ

(2n)
2 (r) = b2n/r

2n where the constants b2n ensuring continuity at r = 1
are b0 = −0.6266, b2 = −1.3594, b4 = 0.3248, . . . .



Zigzag instability of a vertical vortex pair in a stratified fluid 55

B.3. Numerical solution of (B 12)

Details are given here for how to solve numerically the linear equation (B 12). The
function K(ψ0) is first discretized on N points at ψ0 = ψ

j
0, j = 1, . . . , N between

0 and ψ0 max. It is not necessary to consider the interval ψ0 min 6 ψ0 6 0 because
K(ψ0) is an even function of ψ0 as can be inferred from (B 12). Then, K is a vector
K = [K1,K2, . . . ,KN]t, and (B 12) becomes a matrix-type relation

AK = −b (B 14)

where A is the N ×N matrix of the operator

A =

∮
γ(ψ0)

∆hM
−1

u0

ds, (B 15)

and b = [b1, b2, . . . , bN]t is the right-hand side of (B 12) evaluated on every streamline
ψ
j
0

bj =

∮
γ(ψ

j
0)

∆hM
−1G

u0

ds. (B 16)

The matrix A is built numerically by taking successively for i = 1, . . . , N a vector of
the form

ki = [k1
i , k

2
i , . . . , k

N
i ]t (B 17)

where kii = 1 and kji = 0 for j 6= i. In other words, ki is zero everywhere except on the
streamline ψi0 where ki(ψ

i
0) = 1. Then, the product Aki is evaluated and yields column

i of the matrix A.
We now explain the procedure used to compute the product Aki. We first solve the

equation

M(ψi) = ki, (B 18)

by expressing the function ki as a truncated Fourier series

ki =

NF∑
n=0

a
(2n)
i (r) cos 2nθ, (B 19)

with NF + 1 modes. Only modes of the form cos 2nθ are relevant since K(ψ0) is
an even function of ψ0. Accordingly, the solution ψi is sought in the form ψi =∑NF

n=0 ψ
(2n)
i (r) cos 2nθ. Then, (B 18) becomes a set of ordinary differential equations

1

r

(
rψ

(2n)′
i

)′
+ ψ

(2n)
i

(
µ2

1 − 4n2

r2

)
= a

(2n)
i (B 20)

which are solved for 0 6 n 6 NF . Finally, the integral is evaluated on every streamline
ψ
j
0 ∮

γ(ψ
j
0)

∆hψi

u0

ds = Aji, (B 21)

for j = 1, . . . , N. Therefore, we have determined column i of matrix A. The same
procedure is applied to calculate bj for j = 1, . . . , N.

Then, equation (B 12) consists in solving the linear system

AjiKi = −bj, (B 22)

with a standard matrix linear algebra package. The number of points used is N = 60
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and the truncation order is NF = 40. Varying the truncation order and the number
of points does not alter the results.

B.4. Solvability conditions of (3.37)

The solvability condition (3.26) does not ensure that (3.37) has a solution for any
function K(ψ0). However, we show in this appendix that if K(ψ0) is chosen such
that (B 11) is satisfied then a solution exists.

The Helmholtz operator M defined in (3.37) with the associated boundary con-
ditions (ii)–(iv) (see § 2.4) is self-adjoint. The eigensolutions of M for r 6 1 are J0(µ1r)
and J2(µ1r) cos 2θ (or J2(µ1r) sin 2θ). This leads to two solvability conditions for the
right-hand side of (3.37)

〈G+K(ψ0)|J0(µ1r)〉 = 0, (B 23)

〈G+K(ψ0)|J2(µ1r) cos 2θ〉 = 0. (B 24)

However, the solvability condition (3.26) ensures only that

〈G+K(ψ0)|J0(µ1r) + J2(µ1r) cos 2θ〉 = 0, (B 25)

which is obtained after integration by parts of (3.26) using the identity

J0(µ1r) + J2(µ1r) cos 2θ = J0(µ1)J(ψ0, r cos θ). (B 26)

However, ifK(ψ0) is chosen such that condition (B 11) is satisfied, then we can write
∆Ψ2 = J(ψ0, Q). On one hand, this implies that

〈∆hΨ2〉 = 2πΨ (0)′
2 (1) = 0, (B 27)

because the Jacobian integrates to zero. On the other hand, taking the scalar product
of (3.37) and J0(µ1r) gives

〈G+K(ψ0)|J0(µ1r)〉 = 2πJ0(µ1)Ψ
(0)′
2 (1). (B 28)

Therefore, (B 27) and (B 28) imply that (B 23) is satisfied. Next, (B 25) implies that
(B 24) is satisfied.

Appendix C. Higher-order problems
C.1. Order F3

v problem

In the two remaining orders to be solved O(F3
v ) and O(F4

v ), we are interested only in
the equations for the horizontal motions. At these orders, the density and the vertical
velocity do not need to be determined since they will only affect the horizontal motion
at order F5

v and higher. At order F3
v , the equations for the horizontal motions are

uh0 · ∇hζ̃3 + ũh3 · ∇h∆ψ0 = ∆ψ0

∂ũz1

∂z
− ∂ζ̃0

∂T3

− ∂ζ̃2

∂T1

, (C 1a)

∇h · ũh3 +
∂ũz1

∂z
= 0. (C 1b)

The calculation follows the same procedure as used for the F2
v order. Writing the

horizontal velocity with a potential χ3(r, θ) and a streamfunction ψ3(r, θ, z, T1, T3) in
the form

ũh3 = −∇× (ψ3ez) + ∇hχ3

∂2φ1

∂z2
, (C 2)
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and using expression (3.14) of the vertical velocity ũz1, gives for the divergence
equation (C 1b)

∆hχ3 = −∂P0

∂y
+ ∇h ·

(
∂P0

∂θ
uh0

)
= D3. (C 3)

D3 is written out in Appendix D. The solution is of the form

χ3(r, θ) = χ
(1)
3 (r) sin θ + χ

(3)
3 (r) sin 3θ, (C 4)

where only χ
(1)
3 (r) will be useful for expressing the next solvability condition. This

function is shown in figure 5. Upon substituting the decomposition (C 2) in the
equation for the vertical vorticity (C 1a) and by using (3.7b), (3.35) and (3.14), we
obtain

L(ψ3) =− [∇h · (∆ψ0∇hχ3) + ∆hΨ2]
∂2φ1

∂z2
+
∂∆ψ0

∂y

∂η

∂T3

(r 6 1),

∆hψ3 = 0 (r > 1).
(C 5)

The first term on the right-hand side of (C 5) has the same form as that at the previous
order. In fact, a term of this form will appear systematically at all higher orders. The
only solvability condition not automatically satisfied by the right-hand side of (C 5)
is 〈

(∇h · (∆ψ0∇hχ3) + ∆hΨ2)
∂2φ1

∂z2
− ∂∆ψ0

∂y

∂η

∂T3

|G(ψ0)

〉
= 0, (C 6)

where G(ψ0) denotes any function of ψ0. The first and last terms integrate to zero so
that this solvability condition reduces to 〈∆hΨ2|G(ψ0)〉 = 0. As explained in § 3.2 and
in Appendix B.2, the free function K(ψ0) defined in (3.37) has been chosen so that
Ψ2 satisfies this condition.

Moreover, as for the first order, it is convenient to define a phase variable φ3 such
that

∂η

∂T3

= φ3. (C 7)

The solution of (C 5) can be determined numerically in the form

ψ3 = Ψ3

∂3η

∂2z∂T1

+

(
∂ψ0

∂θ
+ r cos θ

)
φ3, (C 8)

where

Ψ3(r, θ) = Ψ
(1)
3 (r) cos θ +Ψ

(3)
3 (r) cos 3θ + · · · . (C 9)

We proceed in two stages as for ψ2 by first looking for a solution Γ of

J(ψ0, Γ ) = − [∇h · (∆ψ0∇hχ3) + ∆hΨ2] ≡ H3. (C 10)

H3 is of the form

H3 = H
(0)
3 (r) +H

(2)
3 (r) cos 2θ +H

(4)
3 (r) cos 4θ + · · · . (C 11)

Consequently, we seek Γ in the form

Γ = Γ (1)(r) cos θ + Γ (3)(r) cos 3θ + · · · . (C 12)

Then (C 10) becomes a system of first-order ordinary differential equations where the
function Γ (n) can be determined successively for increasing n. Γ (1) is given by

J1(µ1r)Γ
(1)′(r) + µ1J

′
1(µ1r)Γ

(1)(r) = rµ1J0(µ1)H
(0)
3 , (C 13)



58 P. Billant and J.-M. Chomaz

where H (0)
3 is

H
(0)
3 = − µ1

rJ0(µ1)

(
rJ1(µ1r)χ

(1)′
3

)′ − 1

r

(
rψ

(0)′
2

)′
. (C 14)

Then, (C 13) can be directly integrated to yield

Γ (1)(r) = −µ2
1rχ

(1)′
3 − µ1J0(µ1)

J1(µ1r)
rψ

(0)′
2 . (C 15)

Note that the necessity of the solvability condition (B 11) which in particular imposes

ψ
(0)′
2 (1) = 0 appears here since otherwise the last term in (C 15) would be singular at

r = 1. The other terms of Γ have not been determined since only the first function
Ψ

(1)
3 is needed for computing the coefficients of the remaining phase equation. Then,

we solve

∆hΨ3 + µ2
1Ψ3 = Γ (r 6 1),

∆hΨ3 = 0 (r > 1).
(C 16)

In this case, an arbitrary function of ψ0 is not considered because no term of the form
cos(2n+ 1)θ can be obtained from such a function. The function Ψ (1)

3 is displayed on
figure 6.

C.2. Order F4
v problem

At order F4
v , the equations for the horizontal motion are

uh0 · ∇hζ̃4 + ũh4 · ∇h∆ψ0 = ∆ψ0

∂ũz2

∂z
− ∂ζ̃1

∂T3

− ∂ζ̃3

∂T1

, (C 17a)

∇h · ũh4 +
∂ũz2

∂z
= 0. (C 17b)

In view of the expression (3.41) of the vertical velocity ũz2, the horizontal velocity is
again separated into rotational and potential velocities in the form

ũh4 = −∇× (ψ4ez) + ∇hχ44

∂4η

∂z4
+ ∇hχ42δ

2 ∂
2η

∂z2
, (C 18)

which, inserted in (C 17), gives the following equations for the potentials χ44 and χ42

∆hχ44 = uh0∇hΠ2 + D
∂P0

∂θ
≡ D44, (C 19)

∆hχ42 = uh0 · ∇h
[
uh0 · ∇h

[
∇h ·

(
∂P0

∂y
uh0

)]]
≡ D42. (C 20)

The functions D44 and D42 are written out in Appendix D. The solutions are of the
form

χ44(r, θ) = χ
(2)
44 (r) sin 2θ + χ

(4)
44 (r) sin 4θ + · · · , (C 21)

χ42(r, θ) = χ
(2)
42 (r) sin 2θ + χ

(4)
42 (r) sin 4θ + · · · , (C 22)

where only the first components χ(2)
44 and χ

(2)
42 will be involved in the coefficients that

remain to be calculated. These two functions are shown in figure 5.
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An equation for the streamfunction ψ4 is obtained by inserting the expression (C 18)
into (C 17) and by using (3.12), (3.29), (C 8) and (3.11b)

L(ψ4) =−[∇h · (∆ψ0∇hχ44) + D∆hΨ3]
∂4η

∂z4

−∇h · (∆ψ0∇hχ42)δ
2 ∂

2η

∂z2
− ∂∆ψ0

∂θ

(
∂φ1

∂T3

+
∂φ3

∂T1

)
(r 6 1),

∆hψ4 = 0 (r > 1).

(C 23)

Only the solvability condition involving ψ̃b is not trivially satisfied. To fulfil this
condition, we require that

∂φ1

∂T3

+
∂φ3

∂T1

= g1δ
2 ∂

2η

∂z2
+ g2

∂4η

∂z4
, (C 24)

with

g1 = −〈ψ̃b|∇h · (∆ψ0∇hχ42)〉〈
ψ̃b|∂∆ψ0

∂θ

〉 , (C 25)

g2 = −〈ψ̃b|∇h · (∆ψ0∇hχ44) + D∆hΨ3〉〈
ψ̃b|∂∆ψ0

∂θ

〉 . (C 26)

After several integrations by parts, these coefficients are obtained from the functions
χ

(2)
42 and χ(2)

44 , respectively,

g1 = − µ2
1

2J0(µ1)

∫ 1

0

χ
(2)
42 (r)J2(µ1r)r dr = −56.4, (C 27)

g2 = − µ2
1

2J0(µ1)

∫ 1

0

χ
(2)
44 (r)J2(µ1r)r dr − DΨ (1)

3 (1) = −16.1. (C 28)

Appendix D. Expression of the forcing terms appearing in the divergence
equations (3.17), (C 3), (C 20), (C 19)

Only the functions needed to compute the coefficients of the phase equations are
explicitly written. D2 reads

D2 = D
(2)
2 (r) sin 2θ + D

(4)
2 (r) sin 4θ, (D 1)

where

D
(2)
2 = − 1

rJ3
0 (µ1)

(
2J ′1(µ1r)(2b− a)− 2J1(µ1r)

a′

µ1

)
(r 6 1),

D
(2)
2 = − 4

r6

(
1

r2
− 3

)
(r > 1),

 (D 2a)

D
(4)
2 = − 1

rJ3
0 (µ1)

(
3J ′1(µ1r)(a− b)− J1(µ1r)

(a− b)′
µ1

)
(r 6 1),

D
(4)
2 = − 6

r4
(r > 1).

 (D 2b)
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The functions a and b read

a = J1(µ1r)J
′
2(µ1r)/r, b = 2J ′1(µ1r)J2(µ1r)/r. (D 3)

D3 is of the form

D3 = D
(1)
3 (r) sin θ + D

(3)
3 (r) sin 3θ, (D 4)

where D(1)
3 is given by

D
(1)
3 =

1

J0(µ1)2
(a+ b)− 4

rJ3
0 (µ1)

(J2
1 (µ1r)J

′
1(µ1r) + J2

2 (µ1r)J0(µ1r)) (r 6 1),

D
(1)
3 = − 6

r5
(r > 1),

 (D 5)

D42 is of the form

D42 = D
(2)
42 (r) sin 2θ + D

(4)
42 (r) sin 4θ + · · · , (D 6)

where D(2)
42 is given by

D
(2)
42 = − 1

µ1rJ0(µ1)
[µ1J

′
1(µ1r)(C1 − 3C3)− J1(µ1r)(C

′
1 + C ′3)] (r 6 1),

D
(2)
42 =

8

r8

[
23

r6
− 84

r4
+

108

r2
− 30

]
(r > 1).

 (D 7)

The functions C1 and C3 read

C1 = − 1

µ1rJ0(µ1)
[2µ1J

′
1(µ1r)D

(2)
2 + J1(µ1r)D

(2)′
2 ], (D 8)

C3 =
1

µ1rJ0(µ1)
[µ1J

′
1(µ1r)(2D

(2)
2 − 4D(4)

2 )− J1(µ1r)(D
(2)′
2 + D

(4)′
2 ]. (D 9)

D44 is of the form

D44 = D
(2)
44 (r) sin 2θ + D

(4)
44 (r) sin 4θ + · · · . (D 10)

Note that the horizontal pressure gradient ∇hΠ2 appearing in D44 (see (C 19)) is
obtained from the horizontal momentum equation at order F2

v

∇hΠ2

∂2η

∂z2
= −ζ̃2ez × uh0 − ζ0ez × ũh2 − ∇h(uh0ũh2) + D

∂2η

∂z2
∇×

[(
∂ψ0

∂θ
+ r cos θ

)
ez

]
.

(D 11)



Zigzag instability of a vertical vortex pair in a stratified fluid 61

D
(2)
44 is given by

D
(2)
44 =

2J1(µ1r)

J2
0 (µ1)

[
J1(µ1r)

(
u

(0)
2θ

r
− D − u

(4)
2θ

2r

)
+ µ1J

′
1(µ1r)

(
u

(2)
2r − u

(4)
2r

2

)]

−u0θ

2r

(
−u(2)

2r u0r − 2u(2)
2θ u0θ + u

(0)
2θ u0θ − 3

2
(u(4)

2r u0r − u(4)
2θ u0θ)

)
−u0r

2

(
u

(2)
2r u0r + u

(0)
2θ u0θ + 1

2
(u(4)

2r u0r − u(4)
2θ u0θ)

)′
+
DJ2(µ1r)

J0(µ1)

(
4J0(µ1r)

J0(µ1)
− 1

)
(r 6 1),

D
(2)
44 =

7

2r12
− 1

2r10
(41− 26b4 + 26c4)− 1

2r8
(53− 8b2 + 12b4 + 8c2 − 12c4)

+
1

r6
(−7− 12b2 + 5b4 + 12c2 − 5c4)− 3

r4
− 3D

r2
(r > 1),


(D 12)

where

u
(2)
2r =

2

r
Ψ

(2)
2 + χ

(2)′
2 , u

(4)
2r =

4

r
Ψ

(4)
2 + χ

(4)′
2 , u0r =

2J1(µ1r)

rµ1J0(µ1)
,

u
(0)
2θ = Ψ

(0)′
2 , u

(2)
2θ =

2

r
χ

(2)
2 +Ψ

(2)′
2 , u

(4)
2θ =

4

r
χ

(4)
2 +Ψ

(4)′
2 , u0θ = −2J ′1(µ1r)

J0(µ1)
.

 (D 13)

The constants b2, b4 are defined in Appendix B.2 and c2 = −2.016, c4 = −0.205.

Appendix E. Can the zigzag instability occur in homogeneous fluid?
In this appendix, we carry out the beginning of the same long-wavelength analysis

but in homogeneous fluid Fh = ∞ instead of Fh → 0. In this case, the long-wavelength
assumption is Lv � Lh and the slow timescale T1 is T1 = Lht/Lv . At leading order in
vertical wavenumber, we still have an equation of the form

∂2η

∂T 2
1

= D̃
∂2η

∂z2
, (E 1)

like (3.33). The coefficient D̃ can be computed easily. In this case, the vertical
momentum equation (3.2c) at leading order is replaced by

uh0 · ∇hũz0 =
∂P0

∂y

∂η

∂z
, (E 2)

which is solved easily for the vertical velocity

ũz0 = −uy0

∂η

∂z
. (E 3)

Thus, the divergence equation (3.17) is replaced by

∆hχ2 = uy0. (E 4)
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Again, the solution for r 6 1 is readily found

χ2 =

(
r2

8
− J2(µ1r)

µ2
1J0(µ1)

)
sin 2θ, (E 5)

Substituting this expression into the relation (3.31), which remains valid for Fh = ∞,
yields the coefficient

D̃ = − 1

2π

〈
∆ψ0|∂χ2

∂x

〉
= 1

2
. (E 6)

Because D̃ is positive, the zigzag instability does not exist in the long-wavelength limit
in homogeneous fluid.
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