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The goal of this study is to characterize the various breakdown states taking place
in a swirling water jet as the swirl ratio S and Reynolds number Re are varied. A
pressure-driven water jet discharges into a large tank, swirl being imparted by means
of a motor which sets into rotation a honeycomb within a settling chamber. The
experiments are conducted for two distinct jet diameters by varying the swirl ratio
S while maintaining the Reynolds number Re fixed in the range 300 < Re < 1200.
Breakdown is observed to occur when S reaches a well defined threshold Sc ≈ 1.3–1.4
which is independent of Re and nozzle diameter used. This critical value is found to
be in good agreement with a simple criterion derived in the same spirit as the first
stage of Escudier & Keller’s (1983) theory. Four distinct forms of vortex breakdown
are identified: the well documented bubble state, a new cone configuration in which
the vortex takes the form of an open conical sheet, and two associated asymmetric
bubble and asymmetric cone states, which are only observed at large Reynolds
numbers. The two latter configurations differ from the former by the precession of
the stagnation point around the jet axis in a co-rotating direction with respect to the
upstream vortex flow. The two flow configurations, bubble or cone, are observed to
coexist above the threshold Sc at the same values of the Reynolds number Re and
swirl parameter S . The selection of breakdown state is extremely sensitive to small
temperature inhomogeneities present in the apparatus. When S reaches Sc, breakdown
gradually sets in, a stagnation point appearing in the downstream turbulent region
of the flow and slowly moving upstream until it reaches an equilibrium location.
In an intermediate range of Reynolds numbers, the breakdown threshold displays
hysteresis lying in the ability of the breakdown state to remain stable for S < Sc
once it has taken place. Below the onset of breakdown, i.e. when 0 < S < Sc, the
swirling jet is highly asymmetric and takes the shape of a steady helix. By contrast
above breakdown onset, cross-section visualizations indicate that the cone and the
bubble are axisymmetric. The cone is observed to undergo slow oscillations induced
by secondary recirculating motions that are independent of confinement effects.

1. Introduction
The objective of the present experimental study is to characterize the vortex

breakdown phenomenon that may arise in a swirling water jet discharging into a
large tank. Distinct breakdown states are identified in the form of a bubble, a cone,
an asymmetric bubble and an asymmetric cone and a quantitative comparison is
presented between the prediction of a simple breakdown criterion and experimental
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observations. The main features of vortex breakdown, i.e. the presence of hysteresis,
azimuthal symmetry or lack thereof and secondary motions of the breakdown states
are documented and analysed.

Vortex breakdown is a remarkable feature affecting geophysical flows such as
tornadoes or man-made flows such as tip vortices produced over delta wings. These
vortical flows are typically characterized by the presence of an appreciable axial
velocity superimposed upon the rotational motion. When the ratio of azimuthal to
axial velocity exceeds a certain level of order unity, ‘vortex breakdown’ takes place,
i.e. the vortex core abruptly widens into a new stable coherent structure. Although
various forms of vortex breakdown have been identified, they all share as a common
and predominant feature an abrupt deceleration of the flow near the axis leading to
the formation of a stagnation point, as if a solid obstacle had been introduced into
the flow. Experiments on vortex breakdown have been carried out over delta wings
(Peckham & Atkinson 1957; Lambourne & Bryer 1961), in confined tubes (Harvey
1962; Sarpkaya 1971, 1974, 1995; Faler & Leibovich 1977, 1978; Garg & Leibovich,
1979; Escudier & Zehnder 1982; Brücker & Althaus 1992; Brücker 1993; Brücker &
Althaus 1995), in a cylindrical container with a rotating endwall (Escudier 1984), in
a tornado generator (Khoo et al . 1997) or in a free swirling air jet (Farokhi, Taghavi
& Rice 1988; Panda & McLaughlin 1994).

The two predominant breakdown configurations, namely the bubble and the spiral,
were first identified by Lambourne & Bryer (1961) in the tip vortices generated by flow
over delta wings. The distinction between these two states is mainly based upon flow
visualizations where dye is introduced on the vortex axis. In the case of a bubble, the
filament of dye spreads symmetrically to delineate the stagnant region. By contrast,
in the spiral type breakdown, the dye filament is deformed into a spiral configuration.
It is then inferred that an oscillatory disturbance sets successive particles on different
paths over the stagnant region.

A major drawback of the delta wing experiments is that axial and azimuthal
velocities cannot be varied independently, so that most of subsequent experiments
on vortex breakdown have been made in the more controlled situation of straight
or slightly diverging confined tubes with swirl imparted by upstream guidevanes. In
this type of experimental arrangement, Sarpkaya (1971) observed in addition to the
bubble and the spiral, a third state: the double helix. As pointed out by Leibovich
(1978), this flow configuration does not exhibit a stagnation point and consequently it
does not, strictly speaking, qualify as a breakdown state. With a similar experimental
set-up, Faler & Leibovich (1977) have identified up to six distinct modes of vortex
core disruption, among which four are breakdown states corresponding to various
configurations of bubbles or spirals. The two new distinct breakdown states isolated
by these authors correspond to a bubble which is flattened in a steady preferred plane
(type 4) and a state (type 3) sharing the characteristics of both the spiral breakdown
and the flattened bubble.

The confinement imposed by the tube is found to critically control the occurrence
of breakdown: Sarpkaya (1974), Escudier & Zehnder (1982) and Althaus, Brücker &
Weimer (1995) by taking tubes with various angles of divergence that create an adverse
pressure gradient, have demonstrated that breakdown occurs at lower Reynolds
number when the pipe flare angle is increased, a feature which effectively adds another
control parameter to the problem. However, the various forms of breakdown states do
not seem to be very sensitive to confinement effects: Khoo et al . (1997) have observed
and identified the same six modes of vortex core disruption in their unconfined
tornado generator as in the confined tube configuration of Faler & Leibovich (1977).
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In free swirling jets, experimental investigations of vortex breakdown have been
conducted at high Reynolds numbers and have mainly concentrated on a detailed
documentation of velocity distributions and associated turbulence fluctuations (see,
for instance, Farokhi et al . 1988; Panda & McLaughlin 1994).

Quantitative measurements by laser Doppler anemometry (Faler & Leibovich 1977;
Uchida, Nakamura & Oshawa 1985) and particle tracking velocimetry (Brücker &
Althaus 1992) have provided a detailed picture of the internal structure of the bubble.
Much of the long–inferred topology of spiral breakdown has recently been revealed
by the instantaneous particle tracking measurements of Brücker (1993) which actually
indicate a strong similarity with the bubble except that the stagnation point is not
located on the vortex axis but precesses around it.

According to previous investigations, vortex breakdown is known to exhibit
widespread hysteresis and bistability behaviour. The classic photograph of Lam-
bourne & Bryer (1961) which simultaneously displays on each side of a delta wing,
i.e. for the same imposed flow conditions, the spiral and the bubble, constitutes a
striking example of bistability. In confined tubes, Sarpkaya (1971) and Faler & Lei-
bovich (1977) also identified flow regimes where the spiral and the bubble were highly
unstable and the flow configuration changed over time from one to the other. The lat-
ter authors and Escudier & Zehnder (1982) have reported random and unpredictable
transitions between different kinds of bubbles.

The role played by helical disturbances in the dynamics of breakdown is a contro-
versial issue. Two points of view have emerged: either breakdown itself results from
the ultimate development of helical disturbances as primarily advanced by Ludwieg
(1962) (for a critical discussion on the importance of asymmetries in breakdown,
see Leibovich 1978, 1983), or breakdown is an independent phenomenon over which
secondary helical disturbances may grow (a discussion in favour of this point of
view may be found in Escudier 1988). The experimental observations are ambiguous:
Lambourne (1965), Escudier & Zehnder (1982) and Brücker & Althaus (1995) report
that the bubble is the basic form but that it becomes unstable to helical disturbances
and changes into the spiral form. By contrast, Sarpkaya (1971) and Faler & Leibovich
(1977) have observed that the bubble is a secondary development of the primary spiral
form. Interestingly, one should note that a similar confusion also exists regarding the
winding direction of the spiral as one proceeds downstream: the first group of authors
states that the direction of rotation of the spiral is opposite to the primary vortex
while the latter observe a corotation.

Vortex breakdown is also a temporally evolving phenomenon. Unsteady and asym-
metric recirculating motions occur in the ‘stagnant’ region within the bubble. As
described by Sarpkaya (1971) and Brücker & Althaus (1992), fluid is injected into
and ejected out of the internal region by an emptying and filling process taking place
in the downstream part of the bubble and involving a gyrating tilted vortex ring.
The whole spiral is observed to precess as a solid body around the axis in the same
direction as the upstream vortex (Lambourne & Bryer 1961; Faler & Leibovich 1977;
Brücker 1993). Furthermore, according to Faler & Leibovich (1977), breakdown states
display secondary temporal dynamics and wander back and forth along the axis in a
random fashion.

The present investigation differs from previous experimental studies in several
important respects. We adopt a swirling jet experimental set-up where confinement
effects are negligible since the jet exhausts into a large water tank. Furthermore, the
axial and azimuthal velocities of the basic flow can be monitored independently, swirl
being imparted to the fluid by a motor that sets a honeycomb into rotational motion
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within a settling chamber. This set-up has led us to identify a new breakdown con-
figuration in the form of a conical sheet, which is clearly distinct from the previously
known nearly closed bubble state. In contrast with earlier qualitative investigations,
the presence of hysteresis is characterized quantitatively by systematically varying the
swirl parameter near threshold. An additional advantage of the present experimental
apparatus lies in the fact that breakdown can easily be visualized in cross-sections
perpendicular to the jet axis. Thereby, one can unambiguously determine whether the
swirling jet is axisymmetric or not. We also could ascertain that the cone typically
undergoes secondary temporal dynamics and that recirculating motions are present
within the stagnant region.

Sarpkaya (1995) and Khoo et al . (1997) have also reported observing a conical
vortex breakdown but we believe that the flow structure identified here and in Billant,
Chomaz & Huerre (1994) and Billant, Chomaz & Delbende (1994) is qualitatively
different from these authors’ observations. The conical state reported by Sarpkaya
(1995), which occurs for very high Reynolds numbers of order 106, is in fact a bubble
whose turbulent conical wake has come so close to the stagnation point that the whole
structure looks like a cone. A gradual change from the classical bubble to a turbulent
conical bubble can be followed as Re is increased from 50 000 to 200 000. Similar
remarks apply to the conical state reported by Khoo et al . (1997) which is observed
only at higher Reynolds numbers than the bubble or the spiral (3200 < Re < 3600). It
simply appears as the natural evolution of the wake of a bubble towards a turbulent
state as Re is increased. The cone opening angle is about 20◦ in the case of Sarpkaya
(1995) and 40◦ in the case of Khoo et al . (1997). These states display none of the
characteristics of the laminar cone reported herein which, by contrast, is observed for
the same parameter values as the bubble and has a characteristic opening angle of
90◦.

A large number of numerical studies have been devoted to the simulation of vortex
breakdown in swirling pipe flow: the steady and unsteady axisymmetric incom-
pressible Navier–Stokes equations have been numerically integrated by Kopecky &
Torrance (1973), Grabowski & Berger (1976) and Krause, Shi & Hartwich (1983). As
extensively reviewed by Althaus et al . (1995), recent time-dependent three-dimensional
simulations have reproduced not only the unsteadiness and asymmetry of the internal
flow within the bubble (Spall, Gatski & Ash 1990) but also the spiral breakdown
(Gatski & Spall 1991).

Vortex breakdown has been the subject of many somewhat conflicting theories.
The main keywords characterizing the various theoretical approaches typically are:
hydrodynamic instability, flow stagnation, conjugate states. For a comprehensive
presentation, the reader is referred to the surveys of Hall (1972), Leibovich (1978,
1983), Stuart (1987), Escudier (1988), Delery (1990) and Althaus et al . (1995). In the
spirit of the two-stage transition theory proposed by Escudier & Keller (1983), a
simple criterion for the occurrence of cone breakdown will be presented in § 2.

Flows with conical similarity where the velocity field is inversely proportional to
the distance from the origin are widely encountered in vortex dynamics (Goldshtik
1960; Long 1961; Shtern & Hussain 1993). In the context of the present investigation,
it is interesting to note that Goldshtik (1960) has derived a family of exact self-
similar conical solutions of the Navier–Stokes equations which exhibit interesting
features such as non-uniqueness and hysteresis. A particular solution bearing some
resemblance to the swirling jet configuration is the vortex filament with an axial
velocity component considered by Goldshtik (1979) where two conical flow solutions
may coexist in a certain parameter range.
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The present investigation is organized as follows. A simple theoretical criterion for
breakdown is derived in § 2. The experimental set-up and procedure are presented in
§ 3. The various breakdown states and their domains of existence in control parameter
space are documented in § 4. In § 4.1, the breakdown states are characterized by means
of flow visualizations and LDA measurements. In § 4.2, the critical values for the
onset of breakdown are presented in the Reynolds number–swirl parameter plane.
The theoretical breakdown criterion of § 2 is compared with experiments in § 4.3. The
spatial evolution of the local swirl parameter along the jet axis is investigated in § 4.4.
In § 4.5, we discuss the determining factors governing the selection of the bubble or
cone states. In § 5, we follow the typical sequence of events taking place as the swirl
parameter is gradually increased from zero up to the occurrence of breakdown. The
hysteresis phenomena associated with the breakdown transition are fully documented
in § 6. The axisymmetric nature of the breakdown states or lack thereof is examined in
§ 7 and the secondary dynamics of the cone and the bubble configurations is described
in § 8. Finally, the main results of the study are summarized in § 9.

2. Theoretical considerations: a simple vortex breakdown criterion
The aim of this section is to derive a necessary condition for the onset of vortex

breakdown in a flow of infinite extent. The usual cylindrical coordinate system (x , r , θ)
is used, where x denotes the axial distance, r the radial distance and θ the azimuthal
angle. (Vx , Vr , Vθ) designate the velocities in the corresponding directions.

In analogy with hydraulic jumps, the conjugate flows analysis of Benjamin (1962)
characterizes vortex breakdown as a dissipative axisymmetric jump-like transition
between two distinct inviscid states: an upstream (‘supercritical’) state where only
infinitesimal downstream travelling waves can exist and a downstream (‘subcritical’)
state upon which standing waves can occur. Since Benjamin (1962) argued that
the axial momentum flux in the downstream state must always be greater than its
counterpart in the upstream state, the existence of a region of vigorous turbulence,
supposed to coincide with vortex breakdown, was postulated to account for the
difference in axial momentum flux. Benjamin (1962)’s conclusion that the transition
is always dissipative is paradoxical since a smooth transition with no evidence of
dissipation is observed in the experiments. In the first stage of their two-stage
transition theory, Escudier & Keller (1983, 1985) and Keller, Egli & Exley (1985)
managed to prove that this earlier conclusion of Benjamin (1962) is erroneous. By
considering a generalized variational principle with an arbitrarily specified shape
of the downstream vortex profile allowing for hollow-core flows, Escudier & Keller
(1983) demonstrate that the difference in axial momentum flux between the two states
can indeed vanish. As an example, these investigators discuss in detail the case of
the Rankine vortex. By assuming uniform upstream and hollow downstream vortex
states separated by a transition region, a criterion for breakdown is directly derived
from the condition that the axial momentum flux be conserved. The main assumption
is that the cavity of the downstream hollow vortex is at stagnation pressure with
negligibly small velocity inside.

In what follows, we consider, as Escudier & Keller (1983), that breakdown is a
non-dissipative axisymmetric transition between two distinct states and that velocities
inside the stagnation zone are negligible. A criterion is obtained by simple considera-
tions in the case of a free vortex undergoing conical breakdown in a flow of infinite
extent. The basic idea, as shown by Hall (1966), is the following: if the radius of
the vortex increases in x, the conservation of circulation implies an axial increase
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Figure 1. Schematic configuration of cone vortex breakdown.

in pressure in the vortex core which leads to an axial deceleration. When the axial
increase in pressure is sufficient to bring the axial velocity to zero, a stagnation point
appears and vortex breakdown may take place.

Consider a free vortex displaying a steady stagnation point on the axis and opening
into a cone in the downstream direction (figure 1). According to the Bernoulli
equation applied along the streamline on the axis of the vortex, the total head
H = P/ρ+ 1

2
(V 2

x + V 2
r + V 2

θ ) reads

H = P0/ρ+ V 2
x (0, x0)/2 = P1/ρ , (2.1)

where P0 is the pressure on the vortex axis at station x0 located well upstream of
the stagnation point, ρ is the fluid density, Vx(0, x0) is the upstream axial velocity on
the vortex axis at x0 and P1 the pressure at the stagnation point. Far upstream of
the stagnation point, the radial pressure gradient is balanced by the centrifugal force,
consequently

P0 = P∞ −
∫ ∞

0

ρ
V 2
θ (r, x0)

r
dr , (2.2)

where Vθ(r, x0) is the azimuthal velocity and P∞ the ambient pressure at infinity in
the cross-stream plane x = x0.

Following Escudier & Keller (1983), we assume that, to a good approximation, the
velocities inside the stagnation zone vanish although some weak internal recirculating
motion may exist resulting from instabilities and viscous contamination. The stag-
nation zone of the cone is open to the surrounding fluid which is at rest at infinity.
Thus, the absence of steady motion between the quiescent surrounding fluid and the
stagnation zone suggests that no steady pressure gradient exists and we shall assume
the identity P1 = P∞. This argument is the essential ingredient which distinguishes
the present reasoning from the theory of Escudier & Keller (1983). In the latter, the
pressure P1 is deduced from the conservation of axial momentum. Note that pressure
measurements carried out by Farokhi et al . (1988) in a free swirling jet fully support
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the assumption that the pressure in the stagnation zone is indeed equal to the pressure
P∞.

Thus, upon exploiting this identity and eliminating the pressures in (2.1) and (2.2),
one obtains the simple relation ∫ ∞

0

V 2
θ (r, x0)

r
dr

V 2
x (0, x0)

=
1

2
. (2.3)

We emphasize that relation (2.3) is only a necessary condition: if, for any reason,
a vortex experiences an expansion of its core in the form of an open cone, then
the occurrence of a stagnation point necessarily requires that the above criterion be
satisfied.

In the particular case of a Rankine vortex, i.e. solid body rotation Vθ = Ωr and
Vx = const. for r < a and irrotational flow Vθ = Ωa2/r and Vx = 0 for r > a, this
criterion reduces to

Vθmax(x0)

Vx(0, x0)
=

1√
2
, (2.4)

where Vθmax(x0) = Ωa is the maximum azimuthal velocity. Please note that equation
(2.3) holds for any velocity profile whereas (2.4) is a consequence of (2.3) which is
only valid for a Rankine vortex. We recover the critical value obtained by Escudier
& Keller (1983) for a Rankine vortex in the limit where the ratio of the vortex core
radius to the tube radius vanishes, i.e. when confinement is negligible.

In the case of a bubble state, the stagnant region is not directly connected to the
surrounding outer quiescent fluid. The relation P1 = P∞ has therefore to be replaced
by the weaker inequality P1 6 P∞. In all other respects, the previous reasoning holds
and criterion (2.3) becomes ∫ ∞

0

V 2
θ (r, x0)

r
dr

V 2
x (0, x0)

>
1

2
, (2.5)

the value 1/2 now being a lower bound for the bubble state to appear.
These criteria are compared with experiments in § 4.3.

3. Experimental set-up and procedure
3.1. Experimental apparatus

The experimental set-up, sketched in figure 2, consists of a vertical swirling jet
discharging into a large water tank (Wu et al. 1992).

The jet axial velocity is generated by the hydrostatic pressure difference between
two constant-head reservoirs. An overflow tank and a pump close the water circuit.
The flow rate is controlled by a valve and flowmeter located on the exit pipe at the
bottom of the tank. A filter located on the exit pipe of the pump cleans the water
of any impurities. The homogeneity of water temperature in the whole circuit was
carefully checked and monitored: maximum temperature differences were kept below
0.1◦C–0.2◦C.

A swirl velocity component is imparted to the jet by means of a motor and two
concentric cylinders in the following way (see figure 3): the outer cylinder is fixed
and the inner cylinder, which is 40 cm long and 18.5 cm in diameter, is set into
rotational motion by a motor, and connected to the outer cylinder by a bearing track.
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Figure 2. Sketch of experimental apparatus.
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Figure 3. Detailed configuration of rotating system and nozzle. Dimensions are in cm.

The rotation rate of the motor is maintained constant by means of a servo control.
The liquid is supplied from the upper constant-head reservoir to the outer cylinder
through four pipes symmetrically placed on its top surface. Water is then fed to the
inner cylinder through a network of holes regularly drilled on its upstream part. The
flow is set into a state of solid body rotation and kept laminar by inserting an 18 cm
long honeycomb into the inner rotating cylinder. The swirling jet ends in a smooth
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converging nozzle attached to the outer cylinder and mounted on top of a large
transparent tank of square cross-section 120×40×40 cm3 (figure 2). The contraction
zone is designed according to the optimum method (Mikhail 1979) in order to avoid
flow separation. The exit diameter of the contraction zone is D1 = 40 mm. But for
comparison purposes, we have also used a nozzle of exit diameter D2 = 25 mm that
is inserted into the former. It should be emphasized that the relative large size of
the test tank minimizes the effect of confinement and measured recirculation currents
were found to be negligible. To further ensure quiescent flow conditions, a honeycomb
is placed at the bottom of the tank, upstream of the exit pipe (figure 2), in order to
avoid any whirlpool occurring.

Regular tap water is used but it is stocked in the same room several days ahead of
time in order to eliminate air bubbles and to reach ambient temperature.

3.2. Visualization and quantitative measurement techniques

The flow is visualized by the laser induced fluorescence technique. Fluorescein dye is
introduced in each of the four exit pipes of the upper constant-head reservoir (figure
2). Owing to different Lagrangian times within the rotating system, the dye is not
always homogeneously radially distributed within the jet when the dye injection is
started or stopped. But the dye concentration is always azimuthally homogeneous
and steady. The light source consists of a 1 W Argon laser. The light sheet produced
by a cylindrical lens is shone either in a meridional plane through the jet axis or in a
horizontal plane perpendicular to the axis of rotation. In the latter case, the camera
views the light sheet from below at an angle of about 45◦, resulting in a parallax effect
that may be corrected by image processing when needed. Images are recorded with
a black and white 740×480 pixels CCD camera and captured by a video recorder
or directly on a Macintosh. Various procedures such as the determination of the
stagnation point location are carried out on the images by making use of the public
domain NIH Image processing software (developed at the US National Institute
of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/) on a
Macintosh.

In order to gain a three-dimensional understanding of the jet structure for some of
the observed flow states, two laser sheets are simultaneously produced in a meridional
plane and in a slanted plane at about a 20◦ angle from the horizontal. The first sheet
produced by a 5 W Argon laser is obtained by reflection of the laser beam on a
vibrating mirror and the second sheet is the same as previously described. The camera
is then located along a direction perpendicular to the meridional plane.

Axial and azimuthal velocities are measured by two–component optical fibre laser
Doppler anemometry (Dantec enhanced Burst Spectrum Analyser powered by the
5 W Argon laser) in backscatter mode. The probe volume, based upon a 400 mm focal
length and a beam separation of 38 mm, is 0.19 mm in diameter and 5.3 mm in length
but the effective length is considerably lower. Water is seeded with titanium oxide
or ioridin particles. The laser probe is mounted on traversing mechanisms which
allow accurate displacements in the axial and radial directions. The burst signals
are fed through two burst spectrum analysers (BSA). Data transfers, control of the
BSA as well as control of the traversing mechanisms and motor are performed by a
Macintosh via an IEEE 488 interface. Vortex velocity profiles are measured in 2 mm
steps. For a measurement at one location, data are acquired until either 1000 bursts
have been collected or acquisition has lasted one minute. For typical data rates, most
measurements consist of the mean of 1000 bursts. It typically takes 30 minutes to
complete a traverse in the radial direction.
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3.3. Experimental procedure and control parameters

In order to explore parameter space, experiments have been conducted by varying the
rotation rate while maintaining the flow rate constant. The rotation rate of the motor
is slowly increased from zero in steps of approximately 17% of the final rotation rate
needed for breakdown. Fine step-like increases are made possible by the servo control
of the motor which allows accurate and minute variations of the rate of rotation.
A stationary hydrodynamic regime is reached by waiting for at least 15 mn at each
step. Close to the breakdown threshold, the rotation is increased extremely slowly
in steps between 2.5% and 5% with a 15 mn waiting time between each step-like
increase. The onset of breakdown is detected by flow visualizations. Further increases
of the rotation rate can be produced in order to study the dynamic response of the
breakdown state. A similar procedure is followed when the rotation rate is decreased.

The two independent ‘degrees of freedom’ of the experimental apparatus, namely
the flow rate and the rotation rate, can be expressed in terms of two non-dimensional
parameters: the Reynolds number and the swirl parameter. In order to define quan-
tities which optimally describe the flow regime, we have chosen to introduce non-
dimensional parameters based on the velocities directly measured in the swirling jet
close to the nozzle exit plane and not on the imposed external parameters.

The swirl parameter, which is a measure of the ratio of azimuthal to axial velocities,
is defined as follows:

S ≡ 2Vθ(R/2, x0)

Vx(0, x0)
, (3.1)

where x0 is the shortest axial distance measured from the nozzle exit plane at which
the measurement of both components is possible due to optical constraints: x0 = 5
mm for the D2 nozzle and x0 = 24 mm for the D1 nozzle. The azimuthal velocity
Vθ(R/2, x0) is measured at half the radius of the nozzle exit r = R/2; The axial
velocity Vx(0, x0) is measured on the axis of the jet. The quantity Ω = 2Vθ(R/2, x0)/R
characterizes the angular velocity of the vortex core, but note that it is not strictly
speaking the slope of Vθ at r = 0 as in some other definitions of the swirl parameter.
The convenient definition (3.1) is effectively obtained by measuring velocities at only
two locations. Furthermore, from the various azimuthal velocity profiles displayed
in figure 4(a), also note that Vθ(R/2, x0) ≈ Vθmax(x0) which will allow comparison
of the critical values of (3.1) with the criterion (2.4). Another definition of the swirl
parameter based on axial fluxes of azimuthal and axial momentum is commonly used
in the literature on swirling jet flows (see, for instance, Farokhi et al . 1988; Panda
& McLaughlin 1994). However, Farokhi et al . (1988) have shown that this definition
is inappropriate for studying vortex breakdown: two swirling jets with completely
different exit velocity profiles may then have the same value of the swirl parameter
although only one experiences breakdown.

The Reynolds number is defined as

Re ≡ 2RV̄ x(x0)

ν
, (3.2)

where V̄ x(x0) is the mean axial velocity in the jet and ν is the kinematic viscosity of
water. In practice, the mean axial velocity in the jet is taken to be V̄ x(x0) = VS=0

x (0, x0)
because the axial velocity in the absence of rotation (S = 0) displays an almost flat
top-hat profile (figure 4b). Under this condition, the axial velocity at r = 0 provides a
good estimate of the mean axial velocity in the jet.

Figure 4 illustrates the velocity profiles measured at x = x0 when S is varied



Vortex breakdown in swirling jets 193

–0.02

–0.01

0

0.01

0.02

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0

(a)
S = 0
S = 0.33
S = 0.68
S = 0.92
S = 1.08
S = 1.33

A
zi

m
ut

ha
l v

el
oc

it
y 

(m
 s

–1
)

0

0.005

0.010

0.020

0.025

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0

(b)

A
xi

al
 v

el
oc

it
y 

(m
 s

–1
)

0.015

r /R

Figure 4. (a) Axial and (b) azimuthal velocity profiles at x0 = 24 mm for various swirl parameters
S; Re = 666, D1. Increasing rotation distorts the axial velocity profile near the axis from its flat
shape at S = 0. Note that the azimuthal velocity is approximately maximum at r ≈ R/2.

and Re remains fixed. When S = 0, the axial velocity profile is top-hat. But as S
is gradually increased, the azimuthal and axial components of the motion interact
in a non-trivial manner due to the presence of the contraction which results in the
distortion of the axial velocity profile near the axis (figure 4b). This effect is due to the
increase of angular velocity through the contraction zone which leads to a decrease
of the pressure near the axis. The induced axial pressure gradient implies an axial
acceleration of the flow on the vortex axis. This increase in axial velocity is not linear
with angular velocity so that the variations of swirl parameter with the rotation rate
of the motor display a saturation trend.

Conversely, when the rotation rate of the motor is kept constant, the angular
velocity Ω increases with Re (figure 5). This behaviour is also encountered in confined
tubes (Leibovich 1978; Althaus et al . 1995) and generally explained by a decrease
in vortex-core size of the type DRe−1/2. However, in our situation, the vortex core
radius remains nearly constant as seen from figure 5(a). The increase of circulation
with flow rate is probably a complex effect of our rotating system.

Since the swirl parameter (3.1) is measured directly in the upstream flow at each
incrementation of the motor rotation rate, a difficulty of interpretation arises when
the swirling jet experiences breakdown close to the nozzle: the swirl parameter
can then only be measured a short distance upstream of the stagnation point.
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Figure 5. (a) Axial and (b) azimuthal velocity profiles at x0 = 24 mm for the same rotation rate of
the motor ω = 0.44 r.p.m., but for two different Reynolds numbers Re = 743 and Re = 460; D1.
A higher axial velocity produces a stronger azimuthal velocity. The vortex-core size defined by the
radius where Vθ is maximum is similar for Re = 743 and for Re = 460.

Consequently the measurement is affected by the presence of the stagnation point
and it is not an objective estimate of the swirl parameter imposed ‘far upstream’.
In order to circumvent this difficulty, the breakdown thresholds Sca and Scd for
onset and disappearance of breakdown respectively (see § 4.2) are based upon the
values measured at the step preceding breakdown onset and at the step just after
its disappearance. This procedure is sufficiently accurate since the rotation rate is
varied in small steps of 2.5–5% of the final rotation rate needed for breakdown onset.
Because of the saturation trend of the swirl parameter variations with rotation rate
of the motor, this protocol introduces at most a relative error of only 1% on the
actual value of Sc.

However, when the true swirl value is needed and breakdown has actually taken
place, the swirl parameter is extrapolated from the data measured at the steps preced-
ing breakdown through a least square fit with the function S = a(1− exp(bω)), where
ω is the angular velocity of the motor and (a, b) are fitting constants computed for
each experiment. Such an extrapolation is only performed to yield the corresponding
value of the swirl parameter in figure captions and to study the variations in the
location of the stagnation point with swirl parameter.
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(b)(a)

Figure 6. Flow visualizations of bubble for Re = 606, S = 1.42, D2. Two laser sheets are simulta-
neously produced in a meridional plane and in a slanted plane from the horizontal. The upstream
portion (a) is axisymmetric unlike the tail (b) of the bubble. Note that for the visualizations where
both lasers were used simultaneously, the parameters Re and S could not be measured by LDA
and were deduced by extrapolation, but with less precision, from the imposed global parameters:
flow rate and rotation rate.

4. Portrait of the various breakdown states
For ease of presentation, we first discuss the observed flow states from a static

point of view: the various breakdown configurations observed and the flow regime
diagrams are the main focus of the present section. A more dynamical point of view,
i.e. the evolution of the flow structures as a function of S is taken in § 5.

4.1. An attempt at classifying vortex breakdown states

Four distinct breakdown states have been identified: two main configurations, the
bubble and the cone, and two related configurations, the asymmetric bubble and the
asymmetric cone. A common feature of these states is the presence of a stagnation
point which is located on the axis for the bubble and the cone, or which undergoes
precession around the axis in the case of the asymmetric bubble and the asymmetric
cone. The characteristics of the flow downstream of the stagnation point markedly
differ for the bubble and the cone.

Since the bubble has already been extensively documented in confined tubes ex-
periments (Sarpkaya 1971; Faler & Leibovich 1977), our discussion will be kept as
brief as possible. Figure 6 illustrates typical flow visualizations of a bubble. Two laser
sheets were produced in a meridional plane through the jet axis and in a slanted
plane at a 20◦ angle from the horizontal, the latter cutting through the middle of
the bubble in figure 6(a) and through its tail in figure 6(b). Fluorescein dye is not
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Figure 7. Contours of constant axial (a) and azimuthal (b) velocity measured by LDA in a bubble
for Re = 687, S = 1.4, D2. Contour interval is 0.155 cm s−1. Negative contours are indicated by
dashed lines. The location of the front stagnation point is indicated by a circle.

uniformly distributed in the jet because the injection was either beginning (figure 6a)
or ending (figure 6b). The vortex expands abruptly at a streamwise station located
0.5D from the nozzle exit and encloses an ovoid region of slow recirculating flow.
The bubble size is 1.5D − 2.5D in diameter as well as in streamwise extent. The
upstream inner surface has a paraboloid shape. The comparison between figures 6(a)
and 6(b) indicates that the upstream region of the bubble is axisymmetric unlike
the downstream portion where a spiral with two arms is seen. The entire upstream
configuration of the bubble, i.e. the axial location of the stagnation point and the
bubble diameter, is almost stationary. The tail is not steady and farther downstream,
the flow is disordered. In order to complement the visualizations by quantitative mea-
surements, axial and azimuthal velocity contours measured by LDA are displayed
on figure 7(a,b). Azimuthal and axial velocities are very weak in the internal zone
compared with those in the surrounding flow. The axial velocity contours (figure
7a) indicate that the internal zone is filled in its outer periphery and emptied in the
region around the axis, a feature consistent with the two-celled internal structure
revealed by the LDA measurements in confined tubes of Faler & Leibovich (1978).
The axial velocity contours resemble the instantaneous contours obtained by Spall et
al . (1990) in unsteady three-dimensional numerical simulations. Typical fluctuation
levels around the averaged velocities are of the order of 0.4 cm s−1 in the downstream
part of the bubble and 0.1 cm s−1 in its upstream part in the stagnation zone. The
level of axisymmetry and the nature of the recirculating flow are examined in § 7 and
§ 8 respectively.

The cone, which seems not to have been observed previously, is shown on figure
8†. As in figure 6, two laser sheets were also used. In sharp contrast with the
bubble, the expansion of the vortex at the stagnation point is not followed farther
downstream by a contraction, i.e. a flow toward the axis enclosing a stagnation
zone. This breakdown state takes the form of a conical sheet flowing over an open

† A colour image can be viewed and/or downloaded on the Internet at
http://www.ladhyx.polytechnique.fr/
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Figure 8. Flow visualization of cone for Re = 606, S = 1.37, D2. Two laser sheets are simultaneously
produced in a meridional plane and in a slanted plane from the horizontal. The cone is axisymmetric
even far downstream. See remark in caption of figure 6 regarding the evaluation of Re and S .

region of stagnant fluid. As for the bubble, the inner surface near the apex has a
paraboloid shape, but farther downstream it takes a conical shape. The thickness
of the conical sheet continuously decreases with downstream distance from the
stagnation point. Instabilities are observed to grow on the sheet so that, at about
2–3 diameters downstream of the stagnation point, the conical sheet distorts, rolls
up into vortices before breaking into weak turbulence. These instabilities may result
from the streamwise shear within the sheet or from a centrifugal instability due to the
azimuthal motion within the sheet, or more probably from a combination of both.
The flow within the cone is only quasi-steady: secondary recirculating currents are
present but they are much weaker and slower than in the case of the bubble. We shall
see in § 8 that the cone angle varies with time in a regular and well-defined fashion
while the stagnation point wanders back and forth along the jet axis. Because of the
slow secondary motion experienced by the cone, we have not been able to carry out
reliable LDA measurements.

The asymmetric cone (figure 9) and the asymmetric bubble (figure 10) evolve
from the cone and the bubble respectively and are observed for larger Re. They
are qualitatively similar, except that a precessing motion of the stagnation point is
superimposed on the dynamics. In the visualizations of figures 9 and 10, only one
meridional laser sheet is shone through the flow. The precession is made evident by
the fact that the stagnation point is not located on the nozzle axis but is slightly
off axis. In figure 9, this eccentricity is further made visible by the deflection of a
dyeless central filament as it approaches the stagnation point. The deformation of
this particular filament is observed to wander regularly from one side of the jet axis
to the other. The downstream extent of the conical sheet is about 1D–1.5D, which is
somewhat smaller than for the cone (figure 8). Indeed, since Re is larger, instabilities
are likely to be stronger and the disorganization of the conical sheet moves upstream,
closer to the stagnation point.
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Figure 9. Flow visualization of asymmetric cone for Re = 916, S = 1.31, D1. The eccentricity of the
stagnation point is made visible in this photograph by the deviation of a lightly coloured central
filament.

Figure 10. Flow visualization of asymmetric bubble for Re = 1022, S = 1.35, D2. The stagnation
point is located away from the axis and is observed to wander regularly from one side to the other.

The asymmetric bubble visualization (figure 10) also demonstrates the asymmetric
nature of the flow in the stagnation point region to be compared with the perfect
symmetry prevailing in the bubble case (figure 6). Instantaneous measurements of
the two-dimensional velocity field pertaining to spiral breakdown made by Brücker
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(1993) exhibit a similar asymmetry. The eccentricity of the stagnation point was also
observed to move with time from one side to the other. According to visualizations,
recirculating motions within the stagnation zone are more intense and the downstream
part of the asymmetric bubble is more open and unsteady than for the bubble.
However, the asymmetric bubble is observed to undergo a noticeable contraction
further downstream, a feature which clearly distinguishes it from the asymmetric cone
state. Visualizations in a horizontal plane at axial locations close to the stagnation
point have confirmed the precession of the asymmetric cone and asymmetric bubble in
the same direction as the upstream vortex flow in agreement with Brücker (1993). The
period of rotation is, for instance, 7 s for an asymmetric cone observed at Re = 866
with the D1 nozzle and 4 s for an asymmetric bubble obtained with the D2 nozzle at
Re = 1086.

The instantaneous measurements of Brücker (1993) in a spiral type breakdown have
revealed a strong similarity with the bubble: the spiral is nothing but a bubble with an
off-axis stagnation point that rotates around the vortex axis. Therefore, when a single
dye filament initially located on the jet axis is used for visualization, its deflection by
the off-axis rotating stagnation point results in the formation of a characteristic spiral
structure. The existence of a stagnation point in the vicinity of the first kink of the
spiral is then inferred by the presence of dye tongues that move upstream towards the
stagnation point (see photographs of spiral breakdown by Lambourne & Bryer 1961).
The latter point is crucial in order to establish the existence of a spiral breakdown with
a stagnation point because the flows under consideration are highly prone to helical
instabilities that could also result in a spiral filament structure without requiring
the presence of a stagnation point. We therefore expect that if a single filament of
dye were used, the present asymmetric bubble would appear as a spiral breakdown.
However, our observations differ in several respects from some previous studies in
confined tubes (Sarkpaya 1971; Faler & Leibovich 1977; Garg & Leibovich 1979).
For instance, we have observed that the asymmetric bubble lives in the same range of
axial stations as the bubble. This is in sharp contrast with the aforementioned authors
who report that the spiral state forms at axial locations well downstream of those for
the bubble. Furthermore, these investigators report that, as the Reynolds number is
increased, the spiral evolves into a bubble. In the present study, the opposite scenario
holds: the bubble turns into an asymmetric bubble with increasing Reynolds number
in agreement with the experiments of Brücker & Althaus (1995) and Althaus et al .
(1995). Differences in the geometry of the various experiments might explain these
discrepancies.

4.2. Flow conditions in parameter space

The experimental conditions that have been examined in detail are summarized in
parameter space for each nozzle on figure 11(a,b). The symbols Sca and Scd denote
the threshold values for appearance and disappearance of breakdown as the swirl
is increased and decreased respectively. We recall that an objective measure of the
swirl parameter could not be obtained in the presence of breakdown (see § 3.3). As a
result, since the rotation rate is increased in small steps, Sca is based upon the value
measured at the step immediately preceding breakdown. Conversely, Scd is the value
measured at the step just beyond the disappearance of breakdown. Consequently,
breakdown occurs when S > Sca and, if there is no hysteresis, Sca = Scd. In the
range of Reynolds numbers tested (300 < Re < 1200), vortex breakdown occurs
when S > 1.22–1.42 for the D1 nozzle (figure 11a) and S > 1.28–1.57 for the D2 nozzle
(figure 11b). The transition value shows no obvious trend with Reynolds number.
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Figure 11. Critical values for appearance Sca and disappearance Scd of breakdown in (Re, S)
parameter space for each nozzle: (a) D1, (b) D2.

Hysteresis has been observed in well defined domains. The upper limit in Reynolds
number above which hysteresis is no longer detectable is similar for both nozzles:
Re = 839 ± 27 for D1, and Re = 918 ± 13 for D2. Hysteresis is not observed when
Re 6 626 for D1. Above Sc, the two main configurations, namely the bubble and the
cone, have remarkably been observed for the same values of Reynolds number and
swirl parameter. This apparent bistability is further discussed in § 4.5. The asymmetric
bubble and cone are observed at larger Reynolds numbers than the bubble and the
cone: the boundary between the axisymmetric and asymmetric states is located at
Re = 839± 27 for the D1 nozzle and Re = 976± 45 for the D2 nozzle.

4.3. Experimental validation of vortex breakdown transition criteria

Several definitions of the swirl parameter have been introduced in the past in accor-
dance with either the particular vortex model selected or the type of measurement
used. Each definition is associated with a distinct breakdown criterion. Let us com-
pare our experimental threshold with some of these criteria beginning with the one
derived in § 2.

From the simple breakdown criterion (2.4) established in § 2 for the Rankine
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established in § 2.

vortex, it is first possible to account for the measured critical value Sc = 1.4 ± 0.18.
As mentioned in § 3.3, the azimuthal velocity at r = R/2 is approximately equal
to the maximum aximuthal velocity Vθ(R/2) ≈ Vθmax. Consequently, according to
equation (2.4), the theoretical value for the breakdown of a Rankine vortex is
Sc ≈ 2Vθmax/Vx(0, x0) =

√
2 = 1.41 which is remarkably close to the experimental

value Sc = 1.4± 0.18.
For a more precise evaluation based on equation (2.3), the critical value of the

interpolated parameter

Si =

(∫ ∞
0

V 2
θ (r, x0)

r
dr

)1/2

Vx(0, x0)
, (4.1)

has been directly calculated from the actual velocity profiles measured at critical.
Such data are available only for some experimental runs because most of the time,
S and Re are obtained from single-location measurements and the detailed velocity
profiles have not been measured. The experimental results are compared with the
theoretical value 1/

√
2 = 0.707 predicted by criterion (2.3) on figure 12. Regardless

of the breakdown type, bubble or cone, there is a reasonably good agreement with
experimental observations, the discrepancy becoming larger at smaller Reynolds
number. This criterion has also been tested on the two completely different velocity
profiles measured in the swirling jet experiment of Farokhi et al . (1988). Criterion
(2.3) applied to the profiles measured close to the nozzle exit correctly predicts the
observations of these authors: Si ≈ 0.83 > 0.707 for the swirling jet with breakdown
while Si ≈ 0.58 < 0.707 for the swirling jet without breakdown. This further confirms
the validity of the breakdown criterion (2.3) which does not involve the nozzle
diameter. It may therefore be concluded that the simple criterion (2.3) is capable
of predicting quite accurately the onset of vortex breakdown. Note, however, that
its derivation assumes no confinement and the outer pressure to be uniform. The
presence of an outer adverse pressure gradient is widely known to be a critical
factor in triggering vortex breakdown in confined tubes (Sarpkaya 1974; Escudier &
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Zehnder 1982; Althaus et al . 1995). In such instances, the criterion derived here is
not expected to apply.

Spall, Gatski & Grosh (1987) have proposed a breakdown criterion based on
the Rossby number Ro (inverse of the swirl parameters) more precisely defined as
Ro = Vx(r

∗, x0)/r
∗Ω, where Ω = limr→0 Vθ(r, x0)/r is the core angular velocity and r∗

the radius of maximum azimuthal velocity. A survey of various experimental studies
has led these authors to suggest the empirically determined critical value Roc ≈ 0.65.
The experimental critical Rossby number Roc is displayed in figure 13 for the same
experimental data as in figure 12. The results of the various experimental runs are
somewhat dispersed and a definite dependence on nozzle diameter is noticeable:
Roc = 0.51–0.65 for the D1 nozzle and Roc = 0.80–0.84 for the D2 nozzle. The
reason for this dependence on nozzle diameter lies in slight differences in the velocity
profiles around the radius r∗ of maximum azimuthal velocity: as shown on figure
14, normalized azimuthal velocity profiles are nearly identical for both nozzles while
normalized axial velocity profiles noticeably differ in the range 0.5 < r/R < 1, for
almost the same values of the control parameters Re and Si.

Other investigators (see, for instance Sarpkaya 1971) use as critical control parame-
ter for the onset of breakdown, the maximum swirl angle Sa defined as the arctangent
of the ratio between azimuthal and axial velocity. For the same experimental data as
in figure 12, the critical maximum swirl angle Sa is found to be in the range 44.5◦–49◦
for the D1 nozzle, and in the range 43.3◦–43.6◦ for the D2 nozzle. By comparison,
Sarpkaya (1971) reports a critical value of about 50◦ for the bubble, regardless of
Reynolds number.

4.4. Axial evolution of swirl parameter

The axial variations of the swirl parameter S(x) have been documented when the
swirl parameter S = S(x0) is slightly above the threshold of breakdown. The local
swirl parameter S(x) defined as in (3.1) but with varying values of axial distance x,
has been measured at different stations upstream of the two cones existing at distinct
values of Reynolds number (figure 15a). The interesting feature is that S(x) remains
almost uniform upstream of the stagnation point in spite of the important decrease
in both azimuthal and axial velocities (figure 15b,c). In order to understand this, the
local parameter Si(x) defined as in (4.1) but with x0 replaced by x, can be written in
the form Si2(x) = 1

2
+ (P∞ − P1)/ρV

2
x (0, x). In § 2, we have proven that a necessary

condition for breakdown is P1 = P∞. Hence, at critical, Si2(x) = 1
2

everywhere along
the streamline on the jet axis. Furthermore, if one assumes a Rankine vortex azimuthal
velocity distribution, the above identity leads to S(x) ≈ √2 for all x. This means that
the critical swirl Sc does not depend on selected axial location, provided that it is
measured sufficiently far from the stagnation point.

4.5. Controlling factors for the occurrence of the bubble or cone states

The bubble and cone have been observed to occur for the same values of the control
parameters (Re, S) and for the same nozzle, thereby lending support to the coexistence
of bistable states (see state diagrams on figure 11). However, the fact that the domains
of existence of the bubble and cone do not coincide for the D1 and D2 nozzles (figure
11) may be attributed, to a certain extent, to different flow conditions at the nozzle exit.
As seen in figure 14, the profiles of axial and azimuthal velocities are slightly different
for the D1 and D2 nozzles, especially the axial velocity in the range 0.5 < r/R < 1.

Moreover, bistability seems to be partly only apparent, another hidden parameter
playing a crucial role: our numerous experimental observations strongly support the
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Figure 15. (a) Local swirl parameter S(x/D) at different axial locations x/D upstream of the two
cones existing for Re = 794 and Re = 573, D1. (b) and (c): azimuthal Vθ(R/2, x/D) and axial
Vx(0, x/D) velocities used to estimate the local swirl parameter S(x/D) upstream of the two cones;
(b) Re = 573, S = 1.29, (c) Re = 794, S = 1.29.

idea that small temperature inhomogeneities, as small as 0.1◦C, have a determining
influence on the kind of breakdown which is observed. In our experimental set-up,
such small temperature gradients may exist between the jet and the tank, although
extreme care was exercised to minimize such differences.

In order to prove the determining influence of temperature, the nature of the
observed breakdown state, bubble or cone, was effectively manipulated by purposely
adjusting the temperature of the upper constant-head reservoir by a small amount of
order 0.1◦C. According to our observations, a greater temperature in the jet, relative
to the tank, promoted the cone whereas a lower temperature favoured the bubble.



Vortex breakdown in swirling jets 205

An estimate of the importance of buoyancy effects may be obtained from a simple
calculation. For pure water at 20◦C, a difference in temperature of 0.1◦C between
the jet and the tank produces the relative density difference ∆ρ/ρ = 2 × 10−5. The
Richardson number Ri1 ≡ ∆ρgD1/(ρV

2
x ) based on the nozzle diameter D1 = 4 cm

and a jet velocity Vx = 2 cm s−1 is then equal to Ri1 = 0.02. At first glance, buoyancy
effects appear negligible. A more careful reasoning must be carried out that takes
into account the peculiar features of the breakdown states. As demonstrated in § 2,
one expects the pressure P in the stagnation zone of the cone to be P = P∞, whereas
for the bubble, P = P1 6 P∞. One may proceed one step further by examining
whether this pressure difference P∞ − P1 differentiating the bubble from the cone is
comparable to the pressure difference induced by buoyancy effects. The Richardson
number Ri2 measuring the relative magnitude of buoyancy forces compared to the
pressure difference P∞ − P1 is defined by Ri2 ≡ ∆ρgD1/(P∞ − P1) = Ri1Vx/∆Vx,
where ∆Vx/Vx is the relative difference of upstream axial velocity between the bubble
and the cone. Since Ri1 = 0.02, a relative velocity difference ∆Vx/Vx of only 2% is
sufficient to yield Ri2 ≈ 1. Thus the suggested structural difference ∆Vx/Vx between
the bubble and the cone is typically of the same order of magnitude as buoyancy
effects generated by a 0.1◦C temperature difference. This elementary dimensional
argument is seen to account for the extreme sensivity of the selected breakdown state
to small temperature inhomogeneities.

We wish to emphasize that the cone is not a spurious state which exists only when
a temperature difference is present. This has been proved experimentally at Re = 575,
by adjusting the temperature so that the jet is colder than the tank by 0.1◦C. Buoyancy
effects, which seem to promote the cone, are then completely suppressed. A cone is
however observed, which demonstrates that this breakdown state exists by itself and
not as a result of buoyancy effects.

Furthermore, when no temperature differences are measurable between the jet and
the bulk fluid (i.e. below 0.1◦C), both states are observed for the same experimen-
tal conditions and within a 10 mn time interval. These experimental observations
demonstrate that the bubble and cone are two distinct states and not a single state
modified by temperature inhomogeneities. This conclusion is strongly corroborated
by the fact that there is always a clear distinction between bubble and cone and that
no intermediate or ‘hybrid’ states have been observed. These observations suggest
also that a multiple state domain is likely to exist in (Re, S) parameter space, but
it is ‘blurred’ by the high sensitivity of the breakdown states to small temperature
inhomogeneities present in our apparatus.

5. Dynamical features
This section is devoted to a description of the typical evolution of the geometrical

swirling jet shape as the swirl parameter S is slowly increased from zero to the
breakdown threshold Sc while the Reynolds number is kept constant. We do not
seek to give a comprehensive description in the entire parameter range below Sc, but
only to present how breakdown arises and from which configuration it emerges. A
detailed study of the regime S < Sc is postponed to future experiments.

5.1. Helix configuration

The main effect of increasing the rotation rate from zero is to enhance the development
of helical disturbances and to distort the swirling jet into a steady helix configuration
until breakdown occurs. Figure 16 presents a flow visualization of the swirling
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(b)(a)

Kelvin–Helmholtz-like
billows

Spiral mode

Figure 16. (a) Flow visualization of helix configuration for Re = 606, S = 1.41, D2. Two laser sheets
are simultaneously produced in a meridional plane and in a slanted plane from the horizontal. The
horizontal laser sheet reveals the spiral shape of the swirling jet which accounts for the ‘trident’
pattern observed in a meridional plane passing through the jet axis. See remark in caption of figure
6 regarding the evaluation of Re and S . (b) Schematic representation of helix configuration.

jet, together with a schematic interpretation, below breakdown onset for the D2

nozzle at S = 1.41 and Re = 606. Visualization is achieved by means of two laser
sheets generated in a meridional plane containing the jet axis and in a slightly
slanted horizontal plane. The swirling jet is seen to consist of a steady helix with
a spiral two mode, spatially developing in the axial direction and rotating in the
same azimuthal direction as the upstream flow. We emphasize that the azimuthal
wavenumber is exactly m = +2 if one assumes a modal decomposition of the form
exp i(mθ + kx). The step of the helix is about 1

8
– 1

4
turn over an axial distance of

one diameter. In addition, Kelvin–Helmholtz-like† instability induces roll-up of the
helix in the streamwise direction, thereby leading to a disorganization of the whole
pattern farther downstream. Visualizations indicate that the Kelvin–Helmholtz-like
roll-up process does not take place uniformly in the azimuthal direction around the
helix.

The swirling jet is observed to take a helical shape in all experimental runs
below onset of breakdown, for both the D1 and D2 nozzles. For the smaller D2

nozzle, the m = 2 helical mode always prevails in the entire range of Reynolds
numbers 300 < Re < 1100, but it is interesting to note that exploratory experiments
performed at the larger Reynolds number Re = 1690 have revealed the existence

† The word ‘like’ is used to stress that it is not strictly speaking Kelvin–Helmholtz instability
since the shear is not only axial but also azimuthal. In addition, the jet is rotating and may be
subjected to centrifugal instability as discussed in § 9. Similar structures are observed in the absence
of swirl in the pure jet flow case.
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Figure 17. Horizontal cross-section of swirling jet for the larger Reynolds number Re = 1690,
S = 1.3, D2. This Reynolds number is beyond the range of investigation of the present study.

of a well defined m = +3 mode below breakdown onset (figure 17). For the larger
D1 nozzle, the m = 2 mode is only observed at moderate Reynolds numbers Re <
750. For higher Reynolds numbers 750 < Re < 1200, a complex and unsteady
regime prevails which involves a competition between the m = 2 and m = 3 helical
modes. A detailed study of the associated spatio–temporal dynamics has not been
attempted.

It should be emphasized that the spatial phase of all helical patterns observed
below breakdown onset varies at random from run to run and it is very sensitive to
the manner in which the apparatus has been mounted. Such a behaviour indicates
that these helical structures are indeed intrinsic to the swirling jet. They are clearly
not spurious modes induced by tank confinement effects.

The formation of the helical structure as the swirl parameter S is increased from
0 can be described through a sequence of detailed visualizations for the D2 nozzle at
Re = 633 (figure 18). When S = 0, the flow has a highly axisymmetric jet configuration
which remains laminar down to the bottom of the tank. As S is increased to 0.32
(meridional visualization of figure 18a), the swirling jet becomes noticeably unstable
at 7D–8D downstream, with an apparent decrease in diameter. Instabilities develop
into billows travelling in the streamwise direction. As shown in the cross-sectional
visualizations taken at different axial locations, helical disturbances begin to noticeably
distort the swirling jet at x = 3D and they continue to develop gradually along the
stream. At x = 9D–10D, the jet displays a large stationary spiral shape consisting of
two distinct arms. For S = 0.57 (figure 18b, meridional visualization), the instability
starts farther upstream and in addition to the apparent decrease in diameter, branching
takes place. In the horizontal cross-sections, the swirling jet seems to ‘hesitate’ between
modes m = 2 and m = 3, and the azimuthal structure remains irregular and unsteady
without any clearly identifiable dynamics. When S = 0.94 (figure 18c), the swirling jet
has achieved a fully mature helix configuration. However, the helix suddenly rotates
at regular time intervals by half a turn in the same direction as the upstream flow
rotation. After each sudden rotation, the phase of the spiral mode appears to remain
constant until another rapid turn is initiated. The period of the motion is around 32
s. For both D1 and D2 nozzles, this rotational motion of the helix is only observed
at intermediate values of the swirl. For larger swirl (figure 18d,e), the helix remains
perfectly steady, except for the presence of travelling Kelvin–Helmholtz-like billows.
As S is increased closer to the breakdown threshold, the spiral structure appears
further and further upstream until it reach x = 1D. When S = 1.17 (figure 18d), the
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Figure 18. Meridional (top) and horizontal (bottom) cross-section visualizations of swirling jet for Re = 633, D2 and increasing values of S: (a) 0.32,
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1 2 3

4 5 6

7 8 9

Figure 19. Time sequence of events leading to the formation of a cone at 30 s time intervals;
Re = 723, S = 1.33, D1.

spiral mode m = 2 appears at the station x = 2D–3D, as evidenced in the horizontal
cross-sections, whereas, when S = 1.42 (figure 18e), the same spiral appears abruptly
between x = 1D and x = 2D.

5.2. Onset of breakdown

When the swirl parameter is further increased slightly above the values considered in
the preceding section, the helix state give rise to vortex breakdown. For both nozzles,
breakdown onset is qualitatively similar but it takes much more time for the D1

nozzle than for the D2 nozzle. Characteristic transient times are T1 = 6–10 mn for
the D1 nozzle and T2 = 2–3 mn for the D2 nozzle. This seems to suggest that the
process takes place on a time scale T ∝ D2 and that is not affected by confinement
effects: the ratio T1/T2 ≈ 3 is of the same order of magnitude as (D1/D2)

2 = 2.6. As
a result of this difference in time scales, the various phases leading to the emergence
of breakdown are more distinctly observed for D1 than for D2. They are, however,
similar and we have therefore chosen to restrict the discussion to the case of the D1

nozzle.
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When S is adjusted slightly below the threshold Sca and kept constant, a little
bubble, signalling the presence of a transient stagnation point, sometimes appears
on the axis of the helix at 4D downstream. But this incipient bubble is quickly
destabilized and carried away by the Kelvin–Helmholtz-like billows.

When the right value Sc for the onset of breakdown is established, a similar
scenario initially occurs, but eventually, a nascent bubble succeeds in ‘maintaining’
itself within the flow in spite of the surrounding perturbations. As illustrated in the
picture sequence of figure 19, this little bubble moves upstream while swelling and
being fed by the inner recirculating flow and its probability of survival increases with
its size and its proximity to the nozzle exit. The differentiation between bubble and
cone takes place in the last stage of upstream migration of the incipient bubble. The
bubble can stay forever in a bubble state or, as in figure 19, it may evolve slowly
into a cone as a result of internal secondary motion. Note that the characteristic time
scales of formation T1 and T2 given above are measured from the instant where a
permanent bubble is seen in the flow to the full development of the breakdown state.

Any subsequent increase in S above Sc leads to an upstream motion of the
breakdown state towards the nozzle exit. This scenario is consistent with earlier
descriptions of vortex breakdown onset by Sarpkaya (1971), Escudier (1988) and
Brücker & Althaus (1995).

6. Hysteresis phenomena
Hysteretic behaviour at the threshold of breakdown has been confirmed and

identified by following the changes in the stagnation point location x/D as the swirl
parameter S is increased and then decreased. An example of hysteresis involving the
cone is displayed on figure 20. Meridional views of the observed states at different
points along the hysteresis loop of figure 20 are also displayed. When S is increased,
breakdown arises at S = Sca when the equilibrium location of the stagnation point is
X = Xa (figure 20). As S is increased beyond Sca, x/D decreases, i.e. the stagnation
point moves upstream. Conversely, when S is decreased, the stagnation point moves
downstream following exactly the same path in (S,X) space as for the increasing case.
When S is decreased below Sca, breakdown is still observed but the stagnation point
is located downstream of Xa. Breakdown only disappears when S decreases down to
Scd < Sca, i.e. when the stagnation point moves beyond Xd. Although the hysteresis
loop is small in terms of the swirl parameter S , it is undoubtedly of finite extent when
measured by the difference Xd −Xa. A similar scenario holds for the bubble.

In order to confirm the presence of hysteresis, finite-amplitude perturbations have
been imposed on various breakdown states in ranges of Re displaying hysteresis loops.
In practice, the perturbations were produced by slightly constricting the flexible exit
pipe of the tank with small kicks thereby generating a sharp transient variation of
streamwise velocity induced by the resulting pressure wave. When the bubble and
cone were perturbed in this manner in the range S > Sca, sufficiently strong pertur-
bations succeeded in temporarily suppressing breakdown but breakdown ultimately
reappeared after a finite time. Metastable breakdown states arising in the range
Scd < S < Sca were also perturbed. For the D2 nozzle at Re = 660, S = 1.33, the
bubble was successfully swept away by applying appropriate perturbations and it
never reappeared within the next half hour. Other perturbations managed to suc-
cessfully restore the bubble because the associated decrease in streamwise velocity
promoted the development of a stagnation zone. A similar experiment was conducted
for the metastable cone observed for the D1 nozzle at Re = 790, S = 1.3. The cone
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Figure 20. Hysteresis loop of a cone in the (S, x/D)-plane. x/D denotes scaled axial coordinate of
the stagnation point; Re = 752, D1. The pictures show the states observed at each point labelled 1,
2, 3 of the path followed in the (S, x/D)-plane.

was suppressed by the application of perturbations and it failed to reappear within
the next hour. In contrast with the previous case, external perturbations never suc-
ceeded in restablishing breakdown: the little bubble which appeared was always swept
downstream before reaching a well developed stage. Further trials led to identical
results, thereby indicating that the cone is a state difficult to reach in the metastable
range.

7. Axisymmetric nature of vortex breakdown and loss of axisymmetry
The azimuthal structure of the various breakdown states was investigated by means

of flow visualization. Horizontal cross-sections of the swirling jet are collected on
figure 21 as a function of streamwise distance, for values of S just before breakdown
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Figure 21. Axial evolution of the azimuthal structure at different axial locations below and above
breakdown onset. Re = 606, D2. (a) Helix, (b) bubble. The double arrows indicate the axial extent
of the bubble. The circle in picture (b) at 3.04D identifies the precessing spiral core.

(figure 21a) when the swirling jet displays a helical shape and after breakdown when
the jet exhibits a bubble (figure 21b). According to figure 21, breakdown clearly
inhibits the development of helical disturbances to such an extent that the bubble
envelope (figure 21b) remains axisymmetric much further downstream than the helix
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Figure 22. Time variations of the axial velocity on the axis of the swirling jet in the vicinity of
cone stagnation point; Re = 656, D1.

configuration (figure 21a). Helical disturbances only manage to grow in the tail of
the bubble and they appear rather suddenly within a short streamwise distance. Such
deformations of the rear part of the bubble have already been reported by Faler &
Leibovich (1977) and Escudier & Zehnder (1982) under the name ‘two-tailed bubble’.
In their case it seems to be a separate state from the totally axisymmetric bubble,
although bistability and spontaneous change between these two types of bubbles have
been reported.

As seen in the cone horizontal cross-section of figure 8, the conical sheet is
axisymmetric over its entire extent.

When Re is larger, cone and bubble give way to the asymmetric cone and asym-
metric bubble respectively, in which case the stagnation point precesses around the
jet axis in a direction similar to the upstream vortex flow. This azimuthal motion can
be viewed as a loss of axisymmetry.

8. Temporal dynamics of the cone and the bubble
Recirculating motions produce secondary dynamics of the cone and the bubble

which are clearly distinct from the precessing motion of the stagnation point exhibited
by the asymmetric cone and bubble. Strong recirculating motions occur within the
bubble: the internal region is fed by two counter-rotating vortices and simultaneously
flushed through the space between these vortices. This mechanism has been reported
in detail by Sarpkaya (1971), Faler & Leibovich (1977, 1978) and Brücker & Althaus
(1995) and it is not further discussed here. An additional feature appearing in our
experiments is that the core of the spiral tail of the bubble (shown by a circle in the
cross-section at 3.04D of figure 21b) precesses about the swirling jet axis in the same
direction as the primary vortex motion. The period of rotation is 11 s for Re = 582.
Faler & Leibovich (1977) also found that the downstream recirculation zone rotated
in the same direction as the primary vortex motion. Unlike Faler & Leibovich (1977),
and as in Sarpkaya (1971), the streamwise location of the bubble is observed to
remain steady.

In contrast, the oscillations of the cone are slow and affect its whole structure. As
mentioned in § 4.1, its oscillatory behaviour is characterized by a regular wandering
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motion of the stagnation point along the swirling jet axis accompanied by variations
in the opening angle: the cone opens up when the stagnation point moves upstream
and vice versa. Temporal variations of the streamwise velocity in the vicinity of the
stagnation point (figure 22) demonstrate the regular nature of these oscillations. The
amplitude of the stagnation point oscillations decreases as its mean axial location
moves closer to the nozzle with increasing swirl. The period mainly depends on the
nozzle diameter: T = 425–600 s for the D1 nozzle and T = 200–240 s for the D2

nozzle. The period T approximately scales on D2 with a slight increasing trend as a
function of the Reynolds number.

It should naturally be checked that the observed oscillations constitute an inherent
feature of the cone and are not the result of confinement. Confinement may, a priori,
affect the flow in two different ways: first, it may result from interactions with the
tank walls. In this case, the oscillation period should scale as T ∝ L/Vx, where L
is the characteristic dimension of the tank and Vx the mean streamwise jet velocity.
Secondly, it may involve an emptying and filling process of a given volume V at a
flow rate F ∝ D2Vx, so that the period scales as T ∝ V/F ∝ V/(D2Vx). In this
case two scenarii may be envisoned: either the volume V is independent of nozzle
diameter, or it coincides with the volume bounded by the outer cone surface and the
tank walls, in which case V = const.− const.×D3 if the internal volume of the cone
is assumed to be proportional to the cube of the nozzle diameter. For any fixed Vx,
none of theses scalings can account for the observed increase of the period T with
D.

Flow visualizations indicate (figure 23) that the oscillations involve a kind of empty-
ing and filling process of the interior zone. In the successive meridional visualization
pictures of figure 23 the dynamics of the cone are followed over one oscillation
cycle. The time interval between each frame is not constant in order to show the
important phases of the oscillation. The instability of the conical sheet gives birth to
several ubiquitous vortices. When the cone is in its most closed configuration, two
prominent vortices are generated by the inward rolling up of the conical sheet. In
three-dimensional space, these vortices correspond to a toroidal vortex ring trapped
within the cone. The pictures on figure 23 demonstrate that the stagnation point
moves upstream while the opening angle and the radius of the vortex ring increase. A
simple explanation of this phenomenon can be given: according to the Biot–Savart
law, the vortex ring induces a counterflow towards the interior of the cone, which
contributes to its enlargement and to an upstream displacement of the stagnation
point. As the radius of the vortex ring correspondingly increases, the induced velocity
in the centre of the internal region weakens and, as a result, the cone closes up
again. In the last pictures of figure 23, one can see vortices reappearing on the inner
side of the conical sheet that will initiate another oscillation cycle. In addition, flow
visualizations have shown that slow recirculating motion exists within the stagnation
zone. Indeed, as a result of entrainment by the conical sheet, some internal fluid is
advected outside the stagnation zone along the sheet. A reverse upstream motion,
made visible by dye tracer, is generated along the axis in order to satisfy mass conser-
vation. Schematically, in meridional cross-sections, two large slowly counter-rotating
recirculating eddies are therefore nested in the cone.

In the light of the above discussion, the internal volume of the cone could also
have been considered in order to derive a scaling law for the oscillations. But, if
V ∝ D3, one obtains T ∝ V/F ∝ D2/Re. The period T should decrease with Re
which is contrary to observations. The observed scaling law for T remains therefore
unexplained.



V
o
rtex

b
rea

k
d
o
w

n
in

sw
irlin

g
jets

2
1
5

1 2 3 4

5 6 7 8
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9. Concluding remarks

The vortex breakdown phenomenon has been examined in a swirling jet as a
function of the swirl parameter S and the Reynolds number Re. When the swirl
parameter S is increased from zero while maintaining the Reynolds number fixed,
strong asymmetric disturbances gradually develop to form a steady helix configuration
which spatially rotates in the same direction as the upstream flow. As the swirl
parameter S reaches the critical value Sc ≈ 1.3–1.4, independently of the Reynolds
number and for both nozzle diameters D1 = 40 mm and D2 = 25 mm, a sudden
transition, referred to as vortex breakdown, takes place which is radically distinct from
the continuous evolution process observed in the range 0 < S < Sc: a stagnation
point appears in the weakly turbulent region of the swirling jet concurrently with
the development of a localized recirculation zone. This structure gradually moves
upstream until an equilibrium position is reached. The previous breakdown process
can give birth to four distinct configurations, namely the bubble, the cone, the
asymmetric bubble and the asymmetric cone. The bubble is similar to the state
already observed in confined tubes, whereas the cone does not seem to have been
previously identified. The asymmetric bubble, which corresponds to the spiral mode of
breakdown, differs from the bubble by the precession of the stagnation point around
the jet axis. Finally, the asymmetric cone is a variation on the cone in the same way
as the asymmetric bubble on the bubble. Both asymmetric states are observed at
large Reynolds numbers. Only the primary configurations, bubble or cone, prevail
for Re . 800. Measurable differences in the axial and azimuthal velocity profiles for
the D1 and D2 nozzles may, to a certain extent, explain the selection between bubble
and cone. However, for the same parameter values and for the same nozzle, bubble
and cone occur randomly from one experiment to another. The selected state has
conclusively been shown to be highly sensitive to minute temperature inhomogeneities
as small as 0.1◦C: resulting buoyancy forces are sufficient to drive the flow from one
breakdown configuration to another.

Breakdown states display hysteretic behaviour: in a range of swirl parameter values
Scd < S < Sca, the cone and bubble states are metastable, i.e. stable to infinitesimal
disturbances but unstable to finite-amplitude perturbations.

Breakdown is literally akin to a metamorphosis of the swirling jet as evidenced
in meridional as well as azimuthal flow visualizations: it inhibits the development
of asymmetric disturbances observed when S < Sc. Thus, the cone is perfectly
axisymmetric and in the bubble the development of helical disturbances is delayed
farther downstream. In the light of these results, the asymmetric feature observed in
the asymmetric cone and the asymmetric bubble may be interpreted as a secondary
breaking of rotational symmetry.

The cone undergoes slow temporal oscillations associated with recirculating motions
induced within the internal region. The bubble has been found to remain steady at a
fixed station on the jet axis. Its downstream tail precesses around the jet axis in the
same direction as the rotation of the upstream flow.

The existence of a cone state supports the view that the essence of vortex breakdown
lies in the presence of a stagnation point. This statement is further reinforced by the
fact that a simple theoretical argument based on the existence of a stagnation point
(§ 2) is capable of predicting the transitional swirl value Sc for breakdown onset.

In closing, it is essential to bear in mind that the basic state generated in the swirling
jet configuration intrinsically differs from its counterpart in other experimental set-
ups used to study vortex breakdown. The radial variations of Γ (r, x0) = rVθ(r, x0)
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Figure 24. Radial variations of circulation Γ (r, x0) = rVθ(r, x0) at x0 = 24 mm, deduced from
azimuthal velocity profiles in figure 4(a), for different swirl parameter values.

in the upstream swirling jet flow are represented on figure 24 for different swirl
parameter values S , as deduced from the azimuthal velocity profiles of figure 4(a).
The circulation initially displays a parabolic increase away from the axis r = 0, as one
would expect in solid body rotation. It then reaches a maximum and subsequently
decreases to zero for r > 0.7R. Thus, the total circulation for large r remains zero
since the no-slip boundary condition applies at the outer fixed nozzle wall and no net
circulation is thereby produced. This is in sharp contrast with the constant overall
circulation prevailing in the Batchelor and Rankine vortex models commonly invoked
to study breakdown in trailing line vortices. In the present swirling jet configuration,
there exists a finite annular region in which the magnitude of the circulation decreases
away from the centre of curvature (figure 24). It remains to be established whether
this feature is sufficient to make the flow centrifugally unstable.
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Willaime and Olivier Pouliquen who designed the experiment and performed the
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and Larry Redekopp are gratefully acknowledged. The authors are indebted to the
reviewers for many constructive suggestions.
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Althaus, W., Brücker, C. & Weimer, M. 1995 Breakdown of slender vortices. In Fluid Vortices
(ed. S. Green), pp. 373–426. Kluwer.

Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593–629.



218 P. Billant, J.-M. Chomaz and P. Huerre

Billant, P., Chomaz, J. M. & Delbende I. 1994 Tridents, bubbles and cone-like states in swirling
jets. Bull. Am. Phys. Soc. 39, 1921.
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