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This paper builds upon the investigation of Augier et al. (Phys. Fluids, vol. 26 (4),
2014) in which a strongly stratified turbulent-like flow was forced by 12 generators
of vertical columnar dipoles. In experiments, measurements start to provide evidence
of the existence of a strongly stratified inertial range that has been predicted for large
turbulent buoyancy Reynolds numbers %, = & /(vN?), where & is the mean dissipation
rate of kinetic energy, v the viscosity and N the Brunt—Viisild frequency. However,
because of experimental constraints, the buoyancy Reynolds number could not be
increased to sufficiently large values so that the inertial strongly stratified turbulent
range is only incipient. In order to extend the experimental results toward higher
buoyancy Reynolds number, we have performed numerical simulations of forced
stratified flows. To reproduce the experimental vortex generators, columnar dipoles
are periodically produced in spatial space using impulsive horizontal body force
at the peripheries of the computational domain. For moderate buoyancy Reynolds
number, these numerical simulations are able to reproduce the results obtained in
the experiments, validating this particular forcing. For higher buoyancy Reynolds
number, the simulations show that the flow becomes turbulent as observed in
Brethouwer et al. (J. Fluid Mech., vol. 585, 2007, pp. 343-368). However, the
statistically stationary flow is horizontally inhomogeneous because the dipoles are
destabilized quite rapidly after their generation. In order to produce horizontally
homogeneous turbulence, high-resolution simulations at high buoyancy Reynolds
number have been carried out with a slightly modified forcing in which dipoles
are forced at random locations in the computational domain. The unidimensional
horizontal spectra of kinetic and potential energies scale like C;&¥°k,”” and
Cy62%k;, " (8,/5), respectively, with C; = C, ~ 0.5 as obtained by Lindborg
(J. Fluid Mech., vol. 550, 2006, pp. 207-242). However, there is a depletion in
the horizontal kinetic energy spectrum for scales between the integral length scale
and the buoyancy length scale and an anomalous energy excess around the buoyancy
length scale probably due to direct transfers from large horizontal scale to small
scales resulting from the shear and gravitational instabilities. The horizontal buoyancy
flux co-spectrum increases abruptly at the buoyancy scale corroborating the presence
of overturnings. Remarkably, the vertical kinetic energy spectrum exhibits a transition
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at the Ozmidov length scale from a steep spectrum scaling like Nk’ at large
scales to a spectrum scaling like Cxe?’k; %, with Cx =1, the classical Kolmogorov
constant.
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1. Introduction

Remarkable progress in the understanding of flows strongly influenced by stable
density stratification and weakly influenced by rotation has been achieved during the
first years of this century. These conditions concern in particular the mesoscales in
the atmosphere and the submesoscales in the oceans. At these scales, the spectra
obtained in these two media present noticeable similarities and regularities (Garrett
& Munk 1979; Gargett et al. 1981; Nastrom, Gage & Jasperson 1984; Nastrom &
Gage 1985; Riley & Lindborg 2008). They are strongly anisotropic with different
power laws along the vertical and the horizontal. The vertical spectrum of kinetic
energy presents a N°k;® form, where N is the Brunt-Viisili frequency and k, the
vertical wavenumber, whereas the horizontal spectrum of kinetic energy scales like
&>k, >, where & is the mean kinetic energy dissipation rate and k;, the horizontal
wavenumber. Some high-resolution general circulation models (GCMs) and regional
models resolve the mesoscales range and also reproduce such a k;s/ ’ scaling law
although their vertical resolution is actually too low to simulate properly stratified
turbulence (Koshyk & Hamilton 2001; Skamarock 2004; Hamilton, Takahashi &
Ohfuchi 2008; Augier & Lindborg 2013). The anisotropy of the spectra is due to
the strong influence of the stratification, which is expressed by a small horizontal
Froude number F, = U/(NL,), where U is a typical velocity and L, a characteristic
horizontal length scale. A 8K2/3k;5/ : power law strongly suggests a cascade of energy
but does not indicate in which direction the energy cascades. In the previous century,
a downscale cascade from large scales toward small scales was predicted by theories
involving saturated gravity waves (Dewan & Good 1986; Smith, Fritts & Vanzandt
1987; Hines 1991; Dewan 1997). An inverse cascade was predicted by a theory
of stratified turbulence involving quasi-horizontal meandering motions of decoupled
horizontal layers (Riley, Metcalfe & Weissman 1981; Lilly 1983). However, Cho &
Lindborg (2001) showed by analysing airborne measurements that the third-order
structure function for the velocity fluctuations exhibits a negative linear dependence.
This is an observational evidence supporting the downscale energy cascade predicted
by the gravity wave turbulence hypothesis. But Lindborg (2007) computing spectra of
vertical vorticity and horizontal divergence from the same airborne data set showed
that they are of the same order in the mesoscale range. This observation invalidates
the gravity wave turbulence hypothesis that predicts a dominance of the horizontal
divergence so that the two hypotheses mentioned above cannot explain the anisotropic
geophysical spectra.

However, in the mean time, a new theory of strongly stratified turbulence has
emerged (Lindborg 2006; Brethouwer et al. 2007). This theory is quite different
from the previous theories involving gravity waves or quasi-horizontal vortices. Since
stratified flows exhibit thin horizontal layers (Riley & Lelong 2000), it is fundamental
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to consider a second Froude number based on a vertical characteristic length scale
L,. The vertical Froude number F, = U/(NL,) quantifies the interactions between
the different horizontal layers and therefore the importance of three-dimensional
processes. Many theoretical studies have been performed in the limits F), < 1, F, < 1
(Riley et al. 1981; Lilly 1983) whereas the scaling law F, ~ 1 emerges through an
invariance of the Boussinesq inviscid Euler equations under the condition F, < 1
(Billant & Chomaz 2001). In the limit F), < 1, F, ~ 1, propagative gravity waves
and non-propagative horizontal vortices of potential vorticity (PV) strongly interact
together and cannot be considered separately.

Actually, the reason why the limit F, < 1 was thought to apply to strongly
stratified flows may come from a quantitative difference between the viscous effects in
geophysical flows and in the flows produced experimentally or simulated numerically.
The characteristic sizes of the geophysical flows are indeed so large that the Reynolds
number Re = UL,/v, with v the viscosity, is considerable and diffusive effects at
these scales are negligible even though the structures are very thin with high vertical
gradients. In contrast, in the laboratory, even the large scales of strongly stratified
flows are usually influenced by dissipation because of the limited tank size. Vertical
advective transport and vertical viscous diffusion act with two different characteristic
length scales: the buoyancy length scale L, = U/N and the viscous length scale
L, = /vL,/U, respectively. The ratio between these two length scales is related to
the buoyancy Reynolds number &% = (L,,/LV)2 = ReFfl (Billant & Chomaz 2001).
Assuming the Taylor’s estimate & ~ U?/L,, Brethouwer et al. (2007) have shown
that % is proportional to the ‘turbulent’ buoyancy Reynolds number defined in
terms of the dissipation rate: %, = &/(vN?) > 1. In geophysical flows, the buoyancy
Reynolds number is typically high even though F) is small whereas it is difficult to
establish a high buoyancy Reynolds number in laboratory experiments of strongly
stratified flows (Godoy-Diana, Chomaz & Billant 2004; Praud, Fincham & Sommeria
2005; Augier et al. 2014). In the regime of small buoyancy Reynolds number, the
flow is quasi-two-dimensional with F, < 1 and coupled along the vertical only by
viscous effects (Godoy-Diana et al. 2004) as originally proposed in the theory of
Riley et al. (1981) and Lilly (1983). In contrast, recent numerical simulations of
turbulence in stratified fluids have succeeded in achieving sufficiently high buoyancy
Reynolds number to escape from this viscous-dominated regime characteristic of most
experiments. They exhibit downscale energy transfers, from large to small horizontal
scales, as in isotropic homogeneous turbulence both in hyperviscous numerical
simulations (Lindborg 2006; Waite 2011) and direct numerical simulations (DNS)
(Riley & de Bruyn Kops 2003; Brethouwer et al. 2007; Almalkie & de Bruyn Kops
2012; Kimura & Herring 2012; Bartello & Tobias 2013).

Lindborg (2002, 2006) investigated the consequences for strongly stratified turbul-
ence of the inviscid scaling analysis of Billant & Chomaz (2001), using numerical
simulations with highly anisotropic mesh and forced with vortical motions. His results
support the existence of a turbulent regime in strongly stratified flows (£}, < 1) with
a downscale energy cascade associated with horizontal spectrum of kinetic energy
scaling like &23k;, . Riley & Lindborg (2008) have argued that many geophysical
data could be interpreted by this strongly stratified turbulent regime. Brethouwer
et al. (2007) showed with DNS that the condition on the buoyancy Reynolds number
X = ReF,> > 1 or equivalently %, = &/(vN?) > 1 is necessary to reach the strongly
stratified turbulent regime (in addition to F, < 1), the threshold value being of the
order of %, ~ 10.
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In this case, strong vertical shears appear. As a direct consequence, the development
of Kelvin—Helmbholtz instability has been observed leading to transfers toward small
scales (Laval, McWilliams & Dubrulle 2003; Riley & de Bruyn Kops 2003; Hebert
& de Bruyn Kops 2006b; Deloncle, Billant & Chomaz 2008). The gravitational
instability can also develop in convectively unstable regions as shown for example in
the case of a columnar dipole bent by the zigzag instability (Waite & Smolarkiewicz
2008; Augier & Billant 2011). When the buoyancy Reynolds number is high enough,
there should also be a transition to isotropic spectra at the Ozmidov length scale
I, = (&/N*)'? ~ L,F,*’* (Lumley 1964; Ozmidov 1965) but no clear evidence for
such return to isotropy has been reported by Brethouwer et al. (2007). Carnevale,
Briscolini & Orlandi (2001) reported such transition in large eddy simulations (LES)
of stratified flows forced with large-scale gravity waves but their eddy damping was
designed to favour the formation of a k> range. Recently, Augier, Chomaz &
Billant (2012) showed that such a transition at the Ozmidov length scale occurs in
the case of the breakdown into turbulence of a dipole. However, Waite (2011) and
Augier et al. (2012) pointed out that the characteristic size of the overturnings is
of the order of the buoyancy length scale, which is larger than the Ozmidov length
scale since L,/l, ~ F,~"/?. This indicates that the scales between the buoyancy length
scale and the Ozmidov length scale are actually no longer in the strongly stratified
turbulent range.

Waite & Bartello (2006) and Lindborg & Brethouwer (2007) carried out numerical
simulations forced with internal gravity waves. Waite & Bartello (2006) forced the
flow with isotropic waves and showed that the results differ from the simulations
forced with vortical motions performed in Waite & Bartello (2004). In particular, the
scaling law F, ~ 1 did not emerge from the flows forced by gravity waves. However,
Lindborg & Brethouwer (2007) showed that the strongly stratified turbulence is similar
when forced with waves or with vortical motions provided that the vertical Froude
number of the forced waves is of order unity.

In contrast to numerical studies, it has not yet been possible to produce strongly
stratified turbulence in a laboratory experiment. In the experiments of Fincham,
Maxworthy & Spedding (1996) and Praud et al. (2005) in which decaying turbulence
was produced by towing a rake of vertical cylinders, the buoyancy Reynolds number
was typically too low at the time when data were collected. Augier et al. (2014)
investigated a new experimental set-up of maintained stratified disordered flows.
Columnar vortices are continuously forced by an arena of 12 vortex pair generators
in a large tank enabling %, of order unity to be achieved during long periods of
time. The buoyancy frequency is set to its highest value using salt as stratifying
agent so that the horizontal Froude number F) is low. While the flows are in the
strongly stratified regime, the vertical Froude number reaches values of order one
and overturning events are observed leading to the appearance of small horizontal
scales for the highest buoyancy Reynolds number achieved %, ~ 0.4. However, since
%, is moderate, the turbulence is still incipient. An inertial range does not appear
in the second-order structure functions but small-scale transfers increase when &%, is
increased. These experimental results need to be supported and extended to larger
buoyancy Reynolds numbers in order to bridge the gap between experiments and
theory.

In this paper, we carry out numerical simulations for large buoyancy Reynolds
numbers of strongly stratified flows forced with columnar dipole as in the experiments
of Augier et al. (2014). The forcing and the numerical methods are described in § 2.
We first investigate a flow generated with a forcing mimicking the experimental one
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in which dipoles are periodically produced by an impulsive force localized in real
space at the periphery of the computational domain (§ 3). In order to obtain larger
values of the buoyancy Reynolds number and to come closer to previous numerical
studies of forced strongly stratified turbulence, we consider in §4 a slightly different
forcing in which columnar dipoles are produced in the same way but at random
location in the computational domain.

2. Methods
2.1. Governing equations and numerical methods

The governing equations are the incompressible Navier—Stokes equations under the
Boussinesq approximation with standard and hyperviscous and hyperdiffusive terms

1
8,u—|—u-Vu:——Vp—bez+(sz—I—v4V8)u+f, (2.1)

Lo
db+u-Vb=Nu+ (kV?+v,V®)b, (2.2)

where u = (u,, uy, u;) is the non-divergent velocity (V -u =0) in Cartesian coordinates
(x,y,z) with z the vertical coordinate, p the pressure, e, the vertical unit vector, b =
gp'/po the buoyancy, g the gravity, p'(x, y, z, f) is the perturbation density relative
to the sum of a constant reference density py and a linear density profile p(z), N =
~—(g/po)(dp/dz) is the constant Brunt—Viisild frequency, v the kinematic viscosity,
k the mass diffusivity and v, is a constant hyperviscosity coefficient added for subgrid-
scale modelling of the dissipative range. Such hyperdissipation will not be used in the
first part of the paper, i.e. all of the simulations described in the present section and
in § 3 are DNS. A hyperdissipation will be used only for the simulations presented in
§4 and will be always smaller than the standard dissipation. The term f represents
the forcing which is described in the next subsection.

Equations (2.1) and (2.2) are simulated by means of a pseudo-spectral method
with periodic boundary conditions (see Deloncle et al. 2008, for details). Apart from
the forcing, the numerical methods are similar to those employed in Augier et al.
(2012). Time advancement involves the classical fourth-order Runge—Kutta scheme
for the nonlinear term and exact integration for the standard and hyperviscous and
hyperdiffusive terms. Most of the aliasing is removed by truncating 9/10 of the modes
along each direction. We use an adaptable time step procedure which maximizes the
time step over a Courant—Friedrichs—Lewy condition (Lundbladh et al. 1999; Augier
et al. 2012).

2.2. Forcing method and definitions of the physical parameters

In order to reproduce the experimental vortex generators, vertical columnar counter-
rotating vortex pairs are periodically produced in spatial space. Eight numerical dipole
generators are placed on the side of the numerical box as shown by the grey rectangles
in figure 1. Each of them produces periodically a dipole that propagates toward the
central part of the box. The numerical domain is a rectangular box with sizes ., =
30a in the two horizontal directions and size .Z, = 10-12a in the vertical direction,
where a is the radius of the vortices forced.

Figure 1 shows the vertical vorticity in horizontal cross-sections for four times just
after the beginning of a simulation and two times slightly later. At t=2.5 (figure la),
we see two dipoles that have been forced at the very beginning of the simulation.
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FIGURE 1. (Colour online) Horizontal cross-sections of the vertical vorticity field for six
instants at the beginning of a simulation for Re = 600 and F), = 0.85. Two dipoles are
forced every 7 time units during 0.5 time unit. (a—d) The flow at r =2.5, 7.5, 15 and
22.5, just after the first four forcing times =0, 7, 14, 21. (e,f) Later times: =50 and
t="70. The black rectangles indicate the location of the numerical dipole generators.

They have been generated by a constant force corresponding to four Lamb-Oseen
vortices applied between times t=0 and =1, =0.5 with abrupt switchings on and off.
More precisely, the vertical vorticity of the forcing f in the momentum equation (2.1)
is given by

1 I —(x=x)’ = (=)’
(Vxf)e=— Z — exp 5 (2.3)
it 23,4 4 a
where (x;, y;) is the centre of each vortex, Iy =—1,=13=—1,=1 their circulations

and a their radius. This forcing applied impulsively for a short time 7; results in the
formation of two dipoles very similar to the forcing field and to those observed in
the experiments. From a numerical point of view, the only particularity of the forcing

method is that the Fourier transformed force f has a non-random phase distribution
since it corresponds to coherent structures in physical space. The relative phase of the
Fourier components are indeed usually obtained by means of random processes (see
for example Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007).

For simplicity and without loss of generality, a and £2~! = 2na?/|I;| are taken
respectively as length and time units, i.e. are fixed to unity (£2 is the maximum
angular velocity of the vortices). The density perturbations p’ are non-dimensionalized
by aldp/dz|. The same symbols are kept for the non-dimensional variables. This
leads to the following definitions for the Froude number F), Reynolds number Re
and buoyancy Reynolds number & based on the forced vortices

2
F,= %, Re = .Qva , X =ReF,’°. (2.4a—c)
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FIGURE 2. (Colour online) Temporal evolution of the kinetic Ex and potential Ep energies
(a) and their dissipation rates &, & and total dissipation & (b) for F;, =0.85 and #Z =450
corresponding to the highest buoyancy Reynolds number obtained in the experiments. In
(a), the dashed line corresponds to the energy Eg), associated with the shear modes. In
(b), the dashed line corresponds to the dissipation due to vertical gradient of horizontal
velocity &%), The staircase curve shows P(#) the injection rate averaged over one injection
sequence of two dipoles, At/4="17.

The Schmidt number Sc = v/k is set to unity throughout the paper. The separation
distance between the two vortices of a pair b = \/ X —x)2+ (1 —»)? =
\/ (x3 —x4)%> + (y3 — y4)* is set to b =2a. Because of this relatively small separation,
the vortices are slightly deformed after their generation as can be seen in figure 1(a).

The forcing is periodic in time with a period At = 28 meaning that two new
dipoles are forced every At/4 =7. Accordingly, we see two new dipoles at t =7.5
(figure 1b). They have been just forced between r =7 and 7.5 on the opposite side
of the box. We can note that the vortices are still almost circular. Figure 1(c,d)
correspond to times ¢ = 15 and 22.5, respectively, just after the forcing of the third
and fourth pairs of dipoles in the right and left of the box. The forcing continues
periodically exactly in the same way so that, quickly, several columnar dipoles are
present in the numerical box and interact together (figure le,f). A white noise of
small amplitude corresponding to approximately 1% of the kinetic energy of the
statistically stationary flows is added to the velocity field at =0 in order to allow
the three-dimensionalization of the flows. In § 4, a slightly different forcing consisting
in a randomly located dipole generator will be used. This forcing will be described
in §4.1.

Figure 2(a) shows the time evolution of the kinetic energy (dark crumpled curve)
and potential energy (light curve). Figure 2(b) displays the total, kinetic and potential
dissipation rates (e, & and &, respectively) scaled by the mean injection rate P
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(continuous curves). The instantaneous energy injection rate P(¢#) depends on the
velocity field as (Alvelius 1999)

(R L . ot o o~
P(t):izk:f-f dt+§zk:(u-f +at-f), (2.5)

where dr is the time step, * denotes the complex conjugate, # is the Fourier-

transformed velocity, f is the Fourier-transformed force and the summations are
taken over all wavenumbers k. The first term on the right-hand side of (2.5) is
obtained by computing the energy injection due to a constant force over one time
step taking into account the evolution of the flow during the time step at the first order
in dr (Alvelius 1999). The forcing used herein implies that this term is much smaller
than the second in contrast to the forcing used by Lindborg & Brethouwer (2007).

Figure 2(b) does not show the instantaneous forcing P(f) but the forcing f’(t)
averaged over the forcing time sequence of one pair of dipoles At/4 = 7. This
quantity P(1) represents thus the mean injection rate over the forcing sequence. Up to
t ~ 80, the kinetic energy increases in average linearly with time although staircases
are present at each forcing time. For times between =80 and 100, the sharp increases
become somewhat more erratic. This irregularity can be also seen in the injection
rate P(r) (figure 2b). Since the force is constant during the forcing events, the second
term in the right-hand side of (2.5) shows that the energy injection rate P(#) depends
directly on the velocity field at the location of the forcing. This effect is stronger
when the velocity is large and when the flow is not yet fully three-dimensional. This
explains why it starts to occur at r~90. Nevertheless, the forcing is able to produce
coherent dipoles even when the background flow is fully turbulent.

Up to r = 100, the flow remains almost vertically uniform but around this time,
the dissipation due to vertical gradient (dashed line in figure 2b) suddenly increases,
showing that the flow is then fully three-dimensional. This process is associated
with an increase of the potential energy Ep (figure 2a) and of the potential energy
dissipation &, (figure 2b) (light lines). Between = 100 and 250, the total dissipation
rate (thick line) is larger than the injection rate such that the energy decreases. The
flow reaches a nearly statistically stationary state only after r = 250. Interestingly,
the energetics of the simulations at early times are very similar to what is obtained
with random forcing of large-scale two-dimensional Fourier modes: an initial build-up
of two-dimensional kinetic energy followed by a decrease in kinetic energy and
an increase in potential energy as the flow three-dimensionalizes (see, for example,
Waite & Bartello 2004; Lindborg 2006). This demonstrates the robustness of this
phenomenon to the details of the forcing. Although ¢/P ~ 1, the flow is not exactly
statistically stationary: the energy in the so-called ‘shear modes’, i.e. the horizontally
invariant modes (dashed line) slowly increases as first reported by Smith & Waleffe
(2002). Lindborg (2006) argued that such growing shear modes are due to a too
strong dissipation at large scales. However, we observe an increase of the shear-mode
energy even for the largest buoyancy Reynolds numbers achieved, which seems to
invalidate this idea. Alternatively, Smith & Waleffe (2002) have explained the growth
of the shear-mode energy by off-resonant three-wave interactions. The effect of the
shear modes is investigated in appendix A.

2.3. Choice of the physical and numerical parameters

The parameters of the main runs are summarized in table 1. The Froude and the
Reynolds number have been varied in the ranges 0.5 < Fj, <2 and 120 < Re < 8000.
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F Re X R th X Ny F;z Re; 78 (kmax/kn) (kmax/kp)
0.5 120 30 12 192% x 96 0.010 280 0.03 2.80 1.9
0.5 300 75 12 192% x 96 0.011 600 0.07 1.40 1.9
0.5 1000 250 10 576% x 192 0.015 870 0.21 1.80 4.4
0.5 3600 900 10  864% x 288 0.011 5180 0.66 1.10 1.3
0.5 7900 1980 10 11522x384  0.0093 15700 1.40 0.80 10.4
0.66 8000 3560 6 1600 x 320  0.014 12600 2.40 1.11 18.2
0.85 120 86 12 192% x 96 0.022 182 0.09 2.80 3.0
0.85 300 217 12 192% x 96 0.021 439 0.19 1.40 29
0.85 450 325 12 256% x 128 0.023 527 0.28 1.40 3.6
0.85 600 433 12 256% x 128 0.022 765 0.37 1.20 3.7
0.85 1500 1080 10 5767 x 192 0.022 1610 0.81 1.40 7.8
0.85 3000 2170 10 7207 x 240 0.019 3970 1.46 1.00 9.9
1.0 120 120 12 1922 x 96 0.026 173 0.12 2.80 3.5
1.0 300 300 12 1922 x 96 0.025 400 0.26 1.50 33
1.0 545 545 12 2567 x 128 0.025 672 0.44 1.30 43
2.0 120 480 12 192% x 96 0.055 147 0.44 2.90 6.6
2.0 300 1200 12 192% x 96 0.058 292 098 1.50 6.1
2.0 410 1640 12 256% x 128 0.053 414 1.80 1.60 7.9

TABLE 1. Overview of the physical and numerical parameters of the simulations with
experimental-like dipole generators. The number of nodes in the horizontal and vertical
directions are denoted N, and N, respectively. We recall that the length and time units is
a and 27!, respectively. The horizontal width and height of the numerical box are equal
to £, =30 and .Z, =10 or 12, except for the simulation for Fj, =0.66 and Re = 8000
for which the height is divided by 2. For all the simulations, the mean injection rate P
is of the order of 0.001. Here k,,, is the maximum resolved wavenumber, k, = (P/v?)"/*
the Kolmogorov wavenumber and k, = N/U, the buoyancy wavenumber.

The Froude number range is approximately the same as in the experiments (Augier
et al. 2014), 0.24 < F;, < 0.85, but the Reynolds number range is significantly larger
than in the experiments, 120 < Re < 430. Like in the experiments, we define also
turbulent Froude, Reynolds and buoyancy Reynolds numbers based on the square root
of the horizontal kinetic energy U, = ((u; + u;)/2)"* and the integral lengthscale

L,= Uhs/‘c;/(:
&

and %I = ])7]\/2

U & Re — ULy Uy
= =

F,,=—= —,
"7 NL,  UZ2N v £V

, (2.6a—c)

where & 1is the mean kinetic dissipation rate during the statistically stationary
regime. The turbulent buoyancy Reynolds number is commonly used to characterize
geophysical turbulence (see, for example, Ivey & Imberger 1991; Riley & de Bruyn
Kops 2003; Brethouwer et al. 2007). Here, %, is approximately proportional to the
buoyancy Reynolds number Z = §23a*/(N*v) based on the angular velocity £2 and
radius a of the forced vortices (Hebert & de Bruyn Kops 2006a). However, the
turbulent buoyancy Reynolds number %, depends on the dissipation rate averaged
over the whole numerical domain. While this mean quantity is appropriate to
characterize spatially homogeneous flows, it is less adequate when the flow is
spatially inhomogeneous like in §§2 and 3. Indeed, we shall see in §3.5 that
the local dissipation rate can vary significantly in the horizontal plane depending
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on the distance to the vortex generators. Hence, it is more meaningful to compare
the numerical and the experimental flows on the basis of the buoyancy Reynolds
number % since it depends only on the parameters characterizing the fluid and the
forced dipoles, i.e. on input parameters that can be directly measured and controlled
in the experiments. Nevertheless, the corresponding value of the turbulent buoyancy
Reynolds number &%, will be also given in §3 for information. In §4, the turbulent
buoyancy Reynolds number %, will be more meaningful and useful since the flow
will be spatially homogeneous.

In order to compare the numerical and experimental flows, we have performed
simulations for each Froude number, for Reynolds numbers typical of the experiments:
120 < Re < 450. We have also investigated several higher values of the Reynolds
number 1000 < Re < 8000 to extend the experimental results to high buoyancy
Reynolds number. The horizontal resolution is varied between N, =192 and N, = 1600
depending on the Reynolds number. The vertical resolution is chosen so that the
numerical mesh is nearly isotropic.

The height of the numerical box .Z, = 10-12 is large compared with the
characteristic vertical length scale of the layers developing in stratified flows. The
vertical size of the box is reduced to .Z, =6 in the simulation for the largest buoyancy
Reynolds number achieved % = 3560 (%, = 2.4), corresponding to F, = 0.66 and
Re =8000. This value of .Z, is still sufficient to have several layers along the vertical.
In §4, the sizes of the computational domain will be reduced in order to achieve
higher resolutions. These different numerical parameters will be described in §4.1.

3. Forcing with experimental-like dipole generators

In this section, we describe the flows generated with the numerical forcing described
in the previous section. A slightly modified forcing will be presented in the next
section (§4). We first focus on the effect of the buoyancy Reynolds number and
describe the numerical simulations for Fj, = 0.85, which corresponds to the larger
horizontal Froude number achieved in the experiments (Augier et al. 2014). The effect
of the horizontal Froude number is then presented. Finally, the simulations with the
highest buoyancy Reynolds number for this first set of simulations % = 3560 (%, =
2.4) are analysed.

3.1. Effect of the buoyancy Reynolds number

Figure 3 displays horizontal and vertical cross-sections of the flow for Fj, = 0.85,
Z = 1080 (#, = 0.81) and for a time 7 = 475 corresponding to the statistically
stationary regime. Only a portion of the numerical box is shown to zoom in. The
positions of four dipole generators are indicated by black rectangles. The colours in
figure 3(a) represent the local horizontal Froude number defined as .%, = w./(2N),
i.e. the vertical vorticity w, rescaled by 2N. The extrema of the local horizontal
Froude number .%, corresponding to the large-scale vortices seen in figure 3(a)
are of the same order as the horizontal Froude number F), = 0.85 confirming the
equivalence between the local horizontal Froude number .%#, and the Froude number
F), based on the forced vortices. Large-scale vortices are seen only in the vicinity
of the vortex generators. This is because they are destroyed by instabilities and
interactions with the ambient flow before reaching the central part of the box as
observed in the experiments. The nature of the small-scale structures visible on the
sides of the horizontal cross-section in 3(a) can be understood by looking at the
vertical cross-section in figure 3(b), where the isopycnals are plotted in black lines.
We see overturnings of the isopycnals typical of the shear instability. In this figure,
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FIGURE 3. Horizontal cross-section at z/a =4 (a) (only half the domain is shown), and
vertical cross-section at y/a =20 (b) of the flow for F;, =0.85 and #Z = 1080 (%, =0.81)
and for a time r =420 corresponding to the statistically stationary regime. The contours
represent the local horizontal Froude number .%, = w,/(2N) in (a) and the local vertical
Froude number .#, =w,/(2N) in (b). The dashed horizontal lines indicate the location of
the cross-section in the perpendicular direction. The black lines in (b) are isopycnals of
total density with contour interval equal to 0.6. The grey boxes in (@) indicate the regions
where the dipole forcing is impulsively applied.

the colours correspond to the local vertical Froude number defined as .#, = w,/(2N),
where w, is the vorticity component normal to the view plane. This number compares
locally the horizontal vorticity (which corresponds to the vertical gradients of
horizontal velocity in strongly stratified flows) to the mean stratification. When
the local density perturbations are neglected, this Froude number can be used to
quantify approximately the local Richardson number:

_ —(8/p)@piwi/32) 1

Ri .
! Buy /02~ 472

3.1

This means that a value .%, = O(1) corresponds to a Richardson number of order 1/4,
the critical value below which the shear instability can develop for an inviscid parallel
stratified flow (Miles 1961; Howard 1961). We see that |.%,| is indeed high and of
order unity in the regions where the overturnings of the isopycnals occur.

We now turn to smaller values of the buoyancy Reynolds number corresponding to
the values achieved in the experiments, where small-scale structures and overturnings
were observed only for sufficiently high buoyancy Reynolds number. In order to
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FIGURE 4. Same as figure 3 but for F;, = 0.85 and Z = 325 (%, = 0.28), i.e. for the
values corresponding to the flow with the highest buoyancy Reynolds number achieved in
the experiments. In (a) the half-domain shown is displaced compared with figure 3.

investigate this point, figure 4 displays horizontal and vertical cross-sections of the
flow as in figure 3 but for #Z = 325 (%, = 0.28), which corresponds to the highest
buoyancy Reynolds number achieved in the experiments. Even if the turbulence is less
intense, the isopycnals in figure 4(b) are clearly overturned by small billows in the
regions where the local vertical Froude number .#, is of order unity. In the horizontal
cross-section (figure 4a), we see some small scales superimposed on the large-scale
vortices. This confirms indirectly that the shear instability was operating in the
experiments for the highest buoyancy Reynolds number achieved % =325 (%, =0.28).

In the experimental study (Augier et al. 2014), the appearance of small scales
has been quantified by measuring the horizontal transverse second-order structure
function S,7(r;) = ([Su(8y =ry)]*> + [Su,(dx = r)]?)/2 and the horizontal longitudinal
second-order structure function S,.(r,) = {([Su,(6x = rp)]* + [Bu,(8y = ) /2,
where du,(8y) = u.(x 4 dye,) — u.(x) is the transverse increment of u,, du,(éx) =
u.(x + dxe,) — u.(x) is the longitudinal increment of u, and the increments of
u, are defined similarly. Figure 5(a) displays the compensated structure functions
for four buoyancy Reynolds numbers in the range 86 < #Z < 2170 for F, = 0.85
(0.09 < Z,; < 1.46). The increment r;, is scaled by R = 4a, the characteristic length
scale of the dipoles that are forced. The power law at the smaller scales correspond
to a r,°> slope meaning that the dissipative range is resolved. An inertial range
is associated with a structure function scaling like r,%3, i.e. a flat slope for the
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FIGURE 5. (Colour online) (a) Transverse and longitudinal horizontal compensated
second-order structure functions S,7(r,) (continuous lines) and S,;(r;) (dashed lines) for
F, =0.85 for different buoyancy Reynolds numbers given in the legend of (b). The inset
in (a) shows the effective dimension d. defined by (3.2). (b) Horizontal (continuous
lines) and vertical (dashed lines) compensated one-dimensional spectra of kinetic energy
Ex (ke >k for F, =0.85 as a function of the scaled wavenumber k;/K, where k;
denotes either the horizontal wavenumber k;, or the vertical wavenumber k.. In (b), the
horizontal black line corresponds to the Cie2/*k; > law, with C, =0.5.

compensated structure functions. We do not see such an inertial range in figure 5(a)
even if there is a flattening of the compensated structure functions at very large
scales when the buoyancy Reynolds number increases. An increase of the energy at
the small scales, especially for the transverse structure functions, can also be seen.
This flattening was observed in the experimental study and was interpreted as the first
indications of the inertial range that is predicted for large buoyancy Reynolds number.
In order to interpret the difference between longitudinal and transverse structure
functions, we consider a so-called effective dimension,

1 (085./01)

(3.2)
Sor — St

deﬂ'(rh) =1 +



416 P Augier, P. Billant and J.-M. Chomaz

This quantity is not a real dimension but is equal to 2 for a two-dimensional
isotropic flow and to 3 for a three-dimensional isotropic flow, since the longitudinal
and transverse second-order structure functions are related by

a

Sor(r) = (1 + dilar> (1), (3.3)

where d is the dimension of the space. As shown in the inset of figure 5(a), the
effective dimension is very close to 2 at large scales for each buoyancy Reynolds
number reflecting the fact that the forcing is two-dimensional. However for the highest
value of the buoyancy Reynolds number, d.4(r;) increases at small scales to reach
a value around 5 while it remains approximately equal to 2 for the lowest values
of the buoyancy Reynolds number. Values of d,; larger than 3 were also observed
in the experiments. They are related to the fact that the small-scale structures for
these intermediate buoyancy Reynolds numbers are three-dimensional but still strongly
anisotropic.

In figure 5(b), the horizontal compensated one-dimensional spectra of kinetic energy
Ex(ky)e >k, is plotted as a function of the horizontal wavenumber k;, scaled by
K = 2n/R, where R = 4a (for details on how the one-dimensional spectra are
computed, see Augier et al. 2012). The vertical compensated spectra Ex (k.)e >3k,
is also shown with dashed lines. At horizontal wavenumbers around K, the different
horizontal spectra collapse. When the buoyancy Reynolds number is increased, we
observe an increase of the spectra at large wavenumber k, > K and a decrease
at low wavenumbers k, < K. This indicates that there is more transfers toward
small scales and less transfers toward the largest scales. This is consistent with the
interpretation of a transition from a regime dominated by viscous effects toward the
strongly stratified turbulent regime when the buoyancy Reynolds number is increased.
However, for buoyancy Reynolds number of the order of the largest value achieved
in the experiments (% = 433, %, = 0.37, light thin line), the compensated spectra is
not flat indicating that there is no inertial range for the typical range of parameters
of the experiments. In contrast, the horizontal spectrum for the highest buoyancy
Reynolds number #Z = 2170 (%, = 1.46) in figure 5(b) exhibits a k; >3 power
law at wavenumbers slightly larger than K. The horizontal black line indicates the
Ci&*%k, ™" law, with C, = 0.5, which corresponds to the spectra of forced strongly
stratified turbulence observed by Lindborg (2006) and Brethouwer et al. (2007). We
see that the kinetic energy spectrum for % = 2170 is close to this line suggesting
that the flow approaches the strongly stratified turbulent regime. However, this regime
is only incipient since the associated turbulent buoyancy Reynolds number is still
only equal to %, = 1.46 while Brethouwer et al. (2007) showed that values larger
than approximately 5 are necessary to really reach this regime. The compensated
vertical spectrum (dashed lines in figure 5b) strongly varies when the buoyancy
Reynolds number is increased with more and more energy at small vertical scales.
This confirms that for the smallest values of the buoyancy Reynolds number, vertical
scales are controlled by dissipative effects. However, for % = 1080 (%, = 0.81) and
Z = 2170 (%, = 1.46), a peak in the compensated vertical spectra can be seen
at approximately k, = 1.5K. For both simulations, this wavenumber is not in the
dissipative range in contrast to the simulations for the smaller values of the buoyancy
Reynolds number, where no peak is observed. The appearance of the k, >° power
law in the horizontal spectra coincides with the appearance of this peak.
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FIGURE 6. (Colour online) Vertical (a,b) and horizontal (c,d) cross-sections of the velocity
and local Froude number fields for F, =0.5, Z =250 (#,=0.21) in (a,c) and for F), =2,
Z =1640 (%, =1.8) in (b,d).

3.2. Effect of the Froude number F

The effect of the horizontal Froude number F, is addressed in figure 6. Vertical
(a,b) and horizontal (c,d) cross-sections of the flow are presented for two different
horizontal Froude numbers: F, = 0.5 (a,c) and F, = 2 (b,d) but for similar values
of the quantity % = (Re — 400)F,>. The condition %' > 4 should be satisfied to
have the shear instability developing on a single columnar dipole affected by the
zigzag instability (Augier & Billant 2011). Here, it is approximately %’ =~ 40 like
in the experiments for % = 330. The local horizontal Froude number %, = w_/(2N)
(figure 6c¢,d) has maximum values of the order of F). In contrast, the local vertical
Froude number .#, = w,/(2N) (figure 6a,b) is of order unity. We see in figure 6(a)
several rolls that are small compared with the horizontal scale of the vortices and
seems to be due to the shear instability. Since F, = 2 corresponds to a weakly
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FIGURE 7. (Colour online) Scaled aspect ratio (a) (I,/I,)Re'* and (b) I,/(I,F},) as a
function of % for different F,. The viscous and inviscid scaling laws 1,/l, >~ 9.4Re™'/?
and [/, /I, ~0.65F,, where the constants are empiric, are plotted respectively with a dashed
line and a dotted line. The oblique crosses x correspond to purely toroidal simulations,
i.e. to the limit F), =0.

stratified flow, the maximum values of |.%,| are even higher than unity in figure 6(b).
The rolls are in that case about the same size as the horizontal vortices.

3.3. Vertical structure

In order to quantify the variations with the buoyancy Reynolds number and the
Froude number F), of the characteristic length scales of the flow, we have computed

the characteristic vertical length scale [, = (2U,*/ ([8zux]2))1/ * and horizontal length

scale [, = (2UX2/ <[axux]2>)'/ 2, where u, is the velocity component in the x direction
and U,” = (u,?). These scales are the equivalent of the Taylor micro-scale in
isotropic turbulence. The evolution of the aspect ratio [,/l, when the buoyancy
Reynolds number is varied is shown in figure 7. Following Brethouwer et al.
(2007), two different scaling laws are tested: a viscous scaling law in figure 7(a)
and an inviscid scaling law in figure 7(b). The viscous scaling law is obtained
by balancing the dissipation due to vertical gradients and the horizontal advection
I, ~ /VI,JU ~1,/+/Re (Godoy-Diana et al. 2004). The inviscid scaling law is obtained
by balancing the buoyancy term to the vertical advection so that [/, ~ U/N ~ [,F),
(Billant & Chomaz 2001). We see that the viscous scaling law works at low Z < 250
whereas the invicid scaling law is better at large buoyancy Reynolds number provided
that F), < 1. It is consistent with the interpretation of a transition around &% = 250
from a viscous regime for which the vertical length scale is fixed by viscous effects
(Godoy-Diana et al. 2004) to a nonlinear stratified regime for which the vertical
length scale is fixed by an invariance of the hydrostatic Euler equations valid for
strong stratification (Billant & Chomaz 2001).

3.4. Spectral analyses of the simulation for F,=0.66 and % =3560 (%,=2.4)

3.4.1. Two-dimensional energy spectra

Figure 8 displays the compensated horizontal two-dimensional spectra as a function
of i = (k> +k,»)'/? for F,=0.66 and for # =3560 (%, =2.4), i.e. one of the highest
buoyancy Reynolds number achieved with the forcing considered in this section
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FIGURE 8. (Colour online) Compensated horizontal two-dimensional spectra (kinetic Ey,
potential Ep, poloidal Eg, and toroidal Ex,) as a function of «j, = |k;| for Fj,=0.66, Z =
3560 corresponding to %, = 2.4. The black horizontal line shows the Cype?3k;, ™ law,
with Cp =0.66 (Lindborg & Brethouwer 2007).

(for precise definitions of two-dimensional spectra, see Augier et al. 2012). The
compensated horizontal two-dimensional kinetic spectrum EK(Kh)eK‘2/3/c,f/ } presents
a K, 33 power law at wavenumbers larger than K. Remarkably, it approximately
collapses on the horizontal line which indicates the Copg?/*k;, ™3 law, with C,p=0.66
corresponding to strongly stratified turbulence (Lindborg & Brethouwer 2007). The
compensated horizontal two-dimensional potential spectrum EP(K],,)SK_Z/ 3/(,‘:/ 3 (/&) also
collapses on this line in agreement with Lindborg & Brethouwer (2007). However,
both kinetic and potential spectra exhibit a rebound at small scales as also observed
by Brethouwer et al. (2007).

The toroidal spectrum Eg,, associated with rotational motions and the poloidal
spectrum Ek,, associated with the vertical velocity and to the divergence of the
horizontal velocity (Craya 1958; Herring 1974; Cambon 2001; Augier ef al. 2012)
are also plotted in dashed and dash-dotted lines, respectively. Note that the toroidal
and poloidal spectra cannot be simply associated with vortices or waves since their
dynamics are intimately linked when F, ~ 1 as pointed out by Billant & Chomaz
(2001) and Lindborg & Brethouwer (2007). At large scales, the toroidal spectrum
dominates reflecting the rotational nature of the forcing by dipoles. The toroidal and
poloidal spectra are of the same order in the inertial range as reported by Lindborg &
Brethouwer (2007). However, we can see that the poloidal spectrum is slightly larger
than its toroidal counterpart as also observed by Waite (2011). This could be due
to the shear instability since Kelvin—Helmholtz rolls with axis along the horizontal
direction consist only in poloidal velocity. In any case, Lindborg & Brethouwer
(2007) have shown that such a high poloidal spectrum does not imply that the flow
is dominated by waves. Indeed, a poloidal flow corresponds to linear waves only in
the limit F, < 1.



420 P Augier, P. Billant and J.-M. Chomaz

3.4.2. Spectral energy budget: quantification of the direct energy cascade

The evolution equations of the kinetic and potential energies EK(k) = |&t|?/2 and
Ep(k) = |p'|?/(2F;%) of a wavenumber k can be expressed as

dExk)  ~ A A s
o =lk=C—Dc+P, (3.4
dE»(k)  ~  ~
gt( )=TP+C—DP, (3.5)

where Tx = —Re[@*(k) - P, (u - Vu)(k)] and Tp = —F;*Re[p’ (k) - Vp') (k)] are the
kinetic and potential nonlinear transfers, Dy (k) = ([k|%/Re + |k|®/Res)|t|* and Dp(k) =
(|k|?/(ReSc) + |k|®/Res)| p'|?/F,* are the kinetic and potential mean energy dissipation,
C (k)=F, 2Re[,5/* (k)w(k)] is the local (in spectral space) conversion of kinetic energy
into potential energy and fD(k) = Re[ﬁ*(k)}(k)]. When (3.4) and (3.5) are summed

over the wavenumbers inside a vertical cylinder §2, of radius «; in spectral space, we
obtain

d@m’;i““ = —ITx(0r) — € () — &) + P(k), (3.6)
déoil(tl(h) = _HP(Kh) + CK(Kh) - SP(Kh)’ (37)

where &x (k) = Zlkh\@m,kz EK(k), IIx (k) is the kinetic flux going outside of £2,
@ (k) the cumulative conversion rate of kinetic energy into potential energy inside
£2;,, &(k;) the cumulative kinetic dissipation rate inside $2, (not to be confused with
the total kinetic dissipation rate &) and P(k;,) the cumulative forcing rate inside
£2;,. The quantities with the subscript P are defined similarly but for the potential
energy. Following Augier et al. (2012), the horizontal wavenumber «;, is discretized
as kj, =8k, (1/2 + 1), where 8k, =271/.%, and [ is the discretization integer, in order
for the fluxes of the shear modes not to be located at —oo in logarithmic plots.
As explained in Augier et al. (2012), it is interesting to consider the integrated
equations (3.6) and (3.7) because the nonlinear terms are conservative and dissipation
is non-negligible only at small scales.

The energy fluxes, cumulative conversion and cumulative dissipation are plotted
versus kj, in figure 9(a) for F;, = 0.66 and # = 3560 (%; = 2.4). All of the curves
have been averaged over the time interval 545 < ¢ < 555 in the statistically stationary
regime (see figure 2) and are scaled by the mean injection rate P. The horizontal
wavenumber k;, is scaled by K the horizontal wavenumber associated with the forced
dipoles.

The sum I1(x;) + €(ky), where IT = ITx + ITp and &(kp,) = & (k1) + &(kp,), 1S shown
by a dotted line. We see that it increases sharply in the wavenumber range 0.3 <
kp/K < 1.4 and then remains constant. Since the flow is statistically stationary, this
quantity is equal to P(x;) the mean injection rate by the forcing. Therefore, IT(k;) +
&(ky,) increases abruptly in the range of wavenumbers forced by the dipole generators.

Positive nonlinear fluxes (continuous lines) dominate the cumulative energy
dissipation (thick dashed line) at the typical wavenumber of the forcing «, >~ K.
For this Froude number F, = 0.66 and buoyancy Reynolds number &% = 3560
(%, =2.4) there is a range of wavenumbers between k;, >~ K and «;, >~ 5K for which
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FIGURE 9. (Colour online) Spectral energy budget for (a) Fj,=0.66, #Z =3560 (#,=2.4)
and (b) F,=0.85 and #Z =325 (#,=0.28). Fluxes going out from a vertical cylinder £2,
of radius k;, in spectral space and dissipations inside this cylinder. The continuous dark
thin, light thin and black thick curves are respectively the kinetic ITx(k}), potential ITp(k})
and total [71(x,) horizontal fluxes through the surface of £2,. The dashed thick curve is
the total cumulative dissipation inside the volume £2,. The dotted dashed black curve is
€ (x1,), the cumulative conversion from kinetic into potential energies, i.e. the sum inside
the volume £2;, of the local conversion C (k). The lowest wavenumber corresponds to the
shear modes. The sum I7(k;) + €(k;,) is shown by a dotted line.

the flux of total energy (thick continuous line) is of order 0.6P and slowly varies
whereas the cumulative dissipation remains relatively weak. This range corresponds
therefore to an inertial range with a downscale energy cascade. It is only for
kp > TK that the total flux rapidly decreases and the cumulative dissipation increases,
indicating that the dissipative range is separated from the forcing range. However, this
separation is weak since the cumulative dissipation is of order 0.2P at k;, = K and
increases up to approximately 0.4P in the inertial range. This is consistent with the
relatively low value of the turbulent buoyancy Reynolds number %, = 2.4 compared
with those required to obtain strongly stratified turbulence %, >~ 5 according to
Brethouwer et al. (2007). The cumulative conversion from kinetic to potential energies
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C (k) = Zlkm@fh,k; é‘(k) (black dot-dashed line) increases slowly in the forcing

range and in the inertial range and then decreases slightly in the dissipation range
for wavenumber «;, > 10K indicating that there is a weak conversion back from
potential to kinetic energies in this range.

Finally, we can note in figure 9(a) that the nonlinear flux of kinetic energy is
slightly negative for «;, — O and that this upscale flux is not balanced by dissipation.
This corresponds to the transfer toward the shear modes. As is often observed
in numerical simulations of strongly stratified turbulence (Smith & Waleffe 2002;
Lindborg 2006; Brethouwer et al. 2007), the energy of these horizontally invariant
modes therefore grows slowly. This is not a problem as long as the simulation is not
run for too long a time.

Figure 9(b) presents the energy budget for F;, = 0.85 and for the highest value of
Z achieved in the experiments % =325 (#,=0.28). The cumulative dissipation & (k)
(thick dashed line) is approximately equal to 0.1P for the smallest wavenumbers and,
then, increases rapidly for the forced wavenumbers: 0.4 < «;,/K < 1.4, For k, = 1.4,
&(ky) is already around 0.85P meaning that the dissipation occurs mainly at large
scales and that only a small portion of the energy is still available to be transferred
to smaller scales.

The flux of total energy I1(x;) (thick continuous line) is negative at small
wavenumbers k;, < 0.4K indicating a backward flux but it is completely balanced
by dissipation (thick dashed line). In addition, the flux of potential energy (light
continuous line) is negligible at these scales. The total flux IT(x;,) becomes positive
at wavenumber around 0.7K and increases up to 0.15P at wavenumbers around 1-2K
corresponding to a weak downscale energy flux.

The cumulative conversion from kinetic to potential energy % («;) (dot-dashed line)
smoothly increases in the range of forced wavenumbers and then remains constant at
smaller scales. The increase of % (k) indicates positive local conversion from kinetic
energy to potential energy at the forced wavenumbers. This is due to the bending of
the dipoles and to the shear instability.

3.5. Inhomogeneity

Figure 10(a) shows the mean kinetic energy (|u|*/2), averaged over the vertical
coordinate z and over 20 instantaneous fields belonging to the statistically stationary
regime for F, = 0.85 and &Z = 217 (%, = 0.19). Figure 10(b) shows the quantity
v(|l|?),./P which is an estimate of the normalized local kinetic dissipation s (x)/P.
We see that both the energy and the enstrophy concentrate in the vicinity of the
vortex generators showing that the flow is quite inhomogeneous as in the experiments.
This confirms that the dipoles are destabilized quite rapidly, so that they are not able
to propagate toward the centre of the numerical box. We see that the local dissipation
rate close to the dipole generators is typically twice larger than the space-averaged
dissipation rate. This shows that the local turbulent buoyancy Reynolds number near
the dipole generators is approximately twice the value of Z%,. It might be important
to take into account this factor two when comparing the present results to those of
spatially homogeneous turbulence.

4. Forcing with a randomly located dipole generator

In § 3, we have shown that the numerical simulations with a forcing reproducing the
experimental forcing are able on the one hand to reproduce the experimental results
when the buoyancy Reynolds number has the same values as in the experiments,
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FIGURE 10. (Colour online) Horizontal cross-section of the mean kinetic energy (|u|*/2).

in (a) and of the mean enstrophy scaled by P/v in (b) for F, = 0.85 and Z = 217
(%, =0.19).

and, on the other hand, to approach the characteristic features of strongly stratified
turbulence as in Brethouwer et al. (2007) when the buoyancy Reynolds number is
large. This validates the particular numerical forcing with columnar dipoles. However,
a drawback of such forcing is that the flow is horizontally inhomogeneous since the
dipoles are forced only at the periphery of the numerical box. Moreover, it would
be necessary to further increase the buoyancy Reynolds number to have really small
dissipation effects at large scales. For this reason, we have modified the numerical
methods.

4.1. Modification of the numerical methods

In order to generate a turbulence more homogeneous in the horizontal plane like
in strongly stratified turbulence forced in spectral space (Waite & Bartello 2004;
Lindborg 2006; Brethouwer et al. 2007), we have slightly modified the forcing
procedure: dipoles, instead of being generated at fixed locations by pairs, are forced
individually at a random location all over the computational domain.

The values of the physical and numerical parameters are reported for each run
in table 2. The horizontal size of the computational domain has been reduced to
%, = 16a. This will allow us to resolve much finer scales for a given resolution
and, furthermore, such size is sufficient to capture the largest scales produced by
the forcing since the characteristic horizontal length scale of the dipoles is of order
R = 4a. The height of the box is also reduced and set to .Z, >~ 8F,a since the
characteristic vertical length scale of the layers scales like the buoyancy length scale
L, «x Fha. In this way, a sufficient and approximately constant number of layers is
simulated for each run. The horizontal Froude number is kept below unity in order
to be always in the strongly stratified regime.

In order to also achieve a larger buoyancy Reynolds number, an isotropic
hyperdissipation is added to the Newtonian dissipation. The resolution and the value
of the dimensionless hyperviscosity 1/Re, = v4/(§2a®) are chosen by requiring that
the total dissipation frequency at a wavenumber ok, be equal to the dissipation
frequency at k., for a well-resolved DNS for the same resolution (i.e. a simulation
with the same k,, and a larger viscosity v,(k..) leading to k,(v,) = Kkya):
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V(@hax)? + Vi (@hinax)® = Vr(Kpax)kmar”» Where o is a parameter set to 0.85 such that
the peak in the dissipation spectra is resolved. We further impose that k. /k, 2 0.4
so that the dissipation rate due to hyperviscosity and hyperdiffusivity is smaller than
the normal dissipation: ¢,,/e < 0.42, where ¢ is the total dissipation rate and ¢,,
the dissipation rate due to hyperviscosity. This constraint imposes that the resolution
of the simulations with hyperviscosity can be approximately half (but not less) the
resolution that would be necessary to run a full DNS for the same viscosity. It also
ensures that the cut-off wavenumber k,,,, lies in the viscous dissipation range so that
the impact of the hyperdissipation is expected to be weak on the inertial range. This
method has been validated against DNS in the case of the transition to turbulence
of a dipole in a stratified fluid (Augier et al. 2012) and for the largest simulation
presented in the previous section (F, =0.66, Z = 3560 corresponding to %, =2.4). A
simulation for the same physical parameters but with approximately twice as coarse
resolution and hyperviscosity is compared with the DNS in appendix B. The results
of the two simulations are very close confirming that this method provides reliable
results and allows one to artificially increase the Reynolds number without increasing
the resolution.

Hence, even if the real Reynolds number values of these simulations with
hyperviscosity are unknown since they are not DNS, we will continue to indicate,
‘for information’, the Reynolds numbers defined as in (2.4) and (2.6). These Reynolds
numbers will however be denoted with a tilde

EE, X, X, (4.1a—c)

in order to clearly indicate that they should be considered only as ‘pseudo’-Reynolds
numbers.

The time interval between two successive forcings 77 =5 is lower than in §3 but
note that dipoles were generated by pair with the experiment-like forcing so that, on
average, a dipole was forced every T; = 3.5. However, the horizontal size of the
computational domain is now smaller so that the frequency of dipole injection by
unit of box surface f; = 27t/(T,.£?) is f; = 0.005 for the present random forcing
instead of f; =0.002 for the experiment-like forcing. Due to this difference of forcing
intensity, the ratio /%, = £2°a’ /¢ between the buoyancy Reynolds number based
on the forced vortices % and the turbulent one % is larger for the experiment-like
forcing (% /%, ~ 1300) than for the present random forcing (%’/% =~ 500). In other
words, the turbulent buoyancy Reynolds number % will be more than twice as high
with the present random forcing for a given value of Z.

4.2. Description of the turbulent flow for F) =0.66, e@j, =23

We first describe the statistically steady state obtained for Fj, =0.66 and % =10 000,
corresponding to a relatively small turbulent horizontal Froude number F; = 0.019

and to a relatively large turbulent pseudo-buoyancy Reynolds number %, = 23.
Figure 11(a,b) display horizontal and vertical cross-sections of the local horizontal
and vertical Froude numbers .%, =w,/(2N) and .%, =w,/(2N), respectively. Compared
with figure 3, the flow is fully turbulent with small scales nearly everywhere associated
with relatively large local Froude numbers. The scaled vertical velocity u,/(UF;)
enables to better see the large scales of the flow (figure 11c,d). In contrast to the
simulations presented in the previous section, the forced dipoles strongly interact



426 P Augier, P. Billant and J.-M. Chomaz

0 5 10 15 Fy=w,/N)
2

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5
uz [(UFy)

FIGURE 11. Horizontal (a ¢) and vertical (b,d) cross-sections of the flow for F;, = 0.66,

% = 10000 (F;,=0.019, %,_23) In (a,b), the representation is the same as in figure 3.
In (c,d), the contours represent the scaled vertical velocity u,/(UF}).

together and with the ambient flow. The vertical cross-sections show that the flow
is layered with large deformations of the isopycnals and abundant density inversions.
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FIGURE 12. (Colour online) Energy fluxes going out from a vertical cylinder £2, of radius

k, in spectral space and cumulative dissipation inside this cylinder for Fj, = 0.66, B =

10000 (Fj =0.019, %, =23). The representation is the same as in figure 9. The dotted
line is the sum [I7(x;) + &(ky).

We can see that several layers are simulated so that the flow is almost not confined
in the vertical direction by the box size.

The energy budget as a function of the horizontal wavenumber «; is presented in
figure 12 for the same run. The cumulative dissipation (dashed line) is negligible for
wavenumber «;, < 10K. As a result the flux of total energy is nearly constant IT ~0.9P
from k;, >~ K to «, >~ 10K. In the forcing range for «, < K and in the inertial range,
the cumulative conversion from Kkinetic to potential energies % (k;) (dash-dotted line)
increases monotonically. As for lower buoyancy Reynolds number (figure 9a), € (k;)
decreases slightly in the dissipation range indicating a weak conversion back from
potential to kinetic energies at the dissipative scales. As a consequence of the local
conversion of kinetic to potential energies in the inertial range, the flux of potential
energy increases and the flux of kinetic energy decreases. Even at such relatively large

%, there is a weak flux of kinetic energy in the shear modes. Since it is small (5%
of P) and not balanced by dissipation, it leads to a very slow growth of the energy
of the shear modes.

In figure 13, we have plotted several instantaneous compensated one-dimensional
horizontal spectra of potential energy Ep(k,,)sk‘z/ 3,2 (& /&) (light continuous curves),
kinetic energy EK(kh)s,(‘z/ 3k, (dark continuous curves) and vertical spectrum of
kinetic energy Ex(k.)e >*k.”? (dashed curves). Due to the unsteadiness of the forcing,
the kinetic energy spectrum at the lowest wavenumbers k;, < K is never steady but
varies in time between 0.6 and 1. For larger wavenumbers, these spectra are close
to the C,62%k;”” power law with C; = 0.5 (horizontal thick line) as obtained by
Lindborg (2006), but there is an energy deficit for K < k, < 4K and an excess for
4K <k, < 30K. Between k;, =2K and k, = 10K, the horizontal kinetic energy spectra
are actually slightly shallower than k,:s/ ’ and scale approximately as k,:4/ ’ (straight
dotted dashed line). Horizontal spectra shallower than kh_s/ ? have already been reported
for strong stratification and sufficiently large buoyancy Reynolds number (Almalkie
& de Bruyn Kops 2012; Kimura & Herring 2012; Bartello & Tobias 2013). These
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FIGURE 13. (Colour online) One-dimensional horizontal and vertical compensated spectra

for F;, = 0.66, % = 10000 (F;, = 0.019, @, = 23) and for four different times during
the statistically steady state with a time interval of two times units. The thin straight
line indicates the k;° power law, the dotted dashed line the k,:4/ } power law and the
horizontal thick line the C;6°k™>/3 law for the kinetic energy spectra, with C; =0.5 and
the C,62°k=>/(g,/&) law for the potential energy spectra, with C, =0.5. The dotted line

shows a k° power law.

shallower spectra could be due to the non-local transfers in Fourier space by the shear
instability as already observed by Brethouwer et al. (2007), Waite (2011) and Augier
et al. (2012). Such rebound cannot be due to a bottleneck effect of the hyperviscosity
since this term is negligible in the range K to 15K. The Kolmogorov length scale is
nearly resolved (k. = 0.5) so that the hyperviscosity is smaller than the classical
dissipation, ¢,,/¢ >~ 0.4 (table 2). The compensated horizontal potential energy spectra

are flatter than the kinetic energy spectra and slightly above the Coe’k,”"(s/s)
law, with C, =0.5, found by Lindborg (2006) (horizontal thick line).

The absence of peak in the potential energy spectra in contrast to the kinetic
energy spectra does not seem to be consistent with the hypothesis that the shear
instability is responsible for the excess of kinetic energy at small scales. Indeed,
one would expect that the associated overturnings should lead also to a peak in the
potential energy spectrum. However, the development of the convective instability
on the Kelvin—Helmoltz billows could simultaneously decrease this peak. Another
tentative explanation could be a difference of the constants of the spectra between
the strongly stratified and the weakly stratified ranges. Indeed, one may note that
the Kolmogorov constant Ckx for the unidimensional spectra of kinetic energy in
homogeneous isotropic turbulence (HIT) is approximately equal to unity (Monin &
Yaglom 1975; Sreenivasan 1995; Gotoh, Fukayama & Nakano 2002). The departure
at large wavenumbers from the Lindborg’s power law could be the sign that for
Z, > 1 there is a transition from the strongly stratified constant C; ~ 0.5 toward
the Kolmogorov constant Cx ~ 1. In contrast, the Obukhov—Corrsin constant for the
unidimensional spectra of a passive scalar in HIT is around 0.4 (Sreenivasan 1996)
and thus closer to the strongly stratified constant C, >~ 0.5 for the horizontal spectra
of potential energy (Lindborg 2006).
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FIGURE 14. (Colour online) Compensated horizontal two-dimensional spectra (kinetic,
potential, poloidal and toroidal) versus «, = |k,| same as figure 8§ but for F), = 0.66,
Z# =10000 (F}, =0.019, %, =23). The black horizontal line corresponds to the constant
C,p =0.66 (Lindborg & Brethouwer 2007).

The vertical kinetic energy spectra (dashed curves) follow a k° white noise
spectrum at small wavenumbers (figure 13). This means that there is no correlation
between the different velocity fields for these large vertical separations. This proves
that the height of the computational domain is sufficiently large compared with the
largest characteristic vertical length scale which is of the order of the buoyancy length
scale L,. At vertical wavenumbers around 7K, the vertical spectra are very steep with
nearly a k;° power law. At larger wavenumbers, the vertical spectra approach the
horizontal ones and tend to a k> power law. This indicates the beginning of the
return to isotropy.

In figure 14, potential (light continuous line), kinetic (dark continuous line) toroidal
(dashed line) and poloidal (dash-dotted line) horizontal compensated two-dimensional
spectra are presented. As for the one-dimensional spectra, both kinetic and potential
spectra seem to be slightly higher than the constant C,; = 0.66 (horizontal line)
corresponding to the law reported by Lindborg & Brethouwer (2007) for strongly
stratified turbulence. The large horizontal scales are dominated by the toroidal
component (dashed line) while at smaller horizontal scales, the toroidal and poloidal
spectra nearly collapse on each other.

4.3. Effects of the Froude number

We now compare simulations for different Froude numbers F, = 0.29, 0.5, 0.66
and 0.85 keeping a high pseudo-buoyancy Reynolds number. Figure 15 displays
the compensated transverse Spre %/ 37,77 and longitudinal Sare. % 3p,%7 structure
functions for these four simulations. In contrast to moderate buoyancy Reynolds
number (figure 5a), the compensated structure functions exhibit for all F,, a flat
range corresponding to an inertial range. The inset plot shows the effective dimension
dy defined in (3.2). After a peak at intermediate scales, d,; tends to a value slightly
larger than 3 for all horizontal Froude number indicating a nearly complete return to
isotropy (d.; =3 corresponds to three-dimensional HIT).
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FIGURE 15. (Colour online) Compensated transverse (continuous lines) and longitudinal
(dashed lines) horizontal second order structure functions for different values of F, and
% Same as figure 5(a) but for the random forcing and larger % The inset plot shows
the effective dimension d,.;(r;,) as a function of the horizontal increment 7, scaled by R.
The dotted horizontal lines correspond to dey =2 and d = 3 corresponding to HIT in
two and in three dimensions, respectively.

Figure 16 presents horizontal (continuous lines) and vertical (dashed lines)
compensated kinetic spectra Ex(k,)s >k, and Ex(k.)e k.’ respectively, as a
function of the wavenumbers scaled by the buoyancy wavenumber k, = N/U,, where

= ((u; + u3)/2)"? is the square root of the horizontal kinetic energy. All of the
Froude numbers present a relatively flat compensated horizontal spectra corresponding
to a k;s/ ® inertial range. Except for Fj, = 0.29 for which the pseudo-buoyancy
Reynolds number is too low, the horizontal spectra collapse approximately on the
horizontal thick line marking the Ex(k,) = C,&3k;,"> spectrum, with C; =0.5. As for
F,=0.66 (figure 13), there is however a depletion at relatively large horizontal scales
and a bump at horizontal wavenumbers slightly larger than k, for each Froude number
F),. The k;4/ ’ power law seems quite robust to variations of the Froude number at
least when the pseudo-buoyancy Reynolds number is not too small. Interestingly, the
structure functions plotted in figure 15 present much weaker dips and bumps in the
inertial range than the horizontal spectra. Almalkie & de Bruyn Kops (2012) and
Kimura & Herring (2012) also reported differences of scaling between spectra and
second-order structure functions but their structure functions are significantly steeper
than in figure 15 with slopes between 2/3 and 1.

Therefore, except for the simulations with the smallest Froude number F), = 0.29

(%, =4.8), the horizontal kinetic energy spectra tend to be always slightly higher than
the law reported by Lindborg (2006) for strongly stratified turbulence.

As already observed for F), =0.66, the vertical spectra are very steep near k, =k
and show a tendency to follow a k_* slope for all of the Froude numbers (figure 16).

However, a transition towards a k;>/* power law is observed only for the two highest
pseudo-buoyancy Reynolds number %, =23 and %, =32 (thick lines).
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FIGURE 16. (Colour online) Horizontal (continuous lines) and vertical (dashed lines)
compensated one-dimensional spectra EK(ki)8K’2/3ki5/ 3 as a function of the dimensionless
wavenumber k;/k;, for four different values of the Froude number F;, =0.29, 0.5, 0.66 and
0.85. Same as figure 5(b) but for the random forcing and larger Z,. The thin straight line
indicates the k;* power law, the dotted dashed line the k,f/ } power law and the horizontal
thick line the Cs, ¥k law, with C, =0.5.

The k;* dependence of the vertical spectra can be better seen in figure 17(a) where

the compensated vertical spectra Ex(k.)N~2k.’ are represented versus k./k,. Plotted in
this way, all of the curves collapse for wavenumbers lower than 2k,. However, the
slope around k, is closer to —2 (dashed straight line) than to —3 (horizontal line). At
higher wavenumbers, the spectra evolves rapidly toward the k;* power law when &,

increases all the more than %, is large (figure 17a).
Augier et al. (2012) described such mixed-type vertical kinetic spectra with a
composite spectrum proposed by Lumley (1964):

Ex(k;) = CyN*k;> + Cxel Pk = (Cn (k. /k,) ™ + Ci)el Pk (4.2)

where k, = (N?/g)!/? is the Ozmidov wavenumber. According to (4.2), the transition
between the k. and k.73 power laws should occur approximately at the Ozmidov

wavenumber. To check this, the compensated vertical spectra EK(kz)EK‘2/3kZ5/ 3 are
plotted as a function of k,/k, in figure 17(b). Apart from the Froude number F), =0.29,
all of the curves collapse over a large range of vertical wavenumbers including the
Ozmidov wavenumber. Furthermore, the spectrum (4.2) with Cy = 0.3 (dashed line)
describes remarkably well the observed spectra except near the dissipative range. We
stress that Cy is the only adjustable parameter because & is measured and Cx =1 is
an universal constant.

To summarize, the vertical spectra tend to present a k;* scaling law at relatively

large wavelengths, a N*k.~> scaling law for a narrow intermediate wavelength range

between the buoyancy length scale and the Ozmidov length scale and a k. ~°/°
scaling law at smaller wavelengths. Interestingly, these characteristic features are also
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FIGURE 17. (Colour online) Vertical compensated spectra (a) Ex(k,)N~2k.> versus k./ky
and (b) Ex(k.)e **k.>? versus k./k,. The legend is the same as in figure 16. The thick,
thin and dashed straight lines indicate the k;°, k;* and k;* power laws, respectively.
In (b), the dashed curve corresponds to the comp051te spectrum (4.2) with Cy =0.3 and
Cx=1.
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FIGURE 18. (Colour online) Decomposition of the vertical compensated spectra for
(a) F, =0.66 (F;, =0.019, 9? = 23) and (b) F, = 0.29 (F; = 0.0076, 9? = 4.8). The
black thin continuous curves correspond to vertical spectra Ejx o, <0.4x,](k;) computed with
modes for which 0 < «;, < 0.4k,, the dashed curves to the shear modes vertical spectra
Eik «,—01(k;) and the light curves to spectra Ej x,~0.4,1(k;) computed with modes for which
Ky, > 0.4k,. The continuous vertical lines indicate the conditional wavenumber 0.4k, and
the dotted vertical lines the Ozmidov wavenumber k,. The thick and thin straight lines
indicate respectively the k> and the k;° power laws.

observed in spectra computed from oceanic and atmospheric measurements (see e.g.
Garrett & Munk 1979; Gargett et al. 1981; Dewan & Good 1986; Dewan 1997;
Alisse & Sidi 2000; Waite & Bartello 2006; Riley & Lindborg 2008).

Figure 18 further presents a decomposition of the vertical kinetic spectra for
F,=0.66 (figure 18a) and for F,=0.3 (figure 18b). The black thin curves correspond
to conditional vertical spectra Ejg ox,<04k,1(k;) computed with modes for which
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FIGURE 19. (Colour online) Compensated horizontal buoyancy flux spectrum |C (k)|
as a function of the horizontal wavenumber «;, compensated by K in (a), k, in (b), k,
in (c) and 1/n in (d). The lines are solid when C(k;) is positive and dashed when it is
negative. The legend is the same as in figure 16.

0 < x;, < 0.4k, i.e. associated with the large horizontal scales. These conditional
vertical spectra are very steep and constitute the major part of the N2k;® spectra.
The dashed curves correspond to the conditional vertical spectrum of the shear
modes Ek .,—o(k;). Remarkably, the shear-mode spectrum dominates the total vertical
spectrum for vertical wavenumbers lower than k, and decrease abruptly for k, > k.
The light thin curves correspond to conditional spectra Ek ,,-0.4,1(k;) computed with
modes for which «;, > 0.4k,, i.e. associated with relatively small horizontal scales.
We see that these conditional compensated vertical spectra are negligible for k, < k;
and then nearly flat from k,/k, >~ 2-3 down to the dissipative range, corresponding
to a k> power law. This suggests that these range of horizontal wavenumbers is
dominated by nearly isotropic structures such as Kelvin—Helmholtz billows. In the
case of the transition to turbulence of a dipole in a strongly stratified fluid, Augier
et al. (2012) have also found that the overturnings due to the shear instability scale
as the buoyancy scale, are nearly isotropic and lead to a turbulence with a k;°/°
kinetic energy spectrum for k, > k,. This feature is hidden in the non-decomposed
vertical kinetic energy spectra at the large vertical scales between the buoyancy length
scale and the Ozmidov length scale because of the dominance of the very steep k;’
spectrum associated with the large horizontal scales.

Finally, figure 19 displays the compensated two-dimensional cospectra C(k;)k;>>,
where C(k;) = d% (x;,)/dk;,. This quantity measures the local conversion from kinetic
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to potential energy. The curves are solid when C(x;) is positive and dashed otherwise.
Various scalings for the horizontal wavenumber «;, are tested: it is scaled by K in (a),
ky, in (b), k, in (¢) and 1/n in (d). At low wavenumber around K (figure 19a),
C(kp)ky*® is lower than 0.1 for all Froude numbers. At a larger wavenumber,
C(kp)ky>® suddenly increases toward a much larger value of order 0.5. This sharp
increase can be due in particular to the shear instability which generates strong
overturnings. In a range of wavenumbers, the cospectra then approximately follow a
K, o3 power law before again decreasing abruptly. Then, they reach negative values
at small scales (dashed lines) and finally vanish at the largest wavenumbers. Such
negative C(x;,) corresponding to conversion from potential to kinetic energies, i.e. to
fluid parcels going back to their equilibrium position, has been already reported and
described as restratification (Holloway 1988; Staquet & Godeferd 1998; Brethouwer
et al. 2007).

In order to understand the underlying mechanisms driving such features, it is
interesting to study at which scales they occur. We see that the first sharp increase
at large scales perfectly collapse when «j, is scaled by the buoyancy wavenumber £,
(figure 19b) whereas no such good collapse is observed for the three other scalings
tested. This strongly suggests that, in contrast to the classical interpretation of the
Ozmidov length scale (Lesieur 1997; Riley & Lindborg 2008), the largest horizontal
scale that can overturn is not the Ozmidov length scale but the buoyancy length scale
as reported recently by Waite (2011) and Augier et al. (2012).

This result is not in contradiction with a transition for the vertical spectra at the
Ozmidov length scale as explained above and shown in figure 18. From figure 19,
it is difficult to decide at which scale the abrupt decrease of the cospectrum C(k})
occurs but it seems to happen for wave numbers slightly larger than the Ozmidov
wavenumber although it does not scale perfectly with k, (figure 19¢). As seen in
figure 19(d), the final decrease of |C(k;)| toward zero collapse relatively well with
the Kolmogorov length scale.

5. Summary and conclusions

We have presented a numerical study of forced strongly stratified turbulence. The
simulations differ from previous simulations of forced stratified turbulence since the
forcing consists in vertically invariant columnar vortex pairs generated intermittently,
as in the experiments of Augier ef al. (2014). A wide range of horizontal Froude
number F, and buoyancy Reynolds number % = ReF,?, or equivalently %, = &/(vN?),
have been investigated, from moderate stratification to strong stratification and from
moderate values of the buoyancy Reynolds number of the order of those achieved
in the experiments to relatively high values that can be reached only by means of
high-resolution numerical simulations.

For moderate buoyancy Reynolds number and with a forcing very similar to the
experimental one consisting of static dipole generators placed at the periphery of the
computational domain, the simulations are able to recover the experimental results
of Augier et al. (2014). We observe a rapid three-dimensionalization of the flows
leading to statistically stationary disordered flows exhibiting thin horizontal layers
associated to relatively strong vertical gradients. Remarkably, when the buoyancy
Reynolds number is increased from the lowest value of the buoyancy Reynolds
number investigated in the experiments # = 90 (%, = 0.1, with F, = 0.85) to
the largest value Z = 330 (%, = 0.3, with F, = 0.85), there is a transition from
quasi-horizontal flows with low local vertical Froude number and smooth large
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structures strongly affected by viscous effects to turbulent-like flows with local
vertical Froude number of order unity, small-scale structures superimposed on the
large-scale horizontal layers and abundant overturning events. When the buoyancy
Reynolds number is further increased to &% ~ 2000 (%, ~ 1.5), this transition is
amplified with increasingly small scales and overturnings. This value of the buoyancy
Reynolds number is much larger than those achieved in the experiments (Augier et al.
2014) but is still comparable with what could be obtained in large-scale experiments
since the buoyancy Reynolds number % = ReF,> = 23a*/(vN?) varies like a® if
the maximum angular velocity of the vortices §2 and the Brunt—Viisidld frequency
N are kept constant. Therefore, it would be sufficient to generate vortices with a
radius a only three times larger than in the experiments of Augier et al. (2014). The
horizontal second-order structure functions only exhibit a strong increase at small
scales, but even for % = 2000 no clear r,f/ } dependence is observed as one would
expect for an inertial range. Nevertheless, such inertial range seems to be present
since the horizontal kinetic energy spectra exhibit a k;s/ : power law as soon as
Z > 1000 (%, > 0.8). These differences may come from the spatial inhomogeneity of
the flow. These results support and extend the experimental study (Augier et al. 2014)
where the first signs of the transition from the viscosity affected stratified regime
(Godoy-Diana et al. 2004) to the strongly stratified turbulent regime (Brethouwer
et al. 2007) were observed.

In order to produce a less inhomogeneous turbulence, high-resolution simulations
have been carried on with a slightly different forcing in which a single dipole
is forced periodically at a random location in the computational domain. In this
way, the forced vortices strongly interact with the ambient flow and together so
that the flow is horizontally homogeneous in the statistically stationary regime. The
Kolmogorov length scale is only nearly resolved in these simulations and an isotropic
hyperdissipation is added to the classical dissipation. The Reynolds numbers are
denoted with a tilde since they should be considered as pseudo-Reynolds numbers.
The range of horizontal Froude number investigated is 0.3 < F), < 0.85 (corresponding
to 0.008 < F, < 0.02) and the range of pseudo-buoyancy Reynolds number is

5 < %, < 32 (corresponding to 2300 < &% < 15000). For these simulations, the
second-order structure functions exhibit a r,*? inertial range. The horizontal spectra
are in good agreement with previous numerical results (Lindborg 2006; Brethouwer
et al. 2007; Lindborg & Brethouwer 2007) with horizontal unidimensional spectra
of kinetic energy and potential energy scaling like Cye*3k,>” and C,e*°k;”" (&/)
respectively, with C; = C; ~ 0.5 and with horizontal toroidal (vortical) and poloidal
spectra nearly collapsing in the inertial range. As shown by Lindborg & Brethouwer
(2007), this equipartition does not mean that half of the flow is composed of waves
but only reflects the value of order unity of the vertical Froude number in the flow.

By forcing columnar dipoles in spatial space in numerical simulations, we have
been therefore able to reproduce both the experimental results at moderate buoyancy
Reynolds numbers and the previous numerical results on strongly stratified turbulence
at large buoyancy Reynolds numbers forced in spectral space. This validates the
numerical implementation of this new method of forcing and shows that the
characteristics of strongly stratified turbulence are robust since they can be obtained
with different forcing techniques.

Like Brethouwer et al. (2007) and Waite (2011), we have observed a depletion in
the horizontal kinetic energy spectrum for scales between the integral length scale
and the buoyancy length scale and an anomalous energy excess around the buoyancy
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length scale probably due to direct transfers resulting from the shear instability.
However, the horizontal potential energy spectra are closer to the Lindborg’s spectra
and do not exhibit an energy excess around the buoyancy length scale as one would
expect if overturnings were responsible for these anomalies. We have tentatively
conjectured that this behaviour of the one-dimensional kinetic energy spectrum might
come from the difference between the Kolmogorov constant Cx >~ 1 for HIT and
the Lindborg constant C; ~ 0.5 for strongly stratified turbulence. In contrast, there is
almost no difference between the Obukhov—Corrsin constant for the unidimensional
spectra of a passive scalar in HIT and the Lindborg constant C, ~ 0.5 for the
horizontal potential energy spectra in strongly stratified turbulence. Some simulations
with higher resolutions would be needed to test this conjecture. Such transition
could be also present in atmospheric and oceanic spectra but it does not seem to be
observed.

Remarkably, the vertical spectra tend to present a k> scaling law at relatively

large wavelengths, a N*k,~> scaling law for a narrow intermediate wavelength range
between the buoyancy length scale and the Ozmidov length scale and an inertial
CxeZ’k; > spectrum, with Cx =1 at scales smaller than the Ozmidov length scale.

Note that the k;* and N?k.~* scaling laws in the oceans and the atmosphere are
usually interpreted as the effects of internal waves (see e.g. Garrett & Munk 1979;
Gargett et al. 1981; Dewan & Good 1986; Dewan 1997; Alisse & Sidi 2000; Waite &
Bartello 2006). It is therefore very interesting to see that high-resolution simulations
of strongly stratified turbulence can reproduce these scalings and the inertial scaling at
large wavenumbers. Following Augier et al. (2012), we have shown that the vertical
kinetic energy spectrum is very well modelled by a composite spectrum summing
the strongly stratified and inertial spectra. Using vertical spectra conditioned on the
value of the horizontal wavenumber, we have further shown that the Nzkz‘ 3 spectrum
is dominated by the contribution of the large horizontal scales with 0 < «;, < 0.4k,
whereas the Cxe/*k; >/ spectrum correspond to the small horizontal scales k;, > 0.4kj.

An abrupt increase of the horizontal buoyancy flux cospectrum at the buoyancy
scale has been interpreted as a signature of the shear instability. This indicates also
that the size of the largest overturnings scales with the buoyancy length scale and
not like the Ozmidov length scale in contrast to what has been proposed previously
(Lesieur 1997; Riley & Lindborg 2008).

From these results and Waite (2011), we can envision a new interpretation of the
different regimes in strongly stratified turbulence. In the classical representation (see
e.g. Lindborg 2006; Brethouwer et al. 2007; Riley & Lindborg 2008), the turbulence
in strongly stratified fluids is divided in two different regimes with a transition at the
Ozmidov length scale. At scales larger than the Ozmidov length scale, the energy
cascades via a strongly anisotropic cascade with [, >~ [,(l,) >~ u(l,)/N at each scale
I,. All along this cascade, the horizontal Froude number F}(l;,) remains low and it is
only at the Ozmidov length scale that overturnings can occur since the Froude number
is then of order unity F,(/,) ~ 1.

However, the present results and the recent study of Waite (2011) highlight the
physical importance of the buoyancy length scale L,. This has been also recently
pointed out for the turbulent evolution of a dipole (Augier et al. 2012). In order to
interpret the regimes in strongly stratified turbulence, we need to distinguish three
different scale ranges (Waite 2011). From the large integral scale to the buoyancy scale
L,, the energy cascades mainly via the strongly stratified hydrostatic cascade with
F,(l;) <« 1, whereas at scales smaller than the Ozmidov length scale, the turbulence
becomes nearly isotropic as described above.
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Between the buoyancy length scale L, and the Ozmidov length scale, the strongly
stratified hydrostatic cascade associated to horizontal Froude number

Fu(l) = ull) /(N = (lo/1)*? (5.1

lower than one seems to coexist with another type of stratified turbulence associated
to overturnings with F, ~ F, ~ 1. These nearly isotropic overturning structures
are directly generated from the destabilization of the large anisotropic scales of
the strongly stratified cascade via non-local transfers in spectral space driven by
instabilities of the layers such as the shear and the gravitational instabilities. This
explains why their velocity can be high enough to be associated to F, ~ F, ~ 1.
Therefore, this intermediate range consists of a mixture of balanced strongly stratified
turbulence as described by Lindborg (2006) and unbalanced billows. This intermediate
range excited through non-local interactions directly with the largest scales implies
that there is a sink of energy on the large-scale range and not only a strongly stratified
cascade.
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Appendix A. Inhibition of shear modes

Here, we present a simulation in which the shear modes are suppressed numerically
and compare it with the same simulation but with shear modes. The forcing and the
numerical methods are the same as in §4. The horizontal Froude number and the
pseudo-Reynolds number are equal to F;, = 0.66 and Re = 10000, leading to a

pseudo-turbulent buoyancy Reynolds number &%, ~ 12 high enough to reach the
strongly stratified turbulent regime. Figure 20 presents the time evolution of the
kinetic energy (figure 20a,b) and the total dissipation rate (figure 20c,d) for both
simulations. The energy of the shear modes (dashed lines) increases after ¢ ~ 60
from zero up to a value of the order of one-quarter of the total energy. This ratio
is consistent with previous numerical studies of forced strongly stratified turbulence
(Smith & Waleffe 2002; Waite & Bartello 2004; Lindborg 2006; Brethouwer et al.
2007). At the same time, the energy in the vertically invariant modes, E,p, decreases
rapidly (light lines in figure 20a,b). Remarkably, this decrease is much slower and
less regular in the simulation without shear modes (figure 20b). The kinetic energy
is also larger around # = 125 when the shear modes are absent. However, the levels
of kinetic energy reached after + = 250 during the statistically stationary regime are
approximately equal for both simulations. It seems that there are larger variations
and slightly higher values of the two-dimensional energy in the simulation without
shear modes than in the one with shear mode. Another difference between the
two simulations concerns P(f) the injection rate averaged over one injection period
At = 5, which varies much more in the simulation without shear modes than in
the other one. This could be due to a difference of structure between the two
flows with fewer layers and more columnar structures when the shear modes are
absent.

In figure 21, the horizontal compensated unidimensional spectra of kinetic energy
Ex (k)& >3k, are plotted as a function of the horizontal wavenumber k, scaled
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FIGURE 20. (Colour online) Temporal evolution of energy (a,b) and dissipation rate (c,d)

for F, =0.66 and Re = 10000 (Fj, ~=0.02, Z,~12). (b,d) correspond to a simulation in
which the shear modes have been inhibited and (a,c) to the same simulation with shear
modes. Here E,p is the energy in the two-dimensional modes (with k£, =0) and Egy, is the
energy in the shear modes (with k, =k, =0). The staircase curve shows i’(t) the injection
rate averaged over one injection sequence of one dipoles (see figure 2).
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FIGURE 21. (Colour online) Horizontal (continuous lines) and vertical (dashed lines)
compensated one-dimensional spectra of kinetic energy EK(k,»)s,jz“kiS/ ? as a function of
the scaled wavenumber k;/k,, where k; denotes either the horizontal wavenumber k;, or
the vertical wavenumber k.. Black lines correspond to a simulation with shear modes and
light lines to a simulation without shear mode.

by the buoyancy wavenumber k, for both simulations with (black lines) and without
(light lines) shear modes. The vertical compensated spectra EK(kZ)8K‘2/3kZS/ 3 are also
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FIGURE 22. (Colour online) Decomposition of the vertical compensated spectra. Black
lines correspond to a simulation with shear modes and light lines to a simulation without
shear mode. The continuous thick curves correspond to the total vertical spectra, the
continuous thin curves to vertical spectra Ejk,0<,<0.4k, (k) computed with modes for which
0 < k;, < 0.4k;, the dotted curve to the shear-mode vertical spectra Ex,,—oj(k;) and the
dashed curves to spectra Ek ,-o0.4x,(k;) computed with modes for which «, > 0.4k,. The
thin straight line indicates the k_° power law.

shown with dashed lines. The horizontal spectra are similar but there is more energy
at the large horizontal scales in the simulation without shear mode. This lead to a
different shape with weaker anomalies at intermediate scales and at the buoyancy
scale compared with the simulation with shear modes. The compensated spectrum
for the simulation without shear modes is also slightly higher than 0.5. The vertical
compensated spectra differ mainly by the presence of two peaks in the simulation
with shear modes: a large one at k, >~ 0.7k, and a much smaller one at k, >~ 1.5k,
i.e. at a wavenumber corresponding approximately to the first harmonic of the first
peak. The first large peak should be related to the shear modes. The spectrum
for the simulation without shear modes is slightly higher at the lowest vertical
wavenumbers.

Figure 22 presents a decomposition of the vertical kinetic spectra as done
in figure 18. As already mentioned, for the simulation with shear modes, the
conditional vertical spectra Ex <,<o.4k,1(k;) associated to the large horizontal scales:
0 <k, < 0.4k, (thin black continuous line), is approximately equal to the conditional
vertical spectrum of the shear modes Ek ,,—o(k;) (dotted line). The conditional vertical
spectra Ejk o<x,<0.4k,) (k;) 1s higher at wavenumber k. < 0.5k, for the simulation without
shear modes leading to a total vertical spectra of the same order in both simulations.
The second peak at k, >~ 1.5k, in the total vertical spectra appears in the conditional
vertical spectra Ejg o<x,<04k,(k;) meaning that it corresponds to relatively large
horizontal scales. The spectra Ex ,~0.4,1(k;) corresponding to small horizontal length
scales are almost similar except that it is slightly higher for the simulation without
shear modes than for the other.

To conclude, the shear modes represent a non-negligible part of the total energy and
seems to play an important role in the dynamics but essential features of turbulence
are the same with or without shear modes. Further investigations are needed to better
understand this issue.
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FIGURE 23. (Colour online) Same as figure 8 except that the simulation is not a DNS
but uses hyperviscosity with a coarser resolution (V, =768 and N, =192).
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FIGURE 24. (Colour online) Same as figure 9(a) except that the simulation is not a DNS
but uses hyperviscosity with a coarser resolution (V, =768 and N, =192).

Appendix B. Comparison between direct and hyperviscous simulations

In this appendix, we compare the largest DNS of §3 (for which N, = 1600 and
N, = 320) with a simulation with hyperviscosity and coarser resolution (N, = 768
and N, =192) for the same forcing and physical parameters (table 3). For this latter
smaller simulation, the ratio k,../k, is equal to 0.52, i.e. of the same order as for the
simulations with hyperviscosity described in § 4.

Figure 23 displays the compensated horizontal two-dimensional spectra for the
simulation with hyperviscosity. Except in the dissipative range, the results are quite
similar to those of the DNS (figure 8). In particular, the bump at the buoyancy length
scale is clearly present in both figures. This strongly indicates that the similar bumps
obtained in the simulations of §4 are not due to hyperviscosity. Figure 24 shows
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=~ 5 ~ = K k 1
F, Re A £ N?xN. F, Ry % —= 7% — vy
ky kp Rey €
(x10~15)
0.66 8000 3560 6 1600> x 320 0.014 12600 2.4 1.11 182 0 0

0.66 8000 3560 6 768> x 192 0.012 17800 2.7 0.52 9.7 6.6 0.31

TABLE 3. Comparison of the physical and numerical parameters of two simulations with
experimental-like dipole generators. The first simulation is the largest DNS of table 1
while the second is a simulation with hyperviscosity and a coarser resolution for the same
physical parameters.

the spectral energy budget for the simulation with hyperviscosity like in figure 9(a)
for the DNS. The two figures are remarkably similar, which once again validates
our choice of using hyperviscosity for the simulations of §4 in order to artificially
increase the Reynolds number without increasing the resolution.
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