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Following the Kolmogorov technique, an exact relation for a vector third-order
moment J is derived for three-dimensional incompressible stably stratified turbulence
under the Boussinesq approximation. In the limit of a small Brunt–Väisälä frequency,
isotropy may be assumed which allows us to find a generalized 4/3-law. For
strong stratification, we make the ansatz that J is directed along axisymmetric
surfaces parameterized by a scaling law relating horizontal and vertical coordinates.
An integration of the exact relation under this hypothesis leads to a generalized
Kolmogorov law which depends on the intensity of anisotropy parameterized by a
single coefficient. By using a scaling relation between large horizontal and vertical
length scales we fix this coefficient and propose a unique law.
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1. Introduction

The 4/5-law (Kolmogorov 1941) is one of the only exact results of the theory of
three-dimensional homogeneous isotropic turbulence in the limit of large Reynolds
numbers. Its more common expression is h[�uL(r)]3i = �(4/5)"Kr, where "K is the
mean kinetic energy dissipation rate per unit mass, �uL(r) = (u(x + r) � u(x)) · r/r
the longitudinal velocity increment and h·i denotes a mean value. Alternatively, the
Kolmogorov law can be expressed as JL(r) = �(4/3)"Kr, where J(r) = h|�u(r)|2 �u(r)i
is the vector third-order moment of the fluctuations; it is the so-called 4/3-law
(Antonia et al. 1997). The Kolmogorov law is one of the most important results
in the theory of homogeneous isotropic turbulence (Frisch 1995) for both fundamental
and practical reasons. It gives the scaling law �u ⇠ ("Kr)1/3 and the exact coefficient
of proportionality. The law expresses the nonlinear fluxes through scales in the inertial
range as a function of measurable third-order moment quantities. Recent extensions of
the isotropic Kolmogorov law have been made, to include quasi-geostrophic (Lindborg
2007), compressible (Galtier & Banerjee 2011) or magnetized (Politano & Pouquet
1998; Galtier 2008) turbulence.

The Kolmogorov 4/5-law comes from the theory of homogeneous isotropic
turbulence where tensorial calculations are developed. Even if symmetries are used
to simplify the analysis, it is difficult to follow the main steps of the derivation and the
physical meaning can be hidden by technical difficulties. However, an easier alternative
derivation exists (Monin & Yaglom 1975; Podesta 2008) in which isotropy may be
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introduced only after an intermediate more general result, which is

r · J = �4"K. (1.1)

It is important to emphasize that the assumption of isotropy must be dropped in many
realistic situations such as geophysical turbulence, and more generally when rotation,
stratification or an imposed magnetic field act on the flow. These physical ingredients
drastically change the flow dynamics (with different invariants and instabilities) and
break the isotropy. From a theoretical point of view, the lack of isotropy renders the
derivation of the counterpart of the 4/3-law much more difficult. However, recent
progress have been made in that direction for rotating or magnetized flows (Galtier
2009, 2011). Relaxing the isotropy assumption for the less restrictive hypothesis of
axisymmetry, and adopting the critical balance viewpoint in which one makes the
assumption of a scale-by-scale balance between the two time scales of the system
(i.e. between the eddy turnover time and the wave time), the correlation space
was assumed to become foliated in the sense that the vector third-order moments
have a specific distribution. This new geometrical interpretation of the correlation
space allows us to integrate (1.1) and find the counterpart of the 4/3-law for the
axisymmetric turbulence studied.

In the present paper, we are mainly interested in purely stratified (non-magnetized,
non-rotating) flows. It is well-known that geophysical turbulence in the Earth’s fluid
envelopes is strongly influenced by density stratification and rotation. Because the
Brunt–Väisälä frequency N characterizing the stratification is usually much larger than
the local rotation frequency f , there are intermediate ranges of scales (1–100 km in the
atmosphere and 1 m–1 km in the oceans) where the Earth’s rotation effect is negligible
but where the stratification is strong (Riley & Lelong 2000; Staquet & Sommeria
2002).

The distinguishing attribute of these strongly stratified flows is a small horizontal
Froude number Fh = U/(NLh), where U is a characteristic velocity scale and Lh an
horizontal scale. Although the dynamics of strongly stratified turbulence has been a
matter of debate for a long time, its understanding has significantly improved over the
last decade and it is now well established that it is fully three-dimensional and strongly
anisotropic. The characteristic vertical scale of a given structure is much smaller than
its typical horizontal length scale and is of the order of the buoyancy length scale
Lb = U/N (Billant & Chomaz 2001; Lindborg 2006). Most numerical simulations of
strongly stratified turbulence have shown that the energy cascade is downscale, from
large to small horizontal scales, as in isotropic homogeneous turbulence (Herring &
Metais 1989; Metais et al. 1996; Laval, McWilliams & Dubrulle 2003; Riley & de
Bruyn Kops 2003; Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007;
Waite 2011; Kimura & Herring 2012). Lindborg (2006) has shown that this strongly
stratified direct energy cascade is associated with k�5/3

h energy spectra, where kh is the
horizontal wavenumber. Such an inertial range exists however only if the buoyancy
Reynolds number, R = ReFh

2, where Re is the usual Reynolds number, is large
(Brethouwer et al. 2007). This condition requires very large Reynolds number since
Fh ⌧ 1. This is largely fulfilled in geophysical flows but is much more difficult to
achieve in direct numerical simulations or experiments. Nevertheless, such a strongly
stratified inertial range has been observed in several numerical simulations and also in
situ (Riley & Lindborg 2008). However, direct non-local transfers toward horizontal
scales of the order of the buoyancy length scale have been also found (Augier 2011;
Waite 2011). Brethouwer et al. (2007) have shown that the strongly stratified inertial
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range should be followed at small scales by a nearly isotropic range since stratification
effects weaken as the scale decreases down to the dissipative scale.

The purpose of the present paper is to derive a third-order structure function
relation taking into account the anisotropy of strongly stratified turbulence in the
stratified inertial range. Such a relation should be of interest for interpreting in-
situ measurements or numerical simulations. For example, Lindborg (1999), Cho &
Lindborg (2001) and Lindborg & Cho (2001) performed statistical studies on aircraft
measurements to compute the nonlinear fluxes using a 4/3-law derived for stratified
rotating turbulence and for horizontal velocity increments. A vectorial anisotropic law
applying especially to strongly stratified turbulence should allow one to gain further
information from these data.

The paper is organized as follows. In § 2 we derive an exact relation in terms of
vector third-order moments and we discuss the weak stratification case for which a
universal 4/3-law is proposed. Strong stratification is considered in § 3: we make the
ansatz that the vector third-order moment is directed along axisymmetric surfaces and
derive a generalized Kolmogorov law. Finally, our main results are summarized in § 4.

2. Exact relation for the vectorial third-order structure function

2.1. Governing equations

The equations for an incompressible, non-diffusive and inviscid stably stratified fluid in
the Boussinesq approximation are

@tu + u ·ru = �rp + bez, (2.1)

@tb + u ·rb = �N2uz, (2.2)
r ·u = 0, (2.3)

where u is the velocity, uz its vertical component, p the rescaled pressure (energy
per unit mass), N = p�(g/⇢0)(d⇢̄/dz) the constant Brunt–Väisälä frequency, ez
the vertical unit vector and b = �⇢ 0g/⇢0 the buoyancy perturbation, with g the
acceleration due to gravity, ⇢0 a reference density, ⇢̄(z) the mean density and ⇢ 0(x)
the density perturbation. Note that it is assumed that ⇢0 � ⇢̄, ⇢ 0 under the Boussinesq
approximation.

Equations (2.1)–(2.2) have two invariants: the total energy and the potential
enstrophy which are respectively (see e.g. Bartello 1995; Kurien, Smith & Wingate
2006)

E = 1
2 h|u|2i + 1

2 hb2/N2i, Q = 1
2 hq2i, (2.4a,b)

where q = (g/⇢0)! · r⇢ = �! · rb � N2!z is the potential vorticity, with ⇢ the total
density and ! = r ⇥ u the vorticity. The conservation of potential enstrophy does
not imply an inverse cascade of energy like in two-dimensional turbulence or quasi-
geostrophic turbulence. Indeed, Lindborg (2006) has shown that the energy cascade is
direct. In what follows, we shall focus on the first invariant, i.e. the energy.

2.2. Stationary developed turbulence

The following assumptions specific to fully developed turbulence will be made
(Kolmogorov 1941; Frisch 1995). First, we assume the presence of a large-scale
forcing F and a small-scale dissipation D . Second, we take the long time limit for
which a stationary state is reached with a finite mean total energy dissipation rate per
unit mass. Third, we consider the infinite Reynolds number limit for which the mean
total energy dissipation rate per unit mass tends to a finite limit, ".
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It is simpler to consider the concept of fully developed stationary turbulence in
spectral space in which the forcing and the dissipative terms are well localized. We
use the definition of the Fourier transform adapted to a periodic three-dimensional box
of side L :

û(k) ⌘
Z

L 3
u(x)e�ik·x d3x

L 3
. (2.5)

The equation of evolution of the energy of a mode k in Fourier space Ê(k) =
|û|2 /2 + b̂2/(2N2) can be written as

@tÊ = T̂ + F̂ � D̂, (2.6)

where T̂ is the conservative nonlinear transfer. The sums over all spectral modes of
F̂ and D̂ are respectively the energy injection P and the total dissipation ", whereas
the sum of T̂ over all the spectral modes is null. For stationary turbulence, the time
derivative is null and P = ". In the limit of large Reynolds number, a wide separation
of scales exists between large-scale forcing and small-scale dissipation. In between,
we have an inertial range in which at first order the terms F̂ and D̂ are negligible.
Turbulence is then characterized by a constant (non-zero) flux ⇧̂ , with by definition
@⇧̂i/@ki ⌘ �T̂ . We now turn to the equivalent of (2.6) in the correlation space.

2.3. Exact result for homogeneous stationary stratified turbulence

In this subsection, we derive the evolution equation of two-point correlation functions
which come from the inverse Fourier transform of |û|2 and |b̂|2. Because our aim is to
describe the inertial range we will neglect hereafter the forcing and dissipative terms.
First, we start with the velocity correlation using the notation huiu0

ji ⌘ hui(x)uj(x0)i,
where x0 = x + r and r is the separation vector. Using the homogeneity assumption and
the divergence-free condition, we get the second-order correlation tensor equation

@thuiu
0
ji = @r`[hu0

ju`uii � huiu
0
`u

0
ji] + huib

0�jzi + hu0
jb�izi + @rihpu0

ji � @rjhp0uii, (2.7)

where Einstein’s notation is used and �ij denotes the Kronecker tensor. The
velocity–pressure correlation term is non-zero since isotropy has not been assumed up
to now. When only the diagonal part of the energy tensor is retained their contribution
disappears (Batchelor 1953) leading to

@thuiu
0
ii = 2r · h(uiu

0
i)ui + [huzb

0i + hu0
zbi]. (2.8)

For the buoyancy correlation, the homogeneity hypothesis and the divergence free-
condition give

@thbb0i = 2r · hbb0ui � N2[hbu0
zi + hb0uzi]. (2.9)

The combination of relations (2.8) and (2.9) gives eventually

@tE(r) = r · h[uiu
0
i + bb0/N2]ui, (2.10)

where E(r) = [huiu0
ii + hbb0i/N2]/2. Equation (2.10) is nothing other than the inverse

Fourier transform of (2.6) where the forcing and dissipative terms have been neglected;
it can be written as @tE(r) = T(r) + F (r) � D(r). By identification, we see that

T(r) = r · h[uiu
0
i + bb0/N2]ui, (2.11)
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which means that the nonlinear transfers in physical space can be expressed as a local
divergence flux of correlation. This is the first intermediate result of the paper. It
should be pointed out that E(r) = TF�1[Ê] is a correlation function and should not be
confused with the energy in physical space.

It is a classical result of homogeneous, isotropic, stationary, developed turbulence
that T(r) is equal in the inertial range to the opposite of ⇧ , the energy flux from small
to large wavenumbers, i.e. T(r) = D(r) � F (r) = �⇧ = �". As shown by Frisch
(1995) or Lindborg (1999), this result remains valid for anisotropic homogeneous
statistically stationary turbulence. Note that the relation T(r) = �" is also valid for
an isotropic system without external forcing. However, for anisotropic non-stationary
turbulence forced with isotropic structures, as in some grid turbulence experiments
(Lamriben, Cortet & Moisy 2011), the anisotropy develops with time from an isotropic
flow. Hence, in this case, T(r) is not constant and varies in the inertial region of the
correlation space.

Since data analyses use generally structure functions, it is convenient to rewrite the
relation T(r) = �" by introducing the vector third-order moment of increments:

r · J = r · h[|�u|2 + (�b/N)2]�ui = �4". (2.12)

Equation (2.12) is an important intermediate result. It describes homogeneous stratified
turbulence. This relation remains valid even when the turbulence is anisotropic.
Note that the flux J can be divided into a kinetic flux and a potential flux
which can be calculated independently. In practice, it is also interesting to quantify
the term for exchange from kinetic to potential energies (Lumley 1964; Holloway
1988; Carnevale, Briscolini & Orlandi 2001; Koshyk & Hamilton 2001) which is
B(r) = [h�uz�bi/2 � huzbi]/N2.

2.4. Weak stratification limit

When N is small, the stratification effects may be seen as a correction to the dynamics
of a non-stratified fluid. Then, we may expect that the assumption of isotropy still
holds at first order. In this case, we can integrate expression (2.12) over a full sphere
of radius r; after the application of the divergence theorem we obtain the universal law

h[|�u|2 + (�b/N)2]�uLi = � 4
3"r, (2.13)

where L denotes the longitudinal component of the vector, i.e. the one along the
r-direction. The stratification term appears as a correction to the 4/3-law derived in
this form by Antonia et al. (1997). It is worth noting that a simple dimensional
analysis performed on the universal law (2.13) leads to the isotropic spectral relation
Eb(k) ⇠ k�5/3 as for a passive scalar (Obukhov 1949).

3. Kolmogorov law for anisotropic axisymmetric turbulence

We now derive the counterpart of the Kolmogorov law for anisotropic axisymmetric
turbulence starting from the general expression (2.12) which is exact for homogeneous
turbulence. An application to strongly stratified turbulence will then be presented.

3.1. Assumption on the direction of the flux J
The case of a strong stratification is more difficult to analyse since turbulence becomes
anisotropic. However, we may assume that stratified turbulence remains axisymmetric,
i.e. statistically invariant under rotation around the vertical axis. This implies that
the flux J has a null azimuthal component and does not depend on the azimuthal
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(a) (b)

FIGURE 1. (a) Graphical representation of the assumption on the direction of the flux J .
(b) Infinitesimal volume �V used for the integration. The infinitesimal surface closing the
infinitesimal volume at the radius rh is given by �S? = 2⇡rh�l.

coordinate, i.e. J = Jv(rh, rv)ev + Jh(rh, rv)eh, where rv is the vertical coordinate,
rh = p

rx
2 + ry

2 the radial coordinate and ev and eh the associated unit vectors.
However, the axisymmetry alone is insufficient to integrate (2.12). For example, two-
dimensional and three-dimensional isotropic turbulence are both axisymmetric but lead
to different Kolmogorov laws.

Hence, we have to specify the degree of anisotropy. Following Galtier (2009), we
assume that the flux J is directed along axisymmetric surfaces parameterized by the
power law

rv = fn(rh) = ↵rh
n, (3.1)

where ↵ and n are two real parameters. Because power laws are ubiquitous in
turbulence this hypothesis seems natural. An interpretation of it will be given in
§ 3.4. The variation of the coefficient ↵ defines a continuous set of surfaces allowing
the direction of J to be described in the entire correlation space. The exponent n
parametrizes the degree of anisotropy. For example, the two-dimensional isotropic case
is obtained for n = 0 with a horizontal flux J = Jheh. The three-dimensional isotropic
case is obtained for n = 1 with a radial flux J = (r · J)r/ |r|2.

In the general case, the assumption that the flux J is directed along the curves (3.1)
implies that J(rh, rv) = JT(rh, rv)eT (rh, rv), where eT (r) is given by

eT (rh, rv) = eh + f 0
n(rh)evq

1 + f 0
n(rh)

2
= eh + n tan evp

1 + n2tan2 
, (3.2)

with  the angle between r and the horizontal plane (see figure 1a). The angle �
between J and the horizontal direction is therefore given by tan� = Jv/Jh = n tan .

3.2. Integration of (2.12)

Having specified the direction of the flux J , we can now integrate (2.12). We adopt
a global method as is classically done in the isotropic case with an integration over
a sphere in three dimensions and over a disk in two dimensions (Lindborg 1999).
However, we have checked that the same result can be obtained through a local
method (Augier 2011). In the anisotropic axisymmetric case, we have to consider an
infinitesimal volume �V drawn in figure 1(b) enclosed between two infinitesimally
close surfaces S↵ and S↵+�↵ defined by (3.1). The volume is closed at the radius rh by
an infinitesimal axisymmetric surface �S? = 2⇡�l perpendicular to the vector J .
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Because the flux is assumed to flow over (and not through) the surfaces S↵ and
S↵+�↵, the divergence theorem applied over the infinitesimal volume �V yields

Z

�V
r · J d3r =

Z

S↵ , S↵+�↵ , S?
J · dS = �S?JT(rh, rv). (3.3)

Integrating (2.12) over the infinitesimal volume �V leads therefore to

JT(rh, rv) = �4"
�V(rh, rv, �↵)

�S?(rh, rv, �↵)
. (3.4)

In the limit �↵ ! 0, the infinitesimal surface can be expressed as �S?(rh, rv, �↵) =
2⇡rh cos��rv and the infinitesimal volume �V can be computed as

�V(rh, rv, �↵) =
Z rh

0
dr0

h2⇡r0
h�r

0
v = 2⇡�↵

Z rh

0
dr0

hr0
h

n+1 = 2⇡�rv

rh
2

n + 2
. (3.5)

This gives the following law: JT = �4/(n + 2)"rh/ cos� which can be rewritten as

JT(rh, rv) = � 4
n + 2

"r cos 
p

1 + n2tan2 = � 4
n + 2

"
p

rh
2 + n2rv

2. (3.6)

The flux is therefore given by

J(rh, rv) = � 4"
n + 2

(rheh + nrvev). (3.7)

It is the main result of the paper. We see that the vectorial law (3.7) for anisotropic
axisymmetric turbulence has a form close to the isotropic case with, dimensionally,
a linear dependence in r; however, anisotropy may be taken into account simply
through the parameter n. Expression (3.7) is quite general and allows one to potentially
describe different types of axisymmetric turbulence. In particular, the well-known
three-dimensional isotropic law J(r) = �(4/3)"r is recovered for n = 1 and the two-
dimensional law J(rh) = 2"rh is also recovered for n = 0 (note that the sign depends
on the type of cascade and it is fixed by hand).

3.3. Anisotropy in strongly stratified turbulence

We now discuss the main results known on the anisotropy of strongly stratified
turbulent flows in order to find the appropriate value of the exponent n. As discussed
in the Introduction, it is now well established that strongly stratified turbulence
is strongly anisotropic and fully three-dimensional. Billant & Chomaz (2001) have
shown that the Boussinesq–Euler equations have an invariance in the limit of strong
stratification (i.e. Fh ⌧ 1) that sets the characteristic vertical length scale Lv to the
buoyancy length scale Lb = U/N, where U is a characteristic horizontal velocity. This
scaling law is supported by simulations of stratified homogeneous turbulence (Riley
& Lelong 2000; Godeferd & Staquet 2003; Waite & Bartello 2004; Lindborg 2006;
Brethouwer et al. 2007), three-dimensional stability analyses of various flows (Billant
& Chomaz 2000; Leblanc 2003; Otheguy, Chomaz & Billant 2006) and experiments
(Park, Whitehead & Gnanadeskian 1994; Holford & Linden 1999) provided that
R = ReF2

h � 1, a condition ensuring negligible viscous effects.
Lindborg (2006) further assumed that this scaling law holds at each horizontal scale

lh in strongly stratified turbulence, i.e. lv ⇠ �uh/N, where �uh is the characteristic
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FIGURE 2. Schematic representation of the scaling laws relating vertical and horizontal
characteristic length scales lv and lh in strongly stratified turbulence in real space. Arrows
symbolize energy fluxes through different flow regimes. The bold line with the single arrow
and the dashed-dotted line correspond to the scaling law (3.8). The bold line with the double
arrow and the dotted line correspond to the scaling law lv = lh. The open and filled circles
correspond to the large anisotropic structures and to the isotropic structures at the Ozmidov
length scale, respectively.

horizontal velocity associated with lh. This is equivalent to the so-called critical
balance which states a scale-by-scale balance between the wave and the nonlinear time
scales (Nazarenko & Schekochihin 2011) and which is widely used for magnetized
fluids (see e.g. Goldreich & Sridhar 1995; Bigot, Galtier & Politano 2008). Using
this scaling law, Lindborg (2006) presented a theory and numerical evidence for a
direct cascade of energy from large to small horizontal scales in strongly stratified
turbulence. Through this cascade, the characteristic horizontal velocity �uh is given
by �uh(lh) ⇠ "K

1/3lh
1/3 as in homogeneous isotropic turbulence. As shown by many

authors (Lindborg 2006; Brethouwer et al. 2007; Riley & Lindborg 2008; Nazarenko
& Schekochihin 2011), the combination of both previous scaling laws yields

lv = lo (lh/lo)
1/3 (3.8)

where lo = ("K/N3)
1/2 is the Ozmidov length scale (Lumley 1964; Ozmidov 1965).

This relation between horizontal and vertical characteristic length scales shows that
structures have a pancake shape with lv ⌧ lh when lh � lo. However, the isotropy
is recovered when lh is of the order of the Ozmidov length scale lo. For scales
lh smaller than lo, the horizontal Froude number Fh(lh) = uh(lh)/(Nlh) = (lo/lh)

2/3 is
larger than unity so that they are only weakly affected by the stratification. This
led Brethouwer et al. (2007) to argue that the strongly stratified inertial range exists
only up to the Ozmidov length scale and that there is a transition to quasi-isotropic
homogeneous turbulence for scales smaller than the Ozmidov length scale and down to
the Kolmogorov length scale.

These two regimes are sketched in figure 2 in the space (lh, lv). The turbulence
is assumed to be forced at the large horizontal scale Lh with a vertically invariant
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forcing (i.e. such as Lv � Lb) as in the numerical simulations of Waite & Bartello
(2004), Lindborg (2006) and Brethouwer et al. (2007) and in the experiments of
Praud, Fincham & Sommeria (2005). Large pancake structures (represented by an
open circle in figure 2) arise spontaneously through decorrelation processes which
are ubiquitous in stratified flows. Indeed, different mechanisms leading to a vertical
decorrelation have been described in different contexts, such as the zigzag instability
(Billant & Chomaz 2000), internal wave resonances (Leblanc 2003), weakly nonlinear
wave turbulence (Caillol & Zeitlin 2000) and the Lilly decorrelation process (Lilly
1983). The two first processes select a vertical scale which is Lb, i.e. the buoyancy
length scale.

Although the scaling law (3.8) has a power-law dependence as (3.1), their physical
meanings are completely different. Equation (3.8) relates the horizontal and vertical
characteristic length scales of structures whereas (3.1) specifies the direction of the
flux J in the correlation space (rh, rv).

The relation (3.8) means that the typical correlation length in the vertical direction
lv is smaller than the one in the horizontal direction lh. Therefore, if we assume that
the isolines of correlation are ellipsoidal in the correlation space rh, rv, they should be
given by (rh/lh)

2 + (rv/lv)
2 = 1. In other words, the isocorrelation lines are flattened

in the vertical direction. By using (3.8), the ellipse equation can be rewritten as
rh

2 + (lh/lo)
4/3 rv

2 = lh
2. The aspect ratio of the elliptic contours of constant correlation,

p = lh/lv = (lh/lo)
2/3, is therefore not constant but varies with lh. It decreases from

values larger than unity for the strongly stratified turbulent cascade (lh � lo) down
to unity at the Ozmidov length scale where the isotropy is recovered. We can note
that the isolines of the flux modulus |J | are also ellipsoidal according to (3.6) and
such that rh

2 + n2rv
2 = const., but the aspect ratio n is constant. Furthermore, the

isocorrelation lines and the isoflux lines do not necessarily have the same shape so that
it seems not possible to deduce n from these considerations.

3.4. Alternative derivation of (3.7)

In fact, a result equivalent to (3.7) can be derived without using the hypothesis
(3.1) and this will give some indications of how the parameter n can be deduced.
Indeed, another way to solve the divergence equation (2.12) is to use the Helmholtz
decomposition to write the flux J = rG + r ⇥ H . Since stratified turbulence is
statistically invariant under inversion of the vertical axis, the pseudo-vector r ⇥ J
should be equal to zero implying H = 0. Note that this symmetry argument does not
apply to rotating and magnetized turbulence. In any case, the potential G satisfies
a Poisson equation r2G = �4". This equation has to be solved in a closed domain
bounded by a surface ⌃ corresponding to the largest scales Lh and Lv. Assuming
that the solution is non-singular at rh = rv = 0, the general solution can be written
G = G1 + G2 where G2 satisfies r2G2 = 0 and

G1 = � 2"
2 + PG

2

�
rh

2 + PG
2rv

2
�

(3.9)

with PG a constant. The contours of constant G1 are elliptic with an aspect ratio equal
to PG.

If ⌃ is an oblate spheroid defined by (rh/Lh)
2 + (rv/Lv)

2 = 1 the complementary
solution G2 can be found by separation of variables in terms of oblate spheroidal
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harmonics (Abramowitz & Stegun 1965). In any case, it will depend on the particular
boundary conditions (i.e. forcing) imposed at the largest scales, i.e. on ⌃ .

It is then straightforward to compute the divergent part of the flux

J = � 4"
2 + PG

2

�
rheh + PG

2rvev
� + rG2. (3.10)

Remarkably, the first part of (3.10) has exactly the same form as (3.7) and implies
directly that this component of the flux is directed along lines defined as in the power
law (3.1) with a constant n = PG

2. In addition, if the flux imposed by the forcing at the
largest scales satisfies (3.1), i.e. rG2 = 0 on ⌃ , then we have G2 = 0 for any rh and rv.
In this case, the constant n is fixed by the direction of the flux at the largest scales. In
other words, the structure of the flux J at all scales is entirely determined by the flux
forced at the largest scales.

This suggests that the parameter n may depend on the type of forcing for each
particular experiment or simulation. Nevertheless, we can assume that the largest
scales are in a balanced state, i.e. that they fulfil the scaling laws Lv = Lb and
�uv/�uh ⇠ Fh = Lb/Lh (Billant & Chomaz 2001). Then, we can assume Jv/Jh ⇠
�uv/�uh at the energy-containing scales rh ' Lh and rv ' Lv to obtain n = PG

2 ⇠ 1.
This scaling analysis suggests that the value of n should be close to the isotropic value
even for a strongly anisotropic flow. It would be interesting to compute the flux J in
experiments or numerical simulations to test our predictions and to determine whether
or not strongly stratified turbulence is associated to a universal value of n.

4. Conclusion

In this paper an exact relation for homogeneous, incompressible, stably stratified
turbulence has been derived. This relation shows the modifications brought to the
Kolmogorov vectorial relation by the stratification. When the Brunt–Väisälä frequency
is small, isotropy is still expected at first order and an universal 4/3-law may be
derived.

For strong stratification anisotropy can no longer be neglected. The ansatz is made
that the flux of correlation J flows along axisymmetric surfaces whose form depends
on the intensity of anisotropy. Under this hypothesis the exact relation has been
integrated and a generalized Kolmogorov law has been found. An alternative derivation
of this generalized law based on the Helmholtz decomposition of the flux has also
been presented. It shows that the intensity of anisotropy of the flux should depend on
the large scales of the flow, i.e. on the type of forcing. An explicit prediction for the
flux J has been obtained assuming that the large vertical scales fulfil the scaling law
Lv ' Lb.

It would be interesting to check these predictions and in particular the ones about
the direction of the flux J and its dependence on the large-scale structures. In the case
of rotating turbulence, Lamriben et al. (2011) have recently measured experimentally
anisotropic energy transfers. However, in these experiments the forcing is isotropic and
anisotropy develops with time so that the nonlinear transfer T(r) (see (2.11)) is not
constant. For this reason, it might be easier to test our predictions for the flux J for
statistically stationary turbulence by means of numerical simulations of forced strongly
stratified turbulence.
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