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The motion induced by vortex shedding on slender flexible structures subjected to
cross-flow is considered here. This phenomenon of vortex-induced vibration (VIV) is
analysed by considering the linear stability of a coupled system that includes the struc-
ture dynamics and the wake dynamics. The latter is modelled by a continuum of wake
oscillators, distributed along the span of the structure. In the case of uniform flows over
a straight tensioned cable, VIV are found to arise as an instability related to the merging
of two waves. In the case of a cable of finite length, the selection of modes that experience
lock-in with the wake is found using the same stability argument. In non-uniform flows,
several unstable wave systems are identified, and competition between them is discussed.
Comparison is then made with existing experimental and computational data of VIV
of slender structures under uniform and non-uniform flows. Phenomena previously iden-
tified in these systems, such as mode switching when the flow velocity is varied, time
sharing of the response between two frequencies, or the coexistence of several regions of
VIV with different dynamics in the same structure, are discussed with the help of the
proposed model.

1. Introduction

Vortex induced vibrations (VIV) of cylindrical structures has been the subject of ex-
tensive theoretical, experimental and numerical studies, see for instance Williamson &
Govardhan (2004), Sarpkaya (2004) and Gabbai & Benaroya (2005) for recent reviews. A
bluff body undergoing VIV can attain an amplitude of motion in the direction transverse
to the flow of the order of one diameter. This occurs when the period of vortex shedding
is comparable to the free oscillation period of the structure. A strong interaction then
takes place between the cylinder and its wake, and both elements oscillate at the same
frequency, owing for the term lock-in. The underlying impacts of this phenomenon on
engineering applications, such as undesirable vibrations of offshore structures, chimneys
and heat exchanger tubes, explain the high interest in the subject. In fact, sustained
vibrations of those structures can lead to failures by fatigue or unacceptable increases of
the drag on the system.

In this paper, the focus is on slender structures undergoing VIV, the engineering ap-
plication being related to offshore systems such as mooring cables or underwater piping
elements called risers. Those practical cases are characterized by a flexible bluff body
having an aspect ratio, length over diameter, of order 103 and a ratio of structural mass
over fluid displaced mass of the order of one. As reported from field studies (Alexander,
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1981, Kim et al., 1985, Vandiver, 1993 and Marcollo et al., 2007), the vortex-induced mo-
tion of those structures is sometimes characterized by travelling waves. Since the ocean or
sea currents usually vary with depth, those structural waves may develop in non-uniform
flow conditions.

Considerable knowledge has been gained on the physics of the interaction between a
rigid cylinder and its wake when the former is undergoing a prescribed motion (for exam-
ple Sarpkaya, 1978, Gopalkrishnan, 1993, Carberry et al., 2005) or is free to move trans-
verse to the flow direction when supported elastically (for example Khalak & Williamson,
1999, Vikestad et al., 2000).

The behaviour of high aspect ratio flexible structures under non-uniform or even uni-
form flows is however much less understood. Even though there are similarities between
the phenomenology of VIV of rigid and flexible bodies as reported by Brika & Laneville
(1993) and Fujarra et al. (2001), there is indeed a gap between the two situations. Several
aspects must be taken into account: (a) in very slender structures the number of vibra-
tion modes that may interact with the wake is large, (b) the local wake depends on the
local cross-flow that may vary in intensity and direction along the structure, (c) in prac-
tical applications boundary conditions at the extremities of the structure may be quite
dissipative, and a wave description may be more appropriate than a mode description.
This leads to questions that are definitely more complex than in the case of an elastically
supported rigid cylinder under uniform flows, as often used in analytical studies. For
example, the issue of the range of flow velocities that may lead to lock-in differs: for an
elastically supported rigid cylinder this is well defined, see for example King et al., 1973
and Griffin & Ramberg, 1982, and may easily related to the ratio of the frequency of
shedding and that of the cylinder, with some effect of mass ratio and structural damping.
When the number of modes that may lock-in is large, several time scales are present in
the problem, and the existence of one or several simultaneous lock-in must be evaluated.
Moreover, as the oncoming flow may vary in space, several time scales of vortex shedding
may also exist, further complicating the problem. Finally, the possibility of travelling
waves exists.

In fact, there are a number of publications reporting laboratory experiments on VIV of
high aspect ratio structures that bring some answers to the questions above, for example
King (1995), Chaplin et al. (2005b), Trim et al. (2005), Lie & Kaasen (2006). In King
(1995), results are reported from a tensioned cable under uniform water flow. A stair-like
shape is observed for the evolution with flow velocity of the motion frequency of the
structure. Each step corresponds to the lock-in range of a distinct structural mode. This
type of experimental result was also reported more recently by Chaplin et al. (2005b).
Conversely, Trim et al. (2005), when testing a high aspect ratio tensioned beam in uniform
flows, observed that the evolution of motion frequency is rather continuous with velocity.

In Chaplin et al. (2005b), it is also reported that VIV in uniform flows can be either
highly periodic or, in some cases, strongly modulated with time in terms of modal content
of the response. In the latter case, the response would “switch” from one dominant spatial
mode to another, justifying the name “mode switching” used by Chaplin et al. (2005b)
for this phenomenon. The same behaviour was also observed from field experiments
with a very high aspect ratio riser in non-uniform currents, where distinct frequencies of
movement were “sharing” time (Swithenbank 2007) leading to the term of “time sharing”
which we shall use here.

Numerical computations of VIV of slender structures are also available in the literature,
where the Navier-Stokes equations and the structural equations are solved jointly (New-
man & Karniadakis, 1997, Lucor et al., 2006). Due to the extensive computational cost,
there are few three dimensional computations for high aspect ratio systems. Newman &
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Karniadakis (1997) found a cable response in form of a travelling wave in uniform flows,
but they obtained a mixture of standing and travelling waves for a non-uniform flow.
Lucor et al. (2006) studied a very high aspect ratio tensioned beam with non-uniform
flow loading. They reported that the structure vibration frequencies varied with space,
the low frequencies being located at low flow velocity region and the high frequencies at
the high flow velocity region. This spatial variation of dominant vibration frequencies in
non-uniform flows is also observed experimentally, (Kim et al. 1985).

Apart from numerical solutions of the Navier-Stokes equations, one can rely on semi-
empirical models for predictions. By semi-empirical, it is meant that results from rigid
cylinder experiments are used as inputs to predict VIV of slender flexible structures.
These models can be divided in two subgroups. For the first subgroup, the hydrodynamic
loading on the structure is function of its own movement. For example, Sarpkaya (1978)
decomposes this loading into two components: one in phase with the acceleration and the
other with velocity. The dependency of those quantities on the movement of the structure
is then obtained experimentally (see for example Gopalkrishnan, 1993). This approach
is widely used in industry, see Vandiver (1994). On the other hand, from experimental
observations of the time evolution of the lift force due to vortex shedding, Birkoff &
Zarantanello (1957) and Bishop & Hassan (1964) suggested that this quantity could be
regarded as resulting from the dynamics of an oscillator. This is the basic idea of the
second subgroup of the semi-empirical models, where the wake dynamics is modelled by a
nonlinear oscillator, leading to the term “wake oscillator models”. Since the development
of the first wake oscillator model by Hartlen & Currie (1970), several models have been
introduced with different nonlinearities for the wake equation and different coupling
functions between the wake and the structure. In a recent paper, Gabbai & Benaroya
(2008) have shown that a number of wake oscillator models in the literature can be
recovered from using Hamilton’s principle, proving, to some degree, that this family of
models has some relevance in terms of fluid dynamics. More generally, representing the
dynamics of the wake by a single self-sustained nonlinear oscillator is consistent with
the idea of a nonlinear global mode which is characterized by its frequency, growth rate,
and amplitude (Chomaz 2005). Using a van der Pol oscillator to model the fluctuating
lift, Facchinetti et al. (2004a) showed that the most appropriate forcing on the wake
variable for reproducing the physics of lock-in was proportional to the acceleration of
the structure. Using distributed wake oscillators along the span of the structure, the
model was then extended to flexible structures subjected to uniform and non-uniform
flows (Facchinetti et al., 2004b, Mathelin & de Langre, 2005) and validated against results
from numerical simulations and experiments on high aspect ratio flexible structures under
non-uniform flows (Violette et al. 2007). This model has also been used by other authors
since then to study certain aspects of VIV of slender structures in non-uniform flows
(Modarres-Sadeghi et al., 2008 and Xu et al., 2008).

In Chaplin et al. (2005a), comparisons for a tensioned beam in uniform flows between
experimental results and most existing prediction methods are presented. Those methods
succeed at different levels at predicting quantitatively the experimental results. However,
there is certainly need for a systematic and comprehensive approach to address the
issues raised above, that are specific to slender structures: simultaneous lock-in of several
modes, travelling waves, time sharing and separation in space of dominant frequencies.
The focus needs to be more on the mechanisms that lead to such behaviours than on the
quantitative prediction.

In a recent paper, de Langre (2006) modelled vortex-induced vibrations of an elastically
supported rigid cylinder under uniform flow using a linearized version of Facchinetti’s
wake oscillator model. He showed that the lock-in mechanism between the wake and the
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structure can be modelled as a linear instability arising from the merging of the frequen-
cies of the two modes of the system: namely a structure-dominated mode and a wake
mode. This type of instability is commonly called coupled-mode flutter (Blevins 1990).
Using this simple approach, de Langre retrieved analytically the influence of the differ-
ent parameters on the characteristics of lock-in. Clearly, such a linear stability approach
could not lead to quantities such as the amplitude of steady-state motion of the cylin-
der. Still, it was found that some characteristics of the steady-state regime, such as the
frequency or the dependence on mass ratio, did not differ much from those of the most
unstable mode found in the linear stability approach. More generally, this allows one to
describe the lock-in between a flow instability and a vibration mode of a structure in a
linear framework: see for instance the case of flow over a canopy, Py et al. (2006) and
Gosselin & de Langre (2009), where a mixing layer instability interacts with a flexible
system.

Following the approach of de Langre (2006), the purpose of this paper is therefore
to present a simple theory for vortex-induced vibrations of slender flexible structures
based on a linear stability analysis, and thereby to furnish simple explanations to the
questions raised in this introduction. In section 2, we present the linear wake oscillator
stability theory used for comparisons with experiments and numerical results reported
in the literature.

2. A linear wake oscillator model for Vortex-Induced Vibrations

under uniform flow

2.1. Model description

For the vibrating structure, a tensioned cable model is considered here for its simplic-
ity. Considering only the cross-flow movement of the cable, its equation of motion in
dimensional form is

m
S

∂2Y

∂T 2
+ ζ

S

∂Y

∂T
− Θ

∂2Y

∂Z2
= FY , (2.1)

Y (Z, T ) being the structure displacement at the spanwise position Z and time T , Θ being
the tension, mS the linear density of the cable and ζS the structural damping coefficient.
Following Facchinetti et al. (2004b), the fluid force FY is written
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1
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where ρ is the fluid density, D the cross sectional diameter, U the flow velocity, CM0

the inviscid added mass coefficient, CD the mean sectional drag coefficient and CL0
the

fluctuating lift coefficient amplitude for a rigid cylinder under uniform flow. The dynamic
of the local fluctuating lift coefficient q(Z, T ) = 2CL(Z, T )/CL0

appearing in the forcing
term FY is here modelled using a linear oscillator, following de Langre (2006)
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q = A
∂2Y

∂T 2
. (2.3)

where ST is the Strouhal number. The forcing of the structure over the wake is propor-
tional to its local cross-flow acceleration through an empirical constant A, see Facchinetti
et al. (2004b). In this simple model, the phenomenology must be introduced through the
coefficients CL0

, CD, ST , A and ε. Of these, the first three quantities are well documented,
for instance in terms of their dependency on the Reynolds number (see Norberg, 2003).
The empirical parameters ε = 0.3 and A = 12 are deduced from wake measurements ob-
tained from forced vibration experiments on rigid cylinders (see Facchinetti et al., 2004a).
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Note that no spanwise interaction of the wake variable q is considered: an interaction by
diffusing and stiffening terms was studied by Mathelin & de Langre (2005) for flexible
structures and it was shown then that its effect was negligible, the spanwise interaction in
the wake resulting essentially from the structure movement. From equations 2.1 and 2.3,
the wake and the structure will now be considered as a single one-dimensional medium,
the dynamics of which is defined by Y (Z, T ) and q(Z, T ). This medium will be analysed
with propagating wave solutions. These propagating waves have two components, namely
the structure displacement Y (Z, T ) and the lift fluctuation q(Z, T ), figure 1.

2.2. Dimensionless form

Equations 2.1 and 2.3 are now put in dimensionless form. The cable undamped phase
velocity in stagnant fluid C is used to define the dimensionless time,

C =

√

Θ

m
T

, (2.4)

where m
T

= m
S

+ (π/4)ρD2CM0
is the sum of the structure mass and the inviscid fluid

added mass. Using the diameter D as the reference length scale, the dimensionless time t,
displacement y and spanwise position z are expressed respectively as t = CT/D, y = Y/D
and z = Z/D. The dimensionless equations are then

∂2y

∂t2
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u

)
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∂z2
= Mu2q, (2.5)
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where
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(
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m
T
C

)

ζ
S
, γ =

CD

4πST
, M =

CL0

16π2S2
Tµ

, µ =
m

T

ρD2
. (2.7)

As outlined by Facchinetti et al. (2004a), M is a mass number that scales the effect of
the wake on the structure. The parameter u is referred to as the reduced velocity and is
defined by

u = 2πST
U

C . (2.8)

In de Langre (2006), it was shown that damping terms did not significantly affect
the instability mechanism causing lock-in. We therefore disregard them now for the sake
of simplicity. The set of equations used in the theoretical development in the next two
sections therefore simply read

∂2y

∂t2
− ∂2y

∂z2
= Mu2q, (2.9)

∂2q

∂t2
+ u2q = A

∂2y

∂t2
. (2.10)

Only three dimensionless parameters, u, A and M are left in this model of vortex-
induced motion of a tensioned cable. The control parameter is u, the reduced velocity,
which scales the flow velocity with the velocity of waves in the cable, equation 2.8. The
parameter A scales the sensitivity of the wake dynamics to the motion of the cylinder,
equation 2.3, while M is essentially a mass ratio, equation 2.7. Their respective values
are of the order of 10 for A (A = 12 was found by Facchinetti et al.), and 10−2 for M
in the case of neutrally buoyant structures, such as found in offshore engineering. These
two parameters only affect the result through their product AM , as can be seen by a
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change of variable Q = q/A. The typical order of magnitude of the combined parameter
AM is therefore 10−1. We will refer to the AM term as the mass parameter, in reference
to its dependency on the mass ratio µ.

3. Linear stability analysis in the case of uniform flow

3.1. Infinite tensioned cable

The stability analysis of the system 2.9 and 2.10 is presented first for the case of an
infinite cable-wake medium. Searching for solutions in the form of propagating waves

[

y(z, t)
q(z, t)

]

=

[

ŷ
q̂

]

ei(ωt+kz), (3.1)

where ω is the frequency, k the wavenumber, ŷ and q̂ the complex amplitude of the
structural and wake part of the waves respectively, the dispersion relation reads

D(ω, k;u) = ω4 + [(AM − 1)u2 − k2]ω2 + k2u2 = 0. (3.2)

Note that this relation can be put in the reduced form D̄(ω/u, k/u) = 0, however, the
form 3.2 is kept in order to facilitate the physical interpretation of the results. The
stability analysis of the cable-wake is now done for the temporal problem, i.e. with k
real. The pulsation ω as a function of k and u is derived from 3.2,

ω(k, u) = ± 1√
2

[

k2 + (1 −AM)u2 ±
√

(k2 + (1 −AM)u2)
2 − 4k2u2

]1/2

. (3.3)

Frequencies come in pairs of opposite signs corresponding to propagation in opposite
directions. Assuming AM < 1, which is consistent with practical cases, ω is complex
when

−2ku < k2 + (1 −AM)u2 < 2ku. (3.4)

The range of wavenumbers k that give complex ω at a given reduced velocity u is therefore

u(1 −
√
AM) < k < u(1 +

√
AM). (3.5)

For wavenumbers that satisfy 3.5, the complex frequency is

ω± =
1

2

√

k2 + 2uk + (1 −AM)u2 ± i

2

√

−k2 + 2uk + (AM − 1)u2. (3.6)

From equation 3.6, two unstable and two damped waves are found for each wavenumber
inside the range defined by 3.5. This defines a temporal instability for the coupled cable-
wake system.

Before going any further, the physical characteristics of this instability are analysed.
Figure 2 illustrates the real and imaginary part of ω as a function of k for typical values
of AM . Here, the velocity u is taken equal to one, recalling that the dispersion relation
may be put in a reduced form on ω/u and k/u. The figure also shows the the ratio G
between the wake amplitude and the cable amplitude

G =
q̂

ŷ
=
k2 − ω2

Mu2
=

Aω2

ω2 − u2
. (3.7)

These results may be interpreted as follows. For wavenumbers outside the lock-in range
defined by relation 3.5, two waves are found: one with a strong wake amplitude (denoted
W) and one with a strong structure amplitude (denoted S). The frequency of the S waves
increases linearly with k, which is expected for a tensioned cable. The frequency is nearly
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constant for the W waves, which is expected for a wake with no spanwise interaction.
The two wave frequencies merge in the lock-in range leading to complex conjugates
frequencies ω. This is identified on the figure as coupled-wave flutter (CWF). In this
range of wavenumbers the phase angle between the cable and the wake varies from π to
2π.

From figure 2, it is found that the cable-wake medium displays a temporal instability,
similar to that of the elastically supported rigid cylinder reported by de Langre (2006).
It results from the merging of the frequencies of two neutral waves, a structural wave S
and a wake wave W. For a given reduced velocity u, the most unstable wavenumber is
kmax = u. The corresponding complex pulsation reads

ωmax = u

√

1 − AM

4
− iu

√
AM

2
. (3.8)

Conversely, at a given wavenumber k, one can retrieve from equation 3.5, the range of
reduced velocities u for which ω is complex

k

1 +
√
AM

< u <
k

1 −
√
AM

. (3.9)

The frequency ω is then given by equations 3.6. Outside this range, equation 3.3 gives
the neutral frequency. Figure 3 shows the evolution of ω and G as a function of u for
a given wavenumber. The same instability related to merging of the frequencies of two
waves is observed. The evolutions of the pulsations and of the phase angle with the flow
velocity are identical to that given in de Langre (2006) for an elastically supported rigid
cylinder. This is expected, as fixing the wavenumber k is equivalent to replacing the span-
wise second derivative of the displacement in 2.9 by a constant times the displacement:
the equation for the structure is then identical to that of an elastically supported rigid
cylinder.

3.2. Tensioned cable of finite length

We seek now to analyse the stability of the cable-wake medium when boundary conditions
are imposed. This is done by imposing a restriction on the admissible wavenumbers. For a
tensioned cable of dimensionless length Λ = L/D with fixed ends, figure 4, the boundary
conditions read

y(0, t) = 0, y(Λ, t) = 0. (3.10)

As no spanwise interaction is considered for the wake, no boundary condition is required
on q. Admissible real wavenumbers for such a configuration are thus

kn =
π

Λ
n, (3.11)

where n = 1, 2, 3 . . . In this case, the terminology “mode number” applies to the variable
n. Rewriting 3.9 using 3.11, one finds the range of reduced velocity in which Mode n is
unstable

(π

Λ

) n

1 +
√
AM

< u <
(π

Λ

) n

1 −
√
AM

. (3.12)

Inside this range of reduced velocities, the frequency of Mode n is

ωn =
( π

2Λ

) [

√

n2 + 2nβ + (1 − AM)β2 − i
√

−n2 + 2nβ − (1 −AM)β2
]

, (3.13)

with β = (Λ/π)u. Figure 5 shows the evolution of ω with u for n = 1, 2 for two values
of AM . For the sake of clarity, neutral frequencies are not shown. From figure 5, it is
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seen that Re[ω] varies almost linearly with u and that the transition from one mode to
another involves a jump in this quantity (stair-like shape).

It can also be noticed that the range of instability for two adjacent modes can overlap.
This is the case for AM = 0.3 but not for AM = 0.05. This shows that it is possible for
more than one mode to be unstable for a given flow velocity. As seen on figure 5, the
unstable modes have distinct frequencies. Using relation 3.12 and defining ∆un as the
range of reduced velocities where mode n and n+ 1 are both unstable, one finds

∆un =
π

Λ

[(

2
√
AM

1 −AM

)

n− 1

]

. (3.14)

4. Linear stability analysis for non-uniform flow

Here, a generic case of non-uniform flow is studied. It consists in an infinite tensioned
cable submitted to two uniform flow profiles, u1 for z > 0 and u2 for z < 0, with u1 > u2

(figure 6).

4.1. Configuration characteristics

Denoting ω1, ω2 and k, p the frequencies and wavenumber for Medium 1 and 2 respec-
tively, the dispersion relations read

D1(ω1, k;u1) = ω1
4 + [(AM − 1)u1

2 − k2]ω1
2 + k2u1

2 = 0, (4.1)

D2(ω2, p;u2) = ω2
4 + [(AM − 1)u2

2 − p2]ω2
2 + p2u2

2 = 0. (4.2)

Solving equations 4.1 et 4.2 for k and p one finds

k = ±ω1

√

1 +
AMu1

2

ω1
2 − u1

2
, p = ±ω2

√

1 +
AMu2

2

ω2
2 − u2

2
. (4.3)

The configuration shown on figure 6 implies a connection between the two media at
z = 0. As no spanwise interaction is considered for the wake variable, this connection
imposes conditions only on the structural part of the waves,

y1(0, t) = y2(0, t),
∂y1
∂z

(0, t) =
∂y2
∂z

(0, t). (4.4)

This implies that ω1 = ω2 = ω. We restrict our analysis to temporally unstable wave
systems, corresponding to a complex ω with a negative imaginary part. Also, only waves
with finite amplitude at infinity are considered.

The cable displacement y and the fluctuating lift amplification q are included now in
one variable for each medium, namely χ1(z, t) and χ2(z, t)

[

y1(z, t)
q1(z, t)

]

=

[

1
q̂1/ŷ1

]

χ1(z, t),

[

y2(z, t)
q2(z, t)

]

=

[

1
q̂2/ŷ2

]

χ2(z, t). (4.5)

From equation 4.3 two waves are found in each medium. The response for the entire
system is thus in the general form

χ1(z, t) = P1e
i(ωt+k+z) +N1e

i(ωt+k−z), (4.6)

χ2(z, t) = P2e
i(ωt+p+z) +N2e

i(ωt+p−z), (4.7)

where P and N are the amplitudes of the waves that are propagating toward positive
and negative z respectively. For the sake of clarity, k and p are noted for now on without
the + and − signs. Figure 7 illustrates the type of response implied by equations 4.6 and
4.7.
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4.2. Admissible wave systems

Admissible wave systems should satisfy (a) the dispersion relations (equations 4.3), (b)
the connection condition (equation 4.4) and (c) the condition of finite amplitude at
infinity. The most general case implies complex values of k and p. From equations 4.3,
there is one wave in each medium that respects the finite amplitude condition at infinity,
figure 8. However, condition 4.4 cannot be satisfied in this case if both wavenumbers are
not equal. This form of response is thus not admissible.

The second type of response corresponds to both wavenumbers k and p being real. This
configuration satisfies condition 4.4 for all wavenumbers. Since the complex frequency
must be the same in both media, the ranges of unstable k and p must overlap. From
equation 3.5 this condition reads

u2

u1
≥ 1 −

√
AM√

1 −AM
. (4.8)

This form of response is now referred to as the Conditional Wave System (C) because of
this requirement, and is illustrated on figure 8.

The last possible type of response is composed of two neutral waves inside one medium
and one wave with spatially decaying amplitude in the other medium. This form of
response satisfies condition 4.4. Two new wave systems are thus identified: the first for
which k is real and p is complex and the second with p real and k complex. The first wave
system is from now on called the Primary Wave System, (P), and the second Secondary
Wave System, (S), figure 8.

In order to compare wave systems, a common length scale is used to normalise the
variables. This length scale is set equal to the most unstable wave length in Medium 1.
From the discussion in section 3.1, the corresponding wavenumber is kmax = u1. The
normalised quantities are therefore z̄ = zu1/2π, k̄ = k/u1 and p̄ = p/u1. Variables t and
ω are also normalised by u1 in order to obtain t̄ = tu1/2π and ω̄ = ω/u1. The velocity
ratio R = u2/u1 is also introduced. The relations between the normalised variables ω̄, k̄
and p̄ read

Re [ω̄] =
1

2

√

k̄2 + 2k̄ + (1 −AM) =
1

2

√

p̄2 + 2Rp̄+ (1 −AM)R2, (4.9)

Im [ω̄] = −1

2

√

−k̄2 + 2k̄ + (AM − 1) = −1

2

√

−p̄2 + 2Rp̄+ (AM − 1)R2, (4.10)

k̄ = ±ω̄
√

1 +
AM

ω̄2 − 1
, p̄ = ±ω̄

√

1 +
AMR2

ω̄2 −R2
. (4.11)

At a given reduced velocity u, there is a real wavenumber for which the growth rate
in time is maximum, see section 3.1. The most unstable (P) wave system is for k̄ = 1.
In the same way, the (S) system with the highest growth rate is for p̄ = R. The most
unstable normalised frequency for each system thus reads, from equation 3.8,

ω̄P =

√

1 − AM

4
− i

√
AM

2
, ω̄S = R ω̄P . (4.12)

Note that as R < 1, both the real and imaginary part of the complex frequency are
smaller for (S) than (P).

While in (P) and (S) all frequencies are admissible, there is only one possible frequency
ω̄ at a given velocity ratio R for the wave system (C). The corresponding wavenumbers
are derived using 4.9 and 4.10

k̄ = ±R
√

1 −AM, p̄ = ±
√

1 −AM, (4.13)
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and the frequency reads

2ω̄C =
[

2R
√
α+ α

(

1 +R2
)]1/2 − i

[

2R
√
α− α

(

1 +R2
)]1/2

, (4.14)

with α = 1 − AM . It appears that the growth rate of the conditional wave system (C)
is always smaller than that of both the (P) and (S) systems. We shall therefore assume
that its role in the response can be neglected and will not discuss it any further.

4.3. Spatial forms of (P) and (S)

The spatial form of the wave systems (P) and (S) is examined here for fixed values of
the velocity ratio R and of the mass parameter AM . A parametric analysis of their effect
presented in Violette (2009), not shown here for the sake of brevity, shows that : (a) the
form of the wave system is fairly independent on R and (b) high values of AM lead to
stationary waves instead of propagating waves.

The evolution in space of wave systems (P) and (S) is fully determined by the wavenum-
bers k̄ and p̄ and the amplitude coefficients N1, N2, P1 and P2. For (P), we have k̄ = 1
and p̄ is obtained from equation 4.11. The finite amplitude condition at infinity requires
that P2 = 0. The amplitudes N1, N2 and P1 are determined from the connection condi-
tions, equation 4.4. As there are only two equations for three unknowns, N1 = 1 is used
as a reference. Solving equation 4.4 for N2 and P2, one finds

[N1, P1, N2, P2] = [1, (1 − p̄) / (1 + p̄) , 2/ (1 + p̄) , 0] . (4.15)

Leaving out the growth in time of the amplitude, the response of (P) is shown on figure
9. The global response can be summarized as a wave propagating towards negative z̄. Its
amplitude decreases exponentially for z̄ < 0 and is spatially modulated for z̄ > 0. This
modulation is caused by the relatively low modulus of P1 with respect to the reference
value N1. Figure 9 shows that there is a jump in amplitude for the wake variable at z̄ = 0,
which is expected since the amplitude ratios q̂1/ŷ1 and q̂2/ŷ2 are not equal (equation 3.7).

The spatial shape of (S) is found following the same steps. We have p̄ = R and the
wavenumber k̄ is found with equation 4.11 for the pulsation obtained from equation 4.12.
The amplitude coefficients read

[N1, P1, N2, P2] =
[

0, 2R/
(

R+ k̄
)

,
(

R− k̄
)

/
(

R+ k̄
)

, 1
]

. (4.16)

Figure 9 shows the form of the response (S). Except for the wavelength and the direction
of propagation, the spatial form of (S) is similar to that of (P).

4.4. Coexistence of primary and secondary wave systems: Space sharing

Considering that the growth rate of the wavesystem (P) is always larger than that of
(S) one may expect that the former will dominate the long term steady-state response
of the system. This is evidently true in Medium 1, the region of higher velocity, but not
in Medium 2 where the amplitude of (P) exponentially decays with distance from the
interface. Hence the question of how far into Medium 2 the wavesystem (P) penetrates
must be analysed carefully, by taking into account both spatial and temporal forms. Still
using the linear framework we consider the locus where both wave systems have the
same amplitude, when an arbitrary unit initial condition is taken for both, figure 10(a).
This locus moves into Medium 2 as time grows, as illustrated on figure 10(b). The phase
velocity of this motion is given by

CPS =
Im[ω̄

P
] − Im[ω̄

S
]

Im[p̄
P
]

. (4.17)
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This quantity is found to be of the order of unity, in dimensionless variables, and to
depend on the velocity ratio R but weakly on the mass parameter AM , figure 10. This
velocity scales the rate at which the wave system (P), associated with the higher velocity,
penetrates into the region of lower velocity. It may therefore be used, in a system of finite
length, to estimate the possibility that the secondary wave system persists in the region
of lower velocity. A persisting (S) system in the response results in a separation in space
of the dominant frequency, a phenomena which we shall refer to here as “space sharing”.
In section 5.4, we look into the question of space sharing in a practical case.

5. Comparisons with experimental and numerical results

The linear theory presented in Sections 3 and 4 is now used to analyse some reference
cases of vortex-induced vibrations of slender structures published in the literature.

5.1. Range of unstable wavenumbers

In Section 3.1, we have shown that, for a given reduced velocity u, there is a range
of real wavenumbers k for which the cable-wake system is unstable in time. Outside
of this range of wavenumbers, the waves are neutral so that their amplitude should
rapidly be negligible in comparison to their unstable counterparts. We therefore expect
wavenumbers of motions observed in practice to fall inside this range.

To verify this assumption, we use the experimental results by King (1995), who mea-
sured the response vibration frequency and mode number of a tensioned cable undergoing
VIV in uniform flows. The vibration frequency as a function of the flow velocity is shown
on figure 11(a), and experimental conditions are summarized in table 1. The stair-like
shape of the frequency evolution with flow velocity mentionned in Section 3.2 for a ten-
sioned cable (figure 5) is clearly seen in the experiments.

The experimental results from King (1995) are used here to verify the validity of
relations 3.5 and 3.6, which give the expected range of unstable wavenumbers and the
corresponding frequency of motion. In order to do so, the parameter M from equation 2.7
needs to be quantified. As the mass ratio is known, the only inputs needed are CL0

and
ST . For the range of Reynolds numbers considered here, a value of CL0

= 0.2 is reported
by Norberg (2003). As for the Strouhal number, a value of ST = 0.17 is used, consistent
with experimental results from Chaplin et al. (2005b) for similar Reynolds numbers on a
tensioned beam under uniform flows. In order to collapse the data on to one graph, the
dimensionless frequency Re[ω] is normalised by the reduced velocity u. The frequencies
and wavenumbers reported by King (1995) are put in dimensionless form using

k

u
=

(

n

2ΛST

)(

Θ
π
4 ρD

2U (4µ/π − 1)

)

,
Re[ω]

u
=

fD

STU
. (5.1)

The term n refers to the dominant spatial mode observed in the experiment and f to
the observed vibration frequency, figure 11(a). The comparison between the experimental
results and the theoretical prediction, equations 3.5-3.6, is shown on figure 11(b). Most of
the experimental points are located inside the range of unstable wavenumbers. Moreover,
the normalised frequencies of motion fall very close to the curve predicted by the linear
theory.

5.2. Transition between modes

From the analysis presented at Section 3.2 for a finite system, there are possible overlaps
of reduced velocities ranges of instability of two (or more) adjacent modes. In the case of
such overlaps, we assume that only the most unstable mode is observed in practice. To
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test this assumption, results from the experimental study of Chaplin et al. (2005b) are
used.

A sketch of the experiment is shown on figure 12. It consists of a tensioned beam of low
flexural rigidity subjected to a uniform water flow on part of its length, the other part
being in stagnant water. Chaplin et al. (2005b) represent the transverse displacement of
the structure by

Y (Z, T ) =
∑

n

Yn(T ) sin

(

nπZ

L

)

(5.2)

where n is the mode number and Yn(T ) is the corresponding modal weight derived
from measurements. Note that these modes are not the free vibration modes of the
structures. They are now referred to as Fourier modes, to clearly distinguish them from
the eigenmodes of the dynamical system.

Figure 13(a) shows the value of the dominant Fourier mode number for five consecutive
flow velocities, as observed in the experiments. In that case Fourier mode 2 dominates
for the low velocities and Fourier mode 3 for the highest. This transition from mode 2 to
mode 3 is now analysed using the results of Section 3.2.

In order to properly model this configuration several aspects must be taken into ac-
count, which makes it differ from the idealized system described by the set of equations
2.9 and 2.10: (a) the beam has a small, but non-negligible bending rigidity, (b) the ten-
sion in the beam varies linearly with the vertical position, due to gravity, (c) there is
no flow on the upper part of the beam, (d) the damping terms are not neglected. The
corresponding set of dimensionless linear equations read

∂2y

∂t2
−
(

1

1 + Γ

)

∂

∂z

(

θ
∂y

∂z

)

+

(

1

1 + 1/Γ

)

∂4y

∂z4
= Mv2q −

(

γ

µ
v

)

∂y

∂t
, (5.3)

∂2q

∂t2
− εv

∂q

∂t
+ v2q = A

∂2y

∂t2
. (5.4)

We have used here the dimensionless time variable t = BT/D defined with the bending
wave velocity

B =

√

Θ

m
T

+
EI

m
T
D2

, (5.5)

recalling here that m
T

= m
S

+ (π/4)ρD2CM0
. The other dimensionless quantities are

Γ =
EI

ΘD2
, v = 2πST

(

Uref

B

)

, (5.6)

where Θ is the tension at the top of the structure, EI is the bending rigidity. The values
of the structural parameters are given in table 1. Note that in the region where no cross-
flow exists the fluid force acting on the right-hand side of equation 5.3 is set to zero.
In that region the wake variable q is undefined. The flow-induced damping term, scaled
by γ, and the wake negative damping term, scaled by ε are those defined in section 2.1.
The structural damping term, proportional to ξ, is neglected, being here of much lesser
magnitude.

To model the attachments at the structure extremities, conditions of no bending mo-
ment and displacement are imposed

∂2y

∂z2
(0, t) =

∂2y

∂z2
(L/D, t) = 0, y(0, t) = y(L/D, t) = 0. (5.7)

As the Reynolds numbers are similar to those of the previous section, the same values
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of CL0
and ST are used (King 1995). A value of CD = 2 is taken for the mean drag

coefficient, consistently with measurements of this quantity by Chaplin et al. (2005b).
Eigenmodes of the system defined by equations 5.3 and 5.4 with the conditions 5.7

are now computed using a second order centered finite difference scheme in space. The
structure displacement is discretised by j points in the spanwise direction and the wake
variable by r points only, as no wake model is needed in the upper part of the beam
where no flow exists. The discretized form reads
[

MS MFS

MSF MF

]

( ..

Y
..

Q

)

+

[

RS RFS

RSF RF

]

( .

Y
.

Q

)

+

[

KS KFS

KSF KF

](

Y
Q

)

= 0

(5.8)

where Y = [y1(T ) · · · yj(T )]
T

and Q = [q1(T ) · · · qr(T )]
T
. The dynamic system 5.8 is

solved for solutions of the form
(

Y
Q

)

=

(

Vy

Vq

)

eiωt, (5.9)

where ω is the eigenfrequency, and Vy et Vq are the eigenvectors of the structure and
the wake respectively. Results are now given in terms of dimensional variables, for easier
comparison with the experimental results.

The computed growth rates of the two most unstable modes are shown on figure 13(b),
as a function of the flow velocity parameter. Mode 2 has a growth rate higher than Mode
3 for the lowest velocities. At U = 0.46 m/s, the growth rates of both modes are equal
and, for higher velocities, Mode 3 becomes the most unstable. This transition in terms of
growth rates from Mode 2 to Mode 3 compares well with the experiments where a switch
is observed in terms of the dominant mode seen in the response. The corresponding
eigenvectors Vy and Vq are complex quantities. Figure 13(b) shows the structure modal
shape Vy for the most unstable mode, respectively Mode 2 and Mode 3 for low and high
velocities. These are close to the Fourier mode shapes 2 and 3 assumed in equation 5.2.

It may be concluded that a simple linear stability analysis can predict here some
important characteristics of the steady-state response of the system: the most unstable
mode corresponds to the observed beam motion.

5.3. Time sharing

In the previous experiments, the response at a flow velocity U = 0.46 m/s is a particular
case where the time evolution of the modal factors Yn(T ), otherwise strongly periodic,
are modulated in time. This type of multimode response is discussed now.

In their paper, Chaplin et al. (2005b) report several cases of what they refer to as “mode
switching”. The term “time sharing” used by Swithenbank (2007) is also appropriate,
and shall be used hereafter to make a clearer distinction from the switch of modes caused
by changing the flow velocity, as discussed in the previous section. In the experiments
this time sharing was triggered by disturbances such as vibrations in the carriage system
due to irregularities in the rails on which it is mounted.

Figure 14 shows one such case of time sharing in terms of the time evolution of the
Fourier modal variables Y6(T ), Y7(T ) and Y8(T ). The flow velocity in this case is U = 0.90
m/s. Those time traces are the ones presented in figure 7 in Chaplin et al. (2005b). Two
regimes of response are observed. The first regime, named here Regime A, is dominated
by Fourier mode 8 and the second, Regime B, by a combination of Fourier modes 6 and 7.
Figure 14 also shows the evolution of the pseudo-frequency of the Fourier modal variables
Y6(T ), Y7(T ) and Y8(T ) using a wavelet analysis: at each vibration cycle, the frequency
corresponding to the maximum wavelet coefficient is noted for each signal, and averaged
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over ten cycles of vibrations. For Fourier modes 6 and 7 a constant and common frequency
is found during Regime B, when they dominate the response. During Regime A their
frequency of motion is ill-defined, as may be expected from the time evolution shown in
the upper part of the figure. Conversely, for Fourier mode 8 a constant frequency exists
only in Regime A. In figure 15 the corresponding experimental space-time evolutions
reconstructed using equation 5.2 are shown.

For this configuration, the eigenmode calculation using the coupled linear system
5.8 predicts that the two most unstable modes have almost identical growth rates,
Im[ω

A
]/Im[ω

B
] = 1.007. This confirms the possibility of coexistence of these two modes

in the response. They can be associated to each regime A or B unambiguously, by consid-
ering the dominant wavelength in their spatial evolutions, figure 15: one of them is close
to a Fourier mode 8 and the other to a Fourier modes 6. The eigenfrequencies of these
two most unstable modes are shown on figure 14, in comparison with the experimental
data, showing good agreement.

We may therefore conclude that time sharing is symptomatic of the fact that two (or
more) modes of the linearized system possess similar growth rates and are therefore likely
to both exist in the saturated response.

5.4. Non-uniform flow : Space sharing

Lucor et al. (2006) reported results of a numerical study on a high aspect ratio tensioned
beam free to vibrate only in the cross-flow direction and subjected to non-uniform flows.
They solved by direct numerical simulation (DNS) the three-dimensional flow around the
structure coupled with the beam dynamics. Two flow profiles were analysed: one linearly
sheared called here Case L, and another exponentially sheared called Case E. These are
illustrated in figure 16. Results for these two cases were found to differ significantly in
terms of the dynamics of the beam: in Case L a unique frequency of motion sets on the
whole beam, as can be seen on the spatially averaged amplitude spectrum in figure 16.
Conversely in Case E the beam moves with a local frequency that varies along the span.
The spatially averaged amplitude spectrum shows therefore a large set of frequencies.
Lucor et al. (2006) found that the higher frequencies dominate in the upper part of the
structure and the lower frequencies in the bottom part. The frequency at the bottom
are close to five times lower than the frequencies of the upper part. There is therefore in
Case E a clear separation in space of the dominant vibration frequencies that is absent
in Case L. These features also appear in the space-time evolution of the displacement
of the beam figure 16: for case L a single frequency and a single wavelength combine in
a downward propagating wave, but several frequencies and wavelengths coexist in Case
E, with a low frequency wave propagating from bottom to top. We seek now to explain
these results on the spatial organisation of frequencies using the linear theory developed
for the case of non-uniform flows in Section 4.

The model used for the beam and the wake dynamics is identical to that of the Sections
5.2 and 5.3 except for two aspects: (a) there is no spanwise variation of tension, so that
θ(z) = 1, and (b) there is a spanwise variation of velocity so that the dimensionless
velocity parameter v must be replaced by ψ(z)v where ψ(z) = U(Z)/Uref is the flow
profile. Here the maximum velocity is used as the reference velocity, Uref = U(L). For
the drag coefficient CD and Strouhal number ST the values of Section 5.2 and 5.3 are
used. We use here a fluctuating lift coefficient of CL0

= 0.8 to be consistent with results
from Norberg (2003) for the range of Reynolds numbers of Lucor et al. (2006) DNS. The
structural parameters can be found in table 1. The boundary conditions are identical
to that of the previous section. Using the same discretisation technique as above, the
unstable linear modes are derived, in each case of flow profile, L and E. By a simple
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analogy with the wave systems of section 4 the modes can be classified as (P) or (S),
the former corresponding to the most unstable mode, and the latter being the second
most unstable mode localized in the low flow region. The ratios of frequencies and growth
rates are given in table 2. Figure 16 shows the corresponding eigenvectors. Note that for
Mode (P) the eigenvectors are complex, meaning a travelling wave response, while they
are essentially real for Mode (S), meaning a stationary response.

In Case L, the maximum amplitude is located in the middle of the domain for (P) and
in the lower part for (S). The exponential decay of amplitude with space is clearly seen
for both modes. Figure 16 shows the comparison between the response of the beam in
time and space computed by the DNS, and that of the linear model where Mode (P)
and Mode (S) are superimposed and the exponential growth in time has been removed.
The DNS predicts waves that are propagating downward (indicated by an arrow on the
figure), with a velocity that compares well with that of Mode (P). Also, the wavelength of
Mode (P) is close to the one obtained by DNS. However, there is no trace of a structural
response close to Mode (S) in the DNS prediction.

For Case E, the shape of Mode (P) and Mode (S) are shown on figure 16 for the beam
displacement. The maximum amplitude region of Mode (P) is much higher in this case
than in Case L. Also, Mode (S) has a high amplitude for a much wider zone. Figure
16 shows the comparison between the DNS calculation and the linear modal analysis
results. The superposition of the forms of Mode (P) and Mode (S) is shown. In the upper
part of the beam, the linear model predicts well the response computed by Lucor et al.
(2006): the wave length and the propagation velocity are well reproduced. As mentioned
earlier, one observes in the DNS calculation a low frequency wave in the lower part that
propagates upward. Its half period and wavelength are similar to that found for Mode
(S), figure 16.

We may conclude that the computed linear Mode (P) provides a good approximation
for the wavelength and propagation velocity of the main vibration waves. Three common
points with the theory of Section 4 are highlighted. First, a high frequency and dominating
mode, with respect to temporal growth rate, Mode (P), has been found for both flow
velocity profiles. Second, the wave-length observed for (P) is lower than that of (S).
Third, the amplitude of Modes (P) and (S) decreases exponentially outside the range of
velocities that is favourable to the establishment of their temporal growth rate. Those
common points indicate that the theoretical results in Section 4 for an idealized geometry
and flow profile seem applicable to more complex configurations.

Finally, we analyse the issue of the coexistence of several frequencies, or space sharing
: as noted above a significant difference between the responses obtained by Lucor et al.
(2006) for a linearly sheared flow and an exponentially sheared flow, is the coexistence
of two zones with distinct frequencies of motion in the latter case. This may be analysed
in terms of Modes (P) and (S), using the results of Section 4.4 for an idealized non-
uniform flow. The phase velocity of the invasion of the primary wavesystem (P) into the
region of lower velocity was given by equation 4.17. Here a similar velocity, CPS , may be
computed by fitting a spatial decay coefficient on the computed eigenshape of Mode (P),
and using the growth rates of the two modes. The time needed for Mode (P) to invade
the domain of lower velocities is given by t

PS
= −LS/CPS where LS is the size of the

domain of Mode (S), as defined in figure 16. Table 2 shows that this time is longer for
the exponentially sheared flow, so that Mode (S) can be expected to persist longer in the
response for the latter case than in Case L. This is consistent with the results of Lucor
et al. (2006).
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6. Discussion and conclusions

We have presented here a simple approach to vortex-induced vibrations and waves
for slender structures. This simplicity is based on several strong assumptions, which are
now recalled. First we have assumed that the local dynamics of lift on the cylindrical
section of the structure follows that of a wake oscillator. The concept of wake oscillators
has had renewed interest recently, with systematic comparison with experiments and
computations that have been made available, and discussion on its physical basis, in
particular in relation to global modes. Moreover, it is now more systematically used, as in
this paper, without ad-hoc additional terms that have sometimes been introduced to fit a
particular experiment, at the risk of losing generality. Recent applications of this concept
of wake oscillators have shown its ability to capture some essential features of VIV, even in
complex geometries. Second, we have only considered here the linear stability of a model
coupling the structure and the wake dynamics. In doing so we have assumed that the fully
saturated state of the system, in its steady-state motion, has characteristics very similar
to that of the most unstable linear modes. Third, we have only considered straight cables
and beams, assuming that the response for these geometries were somewhat generic.
Finally, we have disregarded vortex-induced motion in the direction of flow, which is
known to have some effect on the overall response (see for example Jauvtis & Williamson,
2004 and Dahl et al., 2007 for the case of a rigid cylinder free to vibrate in both in-flow
and cross-flow directions and Vandiver et al., 2006 for flexible structures).

Because of these assumptions, closed form solutions could be derived for uniform and
non-uniform flows. A discretized version of the equations allowed us to use a straight-
forward eigenmode computation to derive the most unstable modes in more complex
cases. Such computation is orders of magnitude faster than a DNS with a flexible cable
or beam. Still, the most important result is that several phenomena that have been ob-
served in experiments or computations of VIV of slender structures could be interpreted
in this simplified framework: range of unstable wavenumbers, mode transition or mode
switching with flow velocity, time sharing and space sharing

Therefore, the approach presented in the paper may be used for different goals : (a) in
a design perspective, as a first step to identify the risk of lock-in and the corresponding
frequencies and wavelengths, (b) as a more general tool for the understanding of the
complex phenomena observed in VIV of slender structures.

Of course, the linear stability analysis based on wake oscillators bear some limits, many
of which can be overcome. First, no estimate of the amplitude of VIV can be obtained.
This is not a critical issue, even in practice, as amplitudes in VIV are always close to one
diameter or so. Moreover, in terms of fatigue assessment, frequency of motion and wave-
length, which affects curvature and therefore stress, are of the utmost importance. These
can be derived by the present approach. Second, specific behaviour in time and space
that may be caused by nonlinearities of the problem cannot be predicted, for instance
hysteretic behaviour of nonlinear coupling between waves. Currently these effects do not
seem to play a major role in practical cases of vortex-induced vibrations. Third, the wake
oscillator used to model the lift dynamics may be easily improved by considering the de-
pendence of its coefficients with the Reynolds number, or by adding another oscillator for
the drag fluctuation. Finally, the adaptation of the present approach to other geometries
such as a curved cable would only require a proper linearization of the cable dynamics
and a model to take into account the angle between flow and cable axis in the wake
oscillator. Similarly, considering a flow that varies in direction along the span requires
a proper three-dimensional model of the cable. As of today, a linear stability approach
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with a wake oscillator is probably the simplest way to explore these cases and understand
the complex coupling that arises between the wake and the structure dynamics.

We gratefully acknowledge the help of John Chaplin and Didier Lucor in providing
detailed data of the results from their experiments and computations.
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Parameters Section 5.1 Section 5.2 Section 5.3 Section 5.4

µ 4.16 π π 2.785
Γ - 19.3 34.6 165
L/D 280 469 469 2 028
∂θ/∂z - 1.76 10−4 3.16 10−4 -
v - - 7.72 10−3 2.79 10−3

Re 9 000 - 40 000 2 500 - 25 000 22 500 1 000

Table 1: Parameters of experiments and numerical computations.

2πSTωP
/v 2πSTωS

/v Im[p
P

] CPS LS vt
PS
/2πST

Case L 0.766 - 0.297i 0.287 - 0.148i 0.0080 -18.6 660 35.5
Case E 0.827 - 0.247i 0.117 - 0.0432i 0.0079 -25.8 1 565 60.7

Table 2: Linear computation results for Case L and E.

Figure 1: Model of a tensioned structure undergoing vortex-induced vibrations VIV. Left:
Transverse displacement Y and tension Θ. Right: Schematic view of the model using a
distributed wake oscillator variable q.
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Figure 2: Linear stability analysis of vortex-induced waves in the coupled wake-cable
system. Temporal analysis, k real. The complex pulsation ω and the amplitude ratio G
are shown as a function of the wavenumber k for a mass parameter AM = 0.25. The
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Figure 4: Tensioned cable under a uniform flow. Extremities are fixed.
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Figure 6: Non-uniform flow on a straight cable. Two semi-infinite media having different
reduced velocities u1 and u2 are connected at z = 0.

Figure 7: Wave configuration corresponding to equations 4.6 and 4.7.
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Figure 8: Definition of the unstable wave systems in non-uniform flows: Left, two complex
waves (non admissible), (C) four spatially neutral waves Conditional Wave System, (P)
two spatially neutral waves and one spatially decaying, Primary Wave System, (S) two
spatially neutral waves and one spatially decaying, Secondary Wave System.
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Figure 12: Schematic view of the experimental setup used by Chaplin et al. (2005b).
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Figure 16: Tensioned beam undergoing VIV under non-uniform flows. Comparison between numerical predictions by Lucor et al. (2006),
using DNS, and the linear stability of the coupled structure-wake system. Top, linearly sheared flow, Case L: (a) flow velocity profile, (b)
beam eigenshape for the most unstable mode, Mode (P), (c) same quantity for most unstable mode in the low flow velocity region, Mode
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