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The linear impulse response of axisymmetric jets is examined for a family of variable-temperature
profiles typical of the potential core. The influence of jet heating, shear layer thickness, and
Reynolds and Mach numbers on the spatiotemporal stability of both axisymmetric and helical
modes is investigated. The linear impulse response is retrieved from a numerical solution of the
spatial eigenvalue problem, which is derived from the fully compressible equations of motion.
Changes in the spatiotemporal stability of heated versus isothermal jets are shown to arise solely
from the effect of the baroclinic torque. By considering the full linear impulse response, the
competition between jet column modes and shear layer modes is characterized. Jet column modes
are only found to occur for axisymmetric disturbances. In thin shear layer jets, the jet column mode
is shown to prevail at low group velocities, whereas axisymmetric and helical shear layer modes
dominate at high group velocities. The absolute mode of zero group velocity is found to always be
of the jet column type. Although only convectively unstable, the maximum growth rates of the shear
layer modes greatly exceed those of the jet column modes in thin shear layer jets. In thick shear layer
jets, axisymmetric modes of mixed jet column/shear layer type arise. The weakened maximum
growth rate of mixed modes accounts for the dominance of helical modes in temporal stability
studies of thick shear layer jets. © 2007 American Institute of Physics. �DOI: 10.1063/1.2437238�

I. INTRODUCTION

The theoretical and experimental studies of Monkewitz
and Sohn1 and Monkewitz et al.2 have provided strong evi-
dence that the occurrence of self-sustained oscillations in
sufficiently heated jets is connected to a transition from con-
vective to absolute instability of the unperturbed flow state.
The objective of the present investigation is to fully charac-
terize the linear instability modes that are observed in hot
jets as a function of their group velocity. Such instability
modes precisely constitute the ingredients of the linear im-
pulse response. A family of parallel velocity and temperature
profiles typical of the potential core region in spatially de-
veloping jets is considered, and their spatiotemporal stability
characteristics are determined from the full linear impulse
response wave packet. An analysis of the dispersion relation
allows to identify the physical mechanism by which hot jets
become absolutely unstable. It should be understood that all
results obtained for hot jets equally pertain to cases where
density variations are due to the mixing of nonhomogeneous
fluids as, for instance, helium jets in air.3–5

The effect of temperature variations on the spatial insta-
bility of axisymmetric jets has been studied theoretically by
Michalke.6,7 In agreement with earlier predictions drawn
from the analysis of plane shear layers �Blumen et al.8�, heat-
ing of the jet with respect to the surrounding fluid was shown
to promote the spatial growth of externally forced perturba-
tions. Michalke identified a “regular” and an “irregular” un-
stable axisymmetric mode. Unexplained at the time, the ei-
genvalues of these two modes seemed to interchange as the
ambient-to-jet temperature ratio fell below 0.7. Once the

concepts of absolute and convective instability9,10 had been
introduced to fluid mechanics, Huerre and Monkewitz11 later
interpreted the “irregular” mode as an upstream-traveling k−

branch, and the apparent mode interchange as a result of the
onset of absolute instability.

The occurrence of absolute instability in hot round jets
without counterflow has been firmly established by Monke-
witz and Sohn.1 These authors investigated the transition
from convective to absolute instability in terms of the tem-
perature ratio, the Mach number, and the shear layer thick-
ness relative to the jet radius. Absolute instability was found
to first set in for axisymmetric perturbations, at a critical
temperature ratio of 0.72 and finite shear layer thickness. In
contrast, Pavithran and Redekopp12 demonstrated that non-
homogeneous plane shear layers only display absolute insta-
bility in the presence of counterflow.

Jendoubi and Strykowski13 extended the analysis of
Monkewitz and Sohn1 to jets with ambient coflow and coun-
terflow. Their study remains the most comprehensive spa-
tiotemporal analysis of axisymmetric jets to this day. Re-
stricted to axisymmetric disturbances, their investigation
revealed the presence of two distinct instability modes. In a
thin shear layer jet, the first of these axisymmetric modes
was shown to be closely related to the plane shear layer
instability described by Pavithran and Redekopp:12 All per-
turbations are concentrated within the jet shear layer region,
and absolute instability only occurs in the presence of suffi-
ciently strong counterflow. This mode will be denoted as the
shear layer mode throughout this paper. The second mode
was shown to be identical with the absolute instability mode
discovered by Monkewitz and Sohn.1 Its pressure eigenfunc-
tion peaks on the jet axis. Henceforth, this mode will be
denoted as the jet column mode.a�Electronic mail: lutz.lesshafft@ladhyx.polytechnique.fr
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While the study of Jendoubi and Strykowski13 clearly
identifies the convective/absolute transition of the shear layer
and jet column modes as a function of temperature ratio and
external flow, the respective roles of these two competing
modes in a given base flow cannot be understood by consid-
ering the absolute instability mode of zero group velocity
alone. Arbitrary perturbations in real flows will always create
nonzero group velocity modes that may experience strong
temporal amplification. The aim of the present paper is to
provide a spatiotemporal instability analysis in terms of the
full linear impulse response. The whole wave packet evolv-
ing from an initial Dirac-type perturbation according to the
linear equations of motion is considered. This wave packet is
composed of a continuous spectrum of jet column and shear
layer modes, each one traveling in the axial direction at a
distinct group velocity vg. The simultaneous growth of jet
column and shear layer modes can therefore be characterized
as a function of their group velocity. For a review of spa-
tiotemporal instability theory, the reader is referred to
Huerre.14 Unlike Ref. 13, axisymmetric as well as helical
modes are considered. The inviscid results of Monkewitz and
Sohn,1 and Jendoubi and Strykowski,13 are further comple-
mented by parameter studies of the convective/absolute in-
stability boundary at finite Reynolds and Mach numbers and
for thin and thick shear layers. The analysis is restricted to
situations with zero external flow without loss of generality,
as the effect of coflow or counterflow on the linear impulse
response wave packet in parallel jet profiles can be obtained
by a simple transformation provided in Sec. II.

The paper is organized as follows: The formulation of
the base flow and the mathematical model for the linear in-
stability analysis are defined in Sec. II. The numerical solu-
tion of the dispersion relation is briefly outlined in Sec. III.
The eigenvalue problem representing the compressible vis-
cous dispersion relation is documented in the Appendix, to-
gether with further details of its numerical discretization. The
linear impulse response of an isothermal thin shear layer jet
is examined in Sec. IV A and compared to corresponding
results obtained for a hot jet in Sec. IV B. Modifications of
the dispersion relation lead to identify the physical mecha-
nism responsible for the occurrence of absolute instability in
hot jets. The linear impulse response of a thick shear layer jet
as well as the influence of the Reynolds and Mach numbers
on the onset of absolute instability are examined in
Sec. IV C. The paper concludes with a summary of the main
results.

II. PROBLEM FORMULATION

The linear impulse response is determined for an axi-
symmetric compressible jet base flow of density �b, tempera-
ture Tb, pressure pb, and axial velocity ub. The base flow is
considered to be parallel in the axial direction and swirl free;
the radial and azimuthal velocity components vb and wb

therefore are zero. The flow geometry is formulated in cylin-
drical coordinates �x ,r ,��. All flow variables are given in
nondimensional form, scaled with respect to the jet radius R
and the jet centerline values Uc, �c, and Tc. An analytical

expression for base flow velocity profiles, typical of the po-
tential core region in laboratory jets, is taken from
Michalke,6

ub�r� =
1

2
+

1

2
tanh� R

4�
�1

r
− r�� . �1�

The velocity profile is characterized by the parameter R /�,
where � denotes the momentum thickness of the shear layer.
The radial temperature variation for a given ambient-to-jet
temperature ratio S=T� /Tc is linked to the velocity profile
via the Crocco–Busemann relation,7

Tb�r� = S + �1 − S�ub�r� +
� − 1

2
Ma2�1 − ub�r��ub�r� . �2�

The Mach number is defined as Ma=Uc /cc, with cc the speed
of sound on the jet centerline, and the ratio of specific heats
� is chosen as 1.4 throughout this study. The pressure pb in
the unperturbed jet is constant and can be obtained from the
equation of state for a perfect gas,

p =
1

�Ma2�T . �3�

On the centerline, where �b and Tb are unity, one finds

pb =
1

�Ma2 . �4�

The density profile is then given as

�b�r� = Tb�r�−1. �5�

The flow is assumed to be governed by the compressible
equations of continuity, momentum, and energy, written in
total flow quantities as

d�

dt
= − � div u , �6�

�
du

dt
= − grad p + div � , �7�

�
d

dt
� p

�
� = − �� − 1�p div u + �� − 1�� : � +

�

Re�Pr�
�� p

�
� ,

�8�

with the Reynolds and Prandtl numbers defined as

Re =
�cRUc

�
, Pr = cp

�

�
. �9�

The viscous stress tensor � and the rate of strain tensor � are
given by

� = −
2

3 Re
�div u�I +

2

Re
� , �10�
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� =
1

2
�grad u + gradTu� . �11�

The dynamical viscosity � and thermal conductivity � are
taken to be constant throughout the flow and related by a
Prandtl number of unity.

Small perturbations ��� ,u� ,v� ,w� , p�� to the base flow,
where �u� ,v� ,w�� denote the �x ,r ,�� components of the per-
turbation velocity, are now expressed as normal modes of
complex axial wave number k, integer azimuthal wave num-
ber m, and complex angular frequency 	 according to

	
��

u�

v�

w�

p�

�x,r,�,t� = 	

D�r�
H�r�
iF�r�
G�r�
P�r�


ei�kx+m�−	t� + c . c. �12�

The notation �H ,F ,G , P� in Eq. �12� has been chosen to
correspond to the incompressible problem formulation of
Khorrami et al.15 Substitution of �12� into the equations of
motion �6�–�8�, linearized about the base flow, yields a linear
system of ordinary differential equations. In the same man-
ner as in Ref. 15, this system is cast in the form of a gener-
alized eigenvalue problem which, for prescribed values of
the frequency 	, admits spatial eigenvalues k and corre-
sponding complex eigenfunctions �D ,H ,F ,G , P�. The com-
pressible spatial eigenvalue problem is stated explicitly in
the Appendix.

At large times t, the linear impulse response along each
spatiotemporal ray x / t=const is dominated by the absolute
instability mode in the reference frame moving at v=x / t
with respect to the laboratory frame �see Ref. 16�. In order to
construct numerically the linear impulse response, values of
	�vg�, k�vg� for a given group velocity vg can therefore be
computed as the absolute instability modes in the comoving
reference frame �r̃ , x̃�= �r ,x−vgt�, where the axial base flow
velocity profile becomes ũb�r�=ub�r�−vg. The resulting val-

ues 	̃0 , k̃0 are then transformed back into the laboratory ref-

erence frame according to the relations 	�vg�= 	̃0+ k̃0vg and

k�vg�= k̃0. For each azimuthal wave number m, results
are presented in the laboratory frame in terms of real
frequency 	r�vg� and spatiotemporal growth rate 
�vg�
=	i�vg�−ki�vg�vg= 	̃0,i along each ray x / t=vg.

By construction, it is clear that the effect of external
coflow or counterflow on the linear impulse response merely
results in an offset of vg and a Doppler shift of the real
frequency.17 From the distributions 	r�vg�, 
�vg�, kr�vg�,
ki�vg� in a situation with zero external flow, the correspond-

ing distributions 	̃r�vg�, 
̃�vg�, k̃r�vg�, k̃i�vg� in a situation
with external flow ũb=ub+ue are obtained as

	̃r�vg� = 	r�vg − ue� − uekr�vg − ue� ,


̃�vg� = 
�vg − ue� ,

�13�
k̃r�vg� = kr�vg − ue� ,

k̃i�vg� = ki�vg − ue� .

III. NUMERICAL METHOD

In order to compute values of the absolute frequency and
wave number, Monkewitz and Sohn,1 as well as Jendoubi
and Strykowski,13 used a shooting method to numerically
solve the dispersion relation in the form of a single-variable
ordinary differential equation.6 The numerical procedure
used in the present study closely follows the Chebyshev col-
location method described by Ash and Khorrami,18 which
only had to be extended to include compressible effects. For
a given set of parameters �m ,vg ,R /� ,S ,Re,Ma�, the eigen-
value problem �A1�–�A5� is discretized and solved numeri-
cally for the spatial branches k�	�. A code provided by
Olendraru and Sellier19 has been adapted to the compressible
jet problem. The complex pair �k0 ,	0� is then determined by
tracking the point where a k+ and a k− branch pinch in the
complex k plane.8,9 For this purpose, the iterative search al-
gorithm described in Ref. 1 was found to be reliable and very
time efficient. The transformation used for an appropriate
distribution of collocation points for thin shear layer jet pro-
files is given in the Appendix. A validation of the numerical
procedure has been presented in Ref. 20 by comparing the

�vg� distribution computed from the dispersion relation for
m=0 to the results of a direct numerical simulation of the
axisymmetric linear Navier–Stokes equations.

IV. RESULTS

A. Incompressible inviscid jet

We first consider the linear impulse response of an iso-
thermal jet �S=1� in the inviscid, zero-Mach-number limit.
The velocity profile parameter for this thin shear layer ex-
ample is chosen as R /�=20. While such a profile may not be
considered “thin” by some readers, comparison with the re-
sults discussed in Sec. IV C will show that the separation of
scales between jet radius and shear layer thickness is suffi-
cient to allow a discussion of the spatiotemporal characteris-
tics of arbitrarily thin shear layer jets. The spatiotemporal
growth rate 
, real frequency 	r, real wave number kr, and
spatial growth rate −ki of the axisymmetric �m=0� compo-
nent are presented in Fig. 1 �thin lines� as functions of their
group velocity vg.

A discontinuity in the spectrum at vg=0.182 divides the
wave packet into two regions, each composed of a distinct
class of instability modes. The low group velocity modes
correspond to absolute instability modes in jets with zero or
moderate counterflow. According to Jendoubi and
Strykowki,13 these modes are of the jet column type. Modes
traveling at group velocities vg�0.182 correspond to abso-
lute instability modes in jets with strong counterflow, char-
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acterized as being of the shear layer type.13 This distinct jet
column/shear layer character is confirmed in Fig. 2: For two
profile parameters R /�=20 �thin line, same as in Fig. 1� and
R /�=40 �thick line�, the 
�vg� distributions are compared
when scaled with respect to the jet radius R �Fig. 2�a�� and
the shear layer momentum thickness � �Fig. 2�b��, respec-
tively. The growth rate is found to scale with R for the low
group velocity modes and with � for the high group velocity
modes.

Jendoubi and Strykowki13 have shown that the absolute
instability mode in jets with variable external flow arises
from pinching events involving the same unstable k+ branch,
but two distinct k− branches for the shear layer and jet col-
umn modes. It should be pointed out that only one of these
two pinching events, i.e., the one occurring at a higher value
of 
, is to be regarded as physically relevant.21 The interac-
tion of a unique k+ branch with one out of several k−

branches has also been reported by Loiseleux et al.22 to pro-

duce distinct absolute instability modes in swirling jets with
counterflow. The pinching between branches in the complex
k plane is presented in Fig. 3 for the case considered here, for
two group velocities vg=0 and vg=0.3. The displayed
branches are obtained as solutions of the dispersion relation
for given values 	=	r+ i	i, where 	r is continuously varied
for three fixed values of 	i. Consistent with the notation of
Ref. 22, let k1

− denote the spatial branch in our problem
which, upon pinching with the k+ branch gives rise to a jet
column mode, and k2

− its counterpart for the shear layer
mode. At vg=0 �Fig. 3�a��, the k+, k1

−, and k2
− branches are

well separated for 	i=0 �thin solid lines�. With 	i=	0,i

=−0.150 �thick lines�, the k+ and k1
− branches pinch at the

saddle point k0=0.901−1.808i for a real frequency 	0,r

=1.436. These values correspond to those plotted in Fig. 1 at
vg=0. If 	i is lowered further, a second saddle point is even-
tually formed by the merged k+/k1

− branch and the k2
− branch

�dashed lines�. However, formal solutions of the dispersion
relation for 	i�	0,i are noncausal,14 and therefore do not
correspond to physical situations. Only the pinching events
between k+ and k− branches occurring at the highest value of
	i are taken into account in this study.

Corresponding k-branch diagrams in Fig. 3�b� display
that the relevant saddle point for vg=0.3 is formed between
the k+ and k2

− branches; the associated instability mode is of
the shear layer type, as for all group velocities vg�0.182. A

FIG. 1. Axisymmetric linear impulse response for flow parameters R /�
=20, Re=�, Ma=0. Isothermal case S=1 �thin line�; heated case S=0.5
�thick line�; heated case S=0.5 in the absence of baroclinic torque �•�. �a�
Spatiotemporal growth rate; �b� real frequency; �c� real wave number; �d�
spatial growth rate, all as functions of group velocity vg.

FIG. 2. Comparison of the spatiotemporal growth rates 
 in jets for R /�
=20 �thin line� and R /�=40 �thick line�; m=0, S=1, Re=�, Ma=0. �a� 

scaled with jet radius R; �b� 
 scaled with shear layer thickness �.
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different scenario is observed in thick shear layer jets, as
discussed in Sec. IV C.

According to Fig. 1, a real wave number k�1 is found
to be typical of the jet column modes. This value corre-
sponds to a wavelength �2�, large when compared to the
shear layer mode wavelengths, and a real phase velocity
	r /kr larger than the jet centerline velocity. The parabola-
shaped variation of 
�vg� at group velocities vg�0.182 is
typical of the Kelvin–Helmholtz instability for a plane shear
layer. The mode of maximum spatiotemporal growth, which
corresponds to the most unstable temporal mode with
	i,max=
max and ki=0 �see, for instance, Huerre14�, is of the
shear layer type. Since 
�0��0 and 
max�0, the isothermal
jet is convectively unstable, in agreement with Monkewitz
and Sohn.1

The growth rates of the first four azimuthal modes �m
=1,2 ,3 ,4� are compared to the m=0 mode in Fig. 4. The
maximum values 
max of each individual curve are seen to
slowly diminish with increasing azimuthal wave number m.
However, the growth rates of the m=0 shear layer modes and
the m=1 modes are nearly identical. All modes m�1 are of
the shear layer type, whatever the value of vg. At low group
velocities, and in particular at vg=0, the linear impulse re-
sponse is clearly dominated by the axisymmetric jet column
mode.

B. Influence of the temperature ratio S: Baroclinic
torque

The effect of a nonuniform temperature profile on the
spatiotemporal instability of a jet is demonstrated for a tem-
perature ratio S=0.5, with all other parameters identical to
the isothermal case described in the previous section.

The axisymmetric linear impulse response of the heated
jet is given in Fig. 1 �thick lines� for comparison with the
isothermal case. For the jet column mode �vg�0.170�, the
heating is seen to give rise to an overall increase of the
growth rate 
, while the real frequency takes on lower val-
ues. In agreement with the analysis of Monkewitz and Sohn,1

the S=0.5 case is found to be absolutely unstable �
�0��0�.

FIG. 3. Branches in the complex k plane for R /�=20, S=1, Re=�, and
Ma=0. �a� vg=0, three constant values of 	i: 0 �thin solid�, 0.15 �thick
solid�, 0.63 �dashed�; �b� vg=0.3, three constant values of 	i: 0.8 �thin
solid�, 0.61 �thick solid�, 0.45 �dashed�.

FIG. 4. Growth rates 
 of the axisymmetric m=0 mode �thick line� and
azimuthal modes m=1,2 ,3 ,4 in a thin shear layer jet; R /�=20, Re=�,
Ma=0. �a� S=1; �b� S=0.5.
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The complex wave numbers of the jet column modes are
hardly affected by the temperature ratio. The parabola-
shaped 
 distribution of the shear layer modes is shifted
towards lower group velocities as compared to the isother-
mal case, but the maximum growth rate 
max remains ap-
proximately the same. The growth rates of the azimuthal
modes of the heated jet, displayed in Fig. 4�b�, are found to
display the same trend. As in isothermal jets, the axisymmet-
ric and first azimuthal modes are in close competition for
high group velocities. All azimuthal modes are convectively
unstable at S=0.5.

It has been suggested by Soteriou and Ghoniem23 that
differences in the instability characteristics of homogeneous
and nonhomogeneous shear layers may be ascribed to the
action of the baroclinic torque. According to these authors,
the presence of a baroclinic vorticity dipole within a
rolled-up eddy may explain the lateral displacement of the
eddy core into the low-density stream, as well as the bias of
its convection speed towards the velocity of the high-density
stream. Both of these features are in qualitative agreement
with numerical observations.23

Following this idea, the role of baroclinic effects in the
linear impulse response of a heated jet is quantitatively as-
sessed by solving a modified dispersion relation, in which
the baroclinic torque term is counterbalanced by appropriate
forcing. Only the axisymmetric case is considered here. In
the presence of source terms denoted as Sx and Sr, the linear
inviscid momentum equations become

�u�

�t
= − v�

�ub

�r
− ub

�u�

�x
−

1

�b

�p�

�x
+ Sx, �14a�

�v�

�t
= − ub

�v�

�x
−

1

�b

�p�

�r
+ Sr, �14b�

and the azimuthal perturbation vorticity ���=curl u� is found
to evolve as

����

�t
= v�

�2ub

�r2 + ub
�2u�

�x � r
− ub

�2v�

�x2 +
�ub

�r
� �u�

�x
+

�v�

�r
�

−
1

�b
2

��b

�r

�p�

�x
+

�Sr

�x
−

�Sx

�r
. �15�

In order to eliminate the effect of the baroclinic torque ���
��p� /�2, the source terms Sx and Sr are selected so as to
satisfy the constraint,

�Sr

�x
−

�Sx

�r
=

1

�b
2

��b

�r

�p�

�x
, �16�

without introducing mass sources in the continuity equation,
i.e.,

1

r

�

�r
�r�bSr� +

�

�x
��bSx� = 0. �17�

A modified dispersion relation is now constructed from the
forced momentum equations �14� and the unforced continu-
ity and energy equations, together with the forcing condi-
tions �16� and �17�. The source terms Sx and Sr are consid-

ered as new additional variables of the generalized
eigenvalue problem.

The resulting linear impulse response is included in
Fig. 1 for S=0.5 �bullet symbols�. Without the action of the
baroclinic torque, all curves for S=0.5 and S=1 are found to
be identical within the accuracy of the calculations, which
we believe to be exact to at least four significant digits in 	0.
It may therefore be concluded that the baroclinic torque is
responsible for the onset of absolute instability in heated jets,
whereas other terms involving S in the continuity and energy
equations are negligible. Note that the role of gravity has
been neglected in these calculations, and that the baroclinic
torque arises only from the base flow temperature gradient
and the pressure eigenfunction.

A physical interpretation of how the baroclinic torque
contributes to the destabilization of the absolute mode can be
deduced from an inspection of the eigenfunction. In Fig. 5,
the spatial distribution of the baroclinic torque �bc is super-
posed with the total displacement � of the shear layer at r=1,
both computed for the absolute mode of the R /�=20, S=0.5
jet. The displacement follows from the radial perturbation
velocity according to �t�+ub�x�=v�. For a better visualiza-
tion, the spatial amplitude growth −k0,i has been neglected in
Fig. 5. At a given time t0, the spatial distributions are then
obtained with Eq. �12� as

��x,r� =
F�r�

k0ub − 	0
ei�k0,rx−	0t0�, �18�

�bc�x,r� =
ik0P�r�

�b
2

��b

�r
ei�k0,rx−	0t0�. �19�

Both F�r� and P�r� have been scaled with the same arbitrary
factor in Fig. 5. Equispaced isocontours of �bc�x ,r� are
shown together with the displacement of the center of the
shear layer 1+��r=1�. The orientation of �bc is indicated by
arrows. It is found that the baroclinic torque is concentrated
in regions of alternating sign within the shear layer. The
center of rotation of each such region, where the maximum
absolute value occurs, approximately coincides with a point
where the displacement is zero. The baroclinic torque arises
from the shear layer undulation, and in turn it induces a
further deformation that is in phase with the total shear layer
displacement. Thus the temporal growth of the absolute in-
stability mode is increased by the action of the baroclinic
torque.

FIG. 5. Absolute mode eigenfunction of the displacement ��x ,r=1� and of
the baroclinic torque �bc�x ,r�, according to Eqs. �18� and �19�, for the
R /�=20, S=0.5 jet.
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C. Influence of the shear layer thickness, Reynolds
number, and Mach number

The distinction between jet column and shear layer
modes implies a separation of scales between the jet radius R
and the momentum shear layer thickness �. For low values of
R /�, towards the end of the potential core in a spatially de-
veloping jet, this assumption is no longer valid. The effect of
R /� on the transition from convective to absolute instability
in hot jets is explored in Fig. 6. Contours of marginal abso-
lute instability �	0,i=0� are displayed in the S−R /� plane for
the axisymmetric and the first azimuthal mode. The absolute/
convective boundary of the axisymmetric mode is identical
with Fig. 8 of Ref. 13 and also in excellent agreement with
the results given in Ref. 1. Absolute instability is found to
first occur for the axisymmetric jet column mode at a critical
temperature ratio S=0.713 for R /�=26. Higher values of
R /� have a slight stabilizing effect. Below R /��15 the criti-
cal value of S decreases sharply. Monkewitz and Sohn1 have
shown that absolute instability of the m=1 mode in a top-hat
jet profile requires much stronger heating than is necessary
for the m=0 mode. However, in temporal24,25 and spatial7 jet
instability studies, the m=1 mode has been found to display
larger growth rates than its axisymmetric counterpart at very
low R /�. The m=1 absolute instability boundary in the S
−R /� plane has therefore been included in Fig. 6. It is con-
firmed that absolute instability always occurs first for the
axisymmetric mode, even at values of R /� as low as 6.

Growth rates of the full linear impulse response in a
thick shear layer jet with R /�=5, S=1, Ma=0, and Re=�
are displayed in Fig. 7 for azimuthal wave numbers m�2.
Higher-order azimuthal modes are stable everywhere. The

�vg� distributions should be compared to the thin shear
layer case R /�=20 of Fig. 4. Note that the discontinuity that
separates the axisymmetric jet column and shear layer modes
in the R /�=20 jet is not observed in Fig. 7. A detailed in-
spection of the spatial branches reveals that the axisymmetric
absolute instability mode �vg=0� still arises from the pinch-
ing of the k+ and k1

− branches, as defined in Sec. IV A. How-
ever, at higher group velocities, both k− branches first merge

with each other and the pinching at 
�vg� then takes place
between the k+ and a combined k1/2

− branch. This behavior is
illustrated in Fig. 8 for a profile with R /�=10, S=1, and a
group velocity vg=0.3. Note that the k1

− and k2
− branches are

no longer distinct for 	i�0.487, whereas pinching with the
k+ branch occurs for 	i=0.259. The resulting spatiotemporal
modes cannot be categorized as being distinctly of the jet
column or shear layer type, but rather of mixed character.
These mixed axisymmetric modes display lower growth rates
than the formerly distinct shear layer modes. In the R /�=5
case of Fig. 7, the maximum axisymmetric temporal growth
rate has now fallen below the 
max of the first helical mode.
The merging of the k1

− and k2
− branches therefore explains the

dominance of the m=1 over the m=0 mode observed in tem-
poral stability studies of thick shear layer jets.24,25

The action of viscosity has been neglected in all insta-
bility calculations presented so far. If the Reynolds number

FIG. 6. Convective/absolute instability boundaries in the S−R /� plane for
m=0 and m=1. Re=�, Ma=0. FIG. 7. Spatiotemporal growth rates in an isothermal R /�=5 thick shear

layer jet for azimuthal wave numbers m=0,1 ,2. Re=�, Ma=0.

FIG. 8. Branches in the complex k plane for vg=0.3, R /�=10, S=1, Re
=�, and Ma=0. Four constant values of 	i: 0.6 �thin solid�, 0.487 �dashed�,
0.3 �dotted�, 0.259 �thick solid�.
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takes on finite values, the inviscid instability modes de-
scribed above are affected by viscous damping. The effect of
viscosity on the absolute instability of the axisymmetric
mode is exhibited in Fig. 9. As the Reynolds number de-
creases, the absolute/convective transition is delayed towards
lower values of S. At high Reynolds numbers, viscosity first
affects the critical temperature ratio at high values of R /�.
The slight stabilizing effect of R /�→� observed in the in-
viscid limit becomes more pronounced in viscous jets.

Corresponding curves of the absolute instability bound-
ary for various Mach numbers at Re=� are presented in Fig.
10. In agreement with earlier studies,1,13 the stabilization of
the jet column mode is quite significant already at moderate
Mach numbers. The offset �S of the convective/absolute
transition that is induced by a given Mach number over the
interval 0�Ma�0.5 is found to be uniform for all R /�, and
can be well approximated as �S=−1.4Ma2.

V. CONCLUSIONS

The linear impulse response of isothermal and heated
round jets has been investigated for axisymmetric and
higher-order azimuthal modes. A fully compressible formu-
lation of the spatial instability problem has been developed,
and results for the linear impulse response have been pre-
sented in terms of complex frequency and wave number as
functions of the group velocity. In agreement with Jendoubi
and Strykowski,13 the absolute mode �vg=0� in jets without
counterflow has been found to always be of the axisymmetric
jet column type. However, shear layer modes have been
shown to dominate the linear impulse response for high
group velocities in thin shear layer jets. Axisymmetric and
helical modes are in close competition throughout this por-
tion of the wave packet. The most amplified spatiotemporal
mode in thin shear layer jets is of the shear layer type. Jet-
column-type solutions are only admitted for axisymmetric
perturbations, and their prevalence over shear layer modes is
restricted to a small range of low group velocities.

In the presence of sufficiently strong heating, the jet col-
umn mode becomes absolutely unstable. In excellent agree-
ment with Refs. 1 and 13, the critical temperature ratio for
this transition has been determined as Sc=0.713 for a shear
layer thickness given by R /�=26. The onset of absolute in-
stability in heated jets has been demonstrated to arise from
the action of the baroclinic torque, and a physical interpreta-
tion has been proposed. An inspection of the absolute mode
eigenfunction has shown that the additional deformation in-
duced by the baroclinic torque is in phase with the total shear
layer deformation. If the baroclinic torque is eliminated from
the dispersion relation, the linear impulse responses of
heated and isothermal jets in the inviscid, zero-Mach-number
limit are identical.

The clearcut duality of jet column versus shear layer
modes is lost as the shear layer thickness approaches the jet
radius. The axisymmetric linear impulse response of an
R /�=5 jet profile displays a smooth transition between the
formerly clearly divided jet column/shear layer dominated
regions of the wave packet. It has been found from exami-
nation of the complex k branches that in thick shear layer
jets, modes of a mixed character arise from the merging of
jet column and shear layer type k− branches prior to the
pinching with the k+ branch. This mixed character accounts
for a lowered maximum temporal growth rate of axisymmet-
ric disturbances relative to their helical counterparts, as it has
been observed in temporal instability studies of thick shear
layer jets.24,25

The influence of viscosity on the absolute/convective
transition has been analyzed by tracking the critical tempera-
ture ratio as a function of R /� for Reynolds numbers be-
tween 100 and infinity. As may have been expected, viscosity
has a purely stabilizing effect, but its influence lessens for
low values of R /�. In contrast, a finite Mach number delays
the critical temperature ratio by a constant offset for all R /�.

FIG. 9. Convective/absolute instability boundaries in the S−R /� plane for
Ma=0. Re=100, 500, 1000, 2000, 5000 �thin lines�; Re=� �thick line�.

FIG. 10. Convective/absolute instability boundaries in the S−R /� plane for
Re=�. Ma=0 �thick line�, Ma=0.1, 0.2, 0.3, 0.4, 0.5 �thin lines�.
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APPENDIX: THE COMPRESSIBLE SPATIAL
EIGENVALUE PROBLEM

If the equations of motion �6�–�8� are linearized about
the base flow defined in Sec. II, and all perturbation quanti-
ties are expressed in normal mode form �12�, the following
system of equations is obtained:

Continuity:

r	D + ��b + r�b��F + r�bF� + m�bG = − rubkD − r�bkH . �A1�

x momentum:

�ir2�b	 −
m2

Re
�H +

r

Re
H� +

r2

Re
H�� − ir2�bub�F = ir2�bubkH +

r

3 Re
kF +

r2

3 Re
kF� +

mr

3 Re
kG + ir2kP +

4r2

3 Re
k2H . �A2�

r momentum:

�ir2�b	 −
4 + 3m2

3 Re
�F +

4r

3 Re
F� +

4r2

3 Re
F�� −

7m

3 Re
G +

mr

3 Re
G� + ir2P� = −

r2

3 Re
kH� + ir2�bubkF +

r2

Re
k2F . �A3�

� momentum:

7m

3 Re
F +

mr

3 Re
F� + �− ir2�b	 +

3 + 4m2

3 Re
�G −

r

Re
G� −

r2

Re
G�� + imrP = −

mr

3 Re
kH − ir2�bubkG −

r2

Re
k2G . �A4�

Energy:

1

� − 1
� i	r2

�b
−

�

�b
2Re Pr

�m2 − 6r2�b�
2

�b
2 + 2r

�b�

�b
+ 2r2�b��

�b
��D +

�2Ma2r2

�� − 1��b
2Re Pr

�1 − 4r
�b�

�b
�D� +

�r2

�� − 1��b
2Re Pr

D��

−
2�Ma2

Re
r2ub�H� + �ir −

ir2�b�

�� − 1��b
�F + ir2F� + imrG +

�Ma2

� − 1
�− ir2	 −

�

�bRe Pr
�2

r2�b�
2

�b
2 −

r2�b��

�b
−

r�b�

�b
− m2��P

+
�2Ma2r

�� − 1��bRe Pr
�2r

�b�

�b
− 1�P� −

�2Ma2r2

�� − 1��bRe Pr
P�� = i

r2ub

�� − 1��b
kD − ir2kH −

2

Re
�Ma2r2ub�kF − i

�Ma2

� − 1
r2ubkP

+
�r2

�� − 1��b
2Re Pr

k2D −
�2Ma2r2

�� − 1��bRe Pr
k2P . �A5�

Primes in the above equations denote radial derivatives. In the incompressible limit Ma=0, �b��0, D�0, the continuity and
energy Eqs. �A1� and �A5� are identical, and Eqs. �A1�–�A4� are equivalent to the incompressible formulation given by Ash
and Khorrami.18

The system �A1�–�A5� may now be written in the form of a generalized eigenvalue problem

AX = kBX �A6�

involving the eigenvector X= �D ,H ,F ,G , P ,kD ,kH ,kF ,kG ,kP� and two linear operators A and B.
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Boundary conditions

In the coordinate singularity at r=0, compatibility
conditions24 must be imposed so as to ensure bounded solu-
tions for all perturbations. Khorrami et al.15 obtained these
conditions for H ,F ,G , P in a formal way by requiring the
azimuthal derivatives of velocity and pressure perturbations
to vanish as r→0. Accordingly, density variations �� must
obey

lim
r→0

���

��
= imD�0� = 0. �A7�

Together, these requirements impose �see Ref. 18�

F�0� = G�0� = 0

D�0�, H�0� and P�0� finite
� for m = 0,

F�0� ± G�0� = 0, F��0� = 0

D�0� = H�0� = P�0� = 0
� for m = ± 1,

D�0� = H�0� = F�0�
=G�0� = P�0� = 0

� for �m� � 1.

Explicit expressions for D�0�, H�0�, and P�0� in the m=0
case are further deduced from Taylor expansions of Eqs.
�A2�, �A3�, and �A5� around the jet centerline. In the limit
r→0, these equations admit

H��0� = 0, �A8�

P��0� = i
2

Re
F���0� , �A9�

D��0� = �Ma2P��0� . �A10�

According to Ash and Khorrami,18 all eigenfunctions de-
cay exponentially as r→�. The far-field conditions to the
spatial eigenvalue problem for all m are simply

D��� = H��� = F��� = G��� = P��� = 0. �A11�

Chebyshev collocation

Following Ref. 15, the eigenfunctions �D ,H ,F ,G , P� are
mapped from the physical domain 0�r�rmax onto the
Chebyshev interval −1���1, where they are discretized in
N collocation points,

� j = cos� j�

N − 1
�, j = 0, . . . ,N − 1. �A12�

For the problem at hand, a suitable mapping function ��r�
had to be conceived to concentrate most collocation points
within the shear layer region of the physical domain. With
the two-parameter transformation

��r� =
rc

2r
−�1 +

rc
2

4r2 +
2rc

rmax
−

rc

r
, �A13a�

r��� = rc
1 − �

1 − �2 + 2rc/rmax
, �A13b�

approximately half of the points rj =r�� j� are placed in the
interval 0�r�rc, concentrated around r=rc /2. The far-field
conditions �A11� are imposed at rmax�1. Values of rc=1.8
and rmax=100 have been used in all calculations. The dis-
cretization of a R /�=20 velocity profile obtained with these
settings and with a typical resolution N=100 is shown in
Fig. 11.
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