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The acoustic field generated by the synchronized vortex street in self-excited hot sub-
sonic jets is investigated via direct numerical simulation of the compressible equations of
motion in an axisymmetric geometry. The simulation simultaneously resolves both the
aerodynamic near field and the acoustic far field. Self-sustained near field oscillations
in the present flow configurations have been described as nonlinear global modes in an
earlier study. The associated acoustic far field is found to be that of a compact dipole,
emanating from the location of vortex roll-up. A far field solution of the axisymmet-
ric Lighthill equation is derived, based on the source term formulation of Lilley (1974).
With near field source distributions obtained from the direct numerical simulations, the
Lighthill solution is in good agreement with the far field simulation results. Fluctuations
of the enthalpy flux within the jet are identified as the dominant aeroacoustic source.
Superdirective effects are found to be negligible.

1. Introduction

Subsonic jets, if they are sufficiently hot compared to the ambient air, may bifurcate
to a regime of intrinsic self-sustained oscillations that give rise to a street of highly
regular ring vortices. This oscillator-type behaviour in hot jets has first been observed
experimentally by Monkewitz, Bechert, Barsikow & Lehmann (1990). Recent numerical
studies (Lesshafft, Huerre, Sagaut & Terracol 2006; Lesshafft, Huerre & Sagaut 2007)
have demonstrated that these oscillations are due to an absolute instability of the jet
profile near the nozzle, and that they may be described theoretically as a nonlinear
global mode.

The present study examines the acoustic far field that is radiated from the self-
sustained vortex street in globally unstable hot jets. The thick shear layer configurations
treated in Lesshafft et al. (2006), with ambient-to-jet temperature ratios S = 0.1, 0.2
and 0.3, are chosen for this investigation. Although only the aerodynamic near field dy-
namics have been addressed in our previous publications, the computational domain of
the DNS already encompassed a large portion of the acoustic far field. These far field
results are now used to analyze the directivity pattern and the physical sound generation
mechanisms that dominate the acoustic radiation from the global mode in a hot jet.

Numerical simulations in which the acoustic field is computed from first principles
have become known as direct noise calculations (DNC). Mitchell, Lele & Moin (1999)
were the first to apply this approach to the jet noise problem. Their study focused on
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the sound generated by the pairing of large-scale vortices in forced isothermal jets. As
in the present paper, the simulations of Mitchell et al. (1999) were carried out in an
axisymmetric setting, which hindered the onset of turbulence, and thus allowed a study
of the isolated aeroacoustic behaviour of large-scale near field dynamics. Freund (2001)
performed direct numerical simulations resolving the acoustic field of a three-dimensional
turbulent isothermal jet at low Reynolds number, which gave results in good agreement
with experimental measurements. The low Reynolds number restriction was relaxed by
Bogey, Bailly & Juvé (2003) through the use of LES subgrid modelling. In subsequent
papers (Bogey & Bailly 2004, 2005), these authors investigated the influence of numerical
boundary conditions and various subgrid models, as well as Mach and Reynolds number
effects. A list of further LES studies that directly resolve the acoustic field of turbulent
jets is given in Bodony & Lele (2006). Only few among these include the effect of jet
heating: the simulations of Andersson, Eriksson & Davidson (2005) successfully repro-
duced experimental acoustic measurements of Jordan, Gervais, Valière & Foulon (2002)
in a subsonic hot jet when the nozzle geometry was included. Shur, Spalart & Strelets
(2005) achieved good agreement with the reference experiments of Tanna (1977) and
Viswanathan (2004) in hot jet simulations in both subsonic and supersonic settings.

The large majority of numerical jet noise studies, as reviewed by Wang, Freund & Lele
(2006), relies on hybrid methods. Based on jet near-field data obtained from RANS or
LES calculations, the acoustic far field is calculated according to an acoustic analogy.
The common objective of these investigations is to validate the predictive capabilities of
acoustic analogies or boundary integral methods, by comparison with available acoustic
data from experiments or direct calculations. In some instances, computed near-field data
have also been used to investigate the acoustic source mechanisms underlying the far-field
spectrum and directivity pattern: Mitchell et al. (1999) compared the relative importance
of individual source terms, in the sense of Lighthill’s equation, in forced laminar jets.
Their results demonstrated that streamwise variations of the source strength, even in
regions of very low amplitude, greatly influence the far-field sound directivity. Freund’s
(2001) analysis of DNS data for a turbulent unheated jet identified large-scale structures
as the dominant noise sources. The spatial distribution of the structures takes the form
of a wave packet, similar to what instability theory would predict for a laminar setting.

The numerical analysis of acoustic source mechanisms in hot jets, despite their practical
importance, has received little attention in recent literature. Fortuné & Gervais (1999)
proposed a prediction scheme for temperature-related turbulence noise, on the basis of
the k-ǫ model. In LES studies by Bodony & Lele (2005) of hot turbulent jets in the high
subsonic and supersonic régime, the sound field was computed directly. In the framework
of Lighthill’s acoustic analogy, cancellation effects between Reynolds stress and so-called
entropy contributions were documented. Similar cancellation effects at a high subsonic
Mach number were reported by Lew, Blaisdell & Lyrintzis (2007), by means of a hybrid
numerical approach. Lew et al. (2007) concluded from their results that the sound field
of a hot jet at low Mach number is strongly dominated by radiation from entropy-related
sources.

The present study investigates sound generation mechanisms due to large-scale insta-
bility structures (global modes) in self-excited hot jets at low Mach number. The nu-
merical approach is similar to that of Mitchell et al. (1999): the axisymmetric equations
of motion are resolved directly in the near and far field. This axisymmetric restriction
prevents the development of small-scale turbulence; it is justified by the experimental
observations of Monkewitz et al. (1990). Lighthill’s equation is used not to predict the
far field sound, but as an analytical tool, in order to identify dominant source mecha-
nisms. To this end, the aeroacoustic source terms of the Lighthill equation are recast in
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the formulation proposed by Lilley (1974, 1996). Lighthill’s original formulation includes
one monopole source term that is commonly linked to entropy fluctuations in the near
field, although it is known to contain both isentropic and non-isentropic components
(see for instance A. Michalke’s note in Lilley 1974). This source term will be referred
to as the “excess density” (Dowling 1992) in the following. Lilley’s formulation decom-
poses the excess density term into explicit monopole and dipole sources, and it allows
for a less ambiguous interpretation of the sound-producing physical mechanisms, as will
be demonstrated in this paper. Freund (2003) achieved an improved interpretation of
his 2001 simulation results based on Lilley’s source decomposition. Similarly, Bodony &
Lele (2008) used Lilley’s formalism for a refined analysis of some of their earlier results
(Bodony & Lele 2005), including one case of a transonic hot jet.

Laufer & Yen (1983) measured the acoustic radiation due to regular vortex pairing
events in forced isothermal jets at low Mach number. The acoustic field was found to
exhibit a superdirective beaming pattern, with maximum intensity I at the radiation
angle ϑ = 0 in the downstream direction of the jet:

I(ϑ) ∝ exp
[

−A(1 − Macv cosϑ)2
]

, A = 45 , (1.1)

where the Mach number Macv is formed with the vortex convection velocity. This re-
sult has been confirmed in only one experimental configuration by Fleury, Bailly & Juvé
(2005). According to the discussion of Laufer & Yen (1983), such strong beaming be-
haviour seemed unlikely to arise from an acoustically compact source region: the near
field fluctuation amplitudes associated with vortex pairing were measured to vary as
a Gauß function in the streamwise direction, with a half-width an order of magnitude
smaller than the acoustic wavelength. However, the theoretical analyses of Huerre &
Crighton (1983) and Crighton & Huerre (1990) have demonstrated that a perfectly Gaus-
sian shape of the near field wave packet indeed results in an antenna factor of the form
(1.1). More generally, these authors surmised that any extended wave packet, depending
on its precise envelope shape, may emit a superdirective sound field. The nonlinear global
modes in hot jets described in Lesshafft et al. (2006, 2007) may be represented as such
extended wave packets. As their spatial amplitude and phase modulations are precisely
known from the numerical simulations, the approach of Huerre & Crighton (1983) will
be applied in the present study to the case of a globally unstable hot jet. It is hoped that
this analysis will further elucidate the conditions for superdirective sound radiation from
low Mach number jets.

The paper is organized as follows: the flow parameters are defined, and the numerical
methods used in the direct computations are outlined in §2.1. Simulation results in the
acoustic far field are presented in §2.2. In §3, the solution procedure for the Lighthill
equation is laid out. This formalism is then applied to three hot jet configurations in §4,
and the main conclusions are summarized in §5.

2. Direct noise computation of a hot jet

2.1. Flow configuration and numerical method

The flow model and the numerical solution techniques employed in the simulation have
been presented in Lesshafft et al. (2006) and are documented in full detail in Lesshafft
(2006): the problem is formulated in axisymmetric coordinates x and r; the conservative
flow variables q = (ρ, ρu, ρv, ρE) are decomposed into a steady baseflow component qb

and an unsteady perturbation component q′. The symbol ρ denotes density, u and v are
the axial and radial velocity components, and E is the total energy. The baseflow qb(x, r)
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is obtained by numerical integration of the compressible boundary layer equations, start-
ing from an analytical jet velocity profile (‘profile 2’ of Michalke 1984) at the upstream
boundary x = 0 of the computational domain. The temporal evolution of perturbations
q′(x, r, t) within this baseflow is then computed according to the compressible equations
of continuity, momentum and energy, closed by the equation of state for a perfect gas.†

All quantities are made non-dimensional with respect to the jet radius R and the jet
centreline values of density ρc, velocity Uc and temperature Tc in the potential core.
The three flow configurations investigated in this study are defined by the following
parameters:

R/θ = 10, S = 0.1, 0.2, 0.3,
Re = 1000, Mac = 0.1,
Pr = 1, γ = 1.4.

(2.1)

As defined in Lesshafft et al. (2006), Re, Mac and Pr are the Reynolds, Mach and Prandtl
numbers, θ is the momentum shear layer thickness of the inlet velocity profile, S = T∞/Tc

is the ambient-to-jet temperature ratio and γ is the ratio of specific heats. Note that the
Mach number Mac is defined with respect to the speed of sound on the centreline. It is
easily converted to the more conventional definition Ma∞ = Uc/c∞ = S−1/2Mac. The
three temperature ratios S = 0.1, 0.2 and 0.3 then yield Mach numbers Ma∞ = 0.32,
0.22 and 0.18.

Among the three jet configurations (2.1), the S = 0.3 case will be discussed in full
detail, because it is trusted to be the least affected by inaccuracies due to the numerical
boundary treatment. Results for the two other cases, S = 0.1 and 0.2, are summarized in
§4.2 in oder to test the validity of the main conclusions for a range of globally unstable
temperature ratios and Mach numbers. In the following, throughout the end of §4.1, the
discussion will focus on the S = 0.3 case.

The long-time response of a jet to an initial pulse perturbation is computed on an
orthogonal grid that discretizes the physical domain 0 6 r 6 46 and 0 6 x 6 80 into
349 × 801 grid points. Outside this region, all perturbations are attenuated by artificial
damping and strong grid stretching in sponge zones extending over 46 < r 6 200 and
80 < x 6 105. First-order characteristic boundary conditions given by Giles (1990) are
applied at the upstream numerical boundary in order to minimize acoustic reflections and
spurious coupling of acoustic and vortical waves in the jet shear layer. Inside the physical
region of the computational domain, spatial derivatives in the governing equations are
evaluated using a sixth-order explicit finite difference scheme, and the solution is time-
advanced via a third-order Runge–Kutta algorithm.

2.2. Direct numerical simulation results

As discussed in §5 of Lesshafft et al. (2006), the near field dynamics of jets with parame-
ters (2.1) are characterized by self-sustained oscillations that give rise to a highly regular
roll-up of the jet shear layer into evenly spaced ring vortices. In theoretical terms, this
periodic flow state is described as a nonlinear global mode. The global frequency of vortex
roll-up at S = 0.3 has been determined to be ωg = 0.728 in the numerical simulations
(‘mode 1’ in Lesshafft et al. 2006). It has been discussed that the S = 0.3 configura-
tion represents the critical case for the marginal onset of global instability, and that the
asymptotic approach of the final oscillating state is extremely slow as a consequence.
For the present investigation, the computations have been continued over an additional

† Note that there is a typographical error in equation (2.4b) of Lesshafft et al. (2006), which
has been corrected in Lesshafft (2006).
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number of approximately 30 oscillation periods, and the global frequency has further
converged to a value of ωg = 0.722.

Only configurations with R/θ = 10 are chosen for the present investigation because
the observed global mode structure is unaffected by vortex pairing; in simulations with
thinner initial shear layers R/θ > 10 (Lesshafft et al. 2007), a secondary instability of
the vortex street leads to regular “leap-frogging” of neighbouring vortices. These events
modify the spatial envelope of the fundamental global mode oscillations and at the same
time radiate a subharmonic sound field. An investigation of sound generation mechanisms
due to vortex pairing is not the subject of this paper. The restriction to globally unstable
configurations without vortex pairing further limits the parameter regime to low values
of the Mach number and temperature ratio (see figure 10 of Lesshafft & Huerre 2007).

In the present flow examples, the acoustic field may be regarded as monochromatic:
the near field is free of random fluctuations, and, as in the low Mach number cases of
Mitchell et al. (1999), harmonic components in the far field are negligible when compared
to the fundamental sound component (ωg = 0.722 for S = 0.3). The acoustic wavelength
is then λa = 2πc∞/ωg = 47.7, which approximately corresponds to the radial extent of
the physical domain in the simulation. In the following, the acoustic field is investigated
in terms of the temporal Fourier coefficient of pressure fluctuations, defined as

p̂(x; ω) =

∫

p′(x, t) eiωt dt . (2.2)

Isocontours of |p̂(x; ωg)| are shown in figure 1: the acoustic field is composed of two
lobes, with an extinction angle at about 90◦ from the jet axis. The apparent source
location at x = 9 corresponds to the streamwise station of vortex roll-up (compare to
figure 7a of Lesshafft et al. 2006). The decibel levels in figure 1 are scaled with respect to
the maximum near field pressure amplitude. Due to weak reflections from the downstream
sponge region, the isocontours in the acoustic field at x > 60 are slightly distorted
and not shown in figure 1. For a quantitative examination of the acoustic directivity
pattern, values of |p̂| are interpolated along an arc of radius ξ = 30 around the apparent
source location. Figure 2 reveals that the directivity pattern observed in the numerical
simulation closely corresponds to that of a compact dipole p̂ ∝ cosϑ, the radiation angle
ϑ being measured relative to the downstream jet axis (see figure 1).

The isocontour diagram in figure 1 suggests that the transition from the aerodynamic
near field to the acoustic far field takes place over a length scale much shorter than
the acoustic wavelength. This observation is confirmed in figure 3, which displays the
variation of |p̂|, measured at an angle ϑ = 60◦, as a function of distance ξ from the
apparent sound source location. Outside the near field of the jet, for ξ & 8, the slope of
the pressure amplitude quickly adjusts to the characteristic decay rate |p̂| ∝ ξ−1 of the
acoustic far field.

3. Integration of the Lighthill equation

3.1. Source term decompositions of Lighthill (1952) and Lilley (1974)

Lighthill (1952) derived an exact inhomogeneous wave equation for acoustic fluctuations
by combining the continuity and momentum equations. In Cartesian coordinates xi, the
Lighthill equation for pressure fluctuations reads (see for instance Crighton 1975):

1

c2
∞

∂2p′

∂t2
−

∂2p′

∂x2
i

=
∂2Sij

∂xi∂xj
−

∂2ρe

∂t2
, (3.1)
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Figure 1. Isocontours of the pressure amplitude |p̂(r, x;ωg)| in the acoustic far field of a jet
with S = 0.3. The apparent sound source on the jet axis is located at x = 9. The directivity
pattern in figures 2 and 5 is extracted along the black arc of radius 30.
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Figure 2. (•) Pressure amplitude as a function of radiation angle ϑ, interpolated along the
arc indicated in figure 1; (—) directivity of a compact dipole p̂ ∝ cos ϑ.

where c∞ denotes the speed of sound in the far field. The stress tensor

Sij = ρuiuj − τij (3.2)

is composed of Reynolds stresses and viscous terms, while the “excess density”

ρe = ρ′ − p′/c2
∞

(3.3)

is related to thermodynamic fluctuations. Primes in the above equations denote fluctua-
tions around a steady flow state (see §2.1).

One possible way to proceed is to solve for the acoustic pressure p′ via numerical time
integration of equation (3.1), simultaneously with a DNS of the near field, from which
the right-hand-side terms are evaluated at each time step. The individual contribution of
each source term to the acoustic far field can then be examined separately. This strategy
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Figure 3. Solid line: pressure amplitude |p̂| as a function of observer distance ξ, measured along
the radiation angle ϑ = 60◦. Dashed line: algebraic decay ∝ ξ−1 as expected in the acoustic far
field.

has been applied, for instance, by Freund (2001) and Boersma (2005). Alternatively, a
solution for the acoustic pressure field can be sought in terms of a Green’s function to
the wave operator, that is to be evaluated for the source terms of the Lighthill equation
(3.1). The latter approach has been applied to the present jet configuration in a prelim-
inary study (chapter 5 in Lesshafft 2006). The results clearly identify the excess density
as the dominant acoustic source, and the sound field computed from this source term
satisfactorily reproduces the directivity pattern displayed in figure 2.

However, the interpretation of the results in Lesshafft (2006) remains inconclusive:
first, the analysis shows that the excess density formally produces a monopole source
distribution. The overall dipole character of the directly computed far field can still be
retrieved, but the process requires a very accurate representation of phase variations in
the source distribution, and therefore it is quite susceptible to numerical imprecisions.
As a result, the extinction angle (near ϑ = 90◦ in figure 2) in the Lighthill analysis of
Lesshafft (2006) is shifted by 15◦ when compared to the simulation results. Second, it is
difficult to interpret the physical nature of the sound-generating mechanisms represented
by the excess density. Formally, ρe = ρ′ − p′/c2

∞
appears to represent non-isentropic

fluctuations, but this interpretation does not apply to flows with variable speed of sound,
such as hot jets. For a better characterization of the relevant acoustic source mechanism
in the case on hand, the observed sound radiation must be associated with a component
of the excess density that explicitly produces a dipole field.

The following investigation will be based on an alternative formulation of equation
(3.1), derived by Lilley (1974, 1996). By combining the momentum and energy equations
(instead of using the continuity equation, as done by Lighthill 1952), Lilley obtained a
wave equation for pressure fluctuations, equivalent to equation (3.1), where the excess
density source term is replaced by

∂2ρe

∂t2
=

1

c2
∞

∂2

∂t2
K(x, t) −

1

c∞

∂2

∂t∂xi
Hi(x, t) −

1

c∞

∂2

∂t∂xi
Di(x, t) . (3.4)

Note that this is not what is commonly known as “Lilley’s equation” (derived in the
same 1974 publication), which involves third-order derivatives and provides an improved
separation of sound generation and propagation effects. The individual source terms in
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equation (3.4) are

K(x, t) =
γ − 1

2
ρ|u|2 , (3.5)

Hi(x, t) =
γ − 1

c∞
ρui(h∞ − hs) , (3.6)

Di(x, t) =
γ − 1

c∞
(τijuj − qi) . (3.7)

The first two components, K and Hi, represent fluctuations of the kinetic energy and
of the total enthalpy flux, respectively. All diffusive effects, due to τ and the heat flux
q = −∇T/[(γ − 1)Ma2

cRePr], are contained in Di. The stagnation enthalpy is defined
as hs = h + |u|2/2, with the local enthalpy h (see Lilley 1996). The far-field enthalpy
is found as h∞ = c2

∞
/(γ − 1). In terms of conservative variables, as used in the present

direct numerical simulations (see §2.1), expression (3.6) can be rewritten as

Hi(x, t) = c∞ρui −
γ − 1

c∞
(ρE + p)ui . (3.8)

The spatial derivatives in equation (3.4) characterize the kinetic energy term as a monopole
source, whereas the enthalpy- and diffusion-related terms are dipole sources. With re-
spect to generalized acoustic analogy formulations in recent literature, the dipole sources
in equation (3.4) may be recovered as special cases of the source terms identified by
Goldstein (2003, the η′

i term in his equation 3.5) and by Morfey & Wright (2007, the pij

term in their equation 3.22).

3.2. Far field solution

The Lighthill equation (3.1) as well as Lilley’s decomposition (3.4) follow from exact
manipulations of the governing flow equations. An approximate solution for pressure
fluctuations in the far field is given by Lilley (1996), and may be rewritten in our notation
as

p′(ξ, t) =
1

4πξc2
∞

ξiξj

ξ2

∂2

∂t2

∫

Sij(x, t′)d3x −
1

4πξc2
∞

∂2

∂t2

∫

K(x, t′)d3x

−
1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫

Hi(x, t′)d3x −
1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫

Di(x, t′)d3x . (3.9)

The acoustic signal observed at the far field location ξ at time t has been emitted from
location x in the source region at the retarded time

t′ = t −
|x − ξ|

c∞
≈ t −

ξ

c∞
+

x · ξ

ξc∞
. (3.10)

With the approximation (3.10), and with the temporal and spatio-temporal Fourier trans-
forms defined as

f̂(x, ω) =

∫

f(x, t) eiωtdt , f̃(k, ω) =

∫∫

f(x, t) ei(ωt−k·x)d3x dt , (3.11)
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the temporal Fourier-transformed acoustic pressure is found to be

p̂(ξ, ω) =
k2

a

4πξ
eikaξ

∫
{

−
ξiξj

ξ2
Ŝij(x, ω) + K̂(x, ω)

+
ξi

ξ
Ĥi(x, ω) +

ξi

ξ
D̂i(x, ω)

}

e−ika·x d3x (3.12)

=
k2

a

4πξ
eikaξ

[

−
ξiξj

ξ2
S̃ij(ka, ω) + K̃(ka, ω) +

ξi

ξ
H̃i(ka, ω) +

ξi

ξ
D̃i(ka, ω)

]

.(3.13)

The acoustic wave vector is defined as ka = ω/c∞ eξ, oriented in the observer direction.
As pointed out by Crighton (1975), the acoustic radiation observed at a given far field
location ξ is caused by a single spectral component of the source distribution: a plane
wave of wavenumber ka, travelling in the radiation direction.

3.3. Axisymmetric and radially compact sources

3.3.1. Axial symmetry

Under the assumption of an axisymmetric source term distribution consisting only of
Sij , equation (3.12) has been rewritten by Huerre & Crighton (1983) for the particular
case of a Gaussian envelope function Sij(r, x) ∝ exp(−x2/σ2). Fleury (2006) gives a more
general formulation, valid for arbitrary envelope shapes, and the excess density source
term (equation 3.1) has been included in Lesshafft (2006).

In order to evaluate the spatial Fourier integrals in equation (3.12), source locations
x are expressed in cylindrical coordinates (x, r, ϕ), while the observer location ξ in the
axisymmetric far field is characterized by its spherical coordinates (ξ, ϑ). The resulting
integral can be solved numerically in all three (x, r, ϕ) directions, as done by Mitchell et al.
(1999). However, Huerre & Crighton (1983) have noted that the azimuthal integration
admits closed-form solutions in terms of Bessel functions. After integration in ϕ, equation
(3.12) becomes

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ

∫∫

D(x, r, ϑ, ω) e−ikax cos ϑ r dr dx, (3.14)

with the integrand given by

D(x, r, ϑ, ω) = ISxx + ISrx + ISrr + ISϕϕ + IK + IHx + IHr + IDx + IDr , (3.15)

ISxx = −J0(αr) cos2 ϑ Ŝxx(x, r, ω) , (3.16)

ISrx = −i2J1(αr) sin ϑ cosϑ Ŝrx(x, r, ω) , (3.17)

ISrr = −0.5 [J0(αr) − J2(αr)] sin2 ϑ Ŝrr(x, r, ω) , (3.18)

ISϕϕ = −0.5 [J0(αr) + J2(αr)] sin2 ϑ Ŝϕϕ(x, r, ω) , (3.19)

IK = J0(αr) K̂(x, r, ω) , (3.20)

IHx = J0(αr) cosϑ Ĥx(x, r, ω) , (3.21)

IHr = iJ1(αr) sin ϑ Ĥr(x, r, ω) , (3.22)

IDx = J0(αr) cosϑ D̂x(x, r, ω) , (3.23)

IDr = iJ1(αr) sin ϑ D̂r(x, r, ω) . (3.24)

The argument of the Bessel functions Ji is αr = −kar sinϑ. Equation (3.14) explicitly
gives the far field pressure in terms of a spatial phase, a radial decay ∝ ξ−1, and a
ϑ-dependent far field directivity function. The Bessel functions represent the effect of
azimuthal interference, whereas factors composed of cosϑ and sinϑ produce quadrupole
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or dipole directivities. Each source term contains an antenna factor, which depends on
the spatial distribution Ŝxx(r, x, ω), . . . , D̂r(r, x, ω) of the source strength. The influ-
ence of the antenna factor on the directivity pattern is commonly referred to as the
superdirective effect, following the interpretation given by Crighton & Huerre (1990) of
the experimental results of Laufer & Yen (1983, see section 1). For an analysis of the
acoustic radiation from the present jet configuration, discussed in §2.2, the distributions
Ŝxx(r, x, ω), . . . , D̂r(r, x, ω) may be obtained directly from the numerical simulation.

3.3.2. Radial compactness

Following the approach of Huerre & Crighton (1983), the aeroacoustic source distribu-
tions in a jet may be assumed to be compact in the radial direction, but not necessarily
so in the axial direction. For the present analysis, the source terms are modelled as being
concentrated in the center of the shear layer at r = 1 such that, for instance,

Ŝij(x, r, ω) = Ŝx
ij(x, ω) δ(r − 1), (3.25)

and therefore

Ŝx
ij(x, ω) =

∫

∞

0

Ŝij(x, r, ω) r dr , (3.26)

S̃x
ij(k, ω) =

∫

∞

−∞

Ŝx
ij(x, ω) e−ikx dx . (3.27)

These integrals must be solved numerically. Radially compact representations of all other
source terms and their Fourier transforms, marked by the superscript x in the following,
are obtained accordingly.

Under the assumption of radial compactness of all aeroacoustic sources, equation (3.14)
simplifies to

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ Dx(ϑ, ω) , (3.28)

with

Dx(ϑ, ω) = Ix
Sxx + Ix

Srx + Ix
Srr + Ix

Sϕϕ + Ix
K + Ix

Hx + Ix
Hr + Ix

Dx + Ix
Dr , (3.29)

Ix
Sxx = −J0(α) cos2 ϑ S̃x

xx(ka cosϑ, ω) , (3.30)

Ix
Srx = −i2J1(α) sin ϑ cosϑ S̃x

rx(ka cosϑ, ω) , (3.31)

Ix
Srr = −0.5 [J0(α) − J2(α)] sin2 ϑ S̃x

rr(ka cosϑ, ω) , (3.32)

Ix
Sϕϕ = −0.5 [J0(α) + J2(α)] sin2 ϑ S̃x

ϕϕ(ka cosϑ, ω) , (3.33)

Ix
K = J0(α) K̃x(ka cosϑ, ω) , (3.34)

Ix
Hx = J0(α) cosϑ H̃x

x (ka cosϑ, ω) , (3.35)

Ix
Hr = iJ1(α) sin ϑ H̃x

r (ka cosϑ, ω) , (3.36)

Ix
Dx = J0(α) cosϑ D̃x

x(ka cosϑ, ω) , (3.37)

Ix
Dr = iJ1(α) sin ϑ D̃x

r (ka cosϑ, ω) . (3.38)

The Bessel functions now take the argument α = −ka sin ϑ. At low Mach numbers, where
ka ≪ 1, variations of the Bessel functions are negligible. A factor J0(α) ≈ 1 is associated
with source terms that are nearly unaffected by azimuthal interference, whereas a factor
J1(α) ≈ 0 signifies almost complete cancellation of a source with its image across the jet
axis. The antenna factor due to each source term distribution is given explicitly by its
one-dimensional Fourier transform along x. From the argument k = ka cosϑ, it is seen
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Figure 4. a) Jet with S = 0.3: amplitude of the radially compact enthalpy-flux source term

|Ĥx

x | as a function of x. Solid line: original DNS data, dashed line: extrapolated exponential
decay over the interval 40 6 x 6 400. b) Corresponding discrete Fourier spectra near k = 0;
white circles: based on original DNS data, black dots: based on extrapolated amplitude envelope.
Dashed lines indicate the acoustically relevant interval −ka 6 k 6 ka.

again that only the interval −ka 6 k 6 ka of the spectrum radiates sound into the far
field.

4. Acoustic source term analysis for hot jets

4.1. Marginal globally unstable case S = 0.3

The far field pressure solution (3.28) is first evaluated for the jet configuration with
S = 0.3. All source term distributions Ŝij , K̂, Ĥi and D̂i, as defined in equations (3.2,
3.5–3.7, 3.11), are extracted from the direct numerical simulation as functions of r and
x. The temporal Fourier transform (3.11) of all sources is evaluated for ω = ωg during
runtime over one cycle period. Under the assumption of radial compactness, the one-
dimensional distributions Ŝx

ij , K̂x, Ĥx
i and D̂x

i are obtained according to equation (3.26)
by numerical integration in r. Evaluation of the far field pressure solution (3.28) then
involves a discrete Fourier transform in x.

As an example, the streamwise variation of the enthalpy-flux source envelope |Ĥx
x (x, ωg)|

is presented in figure 4a as a solid line. It displays a sharp front near the upstream bound-
ary and a slow decay downstream of the vortex roll-up location around x = 9. Accelerated
decay is observed near the end of the numerical domain, but the source amplitude at
the downstream end x = 80 is still two orders of magnitude larger than at the upstream
boundary. As a result, the truncation of the spatial domain may produce significant er-
rors in the spatial Fourier transform. The corresponding discrete spectrum |H̃x

x (k, ωg)|
near k = 0 is displayed in figure 4b as white circles. Its peak, not shown in the diagram,
is found at kmax = 1.28, with a value of |H̃x

x (kmax, ωg)| = 2.5×106. Since the streamwise
physical extent of the numerical domain, 0 6 x 6 80, is less than twice the acoustic wave-
length, only three points of the spectrum can be obtained within the radiating interval
−ka 6 k 6 ka. A discussion of the directivity pattern based on only three data points is
unsatisfactory; it is therefore desirable to first achieve a higher spectral resolution of the
spatial Fourier transform.

Mitchell et al. (1999) faced the same problem in their computations of the acoustic



12 Lutz Lesshafft, Patrick Huerre and Pierre Sagaut

0 30 60 90 120 150 180

−70

−60

−50

−40

−30

ϑ [deg]

S
P

L 
[d

B
]

Figure 5. Jet with S = 0.3: directivity of the acoustic far field, comparison between direct
numerical simulation and Lighthill solution. ( ) Directly computed sound; (◦) Lighthill solution
due to Hx

x without streamwise extrapolation. Lighthill solution from extrapolated sources: ( )
enthalpy-flux term Hx

x alone, (- - -) combined radiation from all other terms.

field in forced isothermal jets. These authors suggest to extrapolate the source term dis-
tributions, prior to evaluating the Lighthill solution, over a sufficiently long downstream
region beyond the end of the computational domain. Following this idea, the source terms
in the present calculations are taken to develop exponentially as

f(x) = f(x0) eikx(x−x0) with kx = −i
f ′(x0)

f(x0)
, (4.1)

from x0 = 40 down to x = 400. The extrapolated source envelope |Ĥx(x, ωg)| is shown
as a dashed line in figure 4a. Over the interval 20 6 x 6 50, the amplitude decay of the
original distribution may indeed be well approximated by an exponential function. Black
dots in figure 4b represent the discrete Fourier spectrum |H̃x

x (k, ωg)| of the extrapolated
source distribution. They align well with the previously obtained data points (white
circles) in the vicinity of the radiating interval, which now is resolved by 17 points. In
particular, the extrapolation procedure is found to appropriately correct the apparent
error, due to domain truncation, in the k = 0 component of the original spectrum.

The Lighthill solution obtained from extrapolated source distributions in the S = 0.3
jet, according to equation (3.28), is compared to the DNS results in figure 5. The thick
line represents directly computed sound pressure levels, measured along the arc in figure
1. At angles less than 18◦, the arc crosses the hydrodynamic near field. The thin line inter-
polates the Lighthill solution due to the extrapolated Hx

x term, whereas results based on
the non-extrapolated Hx

x distribution are shown as white circles. The combined acoustic
radiation from all other source terms, as obtained from equation (3.28), is represented by
a dashed line. Sound pressure levels are computed as SPL = 20 log10(ξ|p̂|/pref), thereby
eliminating the ξ−1 decay of the acoustic pressure amplitude. The dB scaling takes the
near field pressure maximum pref = maxx |p̂(x, ωg)| as a common reference value for all
curves.

Figure 5 demonstrates that the dipole strength of the directly computed acoustic field
is very well retrieved by the Lighthill prediction for dipole radiation due to the axial
enthalpy-flux term Hx

x . Over the interval 20◦ 6 ϑ 6 60◦, both curves coincide within
0.5 dB accuracy. Without source extrapolation, the one point obtained within the down-
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Figure 6. Jet with S = 0.3: individual far field contributions from all source terms except Hx

x .
a) Excess density components: (—) Hx

r ; (- - -) Kx; (- · -) Dx

x ; (· · · ) Dx

r . b) Reynolds and viscous
stresses: (—) Sx

xx; (- - -) Sx

rr; (- · -) Sx

rx; (· · · ) Sx

ϕϕ.

stream lobe, at ϑ = 54◦, matches the simulation result with a precision of 0.1 dB. Fur-
thermore, the separation of individual source term contributions clearly indicates that
the radiation due to Hx

x strongly dominates the acoustic field in the present jet configura-
tion: the combined radiation from all other aeroacoustic sources together does not exceed
−68 dB at any angle. Near ϑ = 90◦, where this low-level radiation may in principle be
detected, the far field simulation results are likely to be affected by spurious numerical
effects, most notably due to unphysical acoustic reflections at the domain boundaries.

The results presented in figure 5 are quite robust with respect to details of the extrap-
olation (4.1). A choice of x0 anywhere in the interval 20 6 x 6 60 locally changes the
SPL values associated with Hx

x by not more than 0.5 dB.
Individual contributions of all other source terms are documented in figure 6. Acoustic

emission from dissipative effects (Dx
x and Dx

r , dash-dotted and dotted lines in figure 6a)
scales with the Reynolds number, and in the present case it is found to be negligible
even when compared to the low-level radiation from the radial enthalpy flux Hx

r and
the kinetic energy fluctuations Kx. While the fluctuation amplitude of Hx

r in the jet
is comparable to that of the axial enthalpy flux Hx

x , its acoustic radiation is much less
significant in an axisymmetric setting, due to the azimuthal interference given by J1(α)
in equation (3.36). Acoustic radiation from Reynolds stresses Sx

xx and Sx
rr (solid and

dashed lines in figure 6b) is similar in strength to that from Hx
r and Kx, while the effects

of Sx
rx and Sx

ϕϕ are negligible. Although viscous stresses are included in the Sij terms
(equation 3.2), their contribution is found to be insignificant.

The Lighthill solution in figure 5 indicates a difference of only 3 dB between the
upstream and downstream acoustic amplitude. This difference characterizes the weak
superdirective quality of the acoustic field; it is caused by the antenna factor, i.e. by
the variation of spectral density H̃x

x between −ka and +ka. In comparison to the beam-
like directivity pattern (1.1) measured by Laufer & Yen (1983), superdirectivity in the
present configuration can be said to be negligible.

According to Crighton & Huerre (1990), superdirective radiation in the particular form
of equation (1.1) would occur if the spectrum in figure 4b took the shape of a narrow
Gauß function, centred at the carrier wavenumber kmax = 1.28 and extending down to
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(b) S = 0.2

Figure 7. Supercritically hot jets with a) S = 0.1, b) S = 0.2. Directivity of the acoustic far
field, comparison between direct numerical simulation and Lighthill solution. Directly computed
sound ( ); Lighthill solution due to enthalpy flux source term Hx

x without extrapolation (◦)
and with extrapolation ( ). Other sources are negligible (see text).

the acoustic range |k| < ka. In the low Mach number limit (kmax ≫ ka), this assumption
indeed necessitates a perfectly Gaussian source distribution (∝ exp(x2)) in physical space
over a large streamwise interval. Instead, it has been found that the source amplitude
in the present configuration decays exponentially (∝ exp(x)), as in the isothermal jet
simulations of Mitchell et al. (1999). Crighton & Huerre (1990) have demonstrated that
an exponential source envelope cannot give rise to a superdirective factor as measured
by Laufer & Yen (1983).

A recent study by Obrist (2009) generalizes the analysis of Crighton & Huerre (1990)
to two-dimensional wavepackets that are non-compact in both spatial directions. It is
found that a finite cross-stream extent of the acoustic source region may strengthen
the superdirective character of the far field. Whether the assumption of radial compact-
ness is valid in the present context may be assessed by solving equation (3.14) with the
two-dimensional source distribution Ĥx(r, x, ωg). It is difficult to define a consistent ex-
trapolation procedure in two dimensions, therefore the non-compact solution may only
be computed for radiation angles ϑ = 54◦ and 126◦. At both angles, the results are found
to match the compact solution (white circles in figure 5) within 0.005 dB accuracy.

4.2. Supercritically heated jets: S = 0.1 and S = 0.2

The analysis carried out for the S = 0.3 jet in the preceeding section is now applied to
the configurations with S = 0.1 and 0.2 (see §2.1). The global frequencies, as reported
in Lesshafft et al. (2006), are ωg = 0.493 and 0.658, respectively, and the acoustic wave-
lengths therefore are λa = 40.3 and 42.7. The main results of the analysis are shown in
figure 7: thick lines trace the acoustic directivity measured in the far field of the direct
numerical simulations, thin lines and circle symbols represent the Lighthill solution due
to the axial enthalpy flux source term Hx

x with and without streamwise extrapolation.
As in the S = 0.3 jet, acoustic emission from all other source terms is found to be neg-
ligible in comparison. Their combined radiation, not shown in figure 7, is below −45 dB
(S = 0.1) and −64 dB (S = 0.2). Sound pressure levels in both cases are again scaled
with the respective maximum values of |p̂(x, ωg)| in the near field.

Agreement between the directly computed acoustic field and the Lighthill solution for
these two configurations is less accurate than in the S = 0.3 case. In both parts of figure
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7, simulation and prediction results are seperated by almost 2 dB at ϑ = 20◦ and 5 dB
at ϑ = 60◦. However, the overall dipole character is well retrieved in both cases, and
the agreement may be regarded as sufficiently close in order to allow for a qualitative
discussion. It can therefore be concluded that axial enthalpy flux fluctuations are the
dominant acoustic source mechanism in globally unstable hot jets also at temperature
ratios S = 0.1 and 0.2. The resulting acoustic field is that of a dipole, with maximum
intensity in the upstream and downstream directions. Amplitude modulations due to
the axial non-compactness of the source distribution are found to be moderately small,
and the apparent source location corresponds to the region of vortex roll-up (x = 3 for
S = 0.1 and x = 4 for S = 0.2). It is noted again that the acoustic radiation due to
vortex pairing, as a secondary instability of the global mode structure, is not considered
in the present study.

Direct numerical simulation results for the supercritical cases S = 0.1 and 0.2 are much
more affected by numerical inaccuracies than the marginally unstable case S = 0.3. These
inaccuracies stem primarily from the numerical treatment of the upstream boundary
conditions (see §2.1). As discussed in Lesshafft et al. (2006, 2007), the location of vortex
roll-up moves closer to the upstream domain boundary as the flow becomes more super-
critical with decreasing values of S. This results in stronger spurious reflections, because
the acoustic waves now propagate almost parallel to the upstream boundary, whereas the
numerical treatment assumes nearly perpendicular incidence of acoustic waves. Spurious
reflections increase the acoustic energy contained in the numerical domain. Unphysical
interaction between acoustic and vortical perturbations at the upstream boundary must
also be expected to increase as perturbation amplitudes reach nonlinear levels close to
the inlet. It has been noted in Lesshafft et al. (2006, 2007) that the influence of the
numerical boundary treatment on the near field dynamics is stronger for low values of
S.

5. Conclusion

The near and far fields of three globally unstable hot jets have been resolved in direct
numerical simulations of the axisymmetric Navier–Stokes equations. The three configura-
tions have temperature ratios S = 0.1, 0.2 and 0.3, and associated Mach number values
Ma∞ = 0.32, 0.22 and 0.18. Results have been discussed in depth for the marginally
unstable configuration with temperature ratio S = 0.3: the nonlinear global mode in the
near field, described by Lesshafft et al. (2006), radiates into the far field as a compact
acoustic dipole, with maximum amplitude along the jet axis. A solution to the Lighthill
equation, including source terms due to fluctuations of enthalpy flux, kinetic energy,
Reynolds stresses and dissipative effects (Lilley 1974, 1996), has been formulated for an
axisymmetric geometry, with and without the assumption of radially compact source
distributions. In order to retrieve the directly computed far field directivity pattern, the
source distributions used in the Lighthill analysis have been extrapolated far beyond
the downstream boundary of the computational domain used in the simulation. For the
reference configuration with temperature ratio S = 0.3, the resulting Lighthill solution
matches the directly computed acoustic field within 0.5 dB accuracy over a large range of
the radiation angle. The decomposition of source terms has demonstrated that the global
mode acoustic field is strongly dominated by dipole radiation due to axial enthalpy flux
fluctuations.

The Lighthill analysis has been extended to the supercritical regime of strongly heated
jets, with temperature ratios S = 0.1 and 0.2. Although the numerical simulation data
obtained for these two configurations are not of the same high quality as in the S =
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0.3 case, and the agreement with the Lighthill solution for the acoustic field is less
accurate as a consequence, the analysis supports the same principal conclusion: the source
mechanism related to the axial enthalpy flux strongly dominates the overall acoustic
radiation, giving rise to a dipole directivity in the far field. Comparison between figures
5 and 7 demonstrates that the acoustic intensity increases with stronger heating.

Antenna effects, which could potentially yield a superdirective radiation pattern, are
not found to be significant in the present configurations. At S = 0.3, the antenna factor
only causes a 3 dB difference between the ϑ = 0◦ and the ϑ = 180◦ directions. The
absence of superdirectivity is due to the spatial shape of the global mode wave packet:
its k-spectrum is very different from a Gaussian shape (see figure 4b), and it presents only
weak variations over the radiating interval −ka 6 k 6 ka . Higher values of the Mach
number will probably favor superdirectivity; if Ma is increased, the radiating window is
enlarged and may contain regions of large variations in spectral density. An extension of
the present study to externally forced jets in the high subsonic Mach number regime will
be the focus of future investigations.

It is a pleasure to dedicate this study to Steve Davis in recognition of his many fun-
damental contributions to fluid mechanics. Steve is a source of inspiration to all of us,
from both a scientific and personal point of view.

We are very grateful to Professor Marvin Goldstein for his suggestion to employ Lilley’s
source term decomposition in the present study.
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tion.

REFERENCES

Andersson, N., Eriksson, L. E. & Davidson, L. 2005 Large-eddy simulation of subsonic
turbulent jets and their radiated sound. AIAA J. 43 (9), 1899–1912.

Bodony, D. J. & Lele, S. K. 2005 On using large-eddy simulation for the prediction of noise
from cold and heated turbulent jets. Phys. Fluids 17 (085103).

Bodony, D. J. & Lele, S. K. 2006 Review of the current status of jet noise predictions using
large-eddy simulation. AIAA Paper 2006-0468.

Bodony, D. J. & Lele, S. K. 2008 On using large-eddy simulation for the prediction of noise
from cold and heated turbulent jets. J. Fluid Mech. 617, 231–253.

Boersma, B. 2005 Large eddy simulation of the sound field of a round turbulent jet. Theoret.
Comput. Fluid Dynamics 19, 161–170.

Bogey, C. & Bailly, C. 2004 Investigation of subsonic jet noise using LES: Mach and Reynolds
number effects. AIAA Paper 2004-3023.

Bogey, C. & Bailly, C. 2005 Effects of inflow conditions and forcing on subsonic jet flows
and noise. AIAA J. 43 (5), 1000–1007.
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