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1 Introduction

1.1 My research activities
The study of instability dynamics in jets, already the topic of my Ph.D. thesis [L65],
has remained the focus of my research over the last nine years. My postdoctoral work
(2007–2008) was concerned with sedimentation from river outflows and from near-
coastal turbidity currents, and occasional collaborations with Eckart Meiburg’s group
at UC Santa Barbara on these topics continue [L20], but these studies are not included
in the present manuscript for the sake of a coherent presentation of my main line of
research.

My interests lie in the conceptual description of instability dynamics in jets and in
jet-like open shear flows, based on a variety of methodological approaches befitting
the different aspects of flow behaviour that these flows can exhibit. These aspects in-
clude oscillator and amplifier behaviour, laminar deterministic and turbulent stochas-
tic dynamics, primary as well as secondary instability phenomena. The methodology
employed for their characterisation relies on local and global formulations, modal and
non-modal perturbation growth, statistical state dynamics, and Floquet theory. In all
instances, the objective in my research is to uncover physical mechanisms and to iden-
tify the most appropriate framework for a conceptual modelling of the flow dynamics.

This first section of the manuscript provides a short overview of the flow phenom-
ena that have been treated in my past research projects since 2009, and how these have
been approached from a methodological point of view. A brief chronological account
is attempted in §1.2, offering a deliberately subjective perspective on the context in
which our current understanding of jet instability has evolved. This context is pre-
sented in broad strokes; references to the literature outside of jet studies are given
sparingly and only in so far as they influenced my own direction of research.

1.2 Trends in jet instability over the last ten years
Global eigenmode analysis Scientific development, even within one discipline as
close-knit as open flow instability, does not usually advance in lockstep. When I took
my position at LadHyX in 2009, global eigenmode analysis (or “BiGlobal” in the diction
of [57]) was the fashion of the time. This framework, which is based on the computa-
tion of temporal eigenmodes of the linear operator formulated for a non-parallel base
flow, had been introduced already in the late 1980s (see the review by Theofilis [57]),
yet its application to jet flows remained virgin territory. The Ph.D. work of Nichols
[44], Coenen [12] and myself [L65] on jet instability was still entirely built on the local
analysis of laminar steady base flows, even though all these works were concerned
with self-sustained global oscillations in low-density jets. Our studies demonstrated
that such oscillator behaviour is well characterised by the onset of absolute instability
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above a critical ambient-to-jet density ratio, although the general validity of such a
critical value was challenged [13], and by means of adjoint-based optimisation indeed
was shown not to exist [L6].

Meanwhile, the success of linear global eigenmode analysis of flows exhibiting
self-sustained oscillations generated great enthusiasm in the instability community.
Noack et al. [46], Barkley [3] and Sipp & Lebedev [55] had demonstrated that linear
global instability in a laminar cylinder wake sets in at 𝑅𝑒 = 47, in perfect agreement
with experimental observations. Marquet et al. [35] showed how adjoint-based sensi-
tivity analysis of global eigenmodes can be leveraged for passive control design, and
Giannetti & Luchini [20] proposed a global “wavemaker” definition that served as a
basis for the physical discussion of instability mechanisms. Global eigenmode anal-
ysis, base flow sensitivity and the “wavemaker” formalism provided the blueprint for
instability studies over many years.

The study of jets has benefited from this global toolbox with significant delay: lin-
ear global eigenspectra of supersonic jets were finally presented by Nichols & Lele [45],
and for subsonic settings by Garnaud et al. [L10]. Both of these studies were carried
out in parameter regimes where jets behave as amplifiers of external noise, as opposed
to their oscillator behaviour in the presence of strong density gradients. Linear global
spectra of jets in their oscillator regime, at low Reynolds number and high density
ratio, have been published only very recently [L16],[L18].

Input-output analysis For several years, global eigenmode analysis was the stan-
dard tool of choice for the study of oscillator- as well as amplifier-type flow configu-
rations. On the one hand, the qualitative characterisation of amplifier flows as being
stable from this point of view is certainly a matter of poor semantics; on the other
hand, decaying eigenmodes are not particularly useful objects for a quantitative anal-
ysis of amplifying flow behaviour. The least stable eigenmodes describe the asymptotic
perturbation dynamics at long times after an initial perturbation, and in an amplifier
flow that asymptotic limit is ultimately zero1. Short-time growth is non-modal and
can be characterised by the gain of the optimal initial perturbation, as done for jets in
references [45] and [L10].

In the context of local theory, it had been established long ago that amplifier be-
haviour is consistently described in the frequency domain (the “spatial problem”, see
Michalke [37]). A non-modal formalism in the frequency domain, suitable for non-
parallel flow instability problems, had been introduced by Trefethen et al. [59], but it
was only hesitantly accepted in the global instability community, following its appli-
cation to boundary layers [34, 42, 24]. Based on singular value decomposition (SVD)

1“But this long run is amisleading guide to current affairs. In the long runwe are all dead. [Scientists]
set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the
storm is past the ocean is flat again.” Keynes [27].
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of the resolvent operator, this analysis method is known under many names in the
literature: optimal forcing, frequency response, resolvent or input-output analysis —
the latter will be used throughout this manuscript. Garnaud et al. [L11] performed
such input-output analysis of jet flows, both in incompressible and in compressible
settings (see [L46] for compressible jets with acoustic radiation). These studies used
laminar steady solutions as well as turbulent mean flows as base flows, even though
the theoretical justification for mean flow analysis seemed unclear at the time.

Linear wavepackets in turbulent mean flow Frequency-domain analysis of lin-
ear perturbation wavepackets in turbulent jet mean flows has been pursued at Pprime
and at Caltech over the last ten years, motivated by the prospect of obtaining dynam-
ical models for the prediction and the control of jet noise.

The classical framework of flow instability analysis is based on the linearisation of
governing equations about a steady flow state, which provides a consistent description
of small-amplitude perturbation dynamics. In practice, however, such a steady solution
is often replaced with a time-averaged mean flow; the motivation may be simply that
a mean flow is more readily available, or that a laminar steady state poorly represents
the spatial features of a turbulent flow. In the case of a turbulent jet at high Reynolds
number, the mean flow spreads much more rapidly than the corresponding laminar
steady state, and it seems inappropriate to model perturbations as if they evolved in a
nearly parallel base flow.

A large body of literature suggests that the dominant large-scale fluctuations in
turbulent jets behave like linear instability waves developing in the jet mean flow [26].
Such instability waves, or indeed “wavepackets”, have in the past been modelled by
local spatial theory [56] and by PSE [21]. Application of resolvent-based input-output
analysis to an experimental mean flow at high Reynolds number, and validation of the
results against unsteady flow measurements, was the proposition of the “Cool Jazz”
project (2013–2016). Cool Jazz was funded by the Agence Nationale de la Recherche,
and associated researchers at LadHyX, Pprime and Limsi. Towards the end of this
project, it was realised that the analogy between spectral POD modes of the turbu-
lent jet and linear input-output modes has a clear mathematical foundation. The the-
ory of statistical state dynamics, pioneered by Farrell & Ioannou [16], provides the
adequate formalism for the analysis of mean flow and “jittering” wavepackets [9] as
statistical objects. The implications of this description for turbulent shear flows are
currently being explored by various research teams [5, 8], particularly for the case of
jets [L57][58, 53][L22].

Instability and control of periodic flows The above developments indicate that
trends are driven to a large extent by available methodology. The current Ph.D. work
of Léopold Shaabani Ardali aims to extend the established techniques for non-modal
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instability analysis and optimal control to the class of periodic base flows. Similar
efforts are currently being conducted by other research groups [50, 43]. A pulsed jet
is chosen as the object of our study; subject to axisymmetric harmonic forcing, such
a jet forms ring vortices at the forcing frequency. Secondary instabilities arise in the
form of vortex pairing, which may be analysed by way of Floquet theory. Additional
non-axisymmetric forcing is known to give rise to the phenomenon of “bifurcation”
[49]. Optimisation of such active control requires strategies different from singular
value decomposition, as it is used in the case of steady base flows.

Tools developed in this context may prove useful in a wide array of applications,
such as periodic flow in turbo engines, behind flapping wings, and in blood vessels.

1.3 Organisation of this manuscript
Results of my research on jets and plumes from the past nine years are summarised in
the following sections, grouped into the three categories

1. Extrinsically driven oscillations (§2), described by input-output relations devel-
oped around a steady base flow,

2. Intrinsic oscillations (§3), described by modal instabilities of a steady base flow,

3. Secondary instabilities (§4), described by the modal and non-modal evolution of
perturbations in a periodic base flow.

Perspectives on the application of these concepts, to reacting flows and to jet noise
predictions in complex settings, are given in §5. Publications and conference presenta-
tions that I have co-authored are listed in §6, followed by general literature references.
The publications that are discussed in the body of the manuscript are provided in the
appendix.
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2 Extrinsically driven oscillations in jets
The amplifier behaviour of jets, i.e. their linear response to external perturbation in-
put, in the absence of strong density variations, was the topic of Xavier Garnaud’s
Ph.D. work [19]. Laminar steady states as well as turbulent mean states were con-
sidered, both under incompressible and under compressible conditions. These studies
were continued by Onofrio Semeraro, during his postdoc project 2013–2016, who used
experimental mean flows and compared quantitatively the linear flow response to ex-
perimentally measured spectral POD modes.

Note that all flow configurations in this section represent jets that are of the same
chemical composition and the same temperature as the ambient fluid. If furthermore
the incompressible limit 𝑀𝑎 = 0 is considered, the density is strictly constant in these
flows; however, at non-zero Mach number, small density variations arise from com-
pressibility effects. In the following, these configurations (incompressible as well as
compressible) will be denoted as homogeneous jets, in order to distinguish them from
the inhomogeneous settings investigated in §3, which involve strong density variations
between the jet interior and the ambient atmosphere.

2.1 Linear eigenmodes of homogeneous jets
[L9] X. Garnaud, L. Lesshafft, P. Schmid & J.-M. Chomaz (2012): A relaxation method

for large eigenvalue problems, with an application to flow stability analysis. J.
Comp. Phys. vol. 231, p. 3912–3927

[L10] X. Garnaud, L. Lesshafft, P. Schmid & P. Huerre (2013): Modal and transient
dynamics of jet flows. Phys. Fluids vol. 25, art. 044103

Motivation Xavier Garnaud’s investigation of the forcing response in jets set out
from the hypothesis that a slightly damped eigenmode exists, which would be easily ex-
cited by low-amplitude forcing input. This conception, suggested by Huerre &Monke-
witz [23], would be consistent with the typical observation of a “preferred mode” in
amplifier jets, characterised by a distinct maximum of perturbation amplitude in a tur-
bulent jet around a Strouhal number of 0.3 [14].

Methodology The computation of converged global jet eigenmodes in compressible
settings turned out to be fraught with technical difficulties. Due to high-order finite-
difference schemes and large flow domains, which were used in order to capture the
acoustic field, the need for matrix inversion as part of the classical shift-invert tech-
nique led to computational resource requirements that appeared to be too restrictive.

A new computational method, named the “shift and relax” technique [L9] was de-
veloped for these compressible eigenmode calculations. Themethod is matrix-free and
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only requires the memory needed for time-stepping of an augmented system. Akin to
the “selective frequency damping” [1], a set of auxiliary filter equations is added to the
regular system of linear flow equations, and a coupling is prescribed in such a way
that eigenmodes are damped with increasing distance from a chosen shift value. The
resulting eigenmode calculations are rather time-intensive, but very light on memory,
such that they can be run on workstations.

Incompressible problems were discretised on an unstructured grid with finite el-
ements (FreeFEM++), and eigenmode spectra were efficiently found with standard
ARPACK and SLEPc routines. These calculations are easily performed on a single pro-
cessor.

Results Stable spectra were obtained in all cases, mostly characterised by a more
or less flat branch of eigenvalues. The spectrum for a laminar incompressible jet at
𝑅𝑒 = 1000 is shown in figure 1: modes plotted as black crosses form an ‘arc branch’
[L19], brought about by spurious feedback from the outflow boundary (see §3.3.2). The
modes shown as red plus signs were linked to the limited accuracy of the numerical
scheme, which allows the resolution of global amplitude variations over not more than
15 decades [L10].

Eigenvalues of a laminar compressible jet, computedwith the “shift and relax” tech-
nique, are shown in figure 2. The base flow, at 𝑅𝑒 = 100 and 𝑀𝑎 = 0.75, was obtained
using selective frequency damping. The eigenvalues again form a branch that is likely
to arise from spurious boundary feedback. Eigenmode perturbations of vorticity are
represented in figure 3, corresponding to the labels in figure 2. These structures have
the typical appearance of Kelvin-Helmholtz wavepackets that originate at the nozzle
(𝑥 = 0), coupled with Tollmien–Schlichting waves in the boundary layers of the inflow
pipe.

None of the computed spectra exhibited a slightly stable discrete eigenmode that
could convincingly be interpreted as the origin of the “preferred mode” flow response
to low-amplitude forcing. It had become clear that temporal eigenmodes are not an
adequate basis for the description of extrinsically driven flow oscillations.

2.2 Deterministic input-output analysis of incompressible jets
[L11] X. Garnaud, L. Lesshafft, P. Schmid & P. Huerre (2013): The preferred mode of

incompressible jets: linear frequency response analysis. J. Fluid Mech., vol. 716,
p. 189–202

Motivation Extrinsically driven flow oscillations in a jet are to be expressed in a
modal basis that genuinely reflects their input-output character, and ideally, such a
basis would be orthogonal. These are the properties of singular value decomposition
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Figure 1: Eigenmodes of axisymmetric perturbations in a laminar incompressible jet
at 𝑅𝑒 = 1000. a) Eigenvalues; b)-e) modulus of axial velocity perturbations, log10 |𝑢|, of
individual modes, as labeled in (a). From reference [L10].
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Figure 2: Eigenvalues of axisymmetric perturbations in an isothermal jet at 𝑅𝑒 = 100
and 𝑀𝑎 = 0.75, computed using the “shift and relax” method. Diamond markers indi-
cate shift values. From reference [L9].

Figure 3: Real part of the vorticity perturbations of typical eigenmodes, labeled in
figure 2. From reference [L9].
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(SVD). Following the eigenspectrum analysis described in the previous section, Xavier
Garnaud proceeded to apply an SVD-based formalism to an incompressible jet, in order
to test if the “preferred mode” at 𝑆𝑡 ≈ 0.3 could be captured and characterised in this
way.

Methodology SVD-based input-output analysis has been introduced for flow in-
stability problems by Trefethen et al. [59], and has been applied to a number of par-
allel flow situations in the following years. The application of such a formalism to
non-parallel problems has been demonstrated, to my knowledge, for the first time by
Alizard et al. [2] for a separated boundary layer, using a reduced-order eigenmode
representation of the linear flow system. Monokrousos et al. [42] computed leading
singular modes in a Blasius boundary layer without the need for eigenmode expan-
sion. In the context of Xavier Garnaud’s PhD thesis, our goal was to use the same
formalism on jet flows.

The governing equations are linearised around a steady base flow. These equa-
tions include a source term 𝑓 that represents a volume force, as a model for external
perturbation input. After a temporal Fourier transform, the linear system is written as

(−𝑖𝜔𝐵 + 𝐿)�̂� = ̂𝑓 . (1)

The operator (−𝑖𝜔𝐵+𝐿)−1 that maps any given forcing ̂𝑓 𝑒−𝑖𝜔𝑡 onto its time-asymptotic
linear flow response �̂�𝑒−𝑖𝜔𝑡 is called the resolvent operator [52]. Its matrix SVD repre-
sentation, (−𝑖𝜔𝐵 + 𝐿)−1 = 𝑈Σ𝑉𝐻, associates each column vector 𝑣𝑖 of matrix 𝑉 with a
real gain value 𝜎𝑖 and a column vector 𝑢𝑖 of matrix 𝑈. The sets of 𝑣𝑖 and 𝑢𝑖 are both
orthonormal among themselves. It follows that the pair (𝑣𝑖, 𝑢𝑖)with highest associated
gain 𝜎𝑖 represents the optimal forcing and response structures of frequency 𝜔. The re-
solvent operator can be tweaked prior to the SVD in order to account for specific gain
definitions and forcing restrictions.

For any given frequency, a discrete resolvent matrix was constructed with Free-
FEM++, using similar tools as in the incompressible eigenmode computations de-
scribed in §2.1. Singular value decomposition was performed on regular workstations,
with routines from the MUMPS and SLEPc libraries, called from Python.

Results An analytical model of a turbulent jet mean flow [41] was chosen as a base
flow, with a straight pipe section upstream of the nozzle, and the Reynolds number
was fixed at 𝑅𝑒 = 1000 for the linear perturbation computations. Forcing input was
restricted to the interior of the pipe, the rationale being that stochastic random fluc-
tuations enter the flow from the nozzle, whereas no volume forces are present in the
free jet. The jet was treated as a purely linear flow system, for lack of clear ideas on
how to model the effect of nonlinearity, especially in the face of the incoherent nature
of turbulent fluctuations.
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Figure 4: Input-output analysis of an incompressible turbulent jet mean flow: spatial
structures associated with optimal body forcing at different Strouhal numbers, indi-
cated in the figures. Left column: axial component of optimal forcing; right column:
axial velocity of associated flow response. From reference [L11].

Optimal forcing in this base flow, at all frequencies, takes the shape of tilted vor-
tical structures near the pipe wall, with maximum amplitude at the nozzle exit. These
structures, shown on the left side in figure 4, are suggestive of the Orr-mechanism
in boundary layers, which give rise to strong energy growth over short convection
distances. The ensuing flow response, shown on the right side in figure 4, clearly
represents a free-jet wavepacket that grows and eventually decays due to shear insta-
bility. It was demonstrated that the initial spatial growth of perturbation amplitude in
the response wavepacket corresponds well to the local growth rate of a spatial shear
instability mode. The maximum input-output energy gain was achieved at a Strouhal
number around 𝑆𝑡𝐷 = 0.45, in decent agreement with typical measurements of the
“preferred mode” in turbulent jets.
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2.3 Deterministic input-output analysis of compressible jets
[L46] X. Garnaud, R. Sandberg & L. Lesshafft (2013): Global response to forcing in

a subsonic jet: instability wavepackets and acoustic radiation. AIAA Paper
2013-2232

[L15] O. Semeraro, L. Lesshafft, V. Jaunet & P. Jordan (2016): Modeling of coherent
structures in a turbulent jet as global linear instability wavepackets: theory and
experiment. Int. J. Heat Fluid Flow vol. 62, p. 24–32

Methodology As the resolvent matrix of highly-resolved compressible flow systems
is unpractically large, a direct-adjoint time-stepping strategy [31] was chosen for the
computations presented in this section. Jet noise analysis was one objective of these
studies from the outset; we therefore opted for high-order finite-difference discreti-
sation on orthogonal grids. Accurate adjoint time-stepping is achieved by a modular
construction technique [18]. These compressible computations require significantly
more resources than the incompressible studies presented in the preceding sections,
and they were all run on the HPC platforms of TGCC and CINES.

Results In two separate studies, we investigated optimal forcing and associated lin-
ear response structures in the mean flow of turbulent compressible jets. The mean
flow used by Garnaud et al. [L46] was provided by Richard Sandberg, obtained by di-
rect numerical simulation of a jet issuing from a long straight pipe, at 𝑅𝑒 = 3691 and
𝑀𝑎 = 0.84, and with significant co-flow. The study by Semeraro et al. [L15] used an
experimentally measured mean flow at 𝑅𝑒 = 106 and 𝑀𝑎 = 0.9, without co-flow, made
available by Peter Jordan and his group.

Following the same conceptions as in the incompressible analysis of section 2.2,
forcing input was again restricted to the interior of the pipe. Both compressible stud-
ies led to similar results. A clear peak in the energy gain is found, at 𝑆𝑡𝐷 = 0.8 in the
co-flowing configuration [L46] and at 𝑆𝑡𝐷 = 0.4 in the case of [L15]. Optimal forc-
ing structures as well as flow response wavepackets resemble those identified in the
incompressible case, except for the added presence of acoustic waves in both.

Garnaud et al. [L46] compared the linear response wavepackets to Fourier modes
extracted from the DNS by Richard Sandberg and found good agreement in the near-
nozzle region of the free jet. More strikingly, the acoustic far field from the DNS is well
reproduced, displaying beam-like radiation patterns, as shown in figure 5. Only at the
highest frequency 𝜔 = 4 (or 𝑆𝑡𝐷 = 1.27), the linear flow response in figure 5c exhibits
a strong upstream lobe, which is absent in the DNS Fourier mode.

An additional point of interest in the analysis of the experimental base flow [L15]
lies in the use of a spatially distributed turbulent viscosity, deduced from Reynolds
stress measurements. Including this in the linear model has the predictable effect of
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Figure 5: Comparison between the linear flow response to optimal forcing (left column)
and Fourier modes extracted from DNS data (right column): density fluctuations at
various frequencies 𝜔 = 𝜋𝑆𝑡𝐷. Contour values are chosen such as to visualise the
acoustic field. From reference [L46].

lowering the global energy gain and shortening the streamwise extent of the response
wavepackets.

2.4 Stochastic input-output analysis of compressible jets
[L57] O. Semeraro, V. Jaunet, P. Jordan, A.V.G. Cavalieri & L. Lesshafft (2016): Stochas-

tic and harmonic optimal forcing in subsonic jets. AIAA Paper 2016-2935

[L22] L. Lesshafft, O. Semeraro, V. Jaunet, A.V.G. Cavalieri & P. Jordan (2018):
Resolvent-based modelling of coherent wavepackets in a turbulent jet. ArXiv
preprint 1810.09340, submitted to Phys. Rev. Fluids

An important step forward in jet instability research has been made over the last
two years, following the realisation that optimal linear input-output structures are
closely related to spectral POD modes of the fluctuations in turbulent jets. This term is
used in the sense of reference [47], denoting eigenmodes of the cross-spectral density
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tensor, and thereby characterising two-point statistics in frequency-space. The theo-
retical basis for this relation is partially described by Dergham et al. [15], Hwang &
Cossu [24] and Beneddine et al. [5]. More complete developments are given in refer-
ences [L57], [58] and [L22].

Motivation While it had been acknowledged for a while, and the evidence reviewed
in detail by Jordan & Colonius [26], that coherent structures in fully turbulent jets
strongly resemble linear instability wavepackets developing in themean flow, the the-
oretical justification for this analogy remained elusive until very recently. PSE cal-
culations of perturbations in mean flows had been shown to reproduce spectral POD
modes, or at least filtered power-spectral density distributions [21, 54], with high ac-
curacy over several jet diameters downstream of the nozzle. Our own linear response
wavepackets, obtained from fully global input-output analysis (see the previous sec-
tion), promised to allow evenmore accurate predictions. Beneddine et al. [L14] had just
demonstrated very good agreement between global response wavepackets and spec-
tral PODmodes in turbulent flow over a backward-facing step. Based on the argument
that the anonymous forcing term ̂𝑓 in the linear input-output relation (1) can be inter-
preted as a representation of turbulent Reynolds stress fluctuations, they had worked
out that such agreement may be expected in flow regimes where the largest singular
value is much greater than the second-largest (“gain separation”).

Furthermore, together with André Cavalieri and Peter Jordan, we elaborated an
approach to jet turbulence based on the dynamics of covariances [16], in parallel with
colleagues at Caltech and Stanford. It is easily demonstrated that spectral POD modes
and the singular modes of the mean-flow resolvent are indeed identical under the
strongly idealising hypothesis that the Reynolds stress fluctuations consist of white
noise [L57],[58]. This assumption, however, is not required in cases of large gain sep-
aration. Jets with thin initial shear layers represent such a case.

The overarching question of our stochastic jet analysis is therefore: can the dom-
inant coherent structures in jet turbulence be accurately modelled by linear input-
output analysis, which requires the turbulent mean flow as the only a priori informa-
tion?

Methodology Thestochastic input-output analysis requires the same computational
tools as the deterministic studies discussed in section 2.3. A hierarchical set of orthog-
onal forcing input and response output structures was computed, for the resolvent
operator that stems from linearisation of the flow equations around the mean flow.
As developed in [L57], and more fully in [L22], the deterministic resolvent operator
provides the relation between the cross-spectral densities of the forcing (the Reynolds
stresses) and of the response (the turbulent fluctuations).

The acquisition of experimental reference data for a spatially resolved representa-
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Figure 6: Comparison between the leading spectral POD modes extracted from exper-
iments (left column) and from the linear model, based on the first five output modes
(right column). Absolute values of axial velocity fluctuations are shown in linear scale.
Taken from [L22].

tion of two-point correlations is an ambitious undertaking. Vincent Jaunet and Peter
Jordan at the Pprime Institute performed synchronised dual-plane TR-PIV measure-
ments in a jet at 𝑀𝑎 = 0.4 and 𝑅𝑒 = 460 000, gathering correlated data in cross-stream
planes at 15 different streamwise locations. About 20 terabytes of image data were
recorded [25].

A model cross-spectral density matrix was then constructed, at various Strouhal
numbers, from the five leading linear output modes, under the strong assumption that
the forcing is given by spatially uncorrelated noise. Eigenvectors of this linear model
matrix provide our prediction for spectral POD modes of the turbulent jet.
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Figure 7: Real parts of spectral POD (experiment and model) at the dominant Strouhal
number, corresponding to figures 6c and 6d. The data is interpolated between mea-
surement locations in 𝑥. Taken from [L22].

Results The mean flow of the jet experiment was used as a basis for linearisation,
and its careful inter- and extrapolation onto the numerical mesh was an important step
towards clean analysis results. Frequency-resolved wavepackets corresponding to the
dominant coherent structures (leading spectral POD modes) in the experimental data
are compared to their numerical counterparts, computed as the leading eigenvectors
of the model cross-spectral density matrix, in figure 6. Except at the lowest Strouhal
number (figures 6a and 6b), the agreement between the two is remarkable. Figure 7
gives a more detailed comparison at the most amplified Strouhal number 𝑆𝑡𝐷 = 0.4 (the
“preferred mode” [14]), showing the real part of axial velocity fluctuations. The data
had to be interpolated between the 15 measurement positions in 𝑥 for this plot.

It can be noted that the computed wavepackets extend slightly further in the
streamwise direction than the experimental ones; including the effect of turbulent dis-
sipation would help to improve the agreement further. However, at present it is not
obvious how such turbulent dissipation is bestmodelled. The principal limitation of the
analysis at this point lies in the assumption of perfectly uncorrelated Reynolds stress
fluctuations (“white noise forcing”). Current efforts, together with our collaborators,
aim at a more realistic characterisation of the Reynolds stress statistics.
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3 Intrinsically driven oscillations in jets and plumes
If the density of a jet is significantly lower than that of the ambient fluid at rest, a
spontaneous onset of synchronised flow oscillations may be observed. Such oscillator
behaviour, characterised as a global instability, has been observed experimentally in
situations where the density variations were either due to heating [40] or due to the
mixing of air with helium [28, 22, 61]. In all these studies, intrinsic oscillations appear
in the form of a regular roll-up of axisymmetric ring vortices.

The link between these oscillations and absolute instability, a local concept, was the
subject of my Ph.D. thesis [L65]. My more recent research, which will be presented in
the present section, focused on a global characterisation of the linear instability behind
intrinsic oscillations in jets.

The Ph.D. thesis of Chakravarthy covered both local and global instability in circu-
lar plumes. These flows differ from jets in the one important aspect, that their momen-
tum is generated by buoyancy. The question to what extent the instability dynamics
of plumes are determined by buoyancy was largely unexplored before Chakravarthy’s
analysis.

Motivation The earlier local instability studies of jets necessarily relied on the as-
sumption of slow streamwise flow variations. In jets, this assumption is questionable,
because the region near the nozzle exit, where local instability is most pronounced,
presents strong shear layer growth. Also, the nozzle itself represents a geometrical
singularity in the flow, which may be very important for global pressure feedback ef-
fects [L24]. The objective of linear global instability analysis was to fully account for
the non-parallelism of the base flow, and to characterise the mechanisms by which
light jets may become globally unstable.

A second important question concerned the role of buoyancy as an instability
mechanism in jets and plumes. In previous local jet instability studies, buoyancy, if
it was at all included in the governing equations, had been found to be unimportant
for the instability dynamics. Would it become an important ingredient in plumes?

Methodology Light jets and plumes were treated as two branches of one family
of flows, arising from the injection of low-density fluid into a higher-density ambi-
ent through a circular orifice. Light jets are then characterised by a low Richardson
number, which measures the effect of buoyant acceleration with respect to the injected
momentum, whereas plumes are characterised by a high Richardson number. The same
set of equations was used for both flow regimes: the so-called low-Mach-number ap-
proximation of the compressible Navier–Stokes equations [36] fully accounts for the
dynamic effects of density variations, but it does not allow density to increase due to
compressibility by pressure. This corresponds in fact to the limit of zero Mach number.
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For all global calculations, the linearised low-Mach-number equations were dis-
cretised by finite elements in the FreeFEM++ environment, by extending the code
originally developed by Xavier Garnaud for incompressible homogeneous jets (see
§2.1). The parameters in the equations were the Richardson number, the density ratio
𝑆 = 𝜌𝑗𝑒𝑡/𝜌∞ and the Reynolds number; the inflow condition introduced the boundary
layer thickness at the orifice as an additional parameter.

The identification of physical mechanisms is an essential element of the global in-
stability studies presented in this section. In some cases, such mechanisms may be
inferred in an ad hoc fashion from an inspection of the eigenmode structures, if plausi-
ble narratives about the cause-and-effect relationship between different perturbation
quantities may be constructed. (In the context of instability, which always relies on
positive feedback effects, the relation between cause and effect is analogous to the
relation between hen and egg.) However, a more universal formal approach for the
identification of instability mechanisms in eigenmodes has been proposed in an un-
published article [L67]. This formalism is briefly outlined in section §3.3, together
with a study on spurious eigenmodes that are regularly encountered in global spectra
of open shear flows, owing to unphysical pressure feedback from imperfectly trans-
parent outflow conditions.

3.1 Linear global instability of weakly buoyant jets
[L16] W. Coenen, L. Lesshafft, X. Garnaud & A. Sevilla (2017): Global instability of

low-density jets. J. Fluid Mech. vol. 820, p. 187–207

The choice of parameter values for this study was guided by the helium jet ex-
periments by Hallberg & Strykowski [22]: laminar jets with Reynolds number values
𝑅𝑒𝐷 6 1000 and with density ratios 0.143 6 𝑆 6 0.5 were considered. The jet exits
from a straight pipe, included in the numerical domain, with a shear layer momentum
thickness 𝜃0 between 2.8% and 6.7% of the nozzle diameter.

In settings corresponding to pure helium injected into air, 𝑆 = 0.143, an isolated
eigenvalue was found to dominate the spectrum. Convergence tests demonstrated
that this was indeed the only eigenvalue in our calculations that was independent
of the computational domain size (see figure 8). Through systematic variations of the
Reynolds number and of the nozzle-exit shear layer thickness, the neutral curve of this
dominant eigenmode was traced, as shown in figure 9, and could thus be compared to
the experimental results [22].

While the general trend of the experimental neutral curve is well captured by our
linear calculations, and decent agreement is found between measured and computed
Strouhal numbers (indicated by text labels in figure 9), a quite significant offset in the
critical Reynolds number remains. In order to find an explanation for this discrep-
ancy, the numerical model was extended to include the effects of buoyancy as well as

18



Figure 8: Spectrum of a jet at 𝑅𝑒 = 360, 𝑆 = 0.143 and 𝐷/𝜃0 = 24.3, computed on
numerical domains of different streamwise length 𝑥𝑚𝑎𝑥. From reference [L16].

Figure 9: Comparison of neutral curves obtained from linear analysis (colour) with
those obtained experimentally (black squares and error bars) byHallberg & Strykowski
[22] for pure helium jets. Numbers indicate the Strouhal values of dominant jet oscil-
lations. From reference [L16].

19



viscosity variations, but both effects are seen to be rather negligible.
The onset of linear global instability was successfully linked to the presence of

absolute instability near the nozzle. Both the structural sensitivity [20] and the sen-
sitivity to base flow variations [35] was computed, but neither one of these provided
clear indications about the physical mechanisms that are involved in the global desta-
bilisation of the jet. This discussion was revisited in the investigation of plumes (see
§3.2).

At the highest Reynolds number, 𝑅𝑒 = 1000, no isolated eigenvalue could be de-
tected, and the entire spectrum was found to be strongly dependent on the length of
the computational domain. This observation, consistent with our earlier homogeneous
jet calculations [L10], motivated a more detailed investigation of the effect of domain
truncation (see §3.3.2).

3.2 Linear local and global instability of strongly buoyant
plumes

[L13] R.V.K. Chakravarthy, L. Lesshafft & P. Huerre (2015): Local linear stability of
laminar axisymmetric plumes. J. Fluid Mech. vol. 780, p. 344–369

[L12] L. Lesshafft (2015): Linear global stability of a confined plume. Theor. Appl. Mech.
Lett. vol. 5, p. 126–128

[L18] R.V.K. Chakravarthy, L. Lesshafft & P. Huerre (2018): Global stability of buoyant
jets and plumes. J. Fluid Mech. vol. 835, p. 654–673

In 2013, at the beginning of Chakravarthy’s Ph.D. project, the literature on linear
instability of plumes was limited to a few local studies, mostly from the 1980s. Tem-
poral and spatial analyses had been performed for self-similar base flows in parameter
regimes that were numerically accessible at the time. Prandtl numbers for these self-
similar profiles were limited to values 1 and 2. Yet several experiments and numerical
simulations had established the presence of intrinsic oscillations, in the form of ax-
isymmetric vortex formation.

The first step towards a linear description of self-sustained oscillations in plumes
had to be made in terms of local theory. Our first article [L13] describes a numeri-
cal procedure for the construction of self-similar plume profiles, under the Boussinesq
approximation, for arbitrary Prandtl and Grashof number values, which were then
used for temporal and spatio-temporal instability analysis. New instability mecha-
nisms were described, both for axisymmetric and for helical modes, based on the in-
terplay between vorticity and temperature perturbations in the self-similar plume far
from its source. Absolute instability in such profiles was shown to occur for helical,
but never for axisymmetric perturbations. The absolute helical mode is characterised
by a very long wavelength, small frequency and small positive growth rate.
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Figure 10: Strouhal number of the dominant global eigenvalue, as a function of 𝑅𝑖/𝑆.
Legend: (•) 𝑅𝑒 = 200, 𝑆 = 7; (∘) 𝑅𝑒 = 500, 𝑆 = 7; (�) 𝑅𝑒 = 200, 𝑆 = 4.5; (△) 𝑅𝑒 = 200,
𝑆 = 7, with parabolic inlet velocity profile. Solid line: power law from the Cetegen &
Kasper [10] experiments, rescaled tomatch the present definition of 𝑅𝑖. From reference
[L18].

These local results, valid in the self-similar regime, do not explain the observed
intrinsic plume oscillations, which are consistently reported to be axisymmetric. A
global eigenmode analysis was therefore undertaken, for laminar base flows that in-
clude the buoyancy source region, obtained by Newton–Raphson iteration of the low-
Mach-number flow equations. This set of equations does not invoke the Boussinesq ap-
proximation, and is valid for arbitrarily high density variations. The principal influence
parameters in this study were the density ratio, in this study defined as 𝑆 = 𝜌∞/𝜌𝑝𝑙𝑢𝑚𝑒
(reciprocally to our previous definition), and the Richardson number 𝑅𝑖. A low value
of 𝑅𝑖 denotes a base flowwhich is dominated by the injected momentum, and therefore
is classified as a jet, whereas a high value of 𝑅𝑖 denotes a flow that is dominated by the
effect of the buoyancy force, characteristic of a plume.

The global spectra of these non-self-similar base flows revealed the presence of
several strongly growing eigenmodes in the high-𝑅𝑖 plume regime, distinct from the
instability already documented for low-𝑅𝑖 jets (§ 3.1). Across the entire interval of
investigated Richardson number values, 10−4 6 𝑅𝑖 6 103, only axisymmetric pertur-
bations were found to exhibit global instability, fully consistent with empirical obser-
vations. All globally unstable base flows were shown to be absolutely unstable at the
inflow, but convectively unstable in the downstream self-similar flow region. The ab-
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solute instability of helical perturbations turned out to be too weak in order to trigger
global instability.

The first significant result of Chakravarthy’s global stability analysis was the pre-
cise recovery of the experimental scaling law, given by Cetegen & Kasper [10], that
relates the Strouhal number of flow oscillations to the ratio 𝑅𝑖/𝑆. This scaling is shown
in figure 10: symbols represent the Strouhal number of the dominant instability mode
in various flow configurations, and a solid line indicates the power law reported from
experiments [10]. This result has been corroborated in a parallel study by Bharadwaj
& Das [6].

Another significant result was the formal demonstration that global instability in
the plume regime is underpinned by the effect of buoyancy, whereas in the jet regime
it is caused by the baroclinic torque. This analysis of physical mechanisms was based
on the formalism developed by Marquet & Lesshafft [L67] (see §3.3.1), slipped into our
publication [L18] in the guise of a sensitivity analysis.

A short study of internal plumes, confined inside a cylindrical box with solid,
isothermal walls, indicated that global instability in such a configuration is driven by
non-local feedback between a cooled top and a heated bottom boundary [L12]. Despite
the absence of absolute instability, global instability was observed in such a setting.
The critical Rayleigh number for the onset of nonlinear oscillations, determined to be
𝑅𝑎𝑐 = 3.85×107 in direct numerical simulations [32], was recovered as 𝑅𝑎𝑐 = 3.80×107
for the threshold of linear global instability; the nonlinear and linear frequencies at
this threshold were found to match within 0.5%.

3.3 Interpretation of instability mechanisms
3.3.1 A refined definition of the global wavemaker

[L67] O. Marquet & L. Lesshafft (2015): Identifying the active flow regions that drive
linear and nonlinear instabilities. arXiv:1508.07620

The “wavemaker” (Monkewitz [38]) associated with a global instability mode, as a
notional concept, denotes the flow region where oscillations are generated, as opposed
to the flow region where they may reach their amplitude maximum after further am-
plification. In the context of weakly non-parallel flows, the wavemaker has been iden-
tified with the location of a saddle point in the analytic continuation of the absolute
frequency as a function of the streamwise coordinate [11]. In the context of global
eigenmode analysis, the wavemaker definitions by Luchini et al. [20, 33], based on the
structural sensitivity of a given eigenmode, has been widely used for the discussion of
instability dynamics.

Olivier Marquet and myself proposed a similar but different definition of the wave-
maker [L67]. The definition starts from the simple observation that the linear operator

22



𝐿 of a given eigenvalue problem
𝜔𝐵𝑞 = 𝐿𝑞 (2)

has a unique diagonal representation 𝐿 = 𝐵𝑄Ω𝑄−1, and that the matrix 𝑄† formed by
the adjoint eigenvectors satisfies 𝑄−1 = 𝑄†,𝐻𝐵. The diagonal eigenvalue matrix Ω is
then uniquely related to 𝐿 as

Ω = 𝑄†,𝐻𝐿𝑄. (3)

Suppose one can formulate a physically meaningful decomposition of the linear oper-
ator, 𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑛, a given eigenvalue 𝜔1 with associated direct and adjoint
eigenvectors 𝑞1 and 𝑞†1 is precisely determined by

𝜔1 = 𝑞†,𝐻1 𝐿𝑞1 = 𝑞†,𝐻1 (𝐿1 + 𝐿2 + ⋯ + 𝐿𝑛)𝑞1, (4)

such that the contribution of each component 𝐿𝑖 to the eigenvalue 𝜔1 is quantified as
𝑞†,𝐻1 𝐿𝑖𝑞1.

The decomposition of the operator 𝐿 can be performed to denote spatial locations,
individual terms in the flow equations, or both. Contributions of different flow re-
gions, as well as different physical mechanisms, to the frequency and the growth rate
of an eigenmode may therefore be quantified. The original paper [L67] demonstrated
this concept for the Ginzburg–Landau equation and for the 2D cylinder wake, both
in linear and nonlinear contexts. It was shown for these examples that the ensuing
wavemaker definition is consistent with those given by Chomaz et al.[11] and by Lu-
chini et al. [20, 33]. In contrast to those established definitions, however, our formalism
provides a straightforward framework for a discussion of physical mechanisms, in so
far as they can be related to individual terms in the flow equations. Its potential has
since been tested in several flow configurations, including the plume study discussed
in the previous section, the dynamics of a spring-mounted cylinder [L59](c), and the
instability of a premixed flame [L58](a). A new submission of the manuscript [L67] is
in preparation.

3.3.2 Spurious feedback from boundary conditions

[L19] L. Lesshafft (2018): Artificial eigenmodes in truncated flow domains. Theor.
Comp. Fluid Dyn., vol. 32, p. 245-262.

The prominent branch of evenly spaced eigenmodes, which has been found to dom-
inate most jet and plume spectra, is in fact regularly encountered in the global spectral
analysis of open shear flows. We have named it the “arc branch” [L19]. The arc branch
has in several instances been discussed as the spectral manifestation of amplifier flow
behaviour, but such a conception is problematic — first, because amplifier behaviour
is appropriately described by the pseudospectrum, which does not require the presence
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Figure 11: Isocontours of the pressure amplitude in the acoustic far field of a jet with
𝑆 = 0.3. The apparent sound source on the jet axis is located at 𝑥 = 9. The directivity
pattern in figure 12 is extracted along the arc of radius 30. From reference [L5].

of such eigenmodes, second, because the arc branch is notoriously dependent on the
computational domain size. The nature of these modes craved an explanation.

It was demonstrated that arc branch modes in jets arise from the coupling of down-
stream-propagating shear instability waves and upstream-reaching pressure feedback
[L19]. The latter originates as a spurious effect at the numerical outflow, and it pro-
vokes perturbations at the numerical inflow, where shear instabilities can be triggered.
The study shows that explicit inflow-outflow coupling in a Ginzburg–Landau model
produces an arc branch very similar to the one found in open shear flows. It is further
confirmed that arc branch modes of a parallel jet depend on the presence of spurious
forcing of a local 𝑘+ instability wave at the inflow, caused by pressure signals that ap-
pear to be generated at the outflow. Absorbing layers, or sponge zones, are suggested
and tested as a technical means to reduce the effect of spurious pressure feedback from
artificial domain boundaries.

3.4 Acoustic radiation from oscillating hot jets
[L5] L. Lesshafft, P. Huerre & P. Sagaut (2010): Aerodynamic sound generation by

global modes in hot jets. J. Fluid Mech. vol. 647, p. 473–489
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Figure 12: Directivity of the acoustic far field, comparison between direct numerical
simulation and Lighthill solution. Thick solid line: directly computed sound; thin solid
line: Lighthill solution from enthalpy-flux term alone; dashed line: combined radiation
from all other terms. The absolute SPL level is not adjusted, but follows directly from
the data analysis. From reference [L5].

Jet instability studies are in large measure motivated by the problem of jet noise.
The noise that is emitted by the regular formation of vortex rings in a hot jet is available
from the direct numerical simulations performed during my Ph.D., and it is accessible
for an investigation into the underlying acoustic source mechanisms.

A configuration with Reynolds number 𝑅𝑒 = 1000, Mach number 𝑀𝑎 = 0.1 and
density ratio 𝑆 = 0.3 is chosen as the baseline case (density ratios 0.1 and 0.2 are also
considered. The acoustic far field, extracted from the DNS and shown in figure 11, is
found to be of dipole character: the pressure amplitude varies with the observation
angle 𝜗 (measured from the jet axis) as ̂𝑝 ∝ cos 𝜗.

In order to identify the acoustic sourcemechanisms, far-field solutions of the Light-
hill equation are constructed, under the Fraunhofer approximation and under the as-
sumption of radially compact, axisymmetric near-field source distributions. These so-
lutions permit the isolation of contributions from individual source terms to the total
acoustic far field. The source distributions are evaluated from the numerical simulation
data.

A first attempt [L65], based on the original source terms of the Lighthill equation,
gave unsatisfactory results, because (i) the Lighthill equation only contains monopole
and quadrupole sources, (ii) as a result, the acoustic extinction angle was inaccurately
reproduced and (iii) the dominant source term was found to be the apparent ‘entropy’
fluctuation, which does not lead to a clear physical interpretation in the presence of
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strong density variations. Instead, Lilley’s [30] reformulation of the Lighthill source
terms was employed with success. Dipole components appear explicitly in this formu-
lation, and it was shown that the dominant contribution by far arises from the dipole
source related to the axial flux of enthalpy in the oscillating jet. This isolated com-
ponent is compared to the total sound field in figure 12 (solid lines). In this highly
synchronised flow case, the acoustic source region is quite compact in the axial direc-
tion, and antenna effects are therefore not pronounced.

4 Secondary global instabilities of incompressible
jets

Moving onwards from linear analysis of primary instabilities in steady jet base flows,
the study project of Léopold Shaabani Ardali’s Ph.D. work targets the secondary in-
stability of axisymmetric vortex streets in a jet. Two particularly striking instances of
secondary instability phenomena are considered:

a) vortex pairing as a self-sustained process,

b) jet bifurcation [49] as an extrinsically forced process.

Both scenarios, as observed in experiments and in numerical simulations, appear to
be of a fundamentally nonlinear nature, yet we approach them in a linear framework.
Vortex pairing, arising from inherent mechanisms, is formalised as a modal Floquet
problem and complemented by an analysis of transient growth. Jet bifurcation, relying
on subharmonic actuation at the nozzle, is investigated as a non-modal optimal forcing
problem. The analysis in both cases is based on a time-periodic base flow, represented
by the axisymmetric 𝑇-periodic vortex street resulting from 𝑇-periodic forcing of the
primary instability at the inlet.

4.1 Vortex pairing as a Floquet instability
[L17] L. Shaabani-Ardali, D. Sipp & L. Lesshafft (2017): Time-delayed feedback tech-

nique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids vol. 2,
no. 113904

[L21] L. Shaabani Ardali, D. Sipp & L. Lesshafft (2018): Vortex pairing in jets as a global
Floquet instability: modal and transient dynamics. J. Fluid Mech., in press

26



0 3 6 9 12 150

1

2

𝑥

𝑟

Figure 13: Vortex pairing in a harmonically forced jet, for 𝑆𝑡𝐷 = 0.6, 𝑅𝑒 = 2000 and an
inflow forcing amplitude 𝐴 = 0.05. From [L21].

Motivation Vortex pairing, visualised in figure 13 has long been described as a sec-
ondary instability of a regular vortex street, both in plane shear layers and in jets. The
underlying vortex street arises from the primary shear instability, typically in response
to harmonic forcing at the nozzle. If this primary forcing is 𝑇-periodic, characterised by
the fundamental Strouhal number 𝑆𝑡𝐷 = 𝐷/𝑇𝑈𝑗 based on jet diameter and exit velocity,
the pairing process is 2𝑇-periodic, and therefore a subharmonic instability is expected.
Much work in the 1980s and 1990s was directed at the conditions under which sub-
harmonic perturbations can grow in vortex streets, principally based on the resonance
criterion formulated byMonkewitz [39]; it was even suspected that the global feedback
mechanism behind vortex pairing underpinned the development of jet turbulence [29].
Yet no quantitative global stability analysis of the vortex pairing phenomenon had ever
been undertaken.

Our study analyses the instability properties of a spatially developing 𝑇-periodic
vortex street, as it arises due to harmonic forcing at the inflow, in the framework of
Floquet theory [17].

Methodology Prior to performing instability analysis, the 𝑇-periodic base flow is
obtained from nonlinear DNS. However, as this base flow may be unstable with re-
spect to pairing, all non-𝑇-periodic perturbations must be artificially stabilised. Har-
monic modulations of the inlet jet velocity are imposed, with Strouhal number 𝑆𝑡𝐷 and
forcing amplitude 𝐴, such that the time-dependent inflow condition is prescribed as
𝑈(𝑟, 𝑧 = 0, 𝑡) = [1 + 𝐴 sin(2𝜋𝑆𝑡𝐷𝑡)]�̃� (𝑟). Similar to the technique of selected frequency
damping, commonly applied in order to compute unstable steady base flows, Léopold
Shaabani Ardali devised a method based on time-delay control [L17], which damps dif-
ferences between the flow states at times 𝑡 and 𝑡 − 𝑇, and which is maximally efficient
for eliminating subharmonic fluctuations. By the time of submission of this first article,
we realised that this technique constitutes a special case of the delayed feedback con-
trol method described by Pyragas [48], used in the context of low-dimensional chaotic
systems.

Floquet instability is characterised by the presence of Floquet multipliers 𝜇𝑖 with
an absolute value larger than unity, denoting modal perturbation growth over one
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Figure 14: Occurrence of vortex pairing in direct numerical simulations, for an inflow
forcing amplitude 𝐴 = 0.05. From reference [L21].

flow period 𝑇. These multipliers are found as the eigenvalues of the linear time-shift
operator Φ that propagates a small perturbation from time 0 to 𝑇. The eigenvalues
are computed by projecting Φ onto an orthonormal basis of a Krylov subspace, using
only linear time-stepping of the linearised flow equations. The linear time-stepping is
implemented in FreeFEM++, and a block-Arnoldi algorithm [51] is employed in order
to construct the orthonormal Krylov basis with maximum efficiency.

The possibility of transient perturbation growth in the time-periodic base flow is
again explored by means of singular value decomposition, as described by Barkley et
al. [4]. A special twist of the numerical procedure permits us to construct the leading
singular modes solely based on the same Krylov basis that is already available from
the modal analysis, without the need for further time-stepping. In particular, contrary
to the procedure given by Barkley et al. [4], no adjoint time-stepping is required.

Results The study starts out from a parametric survey of the spontaneous occur-
rence of vortex pairing in direct numerical simulations, in the absence of artificial
stabilisation. Simulations of the nonlinear flow development are performed with the
Nek5000 code, restricted to an axisymmetric geometry. Both the Strouhal and the
Reynolds number are varied systematically, for three different values 𝐴 = 0.01, 0.05
and 0.1. As a result of the inflow modulations and the primary jet instability, the shear
layer rolls up into a regular street of ring vortices, with a passage Strouhal number
equal to 𝑆𝑡𝐷. Self-sustained vortex pairing is observed in these simulations in a spe-
cific region of the 𝑆𝑡𝐷/𝑅𝑒 plane, delineated by a “neutral curve”, which depends on
𝐴. Figure 14 shows these empirical results for the standard forcing amplitude values
𝐴 = 0.05.
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The first question is whether the occurrence of self-sustained vortex pairing is
linked to the presence of a linear instability of the 𝑇-periodic (i.e. unpaired) base
flow. Using the time-delay stabilisation technique [L17], which only involves adding
a control force that depends linearly on the difference of the flow state at times 𝑡 and
𝑡 − 𝑇, strictly 𝑇-periodic flows are computed. Modal Floquet analysis is performed for
𝐴 = 0.05, along two paths in the 𝑆𝑡𝐷/𝑅𝑒 plane, once varying 𝑅𝑒 at constant 𝑆𝑡𝐷 = 0.6
and once varying 𝑆𝑡𝐷 at constant 𝑅𝑒 = 2000. Along both paths, unstable eigenvalues
are found to arise precisely over the parameter regime where vortex pairing occurs
in the DNS. Furthermore, these unstable eigenvalues are real and negative; in other
words, their complex phase is 𝜋. This characterises the associated perturbation mode
as being subharmonic with respect to the 𝑇-periodic forcing, as one would expect for
the vortex pairing instability. It is concluded that vortex pairing, as a 2𝑇-periodic limit
cycle, is indeed the result of a subharmonic Floquet instability.

However, the transition from an unstable unpaired towards a paired state, in typical
simulations, exhibits stronger growth and different spatial distributions than what the
modal analysis predicts. In order to better describe the transient dynamics by which
this bifurcation takes place, the optimal perturbation for transient growth is computed.
Non-modal analysis predicts strong transient growth of perturbations close to the jet
inlet, in good agreement with DNS observations. At 𝑆𝑡𝐷 = 0.6 and 𝑅𝑒 = 2000, a modally
unstable setting, the optimal perturbation provides an amplitude gain of five orders of
magnitude over the purely modal growth.

4.2 Optimal forcing of jet bifurcation
[L23] L. Shaabani-Ardali, L. Lesshafft & D. Sipp: Optimal triggering of jet bifurcation.

In preparation for J. Fluid Mech.

Motivation The phenomenon of jet bifurcation is chosen as a particularly interest-
ing effect of active flow control exploiting a secondary instability of a periodic flow.
Under suitable actuation at the inflow, a jet splits into two separate streams of vor-
tex rings in a zipper-like fashion (see figure 15). The actuation is composed of an
axisymmetric component of Strouhal number 𝑆𝑡𝐷 and an added helical subharmonic
component of 𝑆𝑡𝐷/2. While the axisymmetric component sets up the basic 𝑇-periodic
vortex street, as in the previous section, the helical component imparts a left/right
displacement to each vortex ring, which is amplified as the vortices propagate down-
stream. The rather drastic split-up of the fundamental vortex street occurs once the
subharmonic perturbation reaches nonlinear amplitude levels, but we suspect that lin-
ear instability mechanisms acting within the periodic base flow provide the necessary
amplification that leads up to the parting of the streams.
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(a) nozzle flapping (b) optimal forcing

Figure 15: Direct numerical simulation of jet bifurcation at 𝑆𝑡𝐷 = 0.5 and 𝑅𝑒 = 2000,
snapshots of vorticity contours. (a) “traditional” subharmonic forcing in the form of
nozzle flapping; (b) optimal subharmonic forcing, as identified by linear analysis. From
[L23].

The unstable vortex dynamics can be worked out qualitatively by three-fingered
hand-wringing, as explained by Reynolds et al. [49]. Yet the quantitative analysis re-
quires global input-output computations, similar to those discussed in §2.2, adapted
to time-periodic base flows. Hitherto unexplored, optimal forcing strategies for jet
bifurcation can then be identified.

Methodology The base flow computations are performed in the same way as de-
scribed in the previous section, using the Nek5000 code for nonlinear axisymmetric
DNS, with added stabilisation of non-𝑇-periodic components [L17]. These computa-
tions fully account for the axisymmetric forcing that leads to the formation of the
basic vortex street. The evolution of linear helical subharmonic perturbations within
this axisymmetric and 𝑇-periodic base flow is calculated via linear time-stepping in
FreeFEM++.

Continuous subharmonic forcing is applied only in the inlet plane 𝑧 = 0, by pre-
scribing helical perturbations in all three velocity components as a boundary condition.
Radial distributions are chosen in the form of Bessel functions (𝐽0, 𝐽1 and 𝐽2), combined
such as to respect the compatibility conditions on the axis and as to ensure that the
velocity field is divergence-free. Linear time-stepping is performed for a large num-
ber of such boundary conditions, which form an orthogonal basis for inflow velocity
perturbations, until the long-time asymptotic flow response is obtained for each of
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them. Coefficients for the optimal superposition of forcing basis functions are readily
obtained for any given objective in the linear flow response.

Results The objective of optimal triggering of jet bifurcation is formalised in two
ways: first, we aim to maximise the standard 𝐿2 norm of subharmonic velocity per-
turbations in the flow response to unit-𝐿2-norm forcing. This represents an integral
measure of subharmonic kinetic energy gain in the flow domain. Second, we consider
a specifically tailored norm of the flow response that measures the radial displacement
of base flow vortices, which corresponds more directly to the intended effect of trig-
gering bifurcation of the vortex street. It is found however that both formulations lead
to nearly identical shapes of the optimal forcing.

In previous numerical simulations of jet bifurcation, for instance by [60], the
shape of helical inflow forcing was prescribed such as to represent a low-amplitude
left/right flapping of the jet nozzle. Using our optimised forcing distribution in three-
dimensional DNS, it is found that the splitting of the vortex street is more vigorous,
and achievable over a larger range of 𝑆𝑡𝐷, than with simple nozzle flapping. Figure
15 compares snapshots from simulations, at 𝑆𝑡𝐷 = 0.5 and 𝑅𝑒 = 2000, with flapping
and with optimal forcing. The injected kinetic energy of the subharmonic velocity
perturbations is identical in both cases.

5 Perspectives

5.1 Flame instability
Flames constitute a family of flows that are similar to jets and plumes in many respects,
with the added ingredient of chemical reaction and heat release. Unsteadiness in com-
bustion processes, due to instability phenomena, is a cause for loss of performance,
increased pollution, and structural damage of combustion engines. These phenom-
ena involve multi-physics and multi-scale mechanisms, through the coupling of heat
release, gas flow and acoustics.

Over the past three years, I have attempted linear analysis of several flame con-
figurations. Together with postdoc Onofrio Semeraro, building on the Ph.D. work of
Mathieu Blanchard at LadHyX, we first investigated the instability of a premixed “M-
flame” in an annular burner [7], by means of modal as well as input-output analysis
[L58]. The annular burner consists of a pipe, from where the premixed fuel-air stream
exits into a large combustion chamber, and a thin cylindrical rod, concentrically fixed
inside the pipe. A flame of the M-type attaches to the exterior rim of the inflow pipe
and to the interior rim of the rod. Mesh and base flow (methane volume fraction) in the
flame region are shown in figure 16. An Arrhenius law is used to model the reaction
rate [7].
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Figure 16: Geometry, mesh and base flow (methane volume fraction) of an M-flame.
The base flow is taken from [7] and interpolated onto the FEM mesh.
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Figure 17: Left: eigenvalue spectrum of the M-flame (axisymmetric perturbations
only). Right: Snapshot of temperature fluctuations associated with the least stable
mode. The flame front is drawn as a black line.
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Experiments indicate that this flame configuration does not exhibit self-excited be-
haviour, but that it is highly receptive to incoming perturbations. Our linear analysis
reproduces this receptivity in a narrow frequency band, where the energy gain be-
tween flow response and applied forcing peaks sharply. This behaviour is the result
of a resonance, caused by a slightly stable eigenmode of the flame spectrum displayed
in figure 17. This eigenmode is accessible to a detailed analysis of its intrinsic mech-
anisms, by way of the wavemaker in the sense of section 3.3.1. It is thus found that
the instability is dominated by simple shear mechanisms, which act mainly outside the
flame region and give rise to strong oscillations (“puffing”) in the plume. Fluctuations
of reaction rate and heat release only play a passive part in driving this instability. The
role of combustion in this context, as it turns out, is only to set up the basic shear flow
state through buoyancy.

We carried out similar calculations for laminar “V-flames” and turbulent swirl
flames, with base flows provided by Kilian Oberleithner at TU Berlin. All these anal-
yses suffer from severe uncertainty about the appropriate chemistry modelling, and
from the unavailability of accurate density and temperature fields. Our current efforts,
led by Léopold Shaabani Ardali and myself, are concentrated on a simple premixed
conical flame of a Bunsen burner, for which the base flow is contributed by our part-
ners Bénédicte Cuenot and Laurent Gicqel at CERFACS, computed in direct numerical
simulations with the AVBP code.

5.2 Semi-empirical modelling of noise from installed jets in
flight

Following up on the mostly fundamental research within the ANR Cool Jazz project,
our new project “DARETOMODEL” in the H2020 CleanSky2 program is a step higher
up on the TR-scale. This project is led by Peter Jordan (Institut Pprime), with Anurag
Agarwal (University of Cambridge), Jérôme Huber (Airbus) and myself as partners.

The objective is to construct low-rank models for the prediction of noise radiated
from engine jets, in the presence of a wing, and with co-flow as in flight conditions.
The noise source is to be modelled as a stochastic wavepacket, with an amplitude enve-
lope function obtained from parabolised Navier–Stokes computations. The associated
sound field may then be constructed from the Green’s function, which can be mod-
ified in order to account for the effect of a wing surface and co-flow. An important
unanswered question in this context is how turbulence may realistically be modelled
in the form of non-white forcing of a linear system, and if the concept of turbulent vis-
cosity may be adapted in order to capture a portion of turbulence effects on coherent
perturbation statistics.
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The acoustic field generated by the synchronized vortex street in self-excited hot sub-
sonic jets is investigated via direct numerical simulation of the compressible equations of
motion in an axisymmetric geometry. The simulation simultaneously resolves both the
aerodynamic near field and the acoustic far field. Self-sustained near field oscillations
in the present flow configurations have been described as nonlinear global modes in an
earlier study. The associated acoustic far field is found to be that of a compact dipole,
emanating from the location of vortex roll-up. A far field solution of the axisymmet-
ric Lighthill equation is derived, based on the source term formulation of Lilley (1974).
With near field source distributions obtained from the direct numerical simulations, the
Lighthill solution is in good agreement with the far field simulation results. Fluctuations
of the enthalpy flux within the jet are identified as the dominant aeroacoustic source.
Superdirective effects are found to be negligible.

1. Introduction

Subsonic jets, if they are sufficiently hot compared to the ambient air, may bifurcate
to a regime of intrinsic self-sustained oscillations that give rise to a street of highly
regular ring vortices. This oscillator-type behaviour in hot jets has first been observed
experimentally by Monkewitz, Bechert, Barsikow & Lehmann (1990). Recent numerical
studies (Lesshafft, Huerre, Sagaut & Terracol 2006; Lesshafft, Huerre & Sagaut 2007)
have demonstrated that these oscillations are due to an absolute instability of the jet
profile near the nozzle, and that they may be described theoretically as a nonlinear
global mode.

The present study examines the acoustic far field that is radiated from the self-
sustained vortex street in globally unstable hot jets. The thick shear layer configurations
treated in Lesshafft et al. (2006), with ambient-to-jet temperature ratios S = 0.1, 0.2
and 0.3, are chosen for this investigation. Although only the aerodynamic near field dy-
namics have been addressed in our previous publications, the computational domain of
the DNS already encompassed a large portion of the acoustic far field. These far field
results are now used to analyze the directivity pattern and the physical sound generation
mechanisms that dominate the acoustic radiation from the global mode in a hot jet.

Numerical simulations in which the acoustic field is computed from first principles
have become known as direct noise calculations (DNC). Mitchell, Lele & Moin (1999)
were the first to apply this approach to the jet noise problem. Their study focused on
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the sound generated by the pairing of large-scale vortices in forced isothermal jets. As
in the present paper, the simulations of Mitchell et al. (1999) were carried out in an
axisymmetric setting, which hindered the onset of turbulence, and thus allowed a study
of the isolated aeroacoustic behaviour of large-scale near field dynamics. Freund (2001)
performed direct numerical simulations resolving the acoustic field of a three-dimensional
turbulent isothermal jet at low Reynolds number, which gave results in good agreement
with experimental measurements. The low Reynolds number restriction was relaxed by
Bogey, Bailly & Juvé (2003) through the use of LES subgrid modelling. In subsequent
papers (Bogey & Bailly 2004, 2005), these authors investigated the influence of numerical
boundary conditions and various subgrid models, as well as Mach and Reynolds number
effects. A list of further LES studies that directly resolve the acoustic field of turbulent
jets is given in Bodony & Lele (2006). Only few among these include the effect of jet
heating: the simulations of Andersson, Eriksson & Davidson (2005) successfully repro-
duced experimental acoustic measurements of Jordan, Gervais, Valière & Foulon (2002)
in a subsonic hot jet when the nozzle geometry was included. Shur, Spalart & Strelets
(2005) achieved good agreement with the reference experiments of Tanna (1977) and
Viswanathan (2004) in hot jet simulations in both subsonic and supersonic settings.

The large majority of numerical jet noise studies, as reviewed by Wang, Freund & Lele
(2006), relies on hybrid methods. Based on jet near-field data obtained from RANS or
LES calculations, the acoustic far field is calculated according to an acoustic analogy.
The common objective of these investigations is to validate the predictive capabilities of
acoustic analogies or boundary integral methods, by comparison with available acoustic
data from experiments or direct calculations. In some instances, computed near-field data
have also been used to investigate the acoustic source mechanisms underlying the far-field
spectrum and directivity pattern: Mitchell et al. (1999) compared the relative importance
of individual source terms, in the sense of Lighthill’s equation, in forced laminar jets.
Their results demonstrated that streamwise variations of the source strength, even in
regions of very low amplitude, greatly influence the far-field sound directivity. Freund’s
(2001) analysis of DNS data for a turbulent unheated jet identified large-scale structures
as the dominant noise sources. The spatial distribution of the structures takes the form
of a wave packet, similar to what instability theory would predict for a laminar setting.

The numerical analysis of acoustic source mechanisms in hot jets, despite their practical
importance, has received little attention in recent literature. Fortuné & Gervais (1999)
proposed a prediction scheme for temperature-related turbulence noise, on the basis of
the k-ǫ model. In LES studies by Bodony & Lele (2005) of hot turbulent jets in the high
subsonic and supersonic régime, the sound field was computed directly. In the framework
of Lighthill’s acoustic analogy, cancellation effects between Reynolds stress and so-called
entropy contributions were documented. Similar cancellation effects at a high subsonic
Mach number were reported by Lew, Blaisdell & Lyrintzis (2007), by means of a hybrid
numerical approach. Lew et al. (2007) concluded from their results that the sound field
of a hot jet at low Mach number is strongly dominated by radiation from entropy-related
sources.

The present study investigates sound generation mechanisms due to large-scale insta-
bility structures (global modes) in self-excited hot jets at low Mach number. The nu-
merical approach is similar to that of Mitchell et al. (1999): the axisymmetric equations
of motion are resolved directly in the near and far field. This axisymmetric restriction
prevents the development of small-scale turbulence; it is justified by the experimental
observations of Monkewitz et al. (1990). Lighthill’s equation is used not to predict the
far field sound, but as an analytical tool, in order to identify dominant source mecha-
nisms. To this end, the aeroacoustic source terms of the Lighthill equation are recast in



Aerodynamic sound generation by global modes in hot jets 3

the formulation proposed by Lilley (1974, 1996). Lighthill’s original formulation includes
one monopole source term that is commonly linked to entropy fluctuations in the near
field, although it is known to contain both isentropic and non-isentropic components
(see for instance A. Michalke’s note in Lilley 1974). This source term will be referred
to as the “excess density” (Dowling 1992) in the following. Lilley’s formulation decom-
poses the excess density term into explicit monopole and dipole sources, and it allows
for a less ambiguous interpretation of the sound-producing physical mechanisms, as will
be demonstrated in this paper. Freund (2003) achieved an improved interpretation of
his 2001 simulation results based on Lilley’s source decomposition. Similarly, Bodony &
Lele (2008) used Lilley’s formalism for a refined analysis of some of their earlier results
(Bodony & Lele 2005), including one case of a transonic hot jet.

Laufer & Yen (1983) measured the acoustic radiation due to regular vortex pairing
events in forced isothermal jets at low Mach number. The acoustic field was found to
exhibit a superdirective beaming pattern, with maximum intensity I at the radiation
angle ϑ = 0 in the downstream direction of the jet:

I(ϑ) ∝ exp
[

−A(1 − Macv cosϑ)2
]

, A = 45 , (1.1)

where the Mach number Macv is formed with the vortex convection velocity. This re-
sult has been confirmed in only one experimental configuration by Fleury, Bailly & Juvé
(2005). According to the discussion of Laufer & Yen (1983), such strong beaming be-
haviour seemed unlikely to arise from an acoustically compact source region: the near
field fluctuation amplitudes associated with vortex pairing were measured to vary as
a Gauß function in the streamwise direction, with a half-width an order of magnitude
smaller than the acoustic wavelength. However, the theoretical analyses of Huerre &
Crighton (1983) and Crighton & Huerre (1990) have demonstrated that a perfectly Gaus-
sian shape of the near field wave packet indeed results in an antenna factor of the form
(1.1). More generally, these authors surmised that any extended wave packet, depending
on its precise envelope shape, may emit a superdirective sound field. The nonlinear global
modes in hot jets described in Lesshafft et al. (2006, 2007) may be represented as such
extended wave packets. As their spatial amplitude and phase modulations are precisely
known from the numerical simulations, the approach of Huerre & Crighton (1983) will
be applied in the present study to the case of a globally unstable hot jet. It is hoped that
this analysis will further elucidate the conditions for superdirective sound radiation from
low Mach number jets.

The paper is organized as follows: the flow parameters are defined, and the numerical
methods used in the direct computations are outlined in §2.1. Simulation results in the
acoustic far field are presented in §2.2. In §3, the solution procedure for the Lighthill
equation is laid out. This formalism is then applied to three hot jet configurations in §4,
and the main conclusions are summarized in §5.

2. Direct noise computation of a hot jet

2.1. Flow configuration and numerical method

The flow model and the numerical solution techniques employed in the simulation have
been presented in Lesshafft et al. (2006) and are documented in full detail in Lesshafft
(2006): the problem is formulated in axisymmetric coordinates x and r; the conservative
flow variables q = (ρ, ρu, ρv, ρE) are decomposed into a steady baseflow component qb

and an unsteady perturbation component q′. The symbol ρ denotes density, u and v are
the axial and radial velocity components, and E is the total energy. The baseflow qb(x, r)
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is obtained by numerical integration of the compressible boundary layer equations, start-
ing from an analytical jet velocity profile (‘profile 2’ of Michalke 1984) at the upstream
boundary x = 0 of the computational domain. The temporal evolution of perturbations
q′(x, r, t) within this baseflow is then computed according to the compressible equations
of continuity, momentum and energy, closed by the equation of state for a perfect gas.†

All quantities are made non-dimensional with respect to the jet radius R and the jet
centreline values of density ρc, velocity Uc and temperature Tc in the potential core.
The three flow configurations investigated in this study are defined by the following
parameters:

R/θ = 10, S = 0.1, 0.2, 0.3,
Re = 1000, Mac = 0.1,
Pr = 1, γ = 1.4.

(2.1)

As defined in Lesshafft et al. (2006), Re, Mac and Pr are the Reynolds, Mach and Prandtl
numbers, θ is the momentum shear layer thickness of the inlet velocity profile, S = T∞/Tc

is the ambient-to-jet temperature ratio and γ is the ratio of specific heats. Note that the
Mach number Mac is defined with respect to the speed of sound on the centreline. It is
easily converted to the more conventional definition Ma∞ = Uc/c∞ = S−1/2Mac. The
three temperature ratios S = 0.1, 0.2 and 0.3 then yield Mach numbers Ma∞ = 0.32,
0.22 and 0.18.

Among the three jet configurations (2.1), the S = 0.3 case will be discussed in full
detail, because it is trusted to be the least affected by inaccuracies due to the numerical
boundary treatment. Results for the two other cases, S = 0.1 and 0.2, are summarized in
§4.2 in oder to test the validity of the main conclusions for a range of globally unstable
temperature ratios and Mach numbers. In the following, throughout the end of §4.1, the
discussion will focus on the S = 0.3 case.

The long-time response of a jet to an initial pulse perturbation is computed on an
orthogonal grid that discretizes the physical domain 0 6 r 6 46 and 0 6 x 6 80 into
349 × 801 grid points. Outside this region, all perturbations are attenuated by artificial
damping and strong grid stretching in sponge zones extending over 46 < r 6 200 and
80 < x 6 105. First-order characteristic boundary conditions given by Giles (1990) are
applied at the upstream numerical boundary in order to minimize acoustic reflections and
spurious coupling of acoustic and vortical waves in the jet shear layer. Inside the physical
region of the computational domain, spatial derivatives in the governing equations are
evaluated using a sixth-order explicit finite difference scheme, and the solution is time-
advanced via a third-order Runge–Kutta algorithm.

2.2. Direct numerical simulation results

As discussed in §5 of Lesshafft et al. (2006), the near field dynamics of jets with parame-
ters (2.1) are characterized by self-sustained oscillations that give rise to a highly regular
roll-up of the jet shear layer into evenly spaced ring vortices. In theoretical terms, this
periodic flow state is described as a nonlinear global mode. The global frequency of vortex
roll-up at S = 0.3 has been determined to be ωg = 0.728 in the numerical simulations
(‘mode 1’ in Lesshafft et al. 2006). It has been discussed that the S = 0.3 configura-
tion represents the critical case for the marginal onset of global instability, and that the
asymptotic approach of the final oscillating state is extremely slow as a consequence.
For the present investigation, the computations have been continued over an additional

† Note that there is a typographical error in equation (2.4b) of Lesshafft et al. (2006), which
has been corrected in Lesshafft (2006).
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number of approximately 30 oscillation periods, and the global frequency has further
converged to a value of ωg = 0.722.

Only configurations with R/θ = 10 are chosen for the present investigation because
the observed global mode structure is unaffected by vortex pairing; in simulations with
thinner initial shear layers R/θ > 10 (Lesshafft et al. 2007), a secondary instability of
the vortex street leads to regular “leap-frogging” of neighbouring vortices. These events
modify the spatial envelope of the fundamental global mode oscillations and at the same
time radiate a subharmonic sound field. An investigation of sound generation mechanisms
due to vortex pairing is not the subject of this paper. The restriction to globally unstable
configurations without vortex pairing further limits the parameter regime to low values
of the Mach number and temperature ratio (see figure 10 of Lesshafft & Huerre 2007).

In the present flow examples, the acoustic field may be regarded as monochromatic:
the near field is free of random fluctuations, and, as in the low Mach number cases of
Mitchell et al. (1999), harmonic components in the far field are negligible when compared
to the fundamental sound component (ωg = 0.722 for S = 0.3). The acoustic wavelength
is then λa = 2πc∞/ωg = 47.7, which approximately corresponds to the radial extent of
the physical domain in the simulation. In the following, the acoustic field is investigated
in terms of the temporal Fourier coefficient of pressure fluctuations, defined as

p̂(x; ω) =

∫

p′(x, t) eiωt dt . (2.2)

Isocontours of |p̂(x; ωg)| are shown in figure 1: the acoustic field is composed of two
lobes, with an extinction angle at about 90◦ from the jet axis. The apparent source
location at x = 9 corresponds to the streamwise station of vortex roll-up (compare to
figure 7a of Lesshafft et al. 2006). The decibel levels in figure 1 are scaled with respect to
the maximum near field pressure amplitude. Due to weak reflections from the downstream
sponge region, the isocontours in the acoustic field at x > 60 are slightly distorted
and not shown in figure 1. For a quantitative examination of the acoustic directivity
pattern, values of |p̂| are interpolated along an arc of radius ξ = 30 around the apparent
source location. Figure 2 reveals that the directivity pattern observed in the numerical
simulation closely corresponds to that of a compact dipole p̂ ∝ cosϑ, the radiation angle
ϑ being measured relative to the downstream jet axis (see figure 1).

The isocontour diagram in figure 1 suggests that the transition from the aerodynamic
near field to the acoustic far field takes place over a length scale much shorter than
the acoustic wavelength. This observation is confirmed in figure 3, which displays the
variation of |p̂|, measured at an angle ϑ = 60◦, as a function of distance ξ from the
apparent sound source location. Outside the near field of the jet, for ξ & 8, the slope of
the pressure amplitude quickly adjusts to the characteristic decay rate |p̂| ∝ ξ−1 of the
acoustic far field.

3. Integration of the Lighthill equation

3.1. Source term decompositions of Lighthill (1952) and Lilley (1974)

Lighthill (1952) derived an exact inhomogeneous wave equation for acoustic fluctuations
by combining the continuity and momentum equations. In Cartesian coordinates xi, the
Lighthill equation for pressure fluctuations reads (see for instance Crighton 1975):

1

c2
∞

∂2p′

∂t2
−

∂2p′

∂x2
i

=
∂2Sij

∂xi∂xj
−

∂2ρe

∂t2
, (3.1)
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Figure 1. Isocontours of the pressure amplitude |p̂(r, x;ωg)| in the acoustic far field of a jet
with S = 0.3. The apparent sound source on the jet axis is located at x = 9. The directivity
pattern in figures 2 and 5 is extracted along the black arc of radius 30.
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Figure 2. (•) Pressure amplitude as a function of radiation angle ϑ, interpolated along the
arc indicated in figure 1; (—) directivity of a compact dipole p̂ ∝ cos ϑ.

where c∞ denotes the speed of sound in the far field. The stress tensor

Sij = ρuiuj − τij (3.2)

is composed of Reynolds stresses and viscous terms, while the “excess density”

ρe = ρ′ − p′/c2
∞

(3.3)

is related to thermodynamic fluctuations. Primes in the above equations denote fluctua-
tions around a steady flow state (see §2.1).

One possible way to proceed is to solve for the acoustic pressure p′ via numerical time
integration of equation (3.1), simultaneously with a DNS of the near field, from which
the right-hand-side terms are evaluated at each time step. The individual contribution of
each source term to the acoustic far field can then be examined separately. This strategy



Aerodynamic sound generation by global modes in hot jets 7

5 6 7 8 9 10 20 30 40 50

10
0

10
1

ξ

pr
es

su
re

 a
m

pl
itu

de

f ∼  ξ−1

Figure 3. Solid line: pressure amplitude |p̂| as a function of observer distance ξ, measured along
the radiation angle ϑ = 60◦. Dashed line: algebraic decay ∝ ξ−1 as expected in the acoustic far
field.

has been applied, for instance, by Freund (2001) and Boersma (2005). Alternatively, a
solution for the acoustic pressure field can be sought in terms of a Green’s function to
the wave operator, that is to be evaluated for the source terms of the Lighthill equation
(3.1). The latter approach has been applied to the present jet configuration in a prelim-
inary study (chapter 5 in Lesshafft 2006). The results clearly identify the excess density
as the dominant acoustic source, and the sound field computed from this source term
satisfactorily reproduces the directivity pattern displayed in figure 2.

However, the interpretation of the results in Lesshafft (2006) remains inconclusive:
first, the analysis shows that the excess density formally produces a monopole source
distribution. The overall dipole character of the directly computed far field can still be
retrieved, but the process requires a very accurate representation of phase variations in
the source distribution, and therefore it is quite susceptible to numerical imprecisions.
As a result, the extinction angle (near ϑ = 90◦ in figure 2) in the Lighthill analysis of
Lesshafft (2006) is shifted by 15◦ when compared to the simulation results. Second, it is
difficult to interpret the physical nature of the sound-generating mechanisms represented
by the excess density. Formally, ρe = ρ′ − p′/c2

∞
appears to represent non-isentropic

fluctuations, but this interpretation does not apply to flows with variable speed of sound,
such as hot jets. For a better characterization of the relevant acoustic source mechanism
in the case on hand, the observed sound radiation must be associated with a component
of the excess density that explicitly produces a dipole field.

The following investigation will be based on an alternative formulation of equation
(3.1), derived by Lilley (1974, 1996). By combining the momentum and energy equations
(instead of using the continuity equation, as done by Lighthill 1952), Lilley obtained a
wave equation for pressure fluctuations, equivalent to equation (3.1), where the excess
density source term is replaced by

∂2ρe

∂t2
=

1

c2
∞

∂2

∂t2
K(x, t) −

1

c∞

∂2

∂t∂xi
Hi(x, t) −

1

c∞

∂2

∂t∂xi
Di(x, t) . (3.4)

Note that this is not what is commonly known as “Lilley’s equation” (derived in the
same 1974 publication), which involves third-order derivatives and provides an improved
separation of sound generation and propagation effects. The individual source terms in
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equation (3.4) are

K(x, t) =
γ − 1

2
ρ|u|2 , (3.5)

Hi(x, t) =
γ − 1

c∞
ρui(h∞ − hs) , (3.6)

Di(x, t) =
γ − 1

c∞
(τijuj − qi) . (3.7)

The first two components, K and Hi, represent fluctuations of the kinetic energy and
of the total enthalpy flux, respectively. All diffusive effects, due to τ and the heat flux
q = −∇T/[(γ − 1)Ma2

cRePr], are contained in Di. The stagnation enthalpy is defined
as hs = h + |u|2/2, with the local enthalpy h (see Lilley 1996). The far-field enthalpy
is found as h∞ = c2

∞
/(γ − 1). In terms of conservative variables, as used in the present

direct numerical simulations (see §2.1), expression (3.6) can be rewritten as

Hi(x, t) = c∞ρui −
γ − 1

c∞
(ρE + p)ui . (3.8)

The spatial derivatives in equation (3.4) characterize the kinetic energy term as a monopole
source, whereas the enthalpy- and diffusion-related terms are dipole sources. With re-
spect to generalized acoustic analogy formulations in recent literature, the dipole sources
in equation (3.4) may be recovered as special cases of the source terms identified by
Goldstein (2003, the η′

i term in his equation 3.5) and by Morfey & Wright (2007, the pij

term in their equation 3.22).

3.2. Far field solution

The Lighthill equation (3.1) as well as Lilley’s decomposition (3.4) follow from exact
manipulations of the governing flow equations. An approximate solution for pressure
fluctuations in the far field is given by Lilley (1996), and may be rewritten in our notation
as

p′(ξ, t) =
1

4πξc2
∞

ξiξj

ξ2

∂2

∂t2

∫

Sij(x, t′)d3x −
1

4πξc2
∞

∂2

∂t2

∫

K(x, t′)d3x

−
1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫

Hi(x, t′)d3x −
1

4πξc2
∞

ξi

ξ

∂2

∂t2

∫

Di(x, t′)d3x . (3.9)

The acoustic signal observed at the far field location ξ at time t has been emitted from
location x in the source region at the retarded time

t′ = t −
|x − ξ|

c∞
≈ t −

ξ

c∞
+

x · ξ

ξc∞
. (3.10)

With the approximation (3.10), and with the temporal and spatio-temporal Fourier trans-
forms defined as

f̂(x, ω) =

∫

f(x, t) eiωtdt , f̃(k, ω) =

∫∫

f(x, t) ei(ωt−k·x)d3x dt , (3.11)
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the temporal Fourier-transformed acoustic pressure is found to be

p̂(ξ, ω) =
k2

a

4πξ
eikaξ

∫
{

−
ξiξj

ξ2
Ŝij(x, ω) + K̂(x, ω)

+
ξi

ξ
Ĥi(x, ω) +

ξi

ξ
D̂i(x, ω)

}

e−ika·x d3x (3.12)

=
k2

a

4πξ
eikaξ

[

−
ξiξj

ξ2
S̃ij(ka, ω) + K̃(ka, ω) +

ξi

ξ
H̃i(ka, ω) +

ξi

ξ
D̃i(ka, ω)

]

.(3.13)

The acoustic wave vector is defined as ka = ω/c∞ eξ, oriented in the observer direction.
As pointed out by Crighton (1975), the acoustic radiation observed at a given far field
location ξ is caused by a single spectral component of the source distribution: a plane
wave of wavenumber ka, travelling in the radiation direction.

3.3. Axisymmetric and radially compact sources

3.3.1. Axial symmetry

Under the assumption of an axisymmetric source term distribution consisting only of
Sij , equation (3.12) has been rewritten by Huerre & Crighton (1983) for the particular
case of a Gaussian envelope function Sij(r, x) ∝ exp(−x2/σ2). Fleury (2006) gives a more
general formulation, valid for arbitrary envelope shapes, and the excess density source
term (equation 3.1) has been included in Lesshafft (2006).

In order to evaluate the spatial Fourier integrals in equation (3.12), source locations
x are expressed in cylindrical coordinates (x, r, ϕ), while the observer location ξ in the
axisymmetric far field is characterized by its spherical coordinates (ξ, ϑ). The resulting
integral can be solved numerically in all three (x, r, ϕ) directions, as done by Mitchell et al.
(1999). However, Huerre & Crighton (1983) have noted that the azimuthal integration
admits closed-form solutions in terms of Bessel functions. After integration in ϕ, equation
(3.12) becomes

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ

∫∫

D(x, r, ϑ, ω) e−ikax cos ϑ r dr dx, (3.14)

with the integrand given by

D(x, r, ϑ, ω) = ISxx + ISrx + ISrr + ISϕϕ + IK + IHx + IHr + IDx + IDr , (3.15)

ISxx = −J0(αr) cos2 ϑ Ŝxx(x, r, ω) , (3.16)

ISrx = −i2J1(αr) sin ϑ cosϑ Ŝrx(x, r, ω) , (3.17)

ISrr = −0.5 [J0(αr) − J2(αr)] sin2 ϑ Ŝrr(x, r, ω) , (3.18)

ISϕϕ = −0.5 [J0(αr) + J2(αr)] sin2 ϑ Ŝϕϕ(x, r, ω) , (3.19)

IK = J0(αr) K̂(x, r, ω) , (3.20)

IHx = J0(αr) cosϑ Ĥx(x, r, ω) , (3.21)

IHr = iJ1(αr) sin ϑ Ĥr(x, r, ω) , (3.22)

IDx = J0(αr) cosϑ D̂x(x, r, ω) , (3.23)

IDr = iJ1(αr) sin ϑ D̂r(x, r, ω) . (3.24)

The argument of the Bessel functions Ji is αr = −kar sinϑ. Equation (3.14) explicitly
gives the far field pressure in terms of a spatial phase, a radial decay ∝ ξ−1, and a
ϑ-dependent far field directivity function. The Bessel functions represent the effect of
azimuthal interference, whereas factors composed of cosϑ and sinϑ produce quadrupole
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or dipole directivities. Each source term contains an antenna factor, which depends on
the spatial distribution Ŝxx(r, x, ω), . . . , D̂r(r, x, ω) of the source strength. The influ-
ence of the antenna factor on the directivity pattern is commonly referred to as the
superdirective effect, following the interpretation given by Crighton & Huerre (1990) of
the experimental results of Laufer & Yen (1983, see section 1). For an analysis of the
acoustic radiation from the present jet configuration, discussed in §2.2, the distributions
Ŝxx(r, x, ω), . . . , D̂r(r, x, ω) may be obtained directly from the numerical simulation.

3.3.2. Radial compactness

Following the approach of Huerre & Crighton (1983), the aeroacoustic source distribu-
tions in a jet may be assumed to be compact in the radial direction, but not necessarily
so in the axial direction. For the present analysis, the source terms are modelled as being
concentrated in the center of the shear layer at r = 1 such that, for instance,

Ŝij(x, r, ω) = Ŝx
ij(x, ω) δ(r − 1), (3.25)

and therefore

Ŝx
ij(x, ω) =

∫

∞

0

Ŝij(x, r, ω) r dr , (3.26)

S̃x
ij(k, ω) =

∫

∞

−∞

Ŝx
ij(x, ω) e−ikx dx . (3.27)

These integrals must be solved numerically. Radially compact representations of all other
source terms and their Fourier transforms, marked by the superscript x in the following,
are obtained accordingly.

Under the assumption of radial compactness of all aeroacoustic sources, equation (3.14)
simplifies to

p̂(ξ, ϑ, ω) =
k2

a

2ξ
eikaξ Dx(ϑ, ω) , (3.28)

with

Dx(ϑ, ω) = Ix
Sxx + Ix

Srx + Ix
Srr + Ix

Sϕϕ + Ix
K + Ix

Hx + Ix
Hr + Ix

Dx + Ix
Dr , (3.29)

Ix
Sxx = −J0(α) cos2 ϑ S̃x

xx(ka cosϑ, ω) , (3.30)

Ix
Srx = −i2J1(α) sin ϑ cosϑ S̃x

rx(ka cosϑ, ω) , (3.31)

Ix
Srr = −0.5 [J0(α) − J2(α)] sin2 ϑ S̃x

rr(ka cosϑ, ω) , (3.32)

Ix
Sϕϕ = −0.5 [J0(α) + J2(α)] sin2 ϑ S̃x

ϕϕ(ka cosϑ, ω) , (3.33)

Ix
K = J0(α) K̃x(ka cosϑ, ω) , (3.34)

Ix
Hx = J0(α) cosϑ H̃x

x (ka cosϑ, ω) , (3.35)

Ix
Hr = iJ1(α) sin ϑ H̃x

r (ka cosϑ, ω) , (3.36)

Ix
Dx = J0(α) cosϑ D̃x

x(ka cosϑ, ω) , (3.37)

Ix
Dr = iJ1(α) sin ϑ D̃x

r (ka cosϑ, ω) . (3.38)

The Bessel functions now take the argument α = −ka sin ϑ. At low Mach numbers, where
ka ≪ 1, variations of the Bessel functions are negligible. A factor J0(α) ≈ 1 is associated
with source terms that are nearly unaffected by azimuthal interference, whereas a factor
J1(α) ≈ 0 signifies almost complete cancellation of a source with its image across the jet
axis. The antenna factor due to each source term distribution is given explicitly by its
one-dimensional Fourier transform along x. From the argument k = ka cosϑ, it is seen
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Figure 4. a) Jet with S = 0.3: amplitude of the radially compact enthalpy-flux source term

|Ĥx

x | as a function of x. Solid line: original DNS data, dashed line: extrapolated exponential
decay over the interval 40 6 x 6 400. b) Corresponding discrete Fourier spectra near k = 0;
white circles: based on original DNS data, black dots: based on extrapolated amplitude envelope.
Dashed lines indicate the acoustically relevant interval −ka 6 k 6 ka.

again that only the interval −ka 6 k 6 ka of the spectrum radiates sound into the far
field.

4. Acoustic source term analysis for hot jets

4.1. Marginal globally unstable case S = 0.3

The far field pressure solution (3.28) is first evaluated for the jet configuration with
S = 0.3. All source term distributions Ŝij , K̂, Ĥi and D̂i, as defined in equations (3.2,
3.5–3.7, 3.11), are extracted from the direct numerical simulation as functions of r and
x. The temporal Fourier transform (3.11) of all sources is evaluated for ω = ωg during
runtime over one cycle period. Under the assumption of radial compactness, the one-
dimensional distributions Ŝx

ij , K̂x, Ĥx
i and D̂x

i are obtained according to equation (3.26)
by numerical integration in r. Evaluation of the far field pressure solution (3.28) then
involves a discrete Fourier transform in x.

As an example, the streamwise variation of the enthalpy-flux source envelope |Ĥx
x (x, ωg)|

is presented in figure 4a as a solid line. It displays a sharp front near the upstream bound-
ary and a slow decay downstream of the vortex roll-up location around x = 9. Accelerated
decay is observed near the end of the numerical domain, but the source amplitude at
the downstream end x = 80 is still two orders of magnitude larger than at the upstream
boundary. As a result, the truncation of the spatial domain may produce significant er-
rors in the spatial Fourier transform. The corresponding discrete spectrum |H̃x

x (k, ωg)|
near k = 0 is displayed in figure 4b as white circles. Its peak, not shown in the diagram,
is found at kmax = 1.28, with a value of |H̃x

x (kmax, ωg)| = 2.5×106. Since the streamwise
physical extent of the numerical domain, 0 6 x 6 80, is less than twice the acoustic wave-
length, only three points of the spectrum can be obtained within the radiating interval
−ka 6 k 6 ka. A discussion of the directivity pattern based on only three data points is
unsatisfactory; it is therefore desirable to first achieve a higher spectral resolution of the
spatial Fourier transform.

Mitchell et al. (1999) faced the same problem in their computations of the acoustic
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Figure 5. Jet with S = 0.3: directivity of the acoustic far field, comparison between direct
numerical simulation and Lighthill solution. ( ) Directly computed sound; (◦) Lighthill solution
due to Hx

x without streamwise extrapolation. Lighthill solution from extrapolated sources: ( )
enthalpy-flux term Hx

x alone, (- - -) combined radiation from all other terms.

field in forced isothermal jets. These authors suggest to extrapolate the source term dis-
tributions, prior to evaluating the Lighthill solution, over a sufficiently long downstream
region beyond the end of the computational domain. Following this idea, the source terms
in the present calculations are taken to develop exponentially as

f(x) = f(x0) eikx(x−x0) with kx = −i
f ′(x0)

f(x0)
, (4.1)

from x0 = 40 down to x = 400. The extrapolated source envelope |Ĥx(x, ωg)| is shown
as a dashed line in figure 4a. Over the interval 20 6 x 6 50, the amplitude decay of the
original distribution may indeed be well approximated by an exponential function. Black
dots in figure 4b represent the discrete Fourier spectrum |H̃x

x (k, ωg)| of the extrapolated
source distribution. They align well with the previously obtained data points (white
circles) in the vicinity of the radiating interval, which now is resolved by 17 points. In
particular, the extrapolation procedure is found to appropriately correct the apparent
error, due to domain truncation, in the k = 0 component of the original spectrum.

The Lighthill solution obtained from extrapolated source distributions in the S = 0.3
jet, according to equation (3.28), is compared to the DNS results in figure 5. The thick
line represents directly computed sound pressure levels, measured along the arc in figure
1. At angles less than 18◦, the arc crosses the hydrodynamic near field. The thin line inter-
polates the Lighthill solution due to the extrapolated Hx

x term, whereas results based on
the non-extrapolated Hx

x distribution are shown as white circles. The combined acoustic
radiation from all other source terms, as obtained from equation (3.28), is represented by
a dashed line. Sound pressure levels are computed as SPL = 20 log10(ξ|p̂|/pref), thereby
eliminating the ξ−1 decay of the acoustic pressure amplitude. The dB scaling takes the
near field pressure maximum pref = maxx |p̂(x, ωg)| as a common reference value for all
curves.

Figure 5 demonstrates that the dipole strength of the directly computed acoustic field
is very well retrieved by the Lighthill prediction for dipole radiation due to the axial
enthalpy-flux term Hx

x . Over the interval 20◦ 6 ϑ 6 60◦, both curves coincide within
0.5 dB accuracy. Without source extrapolation, the one point obtained within the down-
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Figure 6. Jet with S = 0.3: individual far field contributions from all source terms except Hx

x .
a) Excess density components: (—) Hx

r ; (- - -) Kx; (- · -) Dx

x ; (· · · ) Dx

r . b) Reynolds and viscous
stresses: (—) Sx

xx; (- - -) Sx

rr; (- · -) Sx

rx; (· · · ) Sx

ϕϕ.

stream lobe, at ϑ = 54◦, matches the simulation result with a precision of 0.1 dB. Fur-
thermore, the separation of individual source term contributions clearly indicates that
the radiation due to Hx

x strongly dominates the acoustic field in the present jet configura-
tion: the combined radiation from all other aeroacoustic sources together does not exceed
−68 dB at any angle. Near ϑ = 90◦, where this low-level radiation may in principle be
detected, the far field simulation results are likely to be affected by spurious numerical
effects, most notably due to unphysical acoustic reflections at the domain boundaries.

The results presented in figure 5 are quite robust with respect to details of the extrap-
olation (4.1). A choice of x0 anywhere in the interval 20 6 x 6 60 locally changes the
SPL values associated with Hx

x by not more than 0.5 dB.
Individual contributions of all other source terms are documented in figure 6. Acoustic

emission from dissipative effects (Dx
x and Dx

r , dash-dotted and dotted lines in figure 6a)
scales with the Reynolds number, and in the present case it is found to be negligible
even when compared to the low-level radiation from the radial enthalpy flux Hx

r and
the kinetic energy fluctuations Kx. While the fluctuation amplitude of Hx

r in the jet
is comparable to that of the axial enthalpy flux Hx

x , its acoustic radiation is much less
significant in an axisymmetric setting, due to the azimuthal interference given by J1(α)
in equation (3.36). Acoustic radiation from Reynolds stresses Sx

xx and Sx
rr (solid and

dashed lines in figure 6b) is similar in strength to that from Hx
r and Kx, while the effects

of Sx
rx and Sx

ϕϕ are negligible. Although viscous stresses are included in the Sij terms
(equation 3.2), their contribution is found to be insignificant.

The Lighthill solution in figure 5 indicates a difference of only 3 dB between the
upstream and downstream acoustic amplitude. This difference characterizes the weak
superdirective quality of the acoustic field; it is caused by the antenna factor, i.e. by
the variation of spectral density H̃x

x between −ka and +ka. In comparison to the beam-
like directivity pattern (1.1) measured by Laufer & Yen (1983), superdirectivity in the
present configuration can be said to be negligible.

According to Crighton & Huerre (1990), superdirective radiation in the particular form
of equation (1.1) would occur if the spectrum in figure 4b took the shape of a narrow
Gauß function, centred at the carrier wavenumber kmax = 1.28 and extending down to
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Figure 7. Supercritically hot jets with a) S = 0.1, b) S = 0.2. Directivity of the acoustic far
field, comparison between direct numerical simulation and Lighthill solution. Directly computed
sound ( ); Lighthill solution due to enthalpy flux source term Hx

x without extrapolation (◦)
and with extrapolation ( ). Other sources are negligible (see text).

the acoustic range |k| < ka. In the low Mach number limit (kmax ≫ ka), this assumption
indeed necessitates a perfectly Gaussian source distribution (∝ exp(x2)) in physical space
over a large streamwise interval. Instead, it has been found that the source amplitude
in the present configuration decays exponentially (∝ exp(x)), as in the isothermal jet
simulations of Mitchell et al. (1999). Crighton & Huerre (1990) have demonstrated that
an exponential source envelope cannot give rise to a superdirective factor as measured
by Laufer & Yen (1983).

A recent study by Obrist (2009) generalizes the analysis of Crighton & Huerre (1990)
to two-dimensional wavepackets that are non-compact in both spatial directions. It is
found that a finite cross-stream extent of the acoustic source region may strengthen
the superdirective character of the far field. Whether the assumption of radial compact-
ness is valid in the present context may be assessed by solving equation (3.14) with the
two-dimensional source distribution Ĥx(r, x, ωg). It is difficult to define a consistent ex-
trapolation procedure in two dimensions, therefore the non-compact solution may only
be computed for radiation angles ϑ = 54◦ and 126◦. At both angles, the results are found
to match the compact solution (white circles in figure 5) within 0.005 dB accuracy.

4.2. Supercritically heated jets: S = 0.1 and S = 0.2

The analysis carried out for the S = 0.3 jet in the preceeding section is now applied to
the configurations with S = 0.1 and 0.2 (see §2.1). The global frequencies, as reported
in Lesshafft et al. (2006), are ωg = 0.493 and 0.658, respectively, and the acoustic wave-
lengths therefore are λa = 40.3 and 42.7. The main results of the analysis are shown in
figure 7: thick lines trace the acoustic directivity measured in the far field of the direct
numerical simulations, thin lines and circle symbols represent the Lighthill solution due
to the axial enthalpy flux source term Hx

x with and without streamwise extrapolation.
As in the S = 0.3 jet, acoustic emission from all other source terms is found to be neg-
ligible in comparison. Their combined radiation, not shown in figure 7, is below −45 dB
(S = 0.1) and −64 dB (S = 0.2). Sound pressure levels in both cases are again scaled
with the respective maximum values of |p̂(x, ωg)| in the near field.

Agreement between the directly computed acoustic field and the Lighthill solution for
these two configurations is less accurate than in the S = 0.3 case. In both parts of figure
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7, simulation and prediction results are seperated by almost 2 dB at ϑ = 20◦ and 5 dB
at ϑ = 60◦. However, the overall dipole character is well retrieved in both cases, and
the agreement may be regarded as sufficiently close in order to allow for a qualitative
discussion. It can therefore be concluded that axial enthalpy flux fluctuations are the
dominant acoustic source mechanism in globally unstable hot jets also at temperature
ratios S = 0.1 and 0.2. The resulting acoustic field is that of a dipole, with maximum
intensity in the upstream and downstream directions. Amplitude modulations due to
the axial non-compactness of the source distribution are found to be moderately small,
and the apparent source location corresponds to the region of vortex roll-up (x = 3 for
S = 0.1 and x = 4 for S = 0.2). It is noted again that the acoustic radiation due to
vortex pairing, as a secondary instability of the global mode structure, is not considered
in the present study.

Direct numerical simulation results for the supercritical cases S = 0.1 and 0.2 are much
more affected by numerical inaccuracies than the marginally unstable case S = 0.3. These
inaccuracies stem primarily from the numerical treatment of the upstream boundary
conditions (see §2.1). As discussed in Lesshafft et al. (2006, 2007), the location of vortex
roll-up moves closer to the upstream domain boundary as the flow becomes more super-
critical with decreasing values of S. This results in stronger spurious reflections, because
the acoustic waves now propagate almost parallel to the upstream boundary, whereas the
numerical treatment assumes nearly perpendicular incidence of acoustic waves. Spurious
reflections increase the acoustic energy contained in the numerical domain. Unphysical
interaction between acoustic and vortical perturbations at the upstream boundary must
also be expected to increase as perturbation amplitudes reach nonlinear levels close to
the inlet. It has been noted in Lesshafft et al. (2006, 2007) that the influence of the
numerical boundary treatment on the near field dynamics is stronger for low values of
S.

5. Conclusion

The near and far fields of three globally unstable hot jets have been resolved in direct
numerical simulations of the axisymmetric Navier–Stokes equations. The three configura-
tions have temperature ratios S = 0.1, 0.2 and 0.3, and associated Mach number values
Ma∞ = 0.32, 0.22 and 0.18. Results have been discussed in depth for the marginally
unstable configuration with temperature ratio S = 0.3: the nonlinear global mode in the
near field, described by Lesshafft et al. (2006), radiates into the far field as a compact
acoustic dipole, with maximum amplitude along the jet axis. A solution to the Lighthill
equation, including source terms due to fluctuations of enthalpy flux, kinetic energy,
Reynolds stresses and dissipative effects (Lilley 1974, 1996), has been formulated for an
axisymmetric geometry, with and without the assumption of radially compact source
distributions. In order to retrieve the directly computed far field directivity pattern, the
source distributions used in the Lighthill analysis have been extrapolated far beyond
the downstream boundary of the computational domain used in the simulation. For the
reference configuration with temperature ratio S = 0.3, the resulting Lighthill solution
matches the directly computed acoustic field within 0.5 dB accuracy over a large range of
the radiation angle. The decomposition of source terms has demonstrated that the global
mode acoustic field is strongly dominated by dipole radiation due to axial enthalpy flux
fluctuations.

The Lighthill analysis has been extended to the supercritical regime of strongly heated
jets, with temperature ratios S = 0.1 and 0.2. Although the numerical simulation data
obtained for these two configurations are not of the same high quality as in the S =
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0.3 case, and the agreement with the Lighthill solution for the acoustic field is less
accurate as a consequence, the analysis supports the same principal conclusion: the source
mechanism related to the axial enthalpy flux strongly dominates the overall acoustic
radiation, giving rise to a dipole directivity in the far field. Comparison between figures
5 and 7 demonstrates that the acoustic intensity increases with stronger heating.

Antenna effects, which could potentially yield a superdirective radiation pattern, are
not found to be significant in the present configurations. At S = 0.3, the antenna factor
only causes a 3 dB difference between the ϑ = 0◦ and the ϑ = 180◦ directions. The
absence of superdirectivity is due to the spatial shape of the global mode wave packet:
its k-spectrum is very different from a Gaussian shape (see figure 4b), and it presents only
weak variations over the radiating interval −ka 6 k 6 ka . Higher values of the Mach
number will probably favor superdirectivity; if Ma is increased, the radiating window is
enlarged and may contain regions of large variations in spectral density. An extension of
the present study to externally forced jets in the high subsonic Mach number regime will
be the focus of future investigations.

It is a pleasure to dedicate this study to Steve Davis in recognition of his many fun-
damental contributions to fluid mechanics. Steve is a source of inspiration to all of us,
from both a scientific and personal point of view.

We are very grateful to Professor Marvin Goldstein for his suggestion to employ Lilley’s
source term decomposition in the present study.

Financial support for this work was provided by ONERA and by the EADS Founda-
tion.
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The absolute/convective character of the linear instability of axisymmetric jets is in-
vestigated for a wide range of parallel velocity and density profiles. An adjoint-based
sensitivity analysis is carried out in order to maximize the absolute growth rate of jet
profiles with and without density variations. It is demonstrated that jets without counter-
flow may display absolute instability at density ratios well above the previously assumed
threshold ρjet/ρ∞ = 0.72, and even in homogeneous settings. Absolute instability is pro-
moted by a strong velocity gradient in the low-velocity region of the shear layer, as well
as by a step-like density variation near the location of maximum shear. A new efficient
algorithm for the computation of the absolute instability mode is presented.

1. Introduction

The spontaneous onset of self-excited oscillations in low-density axisymmetric jets
has been linked to the presence of absolute instability in the unperturbed underlying
baseflow since their first experimental observation by Monkewitz et al. (1990). Numerous
experimental and numerical studies have confirmed this hypothesis (e.g. Hallberg et al.

2007; Lesshafft et al. 2007, and references therein). One important implication of this
association is that linear stability theory may predict the range of parameters, and in
particular the ratio of jet density over ambient density, over which self-excited oscillations
may occur in real jets.

Monkewitz & Sohn (1988) were the first to investigate the absolute/convective instabil-
ity properties of low-density jets. For a specific family of analytical velocity and density
profiles, designed to match experimental measurements, a transition from convective
to absolute instability was found to be possible when the density ratio S = ρjet/ρ∞ fell
below the critical value Scrit = 0.72. This value was obtained for the inviscid, zero-Mach-
number case, and for a velocity profile with a thin shear layer of momentum thickness
θu = 0.042, nondimensionalized with the jet radius, as it may be found in the potential
core region close to the nozzle exit. Lower Reynolds and higher Mach numbers, as well as
thicker shear layers, were shown to require stronger density differences in order to admit
absolute instability. Furthermore, for baseflow profiles typical of the potential core, ab-
solute instability was always found to occur first for axisymmetric perturbations. Later
linear instability studies by Jendoubi & Strykowski (1994) and Lesshafft & Huerre (2007)
corroborated the validity of all the above observations for a different family of analytical
profiles, introduced by Michalke (1971). The critical density ratio for this profile fam-
ily was determined to be Scrit = 0.713, for a momentum thickness of θu = 0.039. It has
since been generally assumed that these critical values are approximately valid regardless
of the precise functional shape of the velocity profile, which would then be sufficiently
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characterized by its momentum thickness. The density profile in all these studies follows
directly from the velocity profile via the Crocco–Busemann relation.

Coenen et al. (2008) integrated the boundary layer equations in order to obtain velocity
profiles of low-density jets issuing from a straight pipe. Their computations account for
the growth of a laminar boundary layer inside the pipe; at the nozzle exit, the density
profile is prescribed as a step function. The analysis of Coenen et al. (2008) showed that
absolute instability in such configurations may set in at a density ratio S = 0.9, for
velocity profiles with a fairly thick shear layer θu = 0.1. This remarkable result clearly
demonstrates that the restriction to the previously studied analytical velocity profile
shapes, and to density profiles governed by the Crocco–Busemann relation, is inadequate
for determining a general upper bound for the density ratio of absolutely unstable jets.

The principal objective of the present study is to assess whether such an upper bound of
S for the onset of absolute instability can be established. Towards this end, many limiting
assumptions about the shape of velocity and density profiles will be successively relaxed.
A sensitivity-based optimization procedure is employed to identify profile shapes that
display absolute instability at a minimal density difference. The methodology is similar
to that of Bottaro et al. (2003) and Hwang & Choi (2006). All previous jet instability
studies, including that of Coenen et al. (2008), indicate that absolute instability can be
expected to first arise for axisymmetric perturbations, at infinite Reynolds number and
zero Mach number. The present investigation is therefore limited to those settings. The
effects of jet swirl and of counterflow in the outer stream, which both may also give
rise to absolute instability (Gallaire & Chomaz 2003; Jendoubi & Strykowski 1994), are
excluded from the analysis.

The governing equations and numerical methods are presented in §2. In particular,
the adjoint-based sensitivity analysis is laid out, and a novel efficient algorithm for cal-
culating the absolute instability mode is introduced. Section 3 offers a parametric study
of an analytical profile family, where velocity and density are no longer linked by the
Crocco–Busemann law. In §4, the restriction to analytical profile shapes is dropped. Free
optimization yields baseflow profiles that require a minimal density difference in order to
be absolutely unstable. An argument for the early onset of absolute instability is derived
from the shape of the eigenmodes.

2. Numerical model

2.1. Direct and adjoint temporal dispersion relations

The linear stability analysis in the present study is restricted to axisymmetric distur-
bances in inviscid jets at zero Mach number. Perturbations of the streamwise velocity
u′, radial velocity v′ and pressure p′ are assumed to take the form of normal modes
[u′, v′, p′](x, r, t) = [U(r), V (r), P (r)] exp(iωt−ikx), where x and r are the streamwise and
radial coordinates, ω is the complex circular frequency and k is the complex wavenum-
ber. A parallel baseflow is defined by the velocity and density profiles ub(r) and ρb(r).
All quantities are made nondimensional with respect to the jet radius and the velocity
and density values on the jet axis at r = 0. In the inviscid, zero-Mach-number limit, the
linear perturbation equations given in Lesshafft & Huerre (2007) reduce to

kubU − iV ∂rub + kρ−1

b P = ωU , (2.1)

kubV − iρ−1

b ∂rP = ωV , (2.2)

∂rV + r−1V + ikU = 0 , (2.3)
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with boundary conditions ∂rU = V = ∂rP = 0 on the jet axis. Note that density pertur-
bations at zero Mach number are decoupled from the velocity and pressure perturbations,
and do not need to be solved for. Equations (2.1–2.3) are discretized using Chebyshev
collocation, with 200 collocation points distributed over the interval 0 6 r 6 rmax = 100,
according to the same mapping function as used in Lesshafft & Huerre (2007). The equa-
tions are then cast in the form of the discrete temporal eigenvalue problem Aq = ωBq,
where the eigenvector q = (U,V,P)T and the eigenvalue ω are associated with a pre-
scribed value of k. This generalized eigenvalue problem is solved via an Arnoldi algorithm.

The adjoint eigenvector q+ associated with the direct eigenvector q for a given value
of ω is found as a solution of the discrete adjoint eigenvalue problem A

Hq+ = ω+
B

Hq+,
with ω+ = ω̄. The superscript H denotes the conjugate transpose, an overbar denotes
the complex conjugate. Note that q,q+ in the following always represent associated pairs
with ω+ = ω̄, and that q+ is assumed to be normalized such that q+H

Bq = 1. The adjoint
eigenvector can therefore be obtained by solving the linear system (AH − ω̄B

H)q+ = 0,
which is regularized with the normalization condition.

2.2. Sensitivities

Knowledge of q+ allows to explicitly compute how small variations of the matrix A

translate to small variations in ω. The perturbed direct problem

(A + δA)(q + δq) = (ω + δω)B(q + δq) (2.4)

is linearized and multiplied with q+ to give

q+H(A − ωB)δq + q+H(δA − δωB)q = 0 . (2.5)

The first term in (2.5) is identically zero because q+H(A−ωB) = 0; the second term yields
δω = q+HδAq. In the context of this study, variations δA may arise from variations of
the discrete baseflow vectors (ub, ρb) and of the wavenumber k. The associated gradients
of the complex frequency are

∂ω

∂ub

= q+H
∂A

∂ub

q ,
∂ω

∂ρb

= q+H
∂A

∂ρb

q ,
∂ω

∂k
= q+H

∂A

∂k
q . (2.6)

The partial derivatives of A are obtained by differentiation of the left-hand sides of
(2.1–2.3). The gradient vectors ∂ω/∂ub and ∂ω/∂ρb in (2.6) reflect the sensitivity of
ω to baseflow variations at the collocation points; their numerical values are inherently
dependent on the grid spacing. For the purpose of §4, it is preferable to define sensitiv-
ity vectors su, sρ as discrete representations of continuous, grid-independent functions
su(r), sρ(r) over the interval 0 6 r 6 rmax, such that

δω =

∫ rmax

0

[su(r) δub(r) + sρ(r) δρb(r)] dr ≈ sT

u M δub + sT

ρ M δρb . (2.7)

With a suitable diagonal metric M, the grid-independent sensitivity values at the collo-
cation points are then recovered as

su = M
−1 ∂ω

∂ub

, sρ = M
−1 ∂ω

∂ρb

. (2.8)

The present formalism is entirely based on the discrete direct and adjoint dispersion
relations. Continuous formulations of similar problems are given by Bottaro et al. (2003)
and Hwang & Choi (2006). Both approaches are expected to give identical results.
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2.3. Absolute eigenmode

The scalar quantity ∂ω/∂k = vg is the group velocity of the direct eigenmode. The
absolute instability mode is characterized by a zero group velocity. The possibility to
obtain vg directly from (2.6) leads to a new procedure for the computation of the abso-
lute eigenmode for a given baseflow. Starting from an initial guess k∗ for the absolute
wavenumber, the associated frequency and group velocity are computed by solving the
direct and adjoint dispersion relations. A secant method is then employed to drive vg(k

∗)
towards zero, and to thereby converge to the true absolute wavenumber k0 and frequency
ω0. This procedure is found to be highly efficient in the present calculations. The secant
method gives a fast rate of convergence, because the group velocity is a nearly linear
function of k in the vicinity of k0. Each iteration involves the solution of one eigenvalue
problem via an Arnoldi algorithm, which takes a fraction of a second even for excessive
spatial resolutions, and the solution of a linear system for the adjoint eigenvector.

However, this algorithm does not guarantee that the final (k0, ω0) pair represents a
pinch point between a k+ and a k− branch, according to the Briggs–Bers criterion (Huerre
& Monkewitz 1990). The validity of this requirement has been verified for all final results
presented in this paper via a detailed inspection of the spatial branches, as demonstrated
in Lesshafft & Huerre (2007).

3. Absolute/convective transition for hyperbolic-tangent baseflow
profiles

In the search for optimal velocity and density profiles that favour the onset of ab-
solute instability at small density differences, a parametric study of analytical profile
shapes is attempted first. Following the approach of Srinivasan et al. (2010), the familiar
hyperbolic-tangent profiles of Michalke (1971) are extended in such a way that mixing
layer thickness parameters bu and bρ may be prescribed independently for the baseflow
velocity ub and density ρb. Furthermore, an offset d between the radial positions of both
mixing layers is introduced. In a first step, let the baseflow be given by

ũb(r) =
1

2

(

1 + tanh

[

1

4bu

(

1

r
− r

)])

, (3.1)

ρ̃b(r) =

{

S +
1 − S

2

(

1 + tanh

[

1

4bρ

(

1

r − d
− r + d

)])}

−1

. (3.2)

With the implicit definition of the jet radius in the above formulation, the parameter bu

precisely represents the momentum shear layer thickness. However, since non-analytical
profile shapes will be considered in §4, an explicit definition of the jet radius as a reference
length scale will be used consistently throughout this study. The length scale is adjusted
in such a way that the non-dimensional volume flux of the baseflow is that of a plug
profile with radius 1,

∫

∞

0
ub(r) r dr = 0.5. The profiles (3.1, 3.2) are rescaled as

ub(r) = ũb(αr) , ρb(r) = ρ̃b(αr) , with α2 = 2

∫

∞

0

ũb(r) r dr . (3.3)

The momentum shear layer thickness of the rescaled baseflow is θu = bu/α.

3.1. Parametric mapping

The effect of variations in bρ and d on the absolute/convective transition is systematically
investigated for a fixed velocity profile parameter bu = 0.05 (corresponding to R/θ = 20
in Lesshafft & Huerre 2007). Figure 1 displays contours of the critical density ratio Scrit,
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Figure 1. Critical density ratio Scrit for absolute/convective transition of hyperbolic-tangent
profiles (3.1, 3.2) with bu = 0.05, as a function of bρ and d.

at which the transition from convective to absolute instability takes place, as a function
of bρ and d. The value of Scrit for each parameter combination has been determined
iteratively by use of a secant method, ensuring that ω0,i(Scrit) = 0. Baseflows with a
given combination (bu, bρ, d) are absolutely unstable for all S < Scrit and convectively
unstable for all S > Scrit.

Figure 1 clearly demonstrates that thin density mixing layers favour the onset of abso-
lute instability. In the absence of radial offset, d = 0, the critical density ratio increases
monotonically with smaller values of bρ. The smallest value considered here is bρ = 0.005,
but it may be estimated by extrapolation that a discontinuous step profile for the tem-
perature would yield an asymptotic critical ratio S ≈ 0.751 for bu = 0.05 and d = 0.
The optimal radial offset at a given value of bρ is found to be slightly negative. However,
the increase in the critical density ratio that can be achieved by choosing d 6= 0 is rather
insignificant, especially at small values of bρ. The general trends exposed in figure 1 for
bu = 0.05 are found to also hold for values bu = 0.1 and 0.025.

3.2. Parametric optimization

In order to identify the optimal parameter combination (bu, bρ, d) that yields the highest
possible value Scrit for absolute/convective transition, one might proceed to extensively
sample the four-dimensional parameter space, as done in the above section for one specific
value of bu. A more efficient approach may be derived from the sensitivity analysis of §2.
The gradient of the complex frequency ω with respect to bu, bρ, S and d at any given
point in the parameter space is easily constructed via the chain rule:

∂ω

∂bu

=
∂ω

∂ub

∂ub

∂bu

,
∂ω

∂bρ

=
∂ω

∂ρb

∂ρb

∂bρ

,
∂ω

∂S
=

∂ω

∂ρb

∂ρb

∂S
,

∂ω

∂d
=

∂ω

∂ρb

∂ρb

∂d
. (3.4)

The gradients ∂ω/∂ub and ∂ω/∂ρb are obtained from (2.6), the partial derivatives of ub

and ρb follow directly from (3.1,3.2).
The optimization algorithm starts with the computation of (ω0, k0) for a given param-

eter combination (bu, bρ, S, d). The gradient of the temporal growth rate ωi = ℑ(ω) in the
parameter space is evaluated according to the imaginary parts of (3.4). The parameters
bu, bρ and d are then varied in the direction of the positive gradient, such that ωi is
increased, whereas S is varied in such a way that ωi is driven towards zero. The abso-
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lute frequency/wavenumber pair is computed for the new baseflow, and the procedure
is repeated until all four parameters are converged. The final value of S represents the
highest possible value at which absolute/convective transition can be achieved with a
baseflow of the form (3.1,3.2).

As may be expected from the results presented in figure 1, the optimization drives
the temperature mixing layer thickness to ever smaller values. In order to maintain an
appropriate discrete resolution of the continuous temperature profile, a finite lower bound
must be imposed for bρ. With two different restrictions bρ > 0.005 and bρ > 0.0025, the
optimized critical temperature ratio is found to be

Scrit = 0.7514 for bu = 0.04935, bρ = 0.005, d = 0.0017, and (3.5)

Scrit = 0.7520 for bu = 0.04929, bρ = 0.0025, d = 0.0021 . (3.6)

The value bu = 0.05, used for the parametric study presented in figure 1, therefore is
very near the optimal setting. The above optimization results are found to be insensitive
to the choice of initial parameters, and in all likelihood represent the global optimum.

The threshold value Scrit = 0.752, above which absolute instability is impossible for
the present family of baseflow profiles, is to be compared to the value Scrit = 0.713 that
has been determined in previous studies of hyperbolic-tangent profiles restricted by the
Crocco–Busemann law. The difference between these two values is not very significant,
and it certainly does not explain the results of Coenen et al. (2008), who found absolute
instability at S = 0.9.

4. Absolute/convective transition for shape-optimized profiles

For a more general investigation of optimal conditions for the onset of absolute in-
stability in jets, the limiting assumption of any parametrized analytical shape for the
velocity and density profiles is now relaxed. Each discretization point in both profiles
now represents one degree of freedom. A minimal set of constraints is imposed in or-
der to ensure that the baseflow retains the basic characteristics of a jet with prescribed
density ratio S:

(a) 0 6 ub 6 1 and 1 6 ρb 6 S−1 for all r,
(b) only one inflection point in ub and in ρb,
(c) ∂rub = ∂rρb = 0 at r = 0 and at rmax.

Conditions b) and c) also imply that both profiles vary monotonically in r.
Within these limits, the profile shapes with the maximum absolute growth rate for a

given value of S are sought via successive baseflow modifications un+1

b = un
b + δub and

ρ
n+1

b = ρ
n
b + δρb. This iterative process constitutes the outer optimization procedure. In

each step, variations δub and δρb of the current baseflow vectors un
b and ρ

n
b are obtained

by solving an inner optimization problem: optimal variations are sought that maximize
the increase of the temporal growth rate, given by the imaginary part of (2.7), while at the
same time the modified profiles un+1

b and ρ
n+1

b must obey all the above constraints. This
constrained optimization problem is solved using an SQP method, as implemented in the
Matlab routine fmincon. Bounds for δub and δρb follow from (a). The single-inflection-
point condition is formally expressed as a linear inequality constraint, by requiring the
second derivative of un

b + δub to be non-positive for r < rip − ε, and non-negative for
r > rip + ε, where rip is the current position of the inflection point. This position is
allowed to change by a distance ε in the updated profile un+1

b . A similar constraint is
imposed on the density variations. Condition (c) yields Neumann boundary conditions
for δub and δρb. In addition, the norm of the variations is prescribed as a nonlinear
constraint δuT

b M δub = δρT

b M δρb = 0.01 for well-posedness.
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Figure 2. Baseflow profiles (3.1,3.2) with parameters bu = bρ = 0.1, d = 0, S = 0.5, constrained
optimal variations, and sensitivities of the absolute growth rate. a) , velocity ub; , variation
δub; , sensitivity su,i = ℑ(su); b) , density ρb; , variation δρb; , sensitivity sρ,i = ℑ(sρ).

Figure 2 illustrates the approach for a hyperbolic-tangent baseflow (3.1,3.2). The base-
flow profiles (thick lines) are shown together with their sensitivity distributions (dashed
lines) and optimal variations (thin solid lines, note the ordinate scaling). The sensitivity
values represent the gradient of the temporal growth rate with respect to unconstrained
baseflow changes. The optimal variations are seen to closely follow the gradient direction,
except in regions where such baseflow modifications would violate the constraints.

Once the optimal variations have been applied to the baseflow, a filter procedure
f̃(ri) = 0.25f(ri−1) + 0.5f(ri) + 0.25f(ri+1) is performed on un+1

b and ρ
n+1

b , in order to
ensure that the profiles remain sufficiently smooth for an accurate computation of their
radial derivatives. The absolute frequency and wavenumber of the new baseflow are then
recalculated, and new variations are computed for the next outer optimization step.

4.1. Optimized velocity profile of a homogeneous jet

The case of a homogeneous jet is considered first. Keeping ρb ≡ 1 fixed, the baseflow
velocity profile is optimized, starting from a hyperbolic-tangent profile (3.1) with bu = 0.1
and ω0 = 1.21 − 0.19i, k0 = 1.07 − 1.63i. Successive modification of the velocity profile
yields a steady increase of the absolute growth rate, which finally takes on positive values
— i.e. the homogeneous jet becomes absolutely unstable.

The profile shape with zero absolute growth rate (ω0 = 1.21, k0 = 1.11 − 1.99i) is
presented in figure 3a as a thick line. Most notably, this profile is characterized by an
asymmetry of the shear layer, which is partitioned into an inner region with low shear and
an outer region with high shear. As the optimization is pursued further, this asymmetry
becomes increasingly pronounced: the thin line in figure 3a represents the final result, with
ω0,i = 0.06. This optimal profile is of a nearly piece-wise linear shape, slightly smoothed
by numerical filtering, with a sharp outer gradient. Without the single-inflection-point
constraint, a concave shape would form in the inner region. The momentum shear layer
thickness changes during the optimization process from θu = 0.10 (initial profile with
bu = 0.1) to values of 0.09 (ω0,i = 0) and 0.16 (ω0,i = 0.06).

The optimization procedure converges to virtually identical final results from different
starting conditions. This is demonstrated by the circle symbols in figure 3a, which rep-
resent the optimal result reached from an initial analytical profile with bu = 0.05 (one
out of two collocation points is shown).

As neither density inhomogeneities nor counterflow are present in the current config-
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Figure 3. a) Velocity profiles of a homogeneous jet at two stages of the optimization, start-
ing from (3.1) with bu = 0.1: , marginally unstable profile (ω0,i = 0); , optimal profile
(ω0,i = 0.06). Circles: optimal profile reached from (3.1) with bu = 0.05. b) Optimal baseflow
profiles for a low-density jet with S = 0.5, starting from bu = bρ = 0.1: , velocity ub; ,
density ρb. Circles: optimal profiles reached from (3.1,3.2) with bu = bρ = 0.05 (one out of two
collocation points is plotted).

uration, the onset of absolute instability remains unexplained in light of the existing
literature. An interpretation is attempted by examining the absolute eigenmode. Fig-
ure 4 displays the eigenfunctions of streamwise velocity |U(r)| and pressure |P (r)| for
the marginally absolutely unstable profile as solid lines. These are compared to the cor-
responding eigenfunctions, shown as dashed lines, of the analytical profile (3.1) with
bu = 0.1. The pressure eigenfunctions (figure 4a) are very similar in both cases; they
peak on the jet axis and decay monotonically in the radial direction. This shape is char-
acteristic of the jet column mode, as opposed to the shear layer mode in a round jet
(Jendoubi & Strykowski 1994). The velocity eigenfunctions (figure 4b) also share similar
features; in particular, the location of the maximum amplitude in both cases coincides
precisely with the maximum baseflow velocity gradient (r = 1.12 and r = 0.95, re-
spectively). During the optimization procedure, this location continuously shifts into the
region of low baseflow velocity. In analogy to configurations with counterflow, it may be
surmised that a lower baseflow velocity around the peak location of the velocity eigen-
function leads to a lower group velocity of the instability mode, and thereby favours
absolute instability.

4.2. Optimized velocity and density profiles of a low-density jet

When low-density jets are considered, the baseflow profiles of velocity and density may be
varied separately or simultaneously. Starting from the analytical configuration displayed
in figure 2, the baseflow density is first optimized alone, while the velocity profile is
kept fixed. During the optimization, the baseflow density steadily evolves towards a step
profile, with the maximum gradient always in the close vicinity of the maximum shear
location. The absolute growth rate increases continuously with the steepening of the
density profile. This observation is consistent with the results obtained for analytical
profile shapes in §3.

Varying the baseflow velocity while keeping the analytical density profile fixed leads
to a piece-wise linear velocity profile similar to the one shown in figure 3a. The presence
of density variations increases the absolute growth rate, but it does not seem to alter in
any significant way the trends discussed in §4.1.
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Figure 4. Eigenfunctions of the absolute mode in two homogeneous jets. , marginally AU
profile (cf. figure 3a); , tanh-profile with bu = 0.1. a) Pressure |P (r)|; b) streamwise velocity
|U(r)|. Circles mark the respective locations of the maximum baseflow velocity gradient. All
eigenfunctions are normalized with respect to the value of |U | at r = 0.

Finally, ub and ρb are allowed to evolve simultaneously, again starting from the ana-
lytical profiles given in figure 2. The final result is presented in figure 3b. The velocity
profile (solid line) again takes on a piece-wise linear shape, within the requirement of
smooth discretization as enforced by the filter procedure, whereas the density distribu-
tion (dashed line) approaches a step profile. The maximum of the density gradient occurs
at r = 1.12, close to the location of maximum shear at r = 1.14. These optimal profile
shapes are again reached from various starting conditions: the circle symbols in figure
3b represent a nearly identical optimization result, obtained from an initial hyperbolic-
tangent profile with bu = bρ = 0.05, d = 0 and S = 0.5. The absolute growth rate of the
optimal baseflow is ω0,i = 0.225, the shear layer momentum thickness is θu = 0.095. For
comparison, the highest absolute growth rate that can be achieved with the analytical
profile shapes (3.1,3.2) at S = 0.5 is determined as ω0,i = 0.172, for a much thinner shear
layer θu ≈ bu = 0.036 and with bρ → 0, d = 0.

5. Conclusions

The onset of absolute instability in low-density jets has been investigated for a large
variety of velocity and density profile shapes. The primary aim of this study was to
determine whether a universal upper bound of the density ratio exists, above which
absolute instability, in the absence of swirl or counterflow, would be impossible. The
investigation is restricted to axisymmetric disturbances in inviscid, zero-Mach-number
settings, and density ratios S > 1 (heavy jets) are not considered.

First, a classical family of hyperbolic-tangent baseflow profiles was extended to allow for
independently prescribed values of the velocity and density mixing layer thickness, as well
as for a radial offset between the two. The results of §3 have shown that only a modest
increase of Scrit from 0.713 to 0.752 can be achieved within the remaining restriction
to hyperbolic-tangent profile shapes. In §4, velocity and density profiles were iteratively
modified, according to the sensitivity of the absolute growth rate ω0,i, such as to maximize
ω0,i for a given density ratio. The most important result from this investigation is that
certain velocity profiles may exhibit absolute instability even in the homogeneous case
S = 1. The precise shape of these profiles, as identified in §4, is certainly not encountered
in typical laboratory jets. Yet their most characteristic feature, an asymmetry of the shear
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layer that shifts the maximum shear into the low-velocity region, may be expected to
be present in common jet flows immediately downstream of the nozzle. In particular,
the velocity profiles of Coenen et al. (2008), which largely motivated the present study,
prominently display such asymmetric shear layers.

An interpretation of how shear layer asymmetry may promote absolute instability is
based on the observation that the peak of the velocity eigenfunction coincides with the
location of maximum baseflow shear. It is argued that the group velocity of this mode is
likely to decrease as its amplitude peak shifts into a region of low baseflow velocity.

Density profiles that optimally favour absolute instability have consistently been found
to take the form of a step function. The step occurs very near the location of maximum
shear.

All results presented herein lead to the conclusion that low-density jets may in principle
display absolute instability at any density ratio. Furthermore, the momentum thickness
of the velocity profile has been seen to be an inadequate measure for the instability
characteristics. Whether a given baseflow is absolutely or convectively unstable depends
critically on the precise shape of the velocity and density profiles.

We gratefully acknowledge the work of Emily Obert, who carried out the calculations
presented in figure 1 during her stay at LadHyX, with support from the MIT–France
program. Valuable discussions with Yongyun Hwang and Fulvio Martinelli have greatly
contributed to this study. We thank Peter Schmid and Patrick Huerre for their helpful
comments on this manuscript.
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Abstract

Linear stability analysis of fluid flows usually involves the numerical solution of large eigenvalue problems. We
present a spectral transformation allowing the computation of the least stable eigenmodes in a prescribed
frequency range, based on the filtering of the linearized equations of motion. This “shift-relax” method
has the advantage of low memory requirements and is therefore suitable for large two- or three-dimensional
problems. For demonstration purposes, this new method is applied to compute eigenmodes of a compressible
jet.

Keywords: eigenvalue solver, spectral transformation, Krylov method, matrix-free, global modes

1. Introduction

The stability of fluid flow is a fundamental question in fluid dynamics, which has significant implications
on the design, operation and control of flow devices. Consequently, hydrodynamic stability theory has
taken a central role in fluid dynamics research, and remarkable progress has been made over the past
decades. Early investigations of generic flow configurations, such as channel flows or boundary layers, have
recently given way to more complex two- and three-dimensional geometries and more complex flow physics.
The resulting eigenvalue problems from simple configurations were sufficiently small to allow their solution
by direct techniques (such as the QR-algorithm). For more complex stability problems, however, direct
techniques no longer provide a feasible solution; iterative eigenvalue algorithms have to be employed to
compute a subset of the full spectrum that effectively describes the essential dynamics of small disturbances
superposed on a steady base flow. Many of these algorithms for large-scale eigenvalue problems have been
developed within the linear-algebra community and are readily available through several public domain
libraries [12]. Among them, the two most commonly used in fluid-flow problems are the Arnoldi [16] and
the Krylov-Schur [23] algorithms. These methods can, in principle, extract any portion of the full spectrum
through the repeated application of a restarting step. In practice, however, only the dominant modes (i.e.
those associated with the eigenvalues of largest magnitude) can be computed in many applications; yet, these
modes may not provide relevant information about the physics of the problem and, in some cases, may even
be spurious. As far as the asymptotic stability behavior is concerned, the least stable modes (i.e., the modes
with the largest exponential growth rate) are far more important. They can be computed by coupling an
iterative eigenvalue algorithm to a time-stepping routine for the linearized equations of motion (abbreviated
by the linear operator L) over a given time interval ∆t[10]. This way, the iterative eigenvalue solver will
efficiently extract the modes that are most amplified over a time interval ∆t, that is to say, it extracts the
least stable modes of L. The propagation time ∆t, in general, affects the speed of convergence of the iterative
solver, but does not influence which modes the solver will converge to.

This technique is generally sufficient for bounded flows that are governed by a limited number of (or
even a single) dominant instability mechanism, since the associated spectrum consists of eigenvalues that are
well separated. In this case, the principal eigenvalues are easy to isolate by the iterative algorithm. When
multiple and competing mechanisms are at play, the spectrum is far more complicated, and physically relevant
modes are more difficult to extract. In particular, eigenvalue clusters near the neutral axis, stemming from
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continuous branches or even numerical artifacts, pose a great challenge to the convergence of the iterative
algorithm. Even though unstable modes may still be extracted, the stable part of the spectrum quickly
moves beyond the reach of the iterative algorithm; in this case, a different strategy is called for.

The region of convergence may be manipulated and adjusted by a rational transformation of the complex
eigenvalue plane. The “shift-invert” method [16] allows the computation of the modes whose eigenvalues are
closest to a complex shift parameter σ. But at each iteration of the eigenvalue solver, the method requires
the solution of a linear system of the form (L−σI)x = b. Most studies accomplish the latter solution using a
direct LU decomposition which has to be performed once at the start and is used for all successive iterations,
until the shift parameter σ is changed to access different parts of the spectrum. A variant of the shift-invert
method, known as the Cayley transformation, yields better convergence, if an iterative solution of the linear
system is chosen [18].

The LU decomposition is based on a matrix representation of the linear stability operator. Some global
stability investigations used spectral discretization methods which resulted in a dense matrix of moderate
size [2]. Later studies took advantage of a sparse representation, in particular, when the operator arises
from a finite-element or finite-difference discretization [5]. In this case, the number of non-zero elements is
proportional to the number of degrees of freedom N, making a sparse matrix representation convenient to
handle computationally. Highly efficient multi-frontal LU solvers for large-scale sparse matrices are readily
available (see e.g. [9, 3, 4]), but the sparsity of the output matrices is not always guaranteed. Even though
the bandwidth of the factorization is not greater than that of the original matrix [11, p.152], all elements
between the upper and lower band may be non-zero. Computing and storing the decomposition thus results
in substantial memory requirements. For example, for the discretization of a two-dimensional problem
with N degrees of freedom on a structured mesh, the bandwidth scales with N1/2, in which case the LU
decomposition would contain up to O(N3/2) non-zero elements. In three dimensions, as the bandwidth
increases to N2/3, the memory requirements go up as N5/3. For a discretization of the compressible Navier-
Stokes equations on a two-dimensional domain with 256× 512 points using a finite-differences scheme with
a six-points stencil, one can estimate that storing the LU decomposition requires about 80 GB of memory
(work space requirements during the decomposition tend to be even larger), thus illustrating the limitation
of this method for larger-scale problems. In some cases, appropriate reordering of the matrix entries can
somewhat alleviate the problem by improving the sparsity of the factorization; this approach, however, does
not provide a viable and extendable solution for large-scale problems.

An alternative that avoids the computation of the LU decomposition of the operator L consists of iterative
algorithms [24] to solve the linear system arising from the shift-invert or Cayley transformation. Together
with ILU-type preconditioners, this approach has been applied to incompressible [15] and compressible flows
[18]; in [22], the authors use un-preconditioned iterative solvers for the computation of unstable modes in
plasma flows. These methods yield a reduction of computational costs associated with the solution of the
linear system, but they do not provide the same level of versatility as direct methods do. Indeed, if one
chooses the shift parameter σ close to the spectrum of L, then (L − σId) becomes ill-conditioned. In this
case, the cost of preconditioning as well as the number of iterations for the linear solver to converge have
to be assessed critically. In contrast, if σ is selected farther from the spectrum, the iterative linear solver
is more likely to converge with a “cheap” preconditioner, but at the same time the focusing effect of the
shift-invert transformation is rather weak; consequently, it may not be possible to extract the desired modes.

The present paper presents a method for selectively extracting modal information from a linear operator
L without relying on the (iterative or direct) solution of a linear system. This approach has been inspired
both by the “shift-invert” technique for the solution of eigenvalue problems [16] and by the selective frequency
damping method of [1] for the computation of unstable steady flow. Similar to the latter method, we propose
to use a relaxation procedure to selectively stabilize parts of the spectrum away from a chosen frequency
shift, after which a standard Krylov method is employed to obtain the least stable modes of the relaxed
system. Although the spectral transformation involved in the present “shift-relax” technique is somewhat
less flexible than the “shift-invert” technique, its low memory requirement and ease of implementation make
it suitable and attractive for large-scale stability computations of two- or three-dimensional flows.



2. Description of the method

2.1. Definition of the problem

Let the dynamics of the problem under consideration be governed by a set of non-linear equations of the
form

q̇ = F (q), (1)

where q is the state vector and F denotes a discrete integro-differential operator with appropriate boundary
conditions. For simplicity, only finite-dimensional operators (which arise after spatial discretization) will be
considered in this paper. We assume that this operator has a fixed point q0, such that F (q0) = 0. If this base

state is stable to finite-amplitude perturbations, it can be computed by integrating the dynamical system
(1) over a sufficiently long time. Algorithms such as the Newton-Krylov method [10] or Selective Frequency
Damping (SFD) [1] can be used to obtain a base state even in unstable situations. The SFD method relies
on low-pass filtering of the equations of motion in order to suppress high-frequency instabilities. The present
method generalizes this approach in order to compute modes of a linear operator in a selected frequency
band.

Let L = ∇qF (q0) be the linearization of F about the steady base state q0. Based on the decomposition
q = q0 + q′, the dynamics of small perturbations q′ is governed by the linear system

q̇′ = Lq′. (2)

Temporal modes of (2) are sought in the form

q′(x; t) = q̃(x) exp(−iωt),

such that the spatial structure q̃ satisfies
−iωq̃ = Lq̃. (3)

A complex eigenfrequency ω is associated with the eigenmode q̃.
If an iterative solver is used to compute the least stable modes of (3) using an iterative eigenvalue solver,

it is of advantage to consider the operator that takes a state q′(0) as an initial condition for (2) and returns
the state q′(∆t) after a given time ∆t. This operator is referred to as the propagator and can be formally
written as

P = exp(∆tL).

Krylov-based iterative eigenvalue solvers identify a subset of the eigenvalues λ = λr + iλi with the largest
absolute value |λ| (in the following, the subscript r and i respectively denote the real and imaginary parts
of a complex number). Modes of P with the largest |λ| are identical to modes of L with the largest growth

rate ωi. Even though the explicit computation of the matrix P would be an onerous task, its application to
vectors can be easily performed by a standard time marching method; this makes the use of P appropriate
for an iterative solver.

For some flows however, it may be interesting to investigate modes that belong to different frequency
ranges, as these may correspond to different physical mechanisms (see for example the case of the flow around
a leading edge [19] or that of supersonic jet flows [20]). In this case the objective is to compute the least
stable modes with a real frequency ωr close to a given value ω0. The present method achieves this goal by
applying a bandpass temporal filter to the propagator, such that modes with real frequency ωr far from the
target frequency ω0,r are attenuated.

2.2. Filtering

In this section we recall standard filtering results applied to a signal y(t) with t ∈ R. Its Fourier transform
reads

y(t) =

∫
∞

−∞

ŷ(ω) exp(−iωt) dω.



We proceed by damping out the components of y(t) with frequencies far from a given value ω0 using a
standard first-order bandpass filter whose transfer function is given by

H(ω) =
1

1− i
ω − ω0

τ

. (4)

The filtered signal ȳ(t) is then given by the convolution

ȳ(t) =

∫
∞

−∞

H(ω)ŷ(ω) exp(−iωt) dω,

which satisfies the filtered ordinary differential equation

˙̄y = −iω0ȳ − τ(ȳ − y). (5)

The above bandpass filter is centered about the target frequency ω0 and has a half width at half maximum
of
√

3τ .
The presented analysis applies to signals defined for all times. If one wants to use the differential equation

(5) to filter a signal defined only for t ≥ 0, initial conditions have to be specified. The overall frequency
selection effect, however, will prevail independent of initial conditions, if the differential equations have been
sufficiently advanced in time. In this way, the differential equation (5) provides a way to filter a signal
without having to store its entire history.

2.3. Selective frequency damping of a linear dynamical system

Following [1], let us consider the following linear dynamical system:

q̇′ = Lq′ − χ(q′ − q′), (6a)

q̇
′

= −iω0q
′ − τ(q′ − q′). (6b)

Equation (6b) represents a differential equation corresponding to the bandpass filter introduced above. The
signal q′ is therefore a filtered version of q′, in which frequency components far from the target frequency
ω0 are damped.

The right-hand side of (6a) is a sum of two terms. The first one represents the linear operator, while the
second part acts as a proportional controller that drives the variable q towards its filtered counterpart q.

The SFD procedure of [1] applies the same filtering with ω0 = 0 to a non-linear operator instead of L
in (6). In this case, any fixed point of F corresponds to a fixed point of the extended system, the filtered
state q′ being then equal to the full state. However, the stability of the fixed point of the extended system is
modified and trajectories differ. Our shift-relax (SR) approach relies on the observation that the frequency
selection procedure not only preserves the fixed points of non-linear operators, but also the eigenmodes of
linear systems, as will be demonstrated next.

In order to study the relationship between the spectra associated with the original linear dynamical
system (2) and the SR extension (6), we introduce the composite filtered operator F defined as

F ≡
(

L− χId χId
τ Id (−iω0 − τ)Id

)
(7)

such that (6) can be rewritten as (
q̇′

q̇
′

)
= F

(
q′

q′

)
.

If the state vector q′ contains N elements, then a 2N -dimensional eigenvector of F associated with the
complex eigen-frequency Ω, i.e.

FQ̃ = −iΩQ̃,



can be decomposed into two N -dimensional components, Q̃ = (q̃, ˜̄q)T . According to (6b), these two compo-
nents are related by

q̃ =
1

1− i
Ω− ω0

τ

q̃.

Consistent with the design of the filter, the scalar factor between q̃ and q̃ can be related to the transfer
function (4). We can substitute this result back into (6a) to obtain

Lq̃ = −iω(Ω)q̃ (8)

with

ω(Ω) = Ω + iχ


1− 1

1− i
Ω− ω0

τ


 . (9)

Equation (8) shows that q̃, i.e. the vector corresponding to the first N elements of Q̃, is an eigenvector of L.
This justifies the use of the SR system (6) as a spectral transformation, as the modes of L can be recovered
from those of F .

Equation (9) characterizes the mapping between the spectra of L and F . For any eigenvector Q̃ = (q̃, q̃)T

of F with complex frequency Ω, q̃ is an eigenvector of L with complex frequency ω(Ω) given by (9). This
latter equation can be re-arranged as a second-order polynomial in Ω where ω appears as a parameter. This
shows that two values of Ω correspond to a single value of ω, which is consistent with the fact that the
dimension of F is twice the dimension of L.

Proceeding with the analysis of the mapping between the spectra of the original operator L and its SR
extension F , let us introduce the following scaled variables

(ω′,Ω′, χ′) =
1

τ
(ω − ω0,Ω− ω0, χ).

Equation (9) can then be simplified as follows

ω′ = Ω′ + iχ′

(
1− 1

1− iΩ′

)
. (10)

It therefore appears that after a shift of origin (given by the parameter ω0) and a scaling (given by the
factor τ) of the complex-frequency plane, the transformation can be studied in terms of one single parameter
χ′ = χ/τ.

Effect of χ′. The parameter χ′ measures the gain of the proportional controller relative to the frequency
scale τ. The analysis (given in detail in Appendix A) shows how χ′ influences the spectral transformation.
We observe that the transformation is self-similar with respect to two transformations of ω′ and Ω′ : first,

by different shifts of origins of these two variables and, second, by a scaling by the factor χ′−1/2
. The shift

of origin for Ω′ has no influence on the frequency selection effect of the filter, as it changes neither the order
in which modes will be extracted nor the separation between the eigenvalues of the filtered propagator. The
scaling is more relevant, but its effect on the transformation is the same as that of τ. Acting on χ′ therefore
adds no additional flexibility to the method. In an effort to keep the scaling of the complex plane and the
shift of origin as two parameters, we choose χ′ = 1 throughout our study and only use ω0 and τ as changing
parameters.

Study of the transformation for χ′ = 1 . For a given value of ω′, (10) is a second-order polynomial in Ω′. As
mentioned previously, this results in two solution branches, for which an analytic expression can easily be
obtained. We note that the distinction between the two branches is not unique, as it depends on the location
of the branch cut for the square root function with complex arguments. In the following representation we
chose the common branch cut for negative real arguments of the square root.



Figure 1a, b illustrates the mapping between the original spectral plane ω′ and the two associated values
of Ω′

1,2 by the SR transformation, respectively indicated by blue and black lines, together with the transfor-
mation of several sample values of ω′ represented by colored symbols. These values are chosen arbitrarily
for illustration purposes. The solid and dashed lines in figure 1b are, respectively, the images of iso-ω′

i- and
iso-ω′

r-lines in the ω′-plane represented in figure 1a. The mapping (with the chosen branch cut) defines two
regions of the complex Ω′-plane. Values of Ω′ inside the unit circle centered at Ω′ = −i correspond to the
first root Ω′

1 while values outside the circle correspond to the second root Ω′

2. Accordingly, the sample values
represented by colored symbols in figure 1a has two images in the Ω′-plane. We notice, however, that neither
the mapping ω′ → Ω′

1 nor the mapping ω′ → Ω′

2 is continuous.

Figure 1: Mapping between the original spectral plane ω′ (a) and its SR-transformed image Ω′ (b). The colored symbols
correspond to sample values.

The images of the sample values in figure 1b suggest another distinction between the two images of ω′. We
respectively define Ω′+ and Ω′− as the images of ω′ such that the following relation involving the transformed
growth rates is satisfied

Ω′−

i (ω′) ≤ −1 ≤ Ω′+

i (ω′).

See Appendix A for a proof. As τ is real and positive, the above distinction between the two branches
results in

Ω−

i ≤ ω0,i − τ ≤ Ω+

i ,

expressed in terms of the non-scaled variables.
The least stable modes of the SR operator F (given in (7)) will then be extracted by applying an

eigenvalue solver to the filtered propagator

P = exp(i∆tF) (11)

as motivated in § 2.1. This will extract the least stable modes of the filtered operator F . Consequently, we
can restrict our attention to the Ω′+ branch. Furthermore, as only the growth rate rather than the frequency
decides which modes will be extracted, the relevant features of the transformation can be studied in terms
of the single-valued real function ω′ → Ω′+

i . This function is represented in figure 2.
Three regions of the ω′-plane can be identified:

• For 1 . ω′

i, the transformed growth rate Ω′+

i behaves similar to the un-transformed growth rate ω′

i. No
significant dependency with ω′

r is observed, indicating that no noticeable frequency selection occurs.
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Figure 2: Imaginary part of the eigenvalue of the SR operator Ω′+
i (ω′) as a function of the eigenvalue ω′ of the origin for χ′ = 1.

Arnoldi algorithm

(P)ARPACK, SLEPC ...

Eigen−frequencies Modes 

Time stepping of the

Linearized NSE

shift−relax system

Q(∆T )

Q(0)

dQ

dt
= FQ

q0, . . . , qNλj =
〈Lqj |qj〉

〈qj |qj〉

ω0

τ

Figure 3: Practical implementation of the method

• For −2 . ω′

i . 1, the value of Ω′+

i (ω′) exhibits strong dependency on the real frequency ω′

r. Along
a line of constant ωi, the value of Ω′+

i (ω′) reaches a maximum for ωr = 0, confirming that the filter
plays the expected role of stabilizing modes with real frequencies far from ω0,r.

• For ω′

i . −2, Ω′+

i (ω′) is approximately constant. The dynamics of the SR system is dominated by the
control term in (6a) which conceals the dynamics of the linear operator L.

The above representation allows to determine the behavior of the proposed method. For ωi & ω0,i + τ ,
the spectral transformation produces results similar to that of the propagator approach (see § 2.1 and [10]).
The frequency selection effect is insignificant in this region. Strong frequency selection is achieved in the
range of frequencies ω0,i − 2τ . ωi . ω0,i + τ , as the effect of the bandpass filter is clearly present. Modes
with real frequencies outside a bandwidth of order τ centered around ω0,r are damped. In this range of
growth rates, modes with real frequencies close to ω0,r will be extracted first. All modes with a growth rate
ωi . ω0,i−2τ will map to essentially the same growth rate for the SR operator. These modes will be difficult
to distinguish with an iterative eigenvalue solver.

2.4. Numerical considerations

Implementation. A practical implementation of the present method requires only few additions to a standard
DNS code. These are summarized in figure 3. First, a routine evaluating the linearized Navier-Stokes operator
is needed. The linearization may be carried out by hand, as done in the examples given in this paper, or
numerically “on the fly” from a non-linear routine, as done in [14].



Next, the eigenvalue extraction is performed. Several libraries for both sequential and parallel imple-
mentations may be used for this task. The Krylov-Schur solver provided in the SLEPc library [23] is used
here to extract the eigenmodes of the SR operator, with 60 Krylov vectors. Better convergence behavior has
been observed compared to the Implicitly Restarted Arnoldi Method (IRAM), which is more frequently used
for the computation of modes in fluid flow problems[16]. In [22], the authors report good results using the
“harmonic extraction” solver of SLEPc for frequency selection. For our cases, this method has not produced
the desired outcome.

Finally, only minor changes in order to integrate the filtering procedure into a standard time-stepping
routine are necessary. The algorithm for the time stepping of the SR dynamical system is exemplified using
an explicit Euler scheme as outlined below. The variables q1 and q2, respectively, represent the state and its
filtered counterpart, L is the linear flow operator, and δt is a discrete time step.

1: t← 0
2: while t ≤ ∆t do

3: r1 ← L(q1)
4: r1 ← r1 − χ ∗ (q1 − q2)
5: r2 ← iω0 ∗ q2 − χ ∗ (q2 − q1)
6: q1 ← q1 + δt ∗ r1

7: q2 ← q1 + δt ∗ r2

8: t← t + δt
9: end while

The algorithm differs from standard time stepping by the additional lines 4, 5 and 7. These correspond to
a small number of operations compared to the application of the operator L, in particular, when high-order
schemes are employed; the SR computations are therefore only slightly slower than regular time-stepping,
and they can be just as efficiently parallelized.

Memory requirements. The memory requirement of the present method is twice that of a standard propagator
technique, as the dimension of the phase space is doubled due to the presence of the filtered variables. If
the eigenvalue solver and the time stepper respectively require ncv and nts vectors of size N (the number
of degrees of freedom associated with the discretization of the equations) as workspace, most of the memory
requirement will originate from the storage of these 2N(ncv + nts) values. For the discretization of the
compressible Navier-Stokes equations mentioned in the introduction with ncv = 60, nts = 20 and double
precision complex arithmetics, the program would require 2×5×256×512×80×16 B ≈ 1.6 GB of memory,
which is substantially less than the 80 GB required for the sparse LU decomposition alone.

Effect of the propagation time. The effect of the propagation time on the SR operator is the same as for
the classical propagator method [10]. The actual value of the propagation time ∆t should not influence
which subset of modes will be extracted. The propagation time will however affects the convergence of the
eigenvalue solver. If ∆t is small, only a few time marching steps are required in each iteration; nonetheless,
a large number of iterations will be necessary in order to reach a desired accuracy. It will also require a
large number of restarts, which ultimately may affect robustness. On the other hand, if ∆t is too large, each
iteration will be rather costly since it consists of many time steps, and the method will make less use of the
orthogonalization step. A balance has to be found between the computational time needed to propagate the
solution forward in time, the cost associated with the eigenvalue solver and the robustness of the restarting
procedure.

Time stepping accuracy. Numerical time stepping methods such as Euler and Runge-Kutta schemes cor-
respond to an approximation of the exponential matrix propagator by a matching polynomial. Such an
approximation preserves the modes: it therefore introduces no error on the computed modes. In practical
applications, the time step δt of the time-stepping routine is much smaller than the characteristic time scale
of modes one wishes to compute. As a consequence, the spectrum transformation introduced by numerical
time stepping will be nearly exponential in the range of eigenfrequencies of interest, such that the rules
derived earlier for the choice of parameters remain valid.



Eigenvalue recovery. As explained in § 2.3, recovering the eigenvectors of L is straightforward, as they
correspond to the first N components of the eigenvectors of the SR propagator. The eigenfrequency ω
associated with an eigenvector q of L may conveniently be obtained by computing the Rayleigh quotient

−iω =
〈q|Lq〉
〈q|q〉 . (12)

Alternatively, the eigenvalue Ω of the SR operator may be computed from the eigenvalue λ of the SR
propagator via

Ω =
log(λ)

−i∆t
, (13)

and (9). Method (12) has three advantages over the latter method. First, as the logarithm is multivalued,
the above formula yields the imaginary part only if one knows the Riemann sheet Ω lies on, i.e. for example
that 0 ≤ Ωr ≤ 2π/∆t. Second, the numerical time stepping makes (13) inexact: as discussed in § 2.4,
the transformation introduced by time-stepping is not exactly exponential but rather a polynomial approx-
imation. This problem does not arise for the Rayleigh quotient (12). Finally, (12) minimizes the residual
‖Lq + iωq‖/‖q‖, the norm being that corresponding to the inner product in (12). This inner product may
include weights that select specific flow quantities of regions. In all computation presented in § 3 and 4,
the l2 inner product on the state vector components is chosen as it is the one used in the Krylov–Schur
algorithm.

3. Application to the local and global stability analysis of a compressible jet

3.1. Governing equations for local and global computations

We consider a compressible jet of radius R, with characteristic velocity U0, density ρ0 and tempera-
ture T0 measured on the centerline, discharging into a fluid at rest with density ρ∞ and temperature T∞.
These same quantities are used to make the problem non-dimensional. In a cylindrical coordinate sys-
tem (x, r, θ), the nonlinear governing equations are expressed in terms of the conservative flow variables
q = (ρ, ρux, ρur, ρuθ, ρE)T , where ρ is the density, u = uxex + urer + uθeθ is the flow velocity, and E
denotes the total energy [25]. The Reynolds, Mach and Prandtl numbers are defined as

Re =
U0Rρ0

µ
, Ma =

U0

c0

, Pr =
µCp

κ
= 1, (14)

with c0 the reference speed of sound on the jet axis, Cp the ambient specific heat at constant pressure, µ the
dynamic viscosity and κ the thermal conductivity of the fluid. The fluid properties Cp, µ and κ are assumed
to be constant throughout the flow.

For the purpose of a stability analysis, the flow variables q are decomposed into a steady axisymmetric
base flow qb and unsteady perturbations q′, such that q(x, r, θ, t) = qb(x, r) + q′(x, r, θ, t). The governing
equations are then linearized around qb, and a normal mode ansatz for q′ allows to characterize the temporal
growth or decay of perturbation eigenmodes of the linear system. Both local (§ 3.2) and global (§ 3.3 and
4) normal modes will be considered in the following. Local theory assumes the flow to be infinite, parallel
and uniform in the x− direction. In this case, perturbations are Fourier-transformed in x, leaving only r
as an eigendirection. Global theory, by contrast, considers spatially developing base flows, and accounts for
boundary conditions at the inlet and outlet. In the global framework, both r and x are thus eigendirections,
which leads to a system size that precludes the use of direct eigenvalue solvers.

3.2. Validation: direct computation of local temporal eigenmodes

A validation of the present SR propagator method is conducted by computing the eigenmodes of a parallel

jet of infinite streamwise extent. This test case represents the local stability problem, as it has been widely



used to describe the stability properties of slowly varying flows [13]. The base flow is prescribed as

ub
x =

1

2

{
1 + tanh

[
2

(
r − 1

r

)]}
, (15a)

ub
r = ub

θ = 0, (15b)

T b = S + (1− S)ub
x +

γ − 1

2
Ma2ub

x(1− ub
x), (15c)

ρb = T b−1
, (15d)

from which we obtain the total energy ρbEb = γ−1(γ − 1)−1Ma−2 + ρbub
x
2
/2, with uniform pressure pb =

(γMa2)−1. The ratio of specific heats is taken as γ = 1.4, and S = T∞/T0 denotes the ambient-to-jet
temperature ratio. A hot jet with S = 0.5 is chosen for the present configuration, along with the parameters
Re = 500, Ma = 0.4 and Pr = 1.

Azimuthal periodicity and streamwise invariance justify a normal mode ansatz of the form

q′(x, r, θ, t) = q̃(r) exp [i(kx + mθ − ωt)] + cc, (16)

where cc stands for the complex conjugate. Within the framework of a temporal stability analysis, the
complex frequency ω is sought as a function of prescribed streamwise and azimuthal wave-numbers k ∈ R

+

and m ∈ Z.

One-dimensional reference solution. Upon substitution of the base flow (15) and normal mode perturbations
(16) into the linearized equations of motion, only the radial coordinate direction needs to be discretized. We
use a compact finite-difference scheme [17] for the spatial discretization and impose homogeneous Dirichlet
boundary conditions at r = 150, leading to the discrete local temporal eigenvalue problem of the form

A(k,m)q̃ = ωBq̃ . (17)

All eigenmodes (ω, q̃) are then computed via a QR-algorithm. The most relevant part of the spectrum for
values k = m = 1 is shown in figure 4a. Three families of eigenmodes may be distinguished based on their
frequency ωr, their growth rate ωi, and their spatial distributions of azimuthal vorticity (figure 4b) and
dilatation ∇ · u (figure 4c).

Vortical perturbations localized in the fluid at rest outside the jet form the classical continuous spec-
trum of unbounded shear flows [26] with near-zero real frequency. Due to the finite size of the numerical
domain, continuous branches results in densely clustered discrete modes in the discretized problem. These
are represented by blue symbols that line up close to the ωr = 0 axis in figure 4a. Acoustic waves in the
freestream form two continuous branches, both plotted in red in figure 4a. These are characterized by very
slow temporal decay (ωi ≈ 0) and frequencies in the continuous ranges ωr ≤ −k

√
S/Ma and ωr ≥ k

√
S/Ma

. These cut-off frequency ±k
√

S/Ma corresponds to cylindrical acoustic waves traveling parallel to the jet
axis at the speed of sound c∞ in the outer flow. Real parts of vorticity and dilatation fields are shown in
figures 4b, c as a function of r for particular modes (vortical mode with ω = 2.24.10−6 − 1.49.10−3i in blue
and acoustic mode with ω = 2.03 − 1.91.10−3i in red). A fourth branch of modes is represented by green
symbols in figure 4a. This branch consists of discrete modes with a single unstable one marked by a cross.
The spatial structure of the unstable eigenmode is plotted in green in figures 4b, c. This mode displays strong
vorticity perturbations inside the jet shear-layer around r = 1, and nearly no dilatation perturbation. As
the discrete modes (green symbols in figure 4a) have real frequencies below the acoustic cut-off value (i.e. a
subsonic phase velocity), no sound is radiated by these modes.

3.3. Local eigenmodes via the SR method on a two-dimensional periodic domain

In order to demonstrate the use of the SR technique, it is applied to reproduce a selected part of the
spectrum shown in figure 4a. Local modes may be computed as global eigenmodes on a two-dimensional
(x, r) domain,

q′(x, r, θ, t) = q̃(x, r) exp [i(mθ − ωt)] , (18)
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Figure 4: Temporal spectrum directly computed with the QR algorithm for the parallel base flow given by (15) for Re = 500,
Ma = 0.4 and Pr = 1, and for waves number k = 1 and m = 1. (a) The eigenvalue spectrum is displayed in terms of real
frequency ω′

r and temporal growth rate ω′
i of the modes. Blue symbols correspond to vortical modes in the outer flow; red

symbols to acoustic modes in the outer flow and green ones to shear-layer modes. (b) The real part of vorticity eigenfunction for
three selected modes (indicated by large color crosses in (a)) (Green: ω = 0.471+0.226i, label 1 in (a); red: ω = 2.03−1.91.10−3i,
label 2 in (a); Blue: ω = 2.24.10−6 − 1.49.10−3i, label 3 in (a)). (c) The real part of dilatation eigenfunction is represented for
the same modes as in (b).

with periodic boundary conditions in x and with a streamwise extent 0 ≤ x ≤ 2π/k. Using a two-dimensional
discretization allows the use of the same code here (for a parallel base flow) and in § 4 (for non-parallel base
flow), except for different boundary conditions. The base flow in the present case is still parallel, given by
(15). The objective is to compute a number of least stable discrete eigenmodes of the shear-layer type (green
symbols in figure 4a).

If a standard Krylov technique were to be applied to the propagator of the linear equations of motion
alone, only the single unstable shear-layer mode could be extracted, all other discrete modes being masked
by the less stable acoustic (red in figure 4) or vortical (blue) branches. The SR technique allows to stabilize
all modes outside a region of interest of the spectrum, and thereby may give access to otherwise masked
parts of the spectrum, in particular here by stabilizing the continuous branches.

The extended linear system (6) is discretized on an orthogonal grid, resolving the domain 0 ≤ r ≤ 15,
0 ≤ x ≤ 2π/k with 30 × 256 points. Explicit 5th-order centered finite differences in combination with a
spatial filtering scheme [6] are used for the spatial derivatives. The spatial filter merely suppresses numerical
instabilities of the finite-difference scheme; it is unrelated to the temporal filtering employed by the SR
method. Matrix-free time stepping of the extended linear equations is performed using a 3rd-order Runge–
Kutta algorithm. For the purpose of validation against the results of § 3.2, only modes with a streamwise
wavenumber k = 1 are sought, and higher harmonics of the periodic domain are continuously filtered out
during the time stepping, by means of an FFT in x.



Choice of transformation parameters. In order to focus on the green branch represented in figure 4a, appro-
priate parameter values for χ, τ and ω0 must be chosen. As discussed in § 2.2, a value of χ′ = 1 is maintained,
such that χ = τ . The frequency shift ω0 selects the region of interest in the frequency plane; a choice of
ω0 = 1 + 0.2i has been found to be suitable. The parameter τ determines the width of the bandpass filter.
It should be chosen sufficiently small to efficiently damp undesired modes (here, the blue and red branches)
but large enough such that the modes of interest achieve growth rates ωi & ω0,i − 2τ, as discussed in § 2.3.
A value of τ = 0.5, yielding χ = 0.5, represents a good compromise for the present case. The propagation
time is set to ∆t = 0.5.

Results. Ten eigenvalues obtained with the SR method are shown as black circles in figure 5, alongside the
reference solution (identical to figure 4a). The agreement is excellent, with relative errors smaller than 10−4

on both the eigenvalues and the eigenmodes (in L∞ norm). The spectral transformation with the present
choice of parameters successfully selects the least stable shear-layer modes. Contour lines in figure 5 indicate
the transformed growth rate Ωi(ω) that governs the mode selection by the SR method.
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Figure 5: Application of the SR method to the computation of local modes of a compressible jet flow for the same parameter
settings as in figure 4. The spectrum from figure 4a is reproduced with the same conventions. The ten modes computed with
the SR method are denoted by black circles. The dotted lines represent isocontours of the growth rate Ω+

i of the filtered
propagator, based on parameters ω0 = 1 + 0.2i and τ = χ = 0.5, confirming that the computed eigenvalues correspond to the
largest Ω+

i . The insert on the bottom right of the figure shows a close-up view on the region marked by a black rectangle

4. Application: global eigenmodes of a compressible jet

4.1. Non-parallel base flow

The SR method is now applied to compute global modes (18) of a non-parallel jet. The geometry of
the computational domain is represented in figure 6. The jet exits from an idealized nozzle, modeled as
an infinitely thin adiabatic wall at r = 1 and x ≤ 0. Only the upper half-plane r > 0 is resolved in the
calculations, and appropriate symmetry conditions for axisymmetric flow are imposed on the jet axis r = 0.
In order to control the jet profile at x = 0 (diffusive effects inside the pipe can be particularly important at
low Reynolds and high Mach numbers), velocity and temperature profiles are imposed at x = x0, close to
the jet nozzle. The Navier–Stokes equations are solved downstream of x0 (domain II in figure 6a), with local
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Figure 6: Computational domains for (a) base flow and (b) global mode computations. The parameter values for these
computations are: xmin = −200, xmax = 300, rmax = 250, x0 = −2, L+
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parallel in region I, whereas the Navier–Stokes equations are solved in region II.

one-dimensional (LODI) boundary conditions [21] on the numerical boundaries at xmin, xmax and rmax.
The same explicit finite-difference scheme as described in § 3.3 is used. A steady solution of the nonlinear
Navier–Stokes equations, computed via the SFD method of [1] for Re = 100, Ma = 0.75, Pr = 1 and S = 1
is taken as a base flow. A parallel flow region is added upstream of x0 (domain I in figure 6a) to extend
the base flow to the domain used for the linear stability calculations. Axial velocity and angular vorticity
distributions of the spatially spreading base flow are shown in figure 7a, b. The momentum thickness

θ(x) =

∫ α

0

ρb(r, x)ub(r, x)

ρb(0, x)ub(0, x)

(
1− ub(r, x)

ub(0, x)

)
rdr, α =

{
1 x ≤ 0
∞ x > 0

is displayed in figure 7c, and selected axial velocity profiles are shown in figure 7d.
Temporal eigenmodes of the linearized Navier–Stokes equations, commonly referred to as “global modes”,

are computed on the domain displayed in figure 6b. Non-reflecting boundary conditions given by [7] are
employed at the inflow, outflow and upper boundary. Furthermore, perturbation quantities are artificially
attenuated in sponge layers [8], indicated by the outer gray regions in figure 6b, in order to further minimize
spurious reflections. Only axisymmetric modes (m = 0) are computed, and symmetry conditions on the
jet axis are imposed accordingly. The numerical domain spanned by −200 ≤ x ≤ 300 and 0 ≤ r ≤ 250 is
discretized with 1024× 512 grid points.

Five eigenvalues were requested for each of nine shift parameters ω0 with 0.3 ≤ ω0,r ≤ 0.75 and
ω0,i = 0.05, represented by black diamonds in figure 8a. Note that SLEPc may return more than the
requested number of eigenvalues. Parameters τ = χ = ∆t = 0.1 were used in all calculations. The resulting
eigenfrequencies are represented in figure 8a in the complex ω- plane and form a discrete branch of solutions.
For each value of ω0, one isocontour of the growth rate Ω+

i of the filtered propagator is drawn, corresponding
to the growth rate of the most stable mode computed with each particular shift; no eigenfrequency other
than those computed should lie above these parabola-shaped curves.

For ω0 = 0.8 + 0.05i, five eigenvalues were first requested, as for the other values of the frequency shift.
The computation was then continued to yield a total of fifteen modes. This portion of the spectrum is
displayed in more detail in figure 8c, together with iso-contours of the growth rate of the filtered propagator.
The first five modes that have been found are marked by red circles. Among the additional requested modes,
several are found to lie on a separate, slightly more attenuated branch. The spatial structure of the real
part of vorticity perturbations associated with three eigenmodes of the upper branch, marked by labels in
figure 8, are displayed in figure 9. Perturbations are concentrated in the jet shear layer region, suggesting
an inflectional instability mechanism. The time evolution of these modes show that the vortical structures
represented in figure 9 propagate downstream at a phase velocity of about half the jet centerline velocity; as
a consequence, their typical axial wavelength decreases with increasing real frequency. Modes belonging to
the more attenuated branch, which is only detected in figure 8 for the shift ω0 = 0.8 + 0.05i, display a very
similar structure (not shown).



0 20 40 60 80 100
x

0
2
4
6
8

10
12
14
16
18

1/
θ

(c)

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u
x

(d)

x = −2

x = 0

x = 10

x = 20

(14a)

Figure 7: Base flow for the global linear stability study of a spatially developing jet with Re = 100, Ma = 0.75, Pr = 1 and
S = 1 (unheated). The axial velocity and angular vorticity distributions are respectively displayed in (a) and (b). Only a
portion of the computational domain is shown. The evolution of the momentum thickness θ is represented in (c). In (d), axial
velocity profiles are at various locations are shown together with the profile used in § 3.2 and 3.3.



Fifteen modes were computed for a large frequency shift ω0 = 5.1. These are represented in figure 8b
by red and green symbols. Their dilatation fields, shown in figure 10, characterize these modes as being of
acoustic nature. Comparing the real and imaginary parts (not shown) of the dilatation fields in the pipe, it
appears that some modes correspond to acoustic waves propagating downstream inside the duct and being
scattered at the nozzle exit (green symbols in figure 8b). Others correspond to acoustic waves emanating
from a location close to the nozzle exit (red symbols in figure 8b). These modes propagate upstream in the
inlet duct.

One should keep in mind that free-stream vortical modes with near zero decay rates are also present in
the spectrum, similar as in the local analysis of § 3.2. Without shifting and relaxing of the propagator, all
modes shown in figure 8 would be masked by those least stable modes. In practice, however, the compu-
tation of these modes is challenging, as the separation between eigenvalues is very weak (on the order of
1/ [Re(xmax − xmin)]). No result could be converged with sufficient accuracy for this family of modes, and
they are not shown.

4.2. Convergence

Convergence of the eigenvectors through the iterations of the Krylov-Schur algorithm is usually monitored
in terms of a residual associated with the operator the algorithm is applied to, i.e the SR propagator in the
present case. Denoting by Qj,p the estimated pth leading eigenvector after the jth restart of the Krylov-Schur
algorithm, and by λj,p the corresponding eigenvalue, the residual is estimated

ej,p =
‖ exp(∆tF)Qj,p − λj,pQj,p‖

‖Qj,p‖
,

and Qj,p is accepted as converged if the estimation is smaller than a user-chosen tolerance ǫ. A typical
evolution of the estimation of this residual is displayed in figure 11a. Non-monotonous convergence is
observed, consistent with the fact that, in the present case for which the operator L is non-Hermitian, the
filtered propagator is non-Hermitian as well. For ω0 = 0.45 + 0.05i, computations were performed with
values ǫ = 10−3 (× in figure 11b), 10−4 (◦) and 10−5 (+). Five modes were requested in each computation.
The resulting spectra are shown in figure 11b. Significant scattering of the computed eigenvalues is noticed
for ǫ = 10−3. The absolute scattering being of the same order of magnitude in the real and imaginary
directions, relative errors in the real part of the eigenfrequency are much smaller than in the growth rate.
The scattering of eigenvalues becomes less important as requested accuracy increases. With ǫ = 10−4 and
ǫ = 10−5 eigenvalues seem to converge to a line trend, and eigenvalues in the overlapping region from the
two shift values ω0 = 0.45 + 0.05i and 0.5 + 0.05i are in reasonably good agreement, as shown in figure 11c.
However, this measure of convergence depends on the spectral transformation used, in particular here on ∆t
and τ . A more meaningful measure of accuracy may be defined based on the original operator L:

e′j,p =
‖Lqj,p + iωj,pqj,p‖

‖qj,p‖
with Qj,p = (qj,p, qj,p)

T

These residuals are computed after convergence (denoted by j =∞), and are displayed in figure 11d. A first
observation is that the values differ significantly from the values of the e∞,p ≈ ǫ discussed earlier, measured
with respect to the SR propagator. Furthermore, the values of e′

∞,p decrease only slowly with ǫ; values on
the order of 3%, 2% and 1% are found for ǫ = 10−3, 10−4 and 10−5 respectively. This saturation seems to be
due to the spatial filtering which is applied during time-stepping in order to maintain stability. It introduces
a slight modification of the propagator which is not taken into account when the Rayleigh quotient (12) is
taken.

In order to achieve residuals e′ ≤ 2.2%, values of ǫ ranging from 10−4 to 10−7 had to be used for the
computations presented in the previous section, depending on the shift ω0 (larger values of ω0,r requiring
smaller values of ǫ in the present case).



5. Conclusion

A new numerical procedure for the solution of large eigenvalue problems has been presented. A relaxation
technique using a first-order temporal bandpass filter is coupled to to the linearized equations of motion,
such that the least stable eigenmodes of the filtered system lie in a prescribed frequency band of interest
centered around a shift frequency. These modes are then recovered through propagation over a finite time in-
terval, using standard eigenvalue extraction techniques. This “shift-relax” transformation therefore requires
no solution of linear systems, which are computationally expensive or even untractable for global stability
problems involving two- or three-dimensional flows. Although not as flexible as the classical “shift-invert”
transformation or its variants, the present method has the advantage of considerably lower memory require-
ment, making it suitable for the analysis of complex two- or three-dimensional flow geometries. Another
advantage lies in the ease of implementation: only a simple filter equation needs to be added to an existing
simulation code in order to perform eigenmode extraction. No matrix needs to be built, and no precondi-
tioning is required. Finally, the algorithm can be parallelized as efficiently as a regular time stepper, as the
filter is local in space.

Acknowledgments

This work was supported by DGA grant number 2009.60.034.00.470.75.01. The authors are thankful to
Miguel Fosas and Patrick Huerre for their comments.



0.2 0.3 0.4 0.5 0.6 0.7 0.8
ωr

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

ω
i

(a)

9a

9b 9c

0 1 2 3 4 5 6
ωr

−0.20

−0.15

−0.10

−0.05

0.00

ω
i

10a 10b

(b)

0.76 0.78 0.80 0.82 0.84
ωr

−0.06

−0.05

−0.04

ω
i

(c)

-0.031

-0.032-0.033

-0
.0

34

-0
.0

36
-0

.0
3
7

Figure 8: Eigenvalues of axisymmetric modes in an isothermal jet at Re = 100, Ma = 0.75 and Pr = 1 computed using the
SR method. Tolerance was set to ǫ = 10−4 for ω0,r ≤ 0.5, ǫ = 10−5 for 0.5 < ω0,r ≤ 0.8 and ǫ = 10−7 for ω0,r = 5.1.
(a) Low frequency shear layer modes. Shift positions are indicated by diamonds. For each shift, an isocontour of the filtered
propagator growth rate is represented; its value corresponds to the least amplified mode computed by the Krylov-Schur solver.
For ω0 = 0.45 + 0.05i, the shift, the modes and the isocontour are represented in blue. (b) Low frequency vortical modes are
shown together with higher frequency acoustic modes. (c) Close-up on the 15 modes computed for ω0 = 0.8 + 0.05i, showing
the existence of two branches: dots correspond to the first five modes computed, crosses correspond to the next ten. Labels
correspond to the modes for which the vorticity or dilatation field is displayed in figure 9 and 10.



Figure 9: Real part of the vorticity fields of typical eigenmodes, labeled in figure 8a, in an isothermal jet at Re = 100, Ma = 0.75
and Pr = 1. (a) ω = 0.26 − 0.026i. (b) ω = 0.50 − 0.040i. (c) ω = 0.71 − 0.047i.

Figure 10: Real part of the dilatation fields of typical eigenmodes, labeled in figure 8a, in an isothermal jet at Re = 100,
Ma = 0.75 and Pr = 1. (a) ω = 4.9 − 0.17i. (b) ω = 5.1 − 0.18i.
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Figure 11: Convergence features. (a) A typical evolution of the estimated residual of the leading eigenvalue with the number
of restarts. (b) Spectra computed with ω0 = 0.45 + 0.05i and ǫ = 10−3, 10−4 and 10−5 (respectively represented by ×, ◦ and
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Residual based for the computations of (b).



Appendix A. Distinction between the two transformed eigenvalues

The eigenvalue transformation is given in terms of the scaled variables by (10). Let us introduce

Ω̃ =
Ω′ + i√

χ′
, ω̃ =

ω′ + i(1− χ′)√
χ′

.

Equation (10) then reads

Ω̃2 − ω̃Ω̃ + 1 = 0. (A.1)

The solutions of this second-order polynomial are given by

Ω̃ =
1

2

(
ω̃ ±

√
ω̃2 − 4

)
.

Let α =
√

ω̃2 − 4. One of these roots has a positive imaginary part and the other one a negative one if
|ω̃i| ≤ |αi|. In order to prove that this condition holds, real and imaginary parts are introduced in the
definition of α:

(α2
r − α2

i ) + 2αrαii = (ω̃2
r − ω̃2

i )− 4 + 2ω̃rω̃ii

so

ω̃rω̃i = αrαi α2
r − α2

i = ω̃2
r − ω̃2

i − 4.

The variable αi can then be written as

α2
i = ω̃2

i + 4− (ω̃2
r − α2

r) = ω̃2
i + 4−

(
α2

i

ω̃2
i

− 1

)
α2

r

which finally gives

α2
i =

ω̃2
i + 4 + α2

r

1 +
α2

r

ω̃2
i

= ω̃2
i

ω̃2
i + 4 + α2

r

ω̃2
i + α2

r

≥ ω̃2
i .

Let Ω̃+ denote the root of (A.1) with a positive imaginary part and Ω̃− the one with the negative
imaginary part. In terms of the primed variables, this corresponds to

Ω′−

i ≤ −1 ≤ Ω′+

i .
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Modal and transient dynamics of jet flows
X. Garnaud,1, a) L. Lesshafft,1 P.J. Schmid,1 and P. Huerre1
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The linear stability dynamics of incompressible and compressible isothermal jets are
investigated by means of their optimal initial perturbations and of their temporal
eigenmodes. The transient growth analysis of optimal perturbations is robust and
allows physical interpretation of the salient instability mechanisms. In contrast, the
modal representation appears to be inadequate, as neither the computed eigenvalue
spectrum nor the eigenmode shapes allow a characterization of the flow dynamics in
these settings. More surprisingly, numerical issues also prevent the reconstruction
of the dynamics from a basis of computed eigenmodes. An investigation of simple
model problems reveals inherent problems of this modal approach in the context of
a stable convection-dominated configuration. In particular, eigenmodes may exhibit
an exponential growth in the streamwise direction even in regions where the flow is
locally stable.

I. INTRODUCTION

Jets are known to sustain large-scale perturbation structures, both in the laminar and
turbulent flow regime. These structures are commonly interpreted as wavepackets devel-
oping within a laminar steady base state, or a turbulent mean flow, due to inflectional
instability mechanisms. The spatial shape of the wavepacket envelope then depends on
the downstream development of the base or mean flow. In order to fully account for the
effects of non-parallelism, the present study seeks to identify wavepacket structures in the
form of temporal eigenmodes of the linearized equations of motion in a two-dimensional
domain. Linear “global modes” of this kind have been investigated for a large variety of
flow configurations in recent years; examples include vortex shedding in the cylinder wake1

or in a three-dimensional jet in crossflow2, and the flapping of a separated boundary layer3.
Weakly nonlinear flow dynamics may in some cases be described by a combination of several
dominant global modes4,5; furthermore, passive6 as well as active7 control strategies for the
suppression of flow oscillations have been devised based on the knowledge of the global mode
spectrum. However, Barbagallo et al.8 showed that a model reduction based on eigenmodes
successfully captures the unstable structures but fails to represent the stable dynamics.

All of the above examples represent oscillator-type flows, where intrinsic flow oscillations
observed in the nonlinear regime are found to be linked to the presence of at least one
unstable linear global mode. In open shear flows, global instability is typically associated
with the presence of a locally absolutely unstable flow region9, although feedback mecha-
nisms may also be responsible for the flow destabilization. In contrast, amplifier-type flows
are characterized by a stable global eigenspectrum. Consistent with the notion of local
convective instability, non-normal interaction of stable global modes may give rise to tran-
sient perturbation growth10, but ultimately all perturbations decay in time. Jets, unless
sufficiently hot11,12, are prominent examples of amplifier-type flows. Crow & Champagne13

measured the flow response in low-Mach number turbulent jets as a function of the forcing
frequency, and found maximum amplification to occur at a Strouhal number of 0.3. This
approximate value for the preferred mode has been confirmed in numerous later studies to
be remarkably universal over a large range of operating conditions, even in the supersonic
regime14. Huerre & Monkewitz9 hypothesized that the preferred mode was the manifesta-
tion of a “slightly damped oscillator” character of the flow, i.e. that the strong flow response
may be interpreted as a resonance of the least stable global mode in the presence of external

a)Electronic mail: garnaud@ladhyx.polytechnique.fr
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forcing. Such an eigenmode has been identified by Cooper & Crighton15 by extending the
dispersion relation of the local shear-layer mode into the complex X-plane. The authors
report a Strouhal number based on the diameter of 0.44 for this mode, in agreement with
experimental observations16. This analysis is based on the hypothesis of the contribution of
one single local mode to the global response and of a slow streamwise development of the
flow.

Motivated by these results, the first objective of the present study is to compute the global
spectrum of subsonic jets. A laminar steady state as well as a turbulent mean flow are
considered in the incompressible limit, and the turbulent mean flow is further investigated
in the compressible setting at a Mach number of 0.75.

Stable global spectra have been successfully computed for supersonic jets by Nichols &
Lele17,18. In weakly non-parallel laminar settings, these calculations required extremely
large numerical domains, extending over up to 800 jet radii in the downstream direction,
in order to capture the wavepacket maximum and reach convergence. In turbulent mean
flows obtained from Reynolds averaged calculations, the dominant modes were sufficiently
localized near the nozzle to be accurately resolved on much shorter domains. However,
difficulties with the computation of stable global modes have been reported for a variety
of flow configurations. Barkley et al.19 obtained easily converged modes that are localized
within the recirculation bubbles behind a backward-facing step, but no convergence was
achieved for a family of stable modes exhibiting spatial growth far downstream of the step;
these modes therefore were not further explored. Similar problems were encountered in
planar wakes with surface tension20,21. In a flat plate boundary layer22, all modes are
stable and spatially growing. Convergence with respect to the domain length was achieved
in this case through the use of carefully designed boundary conditions, based on the local
dispersion relation. Amplitudes at the in- and outflow differed by two orders of magnitude.
Much larger variations occurred in the analysis of a Batchelor vortex by Heaton et al.23;
amplitude differences on the order of 106 were found to prevent convergence. The second and
principal objective of the present paper is to expose the root cause for such computational
problems of stable global modes, and to delineate circumstances under which convergence
may be impossible to achieve.

It has been shown that individual eigenmodes may carry a limited physical meaning in
the context of amplifier flows and that non-modal stability analyses are more suitable24,25

to represent instability features in this case. An eigenmode representation of the dynamics
can however be used to carry out these analyses, and previous studies have shown that
this provides a robust means of analyzing non-normal effects22,26 as well as of performing
control7 for weakly unstable flows. Optimal perturbations are therefore computed in order
to characterize transient growth phenomena in jets. Results obtained using both an adjoint
method27 and a modal representation of the propagator28 are discussed.

The significance and challenges of a modal representation of the dynamics for advection
dominated flows is first investigated by means of model systems in § II. The flow configura-
tion of a round jet with a solid nozzle is then presented in § III, together with the numerical
procedure and the different base flows that are investigated. The results of optimal pertur-
bation (§ IV) and eigenmode (§ V) computations are then presented. Although most of the
discussion is established in the context of incompressible flows, compressibility effects are
also mentioned. Conclusions are offered in § VII.

II. MODEL PROBLEMS: EIGENMODES OF ADVECTIVE SYSTEMS

Reddy & Trefethen29 investigated the features of the spectrum and pseudo-spectrum
of a 1D convection-diffusion problem with homogeneous Dirichlet conditions at the inflow
and outflow, a well posed Sturm-Liouville type of problem. The eigenmodes exhibit an
exponential spatial growth, and a boundary layer forms at the outflow. In contrast in the
model under consideration in Cossu & Chomaz30 eigenmodes have a Gaussian envelope.
The two models presented below aim at reproducing some of the features of a flow where
instability mechanisms act in an upstream region, creating structures that are convected



3

downstream by a neutrally stable flow. These models show features similar to the problem
considered by Reddy & Trefethen and provide an understanding of the relationship between
the decay rate of a mode, its spatial structure and local instability features.

A. Advection equation with upstream boundary forcing

The simplest possible model for the evolution of perturbations in an advection-dominated
flow is given by a pure advection equation with one spatial direction x and a constant ad-
vection velocity U0 > 0. The system is forced by an unsteady upstream boundary condition
with its own dynamics,

∂ψ

∂t
(x, t) + U0

∂ψ

∂x
(x, t) = 0 x > 0, (1a)

ψ(0, t) = ψ0(t), (1b)

ψ̇0(t) = −aψ0(t) a ∈ C. (1c)

The dynamics of this system are imposed by the linear ordinary differential equation (1c).

The system (1) only has one single mode of the form ψ(x, t) = ψ̃(x) exp(−iωt), with eigen-

vector ψ̃(x) and eigenvalue ω given by

ψ̃(x) = exp

(
a

U0
x

)
, ω = −ia. (2)

If the system is stable, ar ≥ 0 (subscripts r and i denote, respectively, the real and imaginary
parts of complex scalars and vectors), the amplitude of the mode grows exponentially in x
and diverges as x → ∞. A lower advection velocity U0 leads to stronger spatial growth of

ψ̃(x).
It is quite clear from this simple example how a temporally decaying source of perturba-

tions under pure advection gives rise to a spatially growing structure, since all perturbations
generated at a later time must be exponentially smaller than those generated earlier. Fur-
thermore, this model also serves to exemplify the occurrence of spurious numerical modes.
If (1) is discretized using a first-order upwind scheme on a uniform mesh, the mode (2)
is recovered independently of the size of the numerical domain, but a second eigenvalue is
found as −1/h, where h is the grid spacing. The corresponding spatial structure is localized
at the outflow discretization point. If a general non-uniform mesh with n points is used,
then n distinct modes exist, localized anywhere on the grid. In this particular example,
n − 1 of them have no physical meaning because they do not correspond to modes of the
continuous problem. In a more general case where no a priori knowledge about the modal
structure is available, care must be taken with numerically computed modes. Although the
discretization method is suitable for transient problems, it is possible that even the least
stable modes computed numerically may have no physical meaning.

B. Unforced advection–diffusion–reaction equation

It may be argued that the above model is indeed too simple for a comparison with jet
dynamics, since information can only propagate downstream. This property, however, is
not the cause for the exponential spatial growth. A similar reasoning can be applied to the
linear advection–diffusion–reaction equation (also referred to as linear Ginzburg–Landau
equation) , given as

∂ψ

∂t
+ U0

∂ψ

∂x
= −a(x)ψ +

∂2ψ

∂x2
x > 0, (3a)

ψ(0, t) = 0. (3b)
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In this generalized form, with the extra term a(x)ψ, (3a) is often referred to as the linear
Ginzburg–Landau equation in the literature. At each individual location x, the system is
known31 to be locally stable if a(x)>0, convectively unstable if −U2

0 /4 < a(x) < 0 and
absolutely unstable if a(x)<− U2

0 /4.

Cossu & Chomaz30 considered solutions of a problem of the form (3a) that are bounded
in R, and assumed the instability parameter a(x) to be of a parabolic shape a(x) = αx2+β,
with α > 0, such that the spatial and temporal growth rates tend to −∞ as x → ±∞.
Eigenmode shapes are recovered analytically, and they are found to decay as exp(−x2) for
large x.

On the contrary, if a reaches a finite value a∞ as x→ ∞, perturbations do not experience
arbitrarily strong spatial or temporal decay. For a demonstration of the spatial behavior, this
limiting value a∞ can be taken as 0 without loss of generality, as it only affects the temporal
eigenvalue but not the corresponding eigenfunction. In order to model a situation where
instability mechanisms are active around a given position, while passive convection and
diffusion of perturbations is dominant throughout the rest of the domain, let the instability
parameter a(x) be of the form

a(x) = a0(i− 1)e−(x−2)2 , a0 > 0. (4)

In order to numerically solve (3)–(4) on the interval [0, xmax], a boundary condition has to be
imposed at the outflow x = xmax. While a homogeneous Dirichlet boundary condition can
be imposed for a(x) = αx2+β with α > 0, this would result in the formation of a boundary
layer at the outflow in our present case32. In order to take into account convective effects at
the outflow, ψ′′(xmax) = 0 is imposed. This “convective outflow”-type boundary condition
neglects viscous effects at x = xmax. Results are qualitatively similar when imposing a
homogeneous Neumann boundary condition, but the truncation effect is stronger.

Figure 1 shows the effect of the different parameters on the spectrum as well as on the
leading eigenmode ψ(0). Figure 1(a) shows that, for a0 = 1, the system changes from
globally unstable to stable as U0 is increased. At low values of U0, the leading eigenmode
reaches a maximum around x = 2 and decays exponentially downstream (figure 1(b)). As
U0 increases, the temporal decay of the mode becomes stronger, and the spatial maximum
eventually disappears: exponential growth is observed essentially throughout the entire
domain. As observed previously22, the spatial growth rate of the global mode corresponds
to the local spatial growth rate at the global frequency.

For U0 = 4 and U0 = 5, the largest values of U0 considered in figure 1(a, b), the overall
shape of the spectrum completely changes. Figure 1(b) shows that in these cases, exponential
growth occurs throughout the domain, and the amplitude of the mode varies by a factor of
1016 between x = 0 and the outlet at x = 25: the modes, and in particular the region 1 <
x < 3 where instability mechanisms act, cannot be resolved numerically. This phenomenon
can also be seen as the length of the domain is increased for fixed U0 and a0. The same
behavior is observed for a(x) ∈ R, in which case the spectrum should lie on the imaginary
axis, indicating that none of these computed modes actually correspond to modes of the
continuous problem. Figure 1(c) shows that the eigenvalues returned by the eigensolver
for U0 = 5 approximately lie on the 10−14 contour of the pseudospectrum of the discrete
operator which, in this case, does not provide a good approximation to the spectrum. In
situations where the amplitude of the mode cannot be represented throughout the domain,
even the QZ algorithm fails to compute an accurate approximation to the discrete spectrum.

The relative effect of the instability parameter and of the advection velocity is summarized
in figure 1(d), where the spatial growth rate of the leading eigenmode is represented as a
function of the two parameters U0 and a0. From this growth rate, it is possible to evaluate
the maximum domain length for which the computation is possible using double precision
arithmetic. The dashed lines displayed in figure 1(d) correspond to values of (a0, U0) for
which the numerical truncation errors prevented the computation.
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FIG. 1. (color online) (a, b): effect of U0 on the leading eigenmodes for the advection–diffusion–
reaction model (for xmax = 25 and a0 = 1). The least stable part of the eigenvalue spectrum
is shown in (a), and the leading eigenmode for each value of U0 (represented in (a) by circles)
are displayed in (b). (c): spectrum (+ symbols) and iso-contours of the pseudo-spectrum for
xmax = 25, U0 = 5 and a0 = 1 (logarithmic scale). (d): Spatial growth rate of the leading global

mode (measured as ψ(0)′(10)/ψ(0)(10)) as a function of parameters a0 and U0. The solid contour
represents the limit between growing and decaying modes, the dashed lines gives the maximum
value of the advection parameter for which computation is possible in a domain of a given length
(indicated on the curve).

C. Conclusions from model problems

The above examples have shown that the spatial behavior to be seen in § VA for the
eigenmodes of the Navier–Stokes equations is not inconsistent, and that it does not corre-
spond to a spatial instability within a local framework. In the case where the flow dynamics
are dominated by convection and diffusion effects, the downstream evolution of the modes
results from two opposing mechanisms: the local stability of the flow tends to decrease the
amplitude of the mode in the streamwise direction, but the advection of the globally stable
structures has the opposite effect. In the case of a parabolic profile for a, the local stability
eventually dominates for large x and the global modes decay to 0. On the contrary for
a→ a0 as x→ ∞ the local stability is not necessarily strong enough to prevent exponential
spatial growth. The second model pointed out that, when convective effects dominate as
x → ∞, the size of the computational domain should be small enough that the amplitude
of the mode can be resolved throughout the domain, otherwise numerical accuracy becomes
problematic as the 10−15-pseudospectrum can extend far from the spectrum29. The follow-
ing section will present details on how this affects the computation and the convergence of
modes for the Navier–Stokes system.
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III. SETUP OF THE JET PROBLEM

A. Flow configuration

a. Incompressible setting

A cylindrical jet of a Newtonian fluid with viscosity ν∗, of radius R∗ and exit velocity
U∗
0 is considered. The two latter quantities are used to make lengths and velocities non-

dimensional. The outer fluid is at rest. The Reynolds number is taken as

Re =
U∗
0R

∗

ν∗
= 103.

Frequencies f∗ will be reported in terms of the non-dimensional circular frequency ω, related
to the Strouhal number St as

St =
2f∗R∗

U∗
0

=
ω

π
.

The axisymmetric flow domain, described in terms of cylindrical coordinates r, θ and x,
is represented in figure 2(a). The steady solution of the non-linear Navier–Stokes equations
(see § III B) is assumed to be axisymmetric. This assumption is no longer made for the
perturbations, but in a linear context all perturbation quantities can be decomposed into
independent Fourier-modes in θ, by introducing the azimuthal wavenumber m ∈ N. Con-
sequently, only the two-dimensional (r, x) plane needs to be discretized for both non-linear
and linear calculations.

The boundary of the computational domain Ω consists of Γi, Γw,Γt,Γo and Γa, corre-
sponding to the inlet, a solid wall, the outer radial boundary, the outflow and the jet axis.
The inflow velocity is imposed on Γi, a no-slip condition on Γw, and stress-free boundary
conditions are applied on Γt

33:

1

Re

∂u

∂n
− pn = 0,

where n is the outgoing normal at the boundary (cf. equation 10.67 in Ref. 33). Compat-
ibility conditions on Γa ensure a smooth solution on the axis34. Unless stated otherwise,
stress-free boundary conditions are imposed at the outflow Γo.

The length of the pipe included in the numerical domain is set to xp = 5, and it has
been verified that setting the domain height to rmax = 10 does not affect the results of all
incompressible calculations.

b. Compressible setting

In addition to the flow parameters introduced above, the compressible setting is charac-
terized by density and temperature scales ρ∗∞ and T ∗

∞, defined as the respective values in
the outer fluid at rest. Natural choices for the Mach and Prandtl numbers are

Ma =
U∗
0

c∗∞
, Pr =

µ∗C∗
P

κ∗
,

where c∗∞ =
√
γr∗T ∗

∞ denotes the ambient speed of sound and Cp the specific heat at
constant pressure.

In order to capture the acoustic radiation, the typical extent of the numerical domain has
to be of the same order in the axial and radial direction. High resolution Finite Differences
(FD) on a rectilinear grid are used to treat such a large problem. Consequently, the geometry
(schematically displayed in figure 2(b)) is slightly different than in the incompressible case.
In compressible studies, the jet pipe is modeled as an infinitely thin adiabatic wall located
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FIG. 2. Flow configuration for (a) incompressible and (b) compressible computations . The incom-
pressible Navier–Stokes equations are solved on the 2D domain Ω using a Finite Element formu-
lation, with an inflow boundary condition (BC) on Γi (thin solid line), a no slip BC on Γw (thick
solid line), a stress-free BC on Γo (dashed line) and compatibility conditions on the axis Γa (dash-
dot line). No sponge layers are used in this case. The compressible Navier–Stokes equations are
discretized using high order Finite Differences (FD) on the rectangular domain represented in (b).
The shaded regions correspond to sponge layers, and the presence of an infinitely thin adiabatic
wall for r = 1 and x ≤ 0 is taken into account by means of appropriate FD schemes.

FIG. 3. Axial velocity field of the two base flows. (a) : laminar base flow, computed as a steady
solution of the Navier–Stokes equations. (b) : turbulent mean flow, adapted from an analytical
model36.

at r = 1 and x ≤ 0. Its presence is taken care of by using appropriate FD schemes. The
treatment of the far field boundary conditions depends on the type of study performed.
As will be shown later, the eigenmodes of the linearized Navier–Stokes equations are not
spatially localized, so an accurate treatment of the outer boundaries is needed. To limit as
much as possible the reflection of vortical or acoustic waves, the non-reflecting boundary
conditions described by Bogey and Bailly35 are used together with sponge layers. This is
not required for the computation of the optimal perturbations which have a limited spatial
extent. In the latter case, the sponge layers alone suffice to ensure that the solution decays
to zero at the outer boundaries without affecting the flow in the physical region.

B. Base flows

Two types of base flows are investigated in this study: a laminar steady-state solution
of the Navier–Stokes equations, and a parametric model of a turbulent mean flow. The
incompressible analysis is performed on both these base flows, whereas only the turbulent
case is considered in the compressible study.
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a. Laminar steady state

A steady flow state is computed as an exact solution of the Navier–Stokes equations (see
§III C). The inflow velocity is prescribed on Γi as

ux(−xp, r) = tanh (5(1− r)) ur(−xp, r) = 0 uθ(−xp, r) = 0.

This profile has a momentum thickness

δ =

∫ 1

0

rux(1− ux) dr ≈
1

20
.

Stress-free boundary conditions are employed at the outflow Γo. The resulting base flow is
weakly non-parallel, as seen in figure 3(a). A slight growth of the boundary layer in the
pipe leads to an increase in the centerline velocity between x = −xp and 0, so that the exit
centerline velocity is 1.06 at x = 0.

b. Turbulent mean flow

Based on experimental measurements, Monkewitz & Sohn36 proposed a model for the
turbulent mean flow of compressible jets. The flow field comprises two regions: a potential
core extending over a distance of eight jet radii downstream of the nozzle, and an adjoin-
ing self-similar region with Gaussian profile shapes. This model is extended in our study
by a parallel flow region inside the pipe, which smoothly connects to the free jet over the
interval 0 ≤ x ≤ 1. The full model is described in detail in Garnaud et al.37. The resulting
streamwise velocity field is displayed in figure 3(b) for the zero-Mach-number case. The
formulation does take into account compressibility effects, and finite-Mach-number configu-
rations are used for the compressible analysis. The inflow momentum thickness is prescribed
as δ−1 ≈ 23, similar to the laminar case.

Following Hussein & Reynolds38, the stability of turbulent flows can be analyzed using a
triple decomposition of the flow field into a mean flow, coherent perturbations and fine-scale
turbulence. Using this decomposition, turbulent scales affect the motion of instability waves
through Reynolds stresses, for which a closure model needs to be provided39,40. For turbulent
jet flows, successful stability analyses41,42 have been performed while neglecting the effect
of Reynolds stresses, and this approach is also followed here as a first approximation. Local
stability analyses show that perturbations with low azimuthal wavenumber m are amplified
in the potential core region, whereas the self-similar downstream region of the base flow is
unstable only to helical m = 1 perturbations.

C. Numerical methods

a. Incompressible setting

The incompressible Navier–Stokes equations are discretized using P2-P1 Finite Elements
(FE), and the zero-divergence condition for the flow velocity is enforced by a penalty
method43. The incompressible laminar steady flow is computed using Newton’s method
and the FreeFEM++ software43. A direct solver44 is used for linear systems. Given this
steady state or a model turbulent mean flow (see § III B b), the linearized Navier–Stokes
equations that govern the evolution of perturbations may be written as

B
∂q

∂t
= Lq (5)

where q is the state vector, containing the values of all degrees of freedom of the velocity
and pressure fields. Equation (5) is discretized using FreeFEM++ and the resulting sparse
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matrices are exported for the linear analysis. The solution of all the problems in § IV
and § VA relies on the software libraries PETSc45, SLEPc46 and MUMPS44. Eigenvalue
problems arising in § VA are non-Hermitian, so the Krylov-Schur method is used. In order to
compute the least stable eigenmodes the “shift-invert”47 spectral transformation is applied
using a direct linear solver.

In the study of optimal perturbations the amplitude of a perturbation needs to be mea-
sured. The square root of the perturbation kinetic energy integrated over the entire domain
Ω is used for incompressible flows. This results in a pseudo-norm, as pressure is not taken
into account. For the problem to be well posed, the amplitude of the initial condition needs
to be measured in terms of a norm. The initial disturbance is therefore assumed to consist
only of a velocity perturbation. Let qu be a vector containing only velocity-related degrees
of freedom, and P be a matrix that associates qu to a state vector where pressure-related
degrees of freedom are zero. Conversely, the operator P † removes these degrees of freedom
from a full state vector q. The pseudo-norm is then obtained as

‖q‖2 = q
†
uQuqu = q

†PQuP
†
q = q

†Qq (6)

where Qu is a Hermitian definite matrix.
The computation of optimal perturbations described in § IV requires (i) a direct time

stepper, (ii) an adjoint time stepper and (iii) an eigenvalue solver. The linear equations of
motion are marched forward in time using the Crank-Nicolson method (steps (i) and (ii)). A
discrete adjoint is used for step (ii), based on the Hermitian transpose of the discretization
matrices. Finally, as the eigenvalue problem to be solved is Hermitian, the Lanczos method
is used.

b. Compressible setting

The linearized compressible Navier–Stokes equations are spatially discretized using a
finite-difference scheme designed for aero-acoustic studies48. The resulting discretization
matrix is sparse, but with an important number of nonzero elements, in particular due
to the stencil of the cross derivative terms which involves here 121 discretization points.
Another consequence of the large FD stencils is that the bandwidth of the sparse discretiza-
tion matrices becomes relevant, leading to excessive memory requirements for direct solvers.
Iterative solvers could be used instead49, but these methods are very sensitive to the de-
sign of an efficient preconditioner and robustness may be an issue. In order to circumvent
these problems, all of the analysis is performed using an algorithm based on time stepping
of linear equations (an explicit third order Runge-Kutta method is used here). In such a
framework, the structure of the discretization matrices is not needed, therefore a matrix-free
approach is used. Compressible eigenmodes are computed by use of a relaxation method50,
which is based on the application of a bandpass frequency filter to the equations of motion.
This method allows to solve very large eigenvalue problems with low memory requirements.
However, our experience shows that the relaxation method in general does not reach the
machine-precision accuracy that is possible with the shift-invert method.

The adjoint Navier–Stokes operator is needed for the computation of optimal pertur-
bations (§ IV). A discrete adjoint formulation is chosen, following the memory-efficient
approach of Fosas et al.51. The norm used is that of Hanifi et al.52. Care is taken with the
selective spatial filter so that the discrete propagator of the adjoint equations is the adjoint
of the discrete direct propagator up to machine precision.

IV. TRANSIENT GROWTH OF PERTURBATIONS

The initial condition q(0) that is most amplified over a finite time interval T is referred to
as the optimal perturbation for T . Reddy & Henningson32 established the notion of optimal
perturbations in order to characterize the transient (short-term) linear dynamics of flow
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FIG. 4. Spatio-temporal evolution of the optimal initial condition for m = 0 and T = 10 for the
turbulent jet mean profile in the incompressible case. The value of the axial velocity along the line
r = 0.9 is represented at various time steps, as indicated next to the curve.

systems. Let the amplification factor be defined as

Gm(T ) = max
q(0)

‖q(T )‖

‖q(0)‖
. (7)

Furthermore, let PT be the propagator, i.e. the linear operator that advances an initial
condition over the time interval T according to equation (5). The optimal gain Gm(T )

is found as the leading eigenvalue of the operator Q−1
u PP†

TQPTP
†, and the associated

eigenvector represents the optimal perturbation. The eigenvalue problem is solved using

the Lanczos method, as implemented in the SLEPc library. The operators PT and P†
T are

applied using the time steppers described in § III C, and Q−1
u is determined using a Cholesky

decomposition (in the case of a finite-difference discretization, this decomposition is easily
performed by hand).

A. Incompressible flow

In the incompressible setting, the length of the computational domain is chosen as xmax =
40, and stress-free boundary conditions are employed at the outflow. The convergence of the
results with respect to the spatial and temporal discretizations has been verified by using
(i) a halved time-step and (ii) a finer mesh where the cell size in the near-nozzle region
is divided by more than 3. For both the laminar and the turbulent base flows, and for all
azimuthal wave numbers and time horizons, the optimal perturbation is found in the form of
structures localized in the boundary layer upstream of the nozzle, and the perturbations are
amplified as they travel downstream. A typical example is shown in figure 4, which displays
the evolution of the optimal perturbation of the turbulent jet for m = 0 and T = 10, along
the line r = 0.9.

The optimal gain as a function of time horizon T is displayed in figure 5 for both base
flows. In the case of the laminar base flow, this amplification factor grows monotonically
with T as long as the perturbation is contained inside the numerical domain. Very large
amplitudes are reached, comparable to similar computations in the supersonic regime by
Nichols & Lele17. In the case of the turbulent base flow (figure 5(b)), the gain reaches a
maximum for a finite time horizon Topt,m. This maximum is particularly pronounced for
axisymmetric perturbations (m = 0), with Topt,0 ≈ 10. This interval roughly corresponds
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FIG. 5. Gains associated with the optimal perturbations for (a) the laminar and (b) the model base
flows.Thick solid line : m = 0, dashed line : m = 1, dash-dotted line : m = 2, dotted line : m = 3
and thin solid line m = 4.

to the advection time of the initial perturbation across the potential core. Downstream of
the potential core, axisymmetric perturbations decay as they travel on. Non-axisymmetric
perturbations may still experience further growth beyond the potential core, and the decay
of Gm(T ) with T is slower as a consequence. This observation is consistent with the fact
that bell-shaped profiles in the self-similar regime may be unstable for m 6= 0 but not
for axisymmetric perturbations53. Both the laminar and the turbulent settings display
the largest gains for helical perturbations m = 1. It may be conjectured that a lift-up

mechanism54 is responsible for the strong growth of helical perturbations, since such a
mechanism can only exist at azimuthal wavenumbers m 6= 0. However, no firm evidence of
lift-up effects can be reported at present.

B. Effects of compressibility

Corresponding results of optimal perturbations of the turbulent mean flow at Ma = 0.75
are displayed in figure 6. The qualitative behavior of Gmax(T ) (shown in figure 6(a)) is
similar to that obtained for incompressible flows (figure 5(b)), and the amplification levels
are comparable, although perturbations are not measured in the same norm. The spatial
shape of optimal perturbations for short time horizons also resembles those found in the
incompressible setting. Figures 6(b, c) show the optimal perturbation for T = 12: vortical
structures in the pipe boundary layer are amplified as they travel through the jet shear layer.
However, compressibility allows a different scenario at longer time horizons T & 25, as shown
in figures 6(d, e): the optimal initial condition takes the form of a spherical acoustic pulse
that contracts and hits the nozzle at a finite time. A vortical wavepacket is thus created at
the nozzle, which is amplified while it propagates through the potential core. This result
illustrates that acoustic waves can be very efficiently converted into vortical perturbations
at the nozzle tip55–57.
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FIG. 6. (a) Optimal perturbations for the model subsonic jet at Ma = 0.75 for m = 0 (solid line)
and m = 1 (dashed line). (b, c) : Azimuthal vorticity field for the optimal initial condition for
m = 0 and T = 12, and the corresponding perturbation at t = 12. (d, e) : Dilatation field for the
optimal initial condition for m = 0 and T = 30, and the corresponding perturbation at t = 30.

V. MODAL ANALYSIS

A. Incompressible global modes

a. Spectrum of the laminar base state

Eigenmodes of the linear equations (5) are sought in the form q(t) = q̃ exp(−iωt), such
that q̃ and ω satisfy the generalized eigenvalue problem

− iωBq̃ = Lq̃. (8)

Stress-free boundary conditions are used at the outflow Γo, and eigenmodes are computed
for xmax = 60 with various shift parameters. The resulting spectra for the laminar base
flow are shown in figure 7(a).

All eigenvalues have a negative growth rate ωi ≤ 0 and therefore are stable. This finding
is consistent with local instability results from the literature, which have shown isothermal
jets to be convectively unstable36, except in rare circumstances58.

Several families of modes can be identified from figure 7(a). A first branch of modes,
starting at the origin, is represented as circles (blue online). The least stable of these
modes correspond to vortical structures in the free-stream, as displayed in figure 7(b). The
wavelength of these nearly stationary modes scales with the size of the numerical domain. As
the growth rate decreases along this branch, the branch is distorted and the mode structure
tends to be localized more towards the jet shear-layer. This is an effect of the finite extent
of the numerical domain that has been observed in other studies26,59. A second branch is
represented by × symbols (black online). These eigenmodes are localized inside the shear
layer. At the lowest frequencies, an exponential spatial growth in the streamwise direction
is observed throughout the computational domain, as shown in figure 7(c). This behavior is
similar to what was observed in the model problems of § II, and by this analogy we attribute
the exponential spatial growth to the temporal decay of these modes. At higher frequencies
(figure 7(d)), spatial growth is still found downstream of the nozzle, but the mode reaches
a maximum amplitude within the computational domain. The maximum growth rate along
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FIG. 7. Global modes computed for m = 0 on the laminar base flow. (a): eigenfrequency spectrum.
(b, c, d, e): axial velocity magnitude of four selected modes, in logarithmic scale, as indicated in (a).

FIG. 8. Axial velocity for global modes (c) and (d) of figure 7, in linear scale.

this branch occurs around the frequency (ωr ≈ 1) for which the location of maximum
amplitude of the mode enters the computational domain, suggesting that the maximum
in ωi is an artifact of the finite domain size. Domain truncation effects are investigated
in the following section. The phase velocity of all modes along this branch corresponds
approximately to half the jet velocity on the centerline; modes at higher frequency therefore
display shorter wavelengths, as can be seen in figure 8.
A third family of modes is found, represented by plus signs (red online) in figure 7(a).
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None of these eigenvalues are recovered identically with different shift parameters, indicating
a lack of convergence. However, these modes have been computed by the eigenvalue solver
with the specified convergence criterion, namely ‖Lq+ iωq‖ < 10−10‖q‖. We attribute this
class of modes to spurious effects arising from finite machine precision. The spatial structure
of one such spurious mode is represented in figure 7(e).

All modes represented in figure 7 display very large amplitude variations throughout the
free-jet region. If these variations are of the order of machine precision, the low-amplitude
dynamics near the nozzle cannot be accurately resolved. The perturbation amplitudes shown
in figures 7(b − d) do not span more than ten orders of magnitude in the free-jet region,
and appear to be well-converged. The spurious mode in figure 7(e), in contrast, varies over
14 orders of magnitude, and seems to be affected by the double-precision round-off error as
a consequence. In fact, it may be surmised that its very existence is due to the round-off
error; this conjecture will be further investigated in the next section. A similar observation
has been made by Heaton et al.23 in their modal stability analysis of the Batchelor vortex.
Those authors report that modes with amplitude variations above a factor of 106, between
the inlet and outlet of the computational domain, cannot be accurately resolved with their
numerical method. With the present algorithm, this limiting factor is approximately 1014.

b. Influence of domain truncation

All eigenmodes displayed in figure 7 reach their maximum amplitude at or near the
downstream boundary of the numerical domain. It may therefore be expected that the
position of this boundary, as well as the numerical treatment of the outflow condition, should
affect the results. In order to evaluate this influence, different domain lengths between 40
and 100 radii have been tested. The results are compared in figure 9(a), which shows that the
branches of eigenmodes computed are not domain-independent. A similar behavior has been
obtained in the analysis of the Blasius boundary layer22, and is attributed to the fact that
the wavepackets travel throughout the domain. Most importantly, the maximum growth
rate of the shear-layer branch shifts to lower frequencies as xmax is increased. An inspection
of the associated spatial amplitude distributions reveals that this maximum growth rate
occurs roughly at the frequency at which the mode maximum amplitude is first captured
inside the numerical domain. At low real frequencies, the true amplitude maximum lies on
the outflow boundary of the numerical domain, and the eigenvalues are strongly affected
by truncation. With increasing real frequency, this amplitude maximum moves further
upstream, and the influence of the domain truncation lessens. The mode shapes shown
in figure 7 are consistent with this observation. If the trend with increasing domain size
is extrapolated, one may expect that the growth rate of the shear-layer branch decreases
monotonically with increasing frequency in an infinitely long domain.
While the spectra in figure 9(a) have been computed with stress-free outflow condi-

tions, figure 9(b) displays corresponding results obtained with a “convective outflow”
formulation60. Both boundary conditions are found to give very similar results. It is
inferred from this comparison that the outflow boundary conditions do not have a signifi-
cant impact on the eigenmode computations in this study.

It appears that the spurious branches become less and less stable as the domain length
increases. This branch is interpreted as a consequence of finite precision arithmetic. Under
the assumption of a quasi-parallel flow, let Cg be the group velocity of a spurious spatial
instability wave forced by numerical noise in the vicinity of the jet pipe,

ψsp = ψ̂(r) exp(i(kr + iki)x) exp(−iωt) (9)

where ω is the complex forcing frequency. This forced wave will be considered an eigenmode
by the solver if the forcing amplitude is of the order of the numerical precision ǫm, i.e. if
the amplitudes of this forced wave at the inlet and at the outlet are such that

ψ(x = 0) ∼ ǫmψ(x = xmax).
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FIG. 9. Spectra computed for various domain lengths using stress-free (a) and convective outflow
(b) boundary conditions at the outlet. Crosses : xmax = 40 (black online). Triangles : xmax = 60
(blue online). Plusses : xmax = 80 (green online). Circles : xmax = 100 (red online). The dashed
lines corresponds to the estimated decay rate (11).

In this case, (9) gives ki = − log(ǫm)/xmax. Let ωt
i(kr) be the local temporal growth rate

associated with the axial wavenumber kr. In the limit of long wavelengths, jet flow profiles
are approximately marginally stable. Following an approach similar to that of the Gaster
transformation61, the global temporal decay rate ωi can be related to the global spatial
growth rate ki by

ωi ≈ Cgki + ωt
i(kr) ≈ Cg

log(ǫm)

xmax

. (10)

As the group velocity Cg is of the order of the base flow velocity U0, the decay rate associated
with such pseudomodes can be estimated as

σ ≡ U0
log(ǫm)

xmax

. (11)

Figure 9 shows that the above expression provides a reasonable estimate for the decay rate of
the spurious modes. Since σ varies as 1/xmax, this spurious branch will eventually become
less stable than the other two branches as xmax increases, preventing their computation. It
is thus impossible to obtain converged results for the spectra, at least using standard double
precision arithmetic (ǫm = 10−15).

It appears that machine precision imposes severe constraints on global mode computations
for convective flows such as jets. The streamwise extent of the numerical domain must
be sufficiently large to capture the amplitude maximum of the mode, but the amplitude
variations must also be within the range of machine precision. At the same time, spurious
modes contaminate an increasingly large portion of the spectrum as the numerical domain
length is increased.

c. Spectrum of the turbulent mean flow

One may intuitively expect that the much faster spreading of the turbulent mean flow,
compared to the laminar base flow considered in the last section, will lead to global mode
structures that decay spatially within a shorter distance from the nozzle. In view of the
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FIG. 10. Global spectra computed for m = 0 for the model base flow. Crosses : xmax = 40 (black
online). Triangles : xmax = 60 (blue online). Plusses : xmax = 80 (green online). The dashed lines
corresponds to the estimated decay rate of the spurious branch given by (11).

discussion in the preceeding section, such a behavior would be favorable for the numerical
analysis. However, the mean flow spreading also implies a decreased advection velocity,
which in turn strengthens the spatial growth due to the advection of stable structures.The
estimate for the decay rate of spurious structures given by (11) can be modified to account
for the significant variation of the base velocity on the jet axis, giving

σ′ ≡ log(ǫm)

(∫ xmax

0

1

u0x(0, x)
dx

)−1

. (12)

The spectra displayed in figure 10 show that this estimate is also reasonably accurate. This
implies an even more stringent constraint on the size of the computational domain than in
the case of a nearly parallel flow.

Figure 11 displays selected global modes computed for xmax = 60 : as for all the modes
presented in figure 10, the exponential growth continues throughout the computational
domain. Indeed, in light of the discussion of the model problems, there is no guarantee
that a maximum will ever be reached: the maximum amplitude may well continue towards
infinity. Against all expectations, it is found that the faster spreading of the present mean
flow does not lead to more upstream-localized mode structures. Therefore the computation
of the spectrum is not any more accessible than in the laminar base flow case.

B. Compressible eigenmodes

Eigenmodes have been computed for the model mean flow at Ma = 0.75. The computed
spectrum is displayed in figure 12(a). Similar to the incompressible case, it is worth pointing
out that the spectrum does not show any preferred frequency. The decay rates of the modes
are however significantly less stable than in the incompressible case, by more than a factor
of five. Although the solver used for this computation is less accurate than the one used for
incompressible computations, the results displayed in figure 12 are converged with respect
to the iterative eigenvalue solver. As a consequence of the very low decay rate, the spatial
growth of eigenmodes is weaker than in the incompressible case, and at high frequencies the
global modes decay right after the end of the jet pipe (see figure 12(b, c, d))

Several reasons may explain such a slow temporal decay. As it was seen in § IV, acoustic
disturbances efficiently excite vortical structures, and, as the Mach number increases, the
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FIG. 11. Axial velocity fields of selected global modes computed for m = 0 for the model base
flow with xmax = 60 and stress-free outflow boundary conditions (logarithmic scale). (a) : ω =
0.22− 0.11i, (b) : ω = 1.0− 0.17i, (c) : ω = 0.98− 0.23i .

acoustic wavelength gets closer to the wavelength of vortical wavetrains, so that excitation
can be efficient and lead to a feedback loop. The feedback could also be spurious: indeed,
although the optimal perturbation results of § IV are quite insensitive to the treatment of
the outer boundaries, this significantly affects the eigenmodes. In spite of the use of non-
reflecting boundary conditions and very weak sponge regions, it is expected that an effect
is still present here. Similarly, as the vorticity field grows in space due to the temporal
stability, the acoustic field also grows exponentially with the distance to the acoustic sources.
As a consequence, even for weakly damped modes, reflection can be significant in large
numerical domains. Finally, the low decay rate may be related to the fact that the numerical
dissipation is lower with the present FD formulation than with the FE discretization used
for incompressible flows. Indeed, in situations where structures are convected outside of the
numerical domain, dissipative effects can be important at large times.

VI. PROJECTION OF THE TRANSIENT DYNAMICS ONTO THE SPACE SPANNED BY

EIGENMODES.

Optimal perturbations have been computed in § IV using a direct-adjoint technique. An
alternative method is to approximate the propagator using a reduced-order basis consisting
of the computed eigenmodes. This technique has, for example, been successfully used by
Akervik et al7 for the global analysis of an amplifier flow. Regardless of the relevance of the
eigenmodes to describe the dynamics, such an analysis is expected to yield accurate results
provided the eigenmodes are computed accurately. Figure 13 displays the optimal gains
computed for the laminar incompressible jet withm = 0: the N least stable eigenmodes have
been used for the computation, with N varying from 5 to 18362. It appears that even when
all the computed eigenmodes are taken into account, the optimal gains are under-estimated
by up to two orders of magnitude. Eigenmodes are therefore not relevant individually,
which is already well known for amplifier flows, but also as a superposition to represent
transient dynamics. A similar study on a stable lid-driven cavity flow (not shown here)
yielded substantially better convergence towards transient energy gains when the number
of included eigenmodes is increased. This further emphasized the role of advection in the
representation of transient phenomena by global modes. The above finding is contrary to
that of Akervik et al7 and is related to the much stronger streamwise growth of eigenmodes in
the present configuration. Indeed the optimal initial conditions consist of structures in the jet
pipe. In this region, all eigenmodes have very small amplitudes and numerical inaccuracies
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FIG. 12. Global modes computed for m = 0 on the model subsonic jet at Ma = 0.75 . (a):
eigenvalue spectrum. (b, c, d): azimuthal vorticity of three selected modes, as indicated in (a).

(due to both the eigenmode computation and the projection) become significant.

VII. CONCLUSIONS

The linear dynamics of perturbations in jet flows is the result of two mechanisms, advec-
tion by the base flow and shear layer instability. In order to investigate the effect of these
two features on the modal and non-modal stability properties of the flow, two types of base
flows have been considered. The first one is a laminar steady solution of the Navier–Stokes
equation, for which both advection and instability remain approximately constant in the
streamwise direction. A turbulent mean flow has also been used: in this case, instability
is limited to a region of about eight radii downstream of the jet pipe, referred to as the
potential core, where advection remains approximately constant. Further downstream the
base flow velocity decreases significantly and the jet profiles become stable to axisymmetric
perturbations.

An optimal perturbation analysis has been performed on these two base flows, revealing
that vortical structures are amplified throughout the laminar jet, but only in the potential
core for turbulent mean flows. In both cases the flow is globally stable.

In order to investigate the preferred frequency observed in jet experiments, a modal
analysis has then been performed, but several difficulties were encountered. The eigenmodes,
computed on a finite domain, exhibit an exponential growth in the streamwise direction.
Intuitively, one might expect that eigenmodes should spatially decay in locally stable flow
regions, and that therefore such a decay will eventually occur if the numerical domain is long
enough in the streamwise direction. This is actually not the case, and longer computational
domains in fact tend to aggravate the numerical difficulties.
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FIG. 13. Optimal transient amplification of axisymmetric perturbations for the laminar incom-
pressible jet. Thick line: computation using the adjoint equations, as computed in § IV. Thin lines:
optimal gains computed by projecting the dynamics onto the space spanned by the N least stable
eigenmodes.

The cause of these problems has been discussed for model equations that mimic the advec-
tion and instability properties of jet flows. Indeed, when eigenmodes represent the advection
of stable, temporally decaying structures, they grow exponentially in the streamwise direc-
tion. When computing such modes, difficulties therefore arise due to the domain truncation,
the modeling of outflow boundary conditions and the finite precision of computer arithmetic.

Eigenmodes have been computed for jets in laminar and turbulent, compressible and
incompressible settings, and results display the same properties as those obtained from the
model problems. It has been shown that convergence of the spectrum of incompressible jets
is inhibited by the presence of spurious pseudomodes which impose strict constraints on the
size of the numerical domain.

As was shown with simple models, the exponential spatial growth of the stable modes is
not an indication of a local spatial instability, it is merely a reflection of the fact that the
eigenfrequency ω has a negative imaginary part. This has been further exemplified through
the computation of eigenmodes for turbulent mean flows that grow even faster than those
computed for a laminar base flow while the flow is stable downstream of the potential core
for m = 0. The temporally stable structures observed in the modes, generated by a shear
layer instability downstream of the nozzle, are convected downstream in a quasi-neutral flow
resulting in an apparent spatial growth. For both mean flows the global decay rates of shear
layer modes are of the same order of magnitude since the inflow shear layer thickness is
similar. As the advection velocity is much smaller for the turbulent mean flow, the spatial
growth is therefore larger.

For compressible flows, the computed eigenmodes are less stable than in the incompress-
ible case. As a consequence, the local stability of shear layer structures dominates over the
growth due to stable advection such that the exponential growth is not observed. How-
ever, this growth not only affects vortical structures but also acoustic waves. For acoustic
perturbations the exponential growth due to the advection of stable structures eventually
dominates over the algebraic decay: the acoustic waves radiated from a mode reach their
maximum amplitude at the boundaries of the computational domain, which represents con-
siderable challenges to avoid spurious reflections.

The present results found for jet flows are consistent with the literature on the stability of
the Blasius boundary layer. The qualitative features of the eigenmodes are similar for jets
and boundary layers, but the physical settings are quite different, and eigenmodes are much
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less temporally stable for the boundary layer problem. Consequently, the spatial growth
of boundary layer modes is weaker and numerical issues are less important than in the jet
configuration.

All the numerical challenges faced in the modal analysis of jet flows cannot be attributed
to a poor discretization and other numerical influence, since the numerical tools used in
this study provided robust results for the transient flow analysis. As the numerical schemes
employed for this study are linear, the transient simulations can be viewed as a superposition
of all eigenmodes of the discrete problem. The issues are not related to the convective
nature of the flow, since the transient analysis successfully and robustly reproduced the
flow behavior; they rather lie with the description of stable convective dynamics by global
modes, and their interpretation as coherent invariant structures.
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The linear amplification of axisymmetric external forcing in incompressible jet flows is
investigated within a fully non-parallel framework. Experimental and numerical studies
have shown that isothermal jets preferably amplify external perturbations for Strouhal
numbers in the range 0.25 ≤ StD ≤ 0.5, depending on the operating conditions. In the
present study, the optimal forcing of an incompressible jet is computed as a function
of the excitation frequency. This analysis characterizes the preferred amplification as a
pseudo-resonance with a dominant Strouhal number of around 0.45. The flow response
at this frequency takes the form of a vortical wavepacket that peaks inside the potential
core. Its global structure is characterized by the cooperation of local shear-layer and
jet-column modes.

1. Introduction

Large-scale coherent structures develop in the shear-layers of isothermal jet flows, for
both laminar and turbulent regimes. These structures are not self-sustained, but are
the consequence of strong amplification of incoming disturbances. Crow & Champagne
(1971) performed experiments where the flow was forced with a controlled frequency;
they showed that optimal excitation is achieved for a Strouhal number based on the
jet diameter of about 0.3. The corresponding flow perturbations, referred to as the jet
preferred mode, grow in amplitude starting at the nozzle until they undergo non-linear
saturation.

A local analysis of jets (Michalke 1984) identifies shear-layer perturbations immedi-
ately downstream of the nozzle as the fastest growing instability modes, which would
indicate that the preferred frequency scales with the initial shear-layer thickness. This
also suggests that the mechanisms underlying the selection of the preferred frequency
depend on the downstream flow development. Under the assumption of a slowly diverg-
ing base flow, Crighton & Gaster (1976) used a WKBJ approximation to describe the
spatial development of the instability wave. Their results are in reasonable agreement
with the experimental results of Crow & Champagne (1971) for the initial growth of the
structures. This approach has subsequently been generalized through the use of the parab-
olized stability equations (Ray et al. 2009; Gudmundsson & Colonius 2011; Rodriguez
et al. 2011). While this approach also relies on the assumption of a slow variation of the
base flow in the streamwise direction, these results were found to yield good agreement
with experiments of natural turbulent jets.

The optimal disturbance of flows subjected to time-harmonic linear perturbations has
been described by Trefethen et al. (1993). This method was first applied to general
non-parallel configurations using a projection of the flow dynamics onto a reduced space
spanned by a set of eigenmodes (Alizard et al. 2009; Nichols & Lele 2010). In other studies
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(Monokrousos et al. 2010; Marquet & Sipp 2010; Nichols & Lele 2011b; Sipp & Marquet
2012) the resolvent norm has been computed directly from the linearized Navier–Stokes
operator, such that the entire non-normal flow behavior captured by the discretization
is taken into account in the results. This approach is followed here to provide a better
understanding of the preferred frequency selection and the associated spatial structures;
in particular, the non-parallel nature of the flow, as well as the effects of a solid circular
jet-pipe, are taken into account. The present analysis is mainly restricted to axisymmetric
forcing and perturbations. Results for helical forcing are only briefly discussed.

After a description of the flow under consideration in § 2, two different models of the
external forcing are described in § 4, together with the numerical method used. The
results, presented in § 5, are then discussed and compared to classical local stability
analysis.

2. Flow configuration

2.1. Geometry

A cylindrical jet of an incompressible Newtonian fluid of viscosity ν∗, with radius R∗

and exit centerline velocity U∗
0 is considered. The latter two quantities are used to make

lengths and velocities non-dimensional. Frequencies f∗ can be non-dimensionalized to
yield either a circular frequency ω or a Strouhal number St based on the jet diameter.
These parameters are related via St = ω/π. Throughout the study, the Reynolds number
is taken to be

Re =
U∗
0R

∗

ν∗
= 103.

The flow geometry, described in terms of the cylindrical coordinates r, θ and x, is
represented in figure 1. The boundary of the computational domain Ω is decomposed
into Γi, Γw,Γo and Γa respectively corresponding to the inlet, a solid wall, the outlet and
the jet axis. No-slip boundary conditions are imposed on Γw, and stress-free boundary
conditions are used on Γo (Dick 2009). Compatibility conditions, ensuring the smoothness
of the computed fields are imposed on the axis r = 0 (Matsushima & Marcus 1995). At
the inflow, homogeneous or inhomogeneous Dirichlet boundary conditions are imposed
on the velocity as requested by the problem under consideration.

Two unstructured meshes with identical dimensions but different resolution are used
for the finite element computations. The density of vertices in the domain is controlled by
the distance between discretization points on the boundary of the computational domain
as well as on interior boundaries (dashed lines in figure 1). This distance is denoted by h4
for boundaries in the far field (r > r+3 ). It is smaller than h3 for r ≤ r+3 , and respectively
smaller than h2 and h1 in the inner regions defined by x ≤ x+2 and 1−δ2/2 ≤ r ≤ 1+δ2/2
and by x−1 ≤ x ≤ x+1 and 1 − δ1/2 ≤ r ≤ 1 + δ1/2. These subdomains are indicated by
gray shaded areas in figure 1. The values of the hi for both meshes are given in figure 1.

2.2. Base state

Linear stability analysis formally applies to base states that are steady solutions of the
governing equations. However, several studies have found that linearization around a
time-averaged mean flow yields better predictions of the nonlinear flow behaviour, in par-
ticular with regard to the frequency selection of intrinsic oscillations (Pier 2002; Barkley
2006). The present study employs the mean-flow model proposed by Monkewitz & Sohn
(1988) for a turbulent free jet, displayed in figure 2. This model consists of a potential
core, starting from a momentum thickness θ = 0.043, and extending over eight radii
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Figure 1. Schematic representation of the numerical domain. The pipe length is set to xp = 5,
and it has been verified that setting rmax = 10 does not influence the results. Gray shaded areas
correspond to subregions in which different grid resolutions are selected. Values of x−

1 = −2,
x+

1 = 1, δ1 = 0.15, x+

2 = 10, δ2 = 0.5 and r+3 = 2 are used.

Figure 2. Axial velocity field for the model turbulent mean flow of Monkewitz & Sohn (1988).

downstream of the end of the jet pipe, followed by a self-similar region where the veloc-
ity profiles have an approximately Gaussian shape. A parallel pipe flow region has been
added upstream, and a smooth transition is made for 0 ≤ x ≤ 1, as described in Garnaud
et al. (2011).

In the following, infinitesimal perturbations around the steady mean flow are consid-
ered, such that the flow field can be written as (u, p) = (U + ǫu′, P + ǫp′), where (U , P )
denotes the base state displayed in figure 2.

3. Modal analyis

Monkewitz (1989) and Huerre & Monkewitz (1990) conjectured that the preferred
mode observed in experiments corresponds to the resonance of the least stable eigenmode
of the jet with incoming disturbances. This issue has been investigated by Cooper &
Crighton (2000) by means of a WKBJ approximation. Upon making the assumptions
that (i) the global mode has the shape of a local shear-layer mode at each location, and
that (ii) the base flow development is slow, the authors found a weakly stable global
mode at a Strouhal number of 0.44 which agrees well with experimental observations.
In order to avoid such strong assumptions, eigenmodes can now be computed using the
axisymmetric Navier–Stokes equations discretized on a two-dimensional domain. Such
a modal analysis has for example been performed by Nichols & Lele (2011a) in the
context of supersonic jets. This approach is followed in this section. Figure 3 displays the
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4 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

Figure 3. Eigenvalue spectra of the linearized Navier–Stokes equations (Lq = iωBq)
computed for a domain of length xmax = 40 (black dots) and xmax = 60 (gray crosses).

spectrum obtained for the global eigenvalue problem

∇ · u′ = 0,

−iωu′ + (U ·∇)u′ + (u′ ·∇)U = −∇p′ +
1

Re
∇

2u′ + ψ(x)f ′,
(3.1)

with homogeneous Dirichlet boundary conditions on Γi ∪ Γw. All eigenmodes are stable,
and three families of modes can be identified. First, low-frequency free-stream modes
(eigenvalues close to the origin) correspond to standing vortical structures. These decay
very slowly due to viscous effects. Second, a branch of shear-layer / jet-column modes
is observed (upper branch in figure 3). Along this branch the decay rate −ωi increases
with frequency ωr, and the spatial structure of the eigenmodes is characterized by an
exponential growth throughout the computational domain. This growth can be under-
stood as a consequence of the stable advection of nearly neutral shear-layer structures.
Finally, the lower branch of eigenmodes in figure 3 corresponds in fact to pseudomodes
that lie on the 10−10 contour of the pseudospectrum. Note that the actual spectrum is
quite dependent on the size of the numerical domain, but that qualitative features are
not. For more details, see Garnaud (2012).
The spectrum of the linearized Navier–Stokes equations therefore exhibits no isolated
or least stable eigenmode that could explain the preferred mode through a resonance
mechanism. In the next section, a pseudo-resonance analysis is carried out to investigate
the origin of the preferred mode.

4. Response to harmonic forcing

4.1. External forcing as a body force

Following Monokrousos et al. (2010), Marquet & Sipp (2010) and Sipp & Marquet (2012),
the external forcing can be modeled as a body force f(x, t) acting on the momentum
equation,

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇

2u+ ψ(x)f ,

while ∇ · u = 0 is maintained throughout the flow. The weight function ψ is used to
restrict the flow region where forcing is applied, and the forcing amplitude is assumed to
be small: f = ǫf ′. To leading order, the dynamics of perturbations are governed by the
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The preferred mode of incompressible jets: linear frequency response 5

linear system

∇ · u′ = 0,

∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U = −∇p′ +

1

Re
∇

2u′ + ψ(x)f ′,

u′ = 0, Γi ∪ Γw

1

Re

∂u′

∂n
− p′n = 0. Γt ∪ Γo

(4.1)

In a linear framework, all signals are decomposed in time into independent Fourier com-
ponents. The forcing is therefore considered to be time-harmonic, f ′ = f̃ exp(−iωt),
prompting an asymptotic flow response (u′, p′) = (ũ, p̃) exp(−iωt) at the same frequency.
The amplification of the externally applied forcing at a given frequency ω is measured in
terms of the gain

Gbf
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Ω

|f̃ |2r dr dx

)
. (4.2)

The optimal forcing f̃opt(ω) realizes this maximum. For the results presented in §5.1, the
forcing is assumed to be localized inside the pipe only, i.e. the weight function is defined
as ψ(x) = 1 for x < 0 and ψ(x) = 0 for x ≥ 0.

4.2. External forcing as an inflow condition

Rather than forcing the jet through a distributed body force in the pipe interior as in
the previous section, one may model incoming perturbations in the form of an unsteady
upstream boundary condition of the linearized Navier–Stokes equations:

∇ · u′ = 0,

∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U = −∇p′ +

1

Re
∇

2u′,

u′ = 0, Γw

1

Re

∂u′

∂n
− p′n = 0, Γt ∪ Γo

u′ = f ′. Γi

(4.3)

Such a model corresponds more closely to the assumptions of local spatial stability,
WKBJ and PSE approximations. In this case, the gain between a harmonic inflow forcing
and the corresponding response is measured as

Gbc
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Γi

|f̃ |2r dr

)
. (4.4)

4.3. Numerical solution of the optimization problem

The linear systems (4.1) and (4.3) are discretized by P2-P1 finite element using the
software FreeFEM++ (Hecht 2011). Let q be the discrete state vector containing all
degrees of freedom related to velocity and pressure fields. Both (4.1) and (4.3) can then
be written in their semi-discretized form as

Bq̇ = Lq +Bff , (4.5)

where f is the discrete forcing vector and L, B and Bf are sparse matrices resulting
from the finite elements discretization of the linearized Navier–Stokes equations. Let
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6 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

f = f̃ exp(−iωt) and q = q̃ exp(−iωt) be time-harmonic such that

−(L+ iωB)q̃ = Bf f̃ . (4.6)

Perturbation amplitudes are measured in a pseudonorm ‖q‖2 = q†Qq that represents
the discretization of the perturbation kinetic energy:

‖(u′, p′)‖2 =

∫

Ω

|u′|
2
r dr dx. (4.7)

The norm of the forcing vector f , which appears in the denominator of (4.2) and (4.4), is
expressed accordingly in discrete form as ‖f‖2f = f †Qff . Note that f does not contain
pressure components, and that Qf therefore is symmetric positive-definite, in contrast to
Q, which is positive semi-definite. The discrete optimal forcing problem can be written
as

G2
opt(ω) = max

‖q̃‖2

‖f̃‖2f
. (4.8)

Monokrousos et al. (2010) formalized a similar optimal forcing problem by use of
a constrained optimization approach involving Lagrange multipliers. For linear time-
harmonic problems, a more concise formalism is possible. The formulation used here,
similar to that of Sipp & Marquet (2012), is briefly outlined below. Substituting (4.6)
into (4.8) gives

Gopt(ω)
2 = max

f̃

‖(L+ iωB)−1Bf f̃‖
2

‖f̃‖2f
,

= max
f̃

f̃ †B†
f (L+ iωB)−1†Q†(L+ iωB)−1Bf f̃

f̃ †Qf f̃
.

Let M†
fMf be the Cholesky decomposition of Qf , and let g̃ =Mf f̃ , i.e. f̃ =M−1

f g̃. The
optimal gain can then be rewritten as

Gopt(ω)
2 = max

g̃

g̃M−1

f

†
B†

f (L+ iωB)−1†Q†(L+ iωB)−1BfM
−1

f g̃

g̃†g̃
.

The right-hand side of the above expression is a Rayleigh quotient, and Gopt(ω) is there-
fore the leading eigenvalue of the associated Hermitian eigenvalue problem

M−1

f

†
B†

f (L+ iωB)−1†Q†(L+ iωB)−1BfM
−1

f g̃ = λg̃,

which can be re-written in terms of the forcing f̃ as

Q−1

f B†
f (L+ iωB)−1†Q†(L+ iωB)−1Bf f̃ = λf̃ . (4.9)

The leading eigenvalue of (4.9) and its associated eigenvector, which respectively cor-
respond to the optimal gain and optimal forcing, are computed by using the Lanczos
solver implemented in SLEPc (Hernandez et al. 2005). The operator (L + iωB)−1 and
its adjoint are applied by using the sparse linear algebra package MUMPS through its
PETSc interface (Balay et al. 2008). Finally, the operator Q−1

f is applied by using a
Cholesky decomposition, if memory requirements permit, or otherwise by using an ILU-
preconditioned conjugate gradient method.
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The preferred mode of incompressible jets: linear frequency response 7

Figure 4. Optimal gain as a function of the Strouhal number for body (a) and boundary (b)
forcing. The gains are computed for various domain lengths xmax. + symbols displayed in (b)
correspond to gains computed for a finer mesh (mesh #2 in figure 1), showing convergence with
respect to grid resolution. For boundary forcing on a domain of length xmax = 40, not only is
the most amplified mode displayed but the three leading eigenvalues of (4.9) as well.

5. Results

5.1. Optimal body forcing

Optimal harmonic forcing by means of a distributed body force inside the jet pipe,
as outlined in § 4.1, is computed first. The gain (4.2) is displayed in figure 4(a) as
a function of the Strouhal number. Different line styles represent results obtained for
various lengths of the computational domain, in order to assess the influence of domain
truncation. Figure 5 displays the spatial distributions of axial velocity of forcing and flow
response at selected Strouhal numbers, for a domain length xmax = 40. It is found from
figure 4(a) that domain truncation only affects the gains at very low Strouhal numbers.
The flow response structure in this regime extends far downstream, as can be seen in
figure 5(a), and the truncation at the outflow therefore leads to a lower measure of the
flow response norm. Neither the forcing distribution nor the captured part of the flow
response appear to be significantly influenced by the downstream truncation. Similarly,
it has been verified that a radial truncation at r = 10 has a negligible impact on the
results.

The largest gain is observed at St = 0.46. The perturbations in the free jet exhibit
a strong spatial growth in the shear-layer just downstream of the nozzle exit; their am-
plitude peaks near the end of the potential core at r = 8 (figure 5(b)). In the adjacent
decaying part of the wavepacket, the radial amplitude distribution changes markedly,
with its maximum now at the centreline. The wavepacket structure at higher frequencies
displays similar characteristics, but the region of spatial growth is confined to an ever
smaller distance from the nozzle.

The optimal distribution of the body force inside the pipe also exhibits consistent
characteristics at all Strouhal numbers presented in figure 5. The amplitude is largest
within the boundary layer at the pipe wall, and it is increasingly concentrated near the
wall at higher Strouhal numbers. At the same time, the downstream spatial growth of the
response increases with the Strouhal number, and its wavelength shortens. In all cases,
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8 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

Figure 5. Spatial structures associated with the optimal body forcing at different Strouhal
numbers, indicated in the figures. In the left column, the real parts of the axial component of
the forcing is displayed. On the right, the figures show the axial component of the response
velocity (real part). Computations were performed for xmax = 40.

the forcing structures are tilted upstream away from the wall, suggesting that the Orr
mechanism contributes to the perturbation gain as in the case of boundary layer flow
(Sipp & Marquet 2012).

Use of the L2 norm as a measure of the amplification gain inevitably implies that
spatially extended structures are given more weight than spatially localized structures,
even though the latter may represent modes with high spatial amplification. This effect
is undoubtedly responsible for the slight increase of Gbf

opt at very low Strouhal numbers.
The infinity norm would provide a sensible and intuitive measure for the amplification
of perturbations; unfortunately, this norm does not lend itself to the formulation of the
optimization problem. It can however be determined a posteriori for the results obtained
with the present approach. Values are given in figure 5 for the four cases represented. It
is indeed found that the infinity norm follows the same trends as the gain defined by the
L2 norm, except for the increase at very low Strouhal numbers.

Figure 6(a) displays the maximum amplification curves obtained when the length of
pipe included in the computational domain is increased from 5 to 10. It shows that this
parameter affects the values of the gain but that the shape of the curve remains the same.
In particular the optimal Strouhal number does not change, which confirms the relevance
of the choice of geometric parameters used in this study. A more critical parameter in this
analysis is the Reynolds number, as a model turbulent mean flow is used as a base state
for the stability analysis so the choice is rather arbitrary: figure 6(b) indicates that the
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The preferred mode of incompressible jets: linear frequency response 9

Figure 6. Optimal gains obtained for boundary forcing when (a) the length of pipe under
included in the computational domain increases from 5 to 10, and (b) the Reynolds number
increases from 103 to 5 · 103.

Figure 7. Spatial structures associated with the optimal boundary forcing at different Strouhal
number, indicated in the figures. In the left column, the modulus of the inflow axial velocity
component is displayed. On the right, the axial component of the response velocity is displayed
(real part). Computations were performed for xmax = 40.

optimal excitation frequency remains the same when the Reynolds number is increased
from 103 to 5 · 103.
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10 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

5.2. Optimal boundary forcing

The perturbation gain obtained from the problem formulation based on forcing at the in-
flow boundary, as given in § 4.2, is presented in figure 4(b). The trends are very similar to
those observed in the case of a distributed body force. The strongest amplification occurs
at St = 0.43. Domain truncation has no influence, except at very low Strouhal numbers,
and the results are converged with respect to mesh resolution. The radial distribution of
the optimal forcing input is displayed in figure 7, alongside the flow response at the same
four values of St as in the preceding section. The flow response wavepackets are indeed
nearly identical to those of figure 5, except for the highest Strouhal number shown. The
forcing distributions display some unexpected features. At low St, the amplitude maxi-
mum is located on the centreline, whereas in the intermediate frequency range the highest
forcing amplitudes occur in the pipe boundary layer. The no-slip condition requires the
forcing to be zero at r = 1, but the amplitude is expected to jump to a finite value over
a distance of the order of the thickness of the Stokes boundary layer, which scales as
(ωRe)−1/2 (Batchelor 1967). Both forcing and flow response are of a different character
at the highest Strouhal number shown in figure 7. Perturbations are induced around the
centreline; they experience weak growth inside the pipe and immediately decay as they
enter the free jet. A closer inspection of the gain curves reveals that the high-St regime is
dominated by a formerly sub-optimal branch of singular values. Two additional branches
are displayed in figure 4(b). Although barely visible, one of these branches becomes dom-
inant around St ≈ 1. The perturbation distribution shown in figure 7(d) belongs to this
distinct branch.

5.3. Comparison with local instability results

The structure of the response wavepackets in figures 5 and 7 is readily understood from
well-known local instability characteristics of jet flows (Jendoubi & Strykowski 1994;
Lesshafft 2007). Strong spatial growth takes place in the potential core region, where the
shear-layer is thin compared to the instability wavelength. The perturbation amplitude
of this local shear-layer mode is concentrated around r = 1. Downstream of the potential
core, the shear-layer mode stabilizes, and the jet-column mode takes over as the least
stable, spatial local eigenmode. The amplitude of the jet-column mode in the self-similar
base-flow region peaks on the jet axis. The gradual streamwise transition from a shear-
layer mode to a jet-column mode is visualized in figure 8 for the wavepacket shown in
figure 5(b). The thick line represents the local growth rate of the wavepacket, computed
as 1

2
∂x(logE) with E(x) as the perturbation kinetic energy at each streamwise station x

integrated in the radial direction. The thin solid and dashed lines trace the spatial growth
rates of the local shear-layer and jet-column modes, respectively, as functions of x. The
growth rate of the global wavepacket quickly adapts to that of the shear-layer mode near
x = 0, and it follows its decrease throughout the unstable interval. Downstream of x ≈ 5,
the global wavepacket gradually adjusts to the growth rate of the jet-column mode.

Contrary to what one might initially expect, the forcing structures displayed in fig-
ures 5 and 7 bear little resemblance to the local instability modes of the parallel flow
inside the pipe. In fact, the optimization algorithm aims at finding the inflow condition
that optimally excites shear-layer structures such that the wave packet in the free jet
is generated with a maximum amplitude. To this end, the inflow condition consists of a
superposition of local instability modes in order to exploit spatial transient amplification
mechanisms (Andersson et al. 1999).
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The preferred mode of incompressible jets: linear frequency response 11

Figure 8. Spatial growth rate of the wavepacket envelope (thick line) corresponding to fig-
ure 5(b), compared to spatial growth rates of the local spatial shear-layer mode (thin line) and
the jet-column mode (dashed line) at St = 0.43.

Figure 9. Optimal amplification of body forcing for various azimuthal wave-numbers m.

6. Conclusions

The linear dynamics of forced structures in a jet has been studied within a fully non-
parallel framework, so that the effects of the base-flow spreading and of the presence of
a solid jet pipe can be taken into account. Unlike approaches using the WKBJ or PSE
approximations where the frequency and inflow disturbance profile are imposed to solve
for the flow evolution downstream, the present method only seeks the optimal spatial
distribution of time-harmonic forcing at a given frequency.

It has been demonstrated that there is no least damped global mode that can resonate
in the presence of frequency forcing. The preferred frequency obtained in the present
analysis is therefore due to a pseudo-resonance rather than to a resonance as conjec-
tured by Monkewitz (1989) and Huerre & Monkewitz (1990). The analysis of Cooper &
Crighton (2000) relies on a tangent approximation of the local dispersion relation so as
to obtain a “global mode” with a Gaussian envelope. Such an assumption is unlikely to
hold in a full WKB approach or in the global analysis followed here. For this reason, one
should not expect to recover the “global modes” of Cooper & Crighton in the present
analysis.

Whether external forcing is modeled as an inflow condition or a body force, the am-
plification of external forcing has been found to be largest for a Strouhal number around
0.45. This preferred frequency is in good agreement with experimental observation at low
forcing intensity (Moore 1977; Crow & Champagne 1971). Note however that, as shown
in the latter reference, the preferred frequency depends on the amplitude of excitation
through non-linear effects. Around this optimal frequency, the excitation generates a
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12 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

wavepacket that develops in the free-jet shear-layer. It is amplified through the potential
core, where shear is important, and decays further downstream while it gets localized on
the centreline. This behaviour is consistent with local stability results that show that,
while shear-layer modes are spatially unstable in the potential core, the jet column mode
becomes the least damped spatial eigenmode further downstream.

The shape of the optimal body forcing indicates that the Orr mechanism is at play
to generate perturbations that grow in the jet pipe boundary layer and then optimally
excite the free-jet wavepacket. The results are not very sensitive to the actual shape
of the forcing term as similar results are obtained for body and boundary forcing. In
both cases, a good agreement is found between the most amplified wavepacket and the
experimentally observed preferred mode.

The framework of optimal forcing is therefore a suitable tool for the analysis of the
non-modal instabilities developing in convection dominated amplifier flows.

Local spatial stability analysis indicates that helical perturbations, unlike axisymmetric
ones, are spatially amplified downstream of the potential core, as shown e.g. by Batchelor
& Gill (1962) and Michalke (1984). This is especially true in the low frequency range.
Computations have been performed using the current framework for higher azimuthal
wave numbers m. For m 6= 0, Gopt(St) is a monotonically decreasing function of St, and
the levels obtained at low frequencies are indeed larger for m = 1, 2 than for m = 0 (see
figure 9). However this is not only due to a faster growth of the wave packet downstream
of the nozzle, but also and most importantly to a spatial amplification over a longer
streamwise distance, resulting in larger L2 norms for the flow response. The growth of
the wavepacket through the potential core is however similar for all values of m.

Experiments typically do not show a dominance of m = 1 helical modes in the self-
similar region. Several reasons may explain this discrepancy between the results in figure 9
and observations, in particular the effects of turbulence and nonlinear saturation, which
are not captured in the present analysis. In this light, the L∞ norm might provide a
more relevant and intuitive measure of the perturbation amplification. The use of such
a formulation will be explored in future studies.

This work was supported by DGA grant number 2009.60.034.00.470.75.01 and by a fel-
lowship from the EADS Foundation. Computational resources were provided by GENCI
(Grant 2012-026451).

REFERENCES

Alizard, F., Cherubini, S. & Robinet, J.-C. 2009 Sensitivity and optimal forcing response
in separated boundary layer flows. Physics of Fluids 21 (6), 064108.

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Physics of Fluids 11 (1), 134.

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley,
M. G., McInnes, L. Curfman, Smith, B. F. & Zhang, H. 2008 PETSc users man-
ual. Tech. Rep. ANL-95/11 - Revision 3.3.0. Argonne National Laboratory, available at
http://www.mcs.anl.gov/petsc/petsc-as/.

Barkley, D 2006 Linear analysis of the cylinder wake mean flow. Europhysics Letters 75 (5),
750–756.

Batchelor, G. K. 1967 An introduction to fluid dynamics. Cambridge: Cambridge Univ. Press.

Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. Journal
of Fluid Mechanics 14 (04), 529.

Cooper, A. J. & Crighton, D. G. 2000 Global modes and superdirective acoustic radiation in
low-speed axisymmetric jets. European Journal of Mechanics - B/Fluids 19 (5), 559–574.

ha
l-0

07
56

81
1,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
2



The preferred mode of incompressible jets: linear frequency response 13

Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. Journal of Fluid
Mechanics 77 (02), 397.

Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. Journal of Fluid
Mechanics 48 (03), 547.

Dick, E. 2009 Introduction to finite element methods in computational fluid dynamics. In
Computational fluid dynamics: an introduction, 3rd edn. Springer.

Garnaud, X. 2012 Modes, transient dynamics and forced response of circular jets. PhD thesis,
Ecole Polytechnique.

Garnaud, X., Lesshafft, L. & Huerre, P 2011 Global linear stability of a model subsonic
jet. AIAA paper 2011-3608 .

Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations
of turbulent jets. Journal of Fluid Mechanics 689, 97–128.

Hecht, F. 2011 Freefem++ manual, third edition, version 3.2. Tech. Rep.. Available at
http://www.freefem.org/ff++.

Hernandez, V., Roman, J. E. & Vidal, V. 2005 SLEPc: a scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Transactions on Mathematical Software 31 (3),
351362.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing
flows. Annual Review of Fluid Mechanics 22, 473–537.

Jendoubi, S. & Strykowski, P. J. 1994 Absolute and convective instability of axisymmetric
jets with external flow. Physics of Fluids 6 (9), 3000.

Lesshafft, L. 2007 Global modes and aerodynamic sound radiation in self-excited hot jets.
PhD thesis, Ecole Polytechnique.

Marquet, Olivier & Sipp, Denis 2010 Global sustained perturbations in a backward-facing
step flow. In Seventh IUTAM Symposium on Laminar-Turbulent Transition (ed. Philipp
Schlatter & Dan S. Henningson), IUTAM Bookseries, vol. 18, pp. 525–528. Springer Nether-
lands.

Matsushima, T. & Marcus, P. S. 1995 A spectral method for polar coordinates. Journal of
Computational Physics 120, 365–374.

Michalke, A. 1984 Survey on jet instability theory. Progress in Aerospace Science 21, 159–199.
Monkewitz, P. A. 1989 Feedback control of global oscillations in fluid systems. AIAA Paper

89-0991 .
Monkewitz, P. A. & Sohn, K. 1988 Absolute instability in hot jets. AIAA Journal 26 (8),

911–916.
Monokrousos, A., Akervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-

dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers.
Journal of Fluid Mechanics 650, 181.

Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. Journal of
Fluid Mechanics 80 (02), 321.

Nichols, J. W. & Lele, S. K. 2010 Global mode analysis of turbulent high-speed jets. Annual
research briefs 2010. Center for Turbulence Research.

Nichols, J. W. & Lele, S. K. 2011a Global modes and transient response of a cold supersonic
jet. Journal of Fluid Mechanics 669, 225–241.

Nichols, J. W. & Lele, S. K. 2011b Non-normal global modes of high-speed jets. International
Journal of Spray and Combustion Dynamics 3 (4), 285–302.

Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder
wake. Journal of Fluid Mechanics 458.

Ray, P. K., Cheung, L. C. & Lele, S. K. 2009 On the growth and propagation of linear
instability waves in compressible turbulent jets. Physics of Fluids 21 (5), 054106.

Rodriguez, D., Samanta, A., Cavalieri, A.V.G, Colonius, T. & Jordan, P. 2011 Parab-
olized stability equation models for predicting large-scale mixing noise of turbulent round
jets. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference. Portland, Oregon.

Sipp, Denis & Marquet, Olivier 2012 Characterization of noise amplifiers with global singular
modes: the case of the leading-edge flat-plate boundary layer. Theoretical and Computa-
tional Fluid Dynamics pp. 1–19.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic
stability without eigenvalues. Science 261 (5121), 578–584.

ha
l-0

07
56

81
1,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
2



Global response to forcing in a subsonic jet:

instability wavepackets and acoustic radiation
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The linear flow response of a turbulent subsonic jet to low-level harmonic forcing is
investigated in a fully non-parallel framework. The analysis is carried out for the configu-
ration studied by Sandberg et al.,1,2 and the predictions are validated against their DNS
data. The present formalism relies on a singular mode analysis of the linear global resol-
vent operator for a forced compressible flow. We obtain the optimal distribution of volume
forces inside the jet pipe that gives rise to the maximal flow response. Two definitions of
optimality are explored, one based on the integrated energy of the instability wavepacket in
the near field, the other based on the radiated acoustic power. Both definitions give similar
results for the flow response, overall in good qualitative agreement with the nonlinear DNS
results. The approach opens a new perspective on the instability response of jets and the
associated noise generation.

Nomenclature

r, θ, x radial, azimuthal and axial coordinates
ρ, p, T,E density, pressure, temperature and total energy
u velocity vector
q linear perturbations of conservative flow variables
f volume force acting on conservative flow variables
ω, StD angular frequency and Strouhal number; StD = ω/π
R nozzle radius
U bulk velocity of the pipe flow
ρ∞ ambient density
Re, Ma Reynolds and Mach number, defined with R, U , ρ∞and ambient viscosity and speed of sound
L Navier-Stokes operator, linearized around the base flow
B restriction operator for flow forcing
E ,F energy and acoustic power (pseudo-)norms

Subscript
0 base flow quantity

I. Introduction

In so far as jet noise is attributable to the presence of coherent perturbation wavepackets inside the
flow, the aeroacoustic generation mechanisms and far-field acoustic signature can be studied as a problem

∗Research Engineer, xavier.garnaud@ladhyx.polytechnique.fr, currently: Altran Research, Vélizy-Villacoublay (France).
†Professor, sandberg@soton.ac.uk, AIAA senior member
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of hydrodynamic instability. The assertion that dominant noise components in subsonic jets are related to
instability wavepackets goes back at least to Mollo-Christensen,3 and the subject has just been thoroughly
reviewed by Jordan & Colonius4 (see in particular their figure 1). Jet instability has been studied under this
angle over many decades, using the best available approaches of the day from instability theory. Michalke5

provided numerical solutions of the spatial instability problem for a compressible jet under the parallel
flow assumption. Crighton & Gaster6 used a WKB approximation in order to account to first order for
slow streamwise changes of the base flow. The parabolized stability equations (PSE)7 make very similar
assumptions and in their linear form give comparable results. Linear8,9 and nonlinear10,11 PSE computations
of instability wavepackets in jets and shear layers have recently been conducted, and the results show overall
reasonable agreement with experimental and numerical near-field data. However, acoustic radiation in
subsonic flows is not obtained directly by this method, and must be deduced from acoustic analogies or
similar procedures. Local spatial analysis, its WKB extension, linear and nonlinear PSE: all these present
tools for the solution of the signalling problem, i.e. the flow response to sustained localized forcing, on
different approximation levels. Apart from nonlinearity, the main difference lies in the extent to which the
non-parallelism of the base flow is taken into account.

In this paper, we present solutions of the fully non-parallel linear signalling problem in a subsonic jet.
Such results are sought in the form of singular modes of the linear resolvent operator. The resolvent operator
maps a time-harmonic body force distribution onto the associated time-harmonic flow response; its singular
modes represent a hierarchy of force distributions that are ranked according to the ratio of flow response norm
over forcing input norm, i.e. the amplification gain. The formalism therefore allows to trace the frequency
response of the linear flow system, or synonymously, its pseudo-spectrum (although only real frequencies
are considered in the present study). Refs. 12, 13 describe the full formalism for a parallel flow problem,
and recently it has been used in global contexts to determine the frequency response of boundary layers14,15

and incompressible jets.16 Nichols & Lele17 present some first results for a compressible supersonic jet, and
Garnaud18 fully documents the near-field and far-field frequency response of a subsonic jet. The latter study
uses a parametric model for a base flow. The objective of the present paper is to use the same methodology
on the turbulent mean flow computed by Sandberg et al.,2 and to attempt a comparison with the unsteady
DNS results. Differences and similarities between the fully global flow response and corresponding PSE
solutions are briefly discussed.

II. Flow configuration

We use the turbulent mean flow obtained by Sandberg et al.1,2 from a DNS of a jet with Reynolds number
Re = 3691, based on jet radius. The jet issues from a long circular pipe at Ma = 0.84 into an ambient
coflow with Ma = 0.2. The axial mean velocity, made non-dimensional with respect to the bulk velocity
inside the pipe, is displayed in figure 1. Note that the inlet pipe, 40 jet radii long, is explicitly included in
the computational domain as a solid structure of finite thickness. All computations discussed in the present
paper, except PSE results, are resolved on a domain extending over −40 ≤ x ≤ 80 and 0 ≤ r ≤ 70, whereas
a domain of −50 ≤ x ≤ 110 and 0 ≤ r ≤ 80.5 was resolved in the reference DNS. Absorbing sponge regions
are used near the numerical boundaries in combination with non-reflecting boundary conditions,19 in order
to minimize acoustic reflections.

x

r

 

 

−10 −5 0 5 10 15 20 25 30
0

1

2

3

0

0.2

0.4

0.6

0.8

1

Figure 1. base flow: axial mean velocity, with jet Mach number Maj = 0.84 and coflow at Ma = 0.2. The entire flow
domain extends over −40 ≤ x ≤ 80 and 0 ≤ r ≤ 70.
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III. Method

Global frequency response: Flow perturbations at low amplitude in a given base flow (see section
II) are assumed to be governed by the linearized compressible Navier–Stokes equations. These are written
in conservative variables (ρ, ρu, ρE) and cylindrical coordinates (r, θ, x). All discussion in the following
is restricted to axisymmetric perturbations, therefore all perturbations are independent of the azimuthal
coordinate θ, and the azimuthal velocity component is strictly zero. Reference values for the dimensionless
formulation are the nozzle radius R, the bulk velocity U inside the nozzle, and the ambient density ρ∞.
High-order explicit finite difference schemes20 are used to resolve spatial derivatives on a rectilinear grid, and
time-stepping is performed with a stability-preserving fourth-order Runge–Kutta algorithm. The equations
and their numerical discretization are detailed in Ref. 18.

If the unforced linear system in discrete form is noted as q̇ = Lq, then the long-time asymptotic flow
response q to a time-harmonic volume forcing f at angular frequency ω obeys

−iωq̃ = Lq̃ +Bf̃ , (1)

where q(r, x, t) = q̃(r, x)e−iωt and f(r, x, t) = f̃(r, x)e−iωt, (2)

and the matrix B may be used to impose a localization of the forcing. In the present case, B prescribes the
forcing to be zero everywhere except inside the nozzle duct.

The resolvent operator C(ω) = −(L+ iωId)−1B then relates forcing and flow response as

q̃ = C(ω)f̃ . (3)

We seek the forcing that yields the maximum flow response, in the sense that a chosen norm ‖q̃‖2 = q̃†Qq̃
is maximized for a forcing of unity norm ‖f̃‖2 = f̃†Qf f̃ = 1. The metric matrices Q and Qf used to measure
the response and the forcing need not be identical. In fact, only Qf is required to be positive definite (a true
norm), whereas Q may be positive semi-definite18 (a pseudo-norm). The optimal forcing is defined by the
Rayleigh quotient

f̃opt = arg max
f̃

f̃†C†QC f̃

f̃†Qf f̃
, (4)

and can therefore be determined as the leading eigenvector of the operator C†QC, which is the right-singular
vector of the resolvent. The corresponding eigenvalue σ (the leading singular value of C(ω)) represents the
gain that is achieved between the square of the norm of the forcing input and the square of the (pseudo-)norm
of the flow response. If both norms are not identical, the definition of this gain may not be physically very
meaningful, but even in this case, the variation of σ(ω) allows a quantitative comparison of the flow response
at different frequencies.

Two distinct measures of the flow response will be used in the present study. The first is given by a
true energy norm E , discussed in Refs. 21,22, which excludes the compression work associated with acoustic
waves. The second is defined as the acoustic power F radiated across a control surface Σ. The latter is an
example of a pseudo-norm with a positive semi-definite metric Q. These two measures are defined as

E =

∫
Ω

(
ρ0ũ

2 +
p0

ρ0
|ρ̃|2 +

ρ2
0

γ2(γ − 1)Ma4p0
|T̃ |2

)
r dr dx , (5)

F = 0.5

∫
Σ

Ma|p̃|2r dl. (6)

The integration domain Ω is restricted to the physical portion of the numerical domain (excluding the sponge
zones), and the surface Σ is taken to be a sphere of radius 20 around the origin (a circle in the (r, x) plane),
excluding the nozzle duct. The forcing is always measured in terms of the norm E .

The eigenvalue problem is solved using an iterative Lanczos method, which is particularly efficient for
Hermitian operators. The numerical challenge lies in the repeated application of the inverse operator (L +
iωId)−1, and its adjoint, at each iteration of the algorithm. One possibility is to explicitly construct the
system matrix and invert it once,17 but the massive memory requirements for this procedure are quite
problematic. We chose a matrix-free approach, where the inversion is performed by time-marching the
governing equations until an asymptotic state is reached. Special care is required in the backward-in-time
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Figure 2. Maximum energy gain (equation 5) as a function of frequency. Solid line, left ordinate: Global linear
frequency response; dashed line, right ordinate: linear PSE.

integration of the adjoint equations in order to preserve the perfectly Hermitian quality of the resolvent
operator; this is found to be crucial for the accuracy of the Lanczos method. A Hermitian discrete operator
can only be achieved by solving the adjoint version of the discrete direct problem, which is not trivial to
construct in a matrix-free framework. The details of this procedure are discussed in Ref. 18,23.

Parabolized stability equations: The compressible PSE are set up as given in Ref. 24; they are solved
using Chebyshev collocation in r and an implicit Euler scheme in x. A stabilization technique25 is added
that allows arbitrarily small step sizes in the streamwise integration. All PSE calculations are initialized at
the nozzle location x = 0 with the local k+ shear-layer mode. The construction of the acoustic far-field by
means of an acoustic analogy or a Kirchhoff surface method is not attempted here.

IV. Results

IV.A. Maximum energy response

Only results obtained by maximizing the perturbation energy E (Eq. 5) are discussed in this section. Results
pertaining to maximum acoustic radiation F (Eq. 6) are presented in section IV.B.

Figure 2 shows the energy gain σ between the forcing input and the instability wavepacket as a function
of frequency, as obtained from the frequency response analysis (solid line, left ordinate). The most amplified
frequencies lie in the interval 2 ≤ ω ≤ 3.5, the maximum gain is found at ω = 2.5. The decay of σ seems to
be monotonic in both directions from the maximum. Compared to the DNS results, this band of preferred
amplified frequencies is plausible: PSD measurements for axisymmetric pressure fluctuations in the DNS,
taken near the nozzle at r = 1, x = 2, display a broad peak in the range 0.5 ≤ StD ≤ 1 (figure 4a in
Ref. 1). The Strouhal number is related to the nondimensional angular frequency as StD = ω/π, therefore
the dominant frequencies in the DNS near-field are found in the interval π/2 ≤ ω ≤ π, in agreement with
the present predictions.

Snapshots of the flow response wavepackets (axial momentum perturbations) for three frequencies, as
obtained from the global frequency response analysis (FR), are presented in figures 3 a,b,c. Clearly, these
wavepackets correspond to the shear-layer instability mode near the nozzle. In the downstream decaying
part of the wavepacket, the perturbation shapes appear to gradually transition towards jet-column-type
perturbations. In all cases, this transition occurs near the end of the potential core, around x ≈ 10. Earlier
studies of local instability modes26 indicate that the shear-layer and jet-column modes cease to be distinct
as the base flow approaches a self-similar bell-shaped velocity profile.

Note that the linear framework implies an arbitrary scaling of perturbation amplitudes. Contour levels
are not specified in representations of linear results herein, as their absolute values are meaningless. The
color scales in all figures are linearly varying between blue (minimum contour value) and red (maximum
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contour value).

Figure 3. Flow response wavepackets (axial momentum perturbations [ρux]′) at various forcing frequencies. (a,b,c):
global frequency response; (d,e,f ): PSE.

Corresponding results obtained from PSE calculations are also presented in figure 2 (dashed line, right
ordinate) and in figures 3 d,e,f. The gain in this case is computed as the ratio of the energy norm (5) of the
instability wavepacket over the input energy integrated along r at x = 0. The absolute values of σ measured
this way are not commensurate with those obtained in the global framework, but their variation as a function
of frequency is equally pertinent. Compared to the fully global frequency response (FR) analysis, the PSE
gain variations are similar in shape, but noticeably shifted to higher frequencies; the maximum is reached at
ω = 3.3. The wavepacket shapes in figure 3 present some obvious differences between FR and PSE results. It
is quite remarkable that these differences appear to be more pronounced in the downstream decaying region,
where the slowly varying base flow assumption should be expected to be well justified. A close comparison
with local eigenmode shapes in the downstream region may help to understand these differences, but such
an analysis is yet to be performed. At present, it must be concluded that the simplifying assumptions of
the PSE do affect the wavepacket shapes in a way that may be relevant for the sound generation. Visually,
these effects appear to be stronger at low frequencies.

Optimal forcing distributions (axial momentum) identified from the singular value decomposition are
shown in figure 4, for the same frequencies as considered in figure 3. Clearly, the forcing is localized in all
cases within the boundary layer of the duct, immediately adjacent to the nozzle exit. The short wavelengths
of the forcing structures are well resolved by the mesh (∆x = 0.009 and ∆r = 0.01 at the nozzle lip). The
observation that this is the region of maximum receptivity indicates that the pipe-flow eigenmodes do not
couple efficiently with the shear-layer mode of the free jet, as otherwise the optimal forcing would rather
excite a pipe mode. Indeed, a local analysis confirms that the flow inside the pipe is stable.

The global frequency response (FR) modes are finally compared to DNS results in figure 5. Density
perturbations are visualized in the near field of the jet. FR results are to the left, DNS results at similar
but not identical frequencies are shown to the right. These DNS results represent the axisymmetric spatial
structures obtained from a Fourier transform of the time-resolved simulation; the data are identical to those
used in Ref. 27. Full time-resolved data is not available in the entire domain, therefore only the hydrodynamic
near field and the near acoustic field are represented. Furthermore, the currently available data from DNS
and FR analysis do not exactly match in frequency. Yet the values are sufficiently close to allow a meaningful,
albeit qualitative discussion.
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Figure 4. Optimal distribution of volume forces f̃ (real part of axial momentum component) inside the pipe at three
different frequencies. The spatial support of volume forces is restricted to the interior of the pipe (x ≤ 0, r < 1).
Optimality is defined with respect to the energy norm (5).

Figure 5. Comparison between global frequency response modes and temporal Fourier modes extracted from the DNS
(axisymmetric perturbations). Density perturbations are shown. The data presented in (d,e,f ) is identical to those of
figures 9 (a,d,g) in Ref. 27.
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Figure 6. Snapshots of the far-field density fluctuations that are obtained as a part of the frequency response. a,b,c:
optimization with respect to the integrated energy (5); d,e,f : optimization with respect to the radiated acoustic power
(6). Contour levels are chosen as appropriate to visualize the acoustic far field. Dashed lines represent the limit of the
physical flow region, coinciding with the contour Σ for the evaluation of acoustic power.

At frequencies ω = 1.5 and 2.5, the resemblance between the FR optimal-response wavepacket and
the corresponding DNS Fourier mode in figure 5 is rather striking. Coherent structures dominate the DNS
fluctuations inside the potential core region, with a spatial structure very similar to the FR solution. Density
fluctuations inside the pipe represent downstream-propagating acoustic waves in all cases. The acoustic near-
field, which is remarkably coherent in all three DNS-extracted modes, appears to be accurately reproduced
in the FR solutions. At the highest frequency, ω = 4.0, a strong upstream radiation is observed, which is
absent or small in the DNS data. Also, the acoustic waves inside the pipe at this frequency are of a different
character than those found in the DNS.

Density fluctuations in the acoustic far field are visualized in figure 6 (the real part of the asymptotic
flow response are shown, corresponding to a snapshot at an arbitrary temporal phase). Figures (a,b,c)
represent the response to optimal forcing in a maximum-energy sense; figures (d,e,f ) will be discussed in
the next section. Only a portion of the numerical domain is shown, but the entire physical domain inside a
semi-circle of radius 20 (dashed lines) is visible. Damping in the sponge regions is ramped up very slowly,
and it barely affects perturbations in the region shown in figure 6. In all cases, all sound seems to emanate
from the nozzle exit at x = 0. The spherical wavefronts are convected by the outer coflow (at Ma = 0.2).
At frequencies ω = 1.5 and 2.5, the far-field directivity is marked by a single-beam pattern. The angle of the
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downstream beam with respect to the jet axis changes only slowly with frequency. At higher frequencies,
visible in figure 6 only for ω = 4.0, an additional upstream-oriented lobe appears.
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Figure 7. Comparison between global frequency response modes and temporal Fourier modes extracted from the DNS
(axisymmetric perturbations) in the far field. The amplitude of acoustic density perturbations is shown in a linear
color scale. The data presented in (b,c) is identical to those of figures 9 (a,b) in Ref. 1.

The acoustic far-field results are then compared to DNS data in figure 7. As in figure 5, the DNS data
is obtained from a temporal Fourier transform of axisymmetric fluctuations of pressure. Note again that
the frequencies are not identical, but close. The amplitude of density fluctuations in the far field is shown
using a linear color scale. It appears that the linear frequency response reproduces very well the acoustic
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Figure 8. Snapshots of the near-field frequency response wavpackets (axial momentum perturbations). a,b,c: opti-
mization with respect to the integrated energy (5); d,e,f : optimization with respect to the radiated acoustic power (6).
Contour levels are chosen as appropriate to visualize the wavepacket structures.

directivity characteristics measured in the DNS, particularly at the lower frequencies ω = 1.5 and 2.5. The
beam pattern is retrieved with the correct angle and correct outward decay rate. At the high frequency value
ω = 4, the upstream lobe that is weak in the DNS is found to be dominant in the FR solution, as already
mentioned in the discussion of figure 5. The reasons for this difference between FR and DNS behavior are
not clear at present. In principle, direct sound that is forced inside the pipe and then refracts into the free
far field may occur in either of the two computations; however, it seems implausible that refraction would
cause an upstream radiation from the nozzle.

IV.B. Maximum acoustic radiation response

Optimal flow forcing for maximal acoustic far-field radiation, in the sense of the pseudo-norm F (equation
6), has only been computed for three frequencies ω = 1.5, 2.5 and 3.5 at present. Only a short and rather
preliminary discussion can be offered in this section.

The gain, defined as the acoustic power F of the flow response divided by the energy E of the vol-
ume forcing inside the pipe, is found to increase monotonically with frequency. The values are (ω, σ) =
(1.5, 7.6), (2.5, 20.2) and (3.5, 81.7). This trend is consistent with a similar study performed on a model
turbulent mean flow in an outer fluid at rest.18

The acoustic far field of these “loudest” modes is displayed in figure 6 (d,e,f ) alongside the results
discussed in the previous section. The comparison reveals that the acoustic radiation at frequencies ω = 1.5
and 2.5 are virtually identical, whether the optimization is based on the near-field or far-field response.
This observation is reassuring in the sense that the FR results appear to be fairly universal and robust with
respect to details of the definition of optimality. The results obtained for a model mean flow displayed similar
agreement.18 The higher-frequency case ω = 3.5 in figure 6 does show some sensitivity to the optimization
objective. The upstream acoustic lobe, which has been discussed before as an exaggerated feature in the FR
results, is found to be even more intense in the case of maximal acoustic power. The downstream beam, which
compares favorably with the DNS results, is still present, but very weak compared to the upstream-radiated
intensity.

The near-field flow response obtained with the two different optimization objectives are compared in
figure 8. Axial momentum perturbations are shown in the flow region near the nozzle. If the acoustic
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far-field in both scenarios is quite similar, the instability wavepackets in the near-field present one clear
difference: while the maximum-energy flow response modes start out as a pure local shear-layer mode at the
nozzle, forced only in the immediate vicinity of the nozzle lip, the maximum-acoustic flow response modes
include a strong center-mode component already inside the pipe, which continues seamlessly as a jet-column
mode in the free jet. The shear-layer wavepacket is still present, and it does not seem to be affected by the
added jet-column perturbations.

V. Conclusion

A linear frequency response analysis has been presented for a compressible, subsonic jet with coflow.
Optimal forcing distributions inside a long nozzle pipe have been identified with respect to two distinct opti-
mization objectives: first, the total (integrated) energy of the flow response wavepacket has been maximized;
second, the acoustic power that is radiated into the far field has been used as a measure. A fully global
formalism has been used, in combination with highly accurate discretization schemes that allow high-fidelity
computations of the acoustic field. Both the near-field and the far-field results compare favorably with
Fourier-transformed DNS reference data. Coherent perturbation structures in the free jet and inside the
pipe, obtained from the DNS, bear a strong resemblance to the frequency response wavepackets, the latter
computed as linear perturbations in the turbulent mean flow.

If maximum perturbation energy gain is the optimization objective, the near-field wavepacket is composed
only of shear-layer instability perturbations inside the potential core. These transition smoothly towards
jet-column perturbations downstream of the potential core. Optimization on the basis of radiated acoustic
power yields near-field wavepackets that include a significant component of jet-column perturbations already
inside the pipe and in the potential core. The directivity of the associated acoustic far field, however, is
only weakly affected by these differences in the near field at. The acoustic radiation measured in the DNS
compares well with the present results. The most notable difference is the presence of a strong upstream
radiation in the linear frequency response computations at frequencies ω & 3. This upstream radiation is
more marked in the case when acoustic power is maximized.

The frequency response solutions have also been compared to near-field results obtained from integration
of the linear parabolized stability equations (PSE). Some noticeable differences are observed in the features
of the wavepackets, particularly in the region of stable decay downstream of the potential core. These
differences must be seen as errors of the PSE approximation. It should be noted in this context that one
PSE run requires a computation time of less than one CPU minute, whereas the present frequency response
computations require O(1000) CPU hours each. The main advantages of the global frequency response
analysis over linear PSE computations are (i) the inclusion of the acoustic far field; (ii) the optimization
framework that is inherent in the FR approach, and the flexibility in the choice of an optimization objective;
(iii) the fully global character, which in the jet noise problem principally helps to account for nozzle effects.

The results presented in this paper hold much information for further analysis that has not yet been fully
exploited. For instance, the question is raised which role the jet column mode plays in noise generation in
the present configuration. Most importantly, we believe that the results demonstrate a great potential of
the employed method for future progress in the understanding of aeroacoustic sound generation in a variety
of shear flows.
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Palaiseau, France, 2012.
19Poinsot, T. and Lele, S., “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys.,

Vol. 101, No. 1, 1992, pp. 104.
20Berland, J., Bogey, C., Marsden, O., and Bailly, C., “High-order, low dispersive and low dissipative explicit schemes for

multiple-scale and boundary problems,” Journal of Computational Physics, Vol. 224, No. 2, 2007, pp. 637 – 662.
21Chu, B.-T., “On the energy transfer to small disturbances in fluid flow (Part i),” Acta Mechanica, Vol. 1, 1965, pp. 215–

234.
22Hanifi, A., Schmid, P., and Henningson, D., “Transient growth in compressible boundary layer flow,” Phys. Fluids, Vol. 8,

No. 3, 1996, pp. 826.
23Fosas de Pando, M., Sipp, D., and Schmid, P., “Efficient evaluation of the direct and adjoint linearized dynamics from

compressible flow solvers,” J. Comp. Phys., Vol. 231, 2012, pp. 7739–7755.
24Salgado, A. and Sandham, N., “Viscous Instability of a Compressible Round Jet,” Tech. Rep. AFM-07/01, University of

Southampton, 2007.
25Andersson, P., Henningson, D., and Hanifi, A., “On a stabilization procedure for the parabolic stability equations,” J.

Eng. Math., Vol. 33, 1998, pp. 311–332.
26Lesshafft, L. and Huerre, P., “Linear impulse response in hot round jets,” Phys. Fluids, Vol. 19, 2007, pp. 024102.
27Sinayoko, S., Agarwal, A., and Sandberg, R., “Physical sources of sound in laminar and turbulent jets,” AIAA Paper

2011–2916, 2011.

11 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 L

ut
z 

L
es

sh
af

ft
 o

n 
M

ay
 2

9,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
22

32
 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



Theoretical and Applied Mechanics Letters 5 (2015) 126–128

Contents lists available at ScienceDirect

Theoretical and Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

Letter

Linear global stability of a confined plume
Lutz Lesshafft
Laboratoire d’Hydrodynamique, CNRS-École polytechnique, Palaiseau, France

a r t i c l e i n f o

Article history:
Received 19 July 2014
Received in revised form
7 January 2015
Accepted 2 February 2015
Available online 8 May 2015
*This article belongs to the Fluid Mechanics

Keywords:
Plume
Linear instability
Laminar flow stability
Buoyancy-driven instability
Bifurcation and symmetry breaking

a b s t r a c t

A linear stability analysis is performed for a plume flow inside a cylinder of aspect ratio 1. The configu-
ration is identical to that used by Lopez and Marques (2013) for their direct numerical simulation study.
It is found that the first bifurcation, which leads to a periodic axisymmetric flow state, is accurately pre-
dicted by linear analysis: both the critical Rayleigh number and the global frequency are consistent with
the reported DNS results. It is further shown that pressure feedback drives the global mode, rather than
absolute instability.

© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Localized heating on a horizontal surface entrains a buoyancy-
driven plume flow in the fluid above. Plumes are very common in
the oceans and in the atmosphere, and they are of great impor-
tance to transport and mixing processes [1]. Unconfined by fluid
boundaries or by strong stratification, plumes represent a class of
open shear flows. Plumes within a confined geometry represent a
closed flow, which is likely to inducemarked differences in the dy-
namicswhen compared to unconfined situations. Confined plumes
are notably encountered in internal ventilation problems [2] and in
Rayleigh–Bénard convection [3].

Lopez and Marques [4] used direct numerical simulation (DNS)
for a comprehensive investigation of the dynamics of confined
plumes. Their study describes several successive bifurcations, as-
sociated with symmetry breaking, for what is arguably the most
basic confined plume configuration: the internal flow in a fluid-
filled cylinder, induced by localized heating at the bottom wall. As
the wall heating becomes more and more intense, characterized
by an increasing value of the Rayleigh number, steady convection
becomes dominant over diffusion for the heat transport. Beyond a
first critical Rayleigh number, the steady plume flow bifurcates to a
time-periodic regime, characterized by the convection of axisym-
metric ‘‘puffs’’ along the centerline of the plume. The next bifur-
cation, at a higher critical value of the Rayleigh number, leads to a
breaking of the axial symmetry, and further successive bifurcations
lead to chaotic flow states and eventually to turbulence.

E-mail address: lutz.lesshafft@ladhyx.polytechnique.fr.

The present paper aims to investigate the first bifurcation, from
a steady flow to a time-periodic limit cycle, using the tools of
linear global stability analysis. Lopez and Marques describe this
transition as a supercritical Hopf bifurcation, which suggests that
the observed nonlinear dynamics are related to the destabilization
of a linear temporal eigenmode of the steady-state system. The
flow geometry as well as the governing equations are chosen
exactly identical to the standard configuration in the reference
DNS: the fluid is confined in a vertical cylinder of height and
diameter both equal to 1. All walls are isothermal, at a constant
temperature T0−1T/2, except at the bottomwall, where a circular
spot of radius rd is heated to a temperature T0 + 1T/2. The wall
temperature varies smoothly over the radial distance [rd, rd + rw]

from the cylinder axis, according to expression (2.5) of Ref. [4].
As in the reference study, we choose rd = rw = 0.125. The
nondimensional wall temperature is 0.5 in the center of the hot
spot, and −0.5 everywhere outside the heated area.

The governing equations are cast in the Boussinesq approxima-
tion, written in nondimensional form identically to Ref. [4] as

(∂t + u · ∇)u = −∇p + ∇
2u + σ−1Ra Tez, (1)

(∂t + u · ∇)T = σ−1
∇

2T , ∇ · u = 0. (2)

The nondimensional parameters of the problem are the
Rayleigh number Ra = αgd31Tκ−1ν−1 and the Prandtl number
σ = ν/κ . All symbols are standard notation (see Ref. [4]). The
Rayleigh number is proportional to the dimensional temperature
difference, and may be interpreted as representing the intensity of
the heating.

http://dx.doi.org/10.1016/j.taml.2015.05.001
2095-0349/© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (Color online) (a) Temperature distribution in the steady base flow at Ra = 107 . Twenty contour levels between Tmin = −0.5 and Tmax = 0.5 are shown. (b)Maximum
vertical velocity wmax of the steady base flow, as a function of Rayleigh number. Blue line and dots: present results; red crosses: results reported by Lopez and Marques [4],
rescaled by a factor σ = 7.

a b

Fig. 2. Linear instability eigenvalue as a function of Rayleigh number. (a) Angular frequency (real part). (b) Temporal growth rate (imaginary part).

In a first step, base flow states are computed as exact steady so-
lutions of the nonlinear equations (1) and (2). In a second step, the
same equations are linearized around the base flow, and tempo-
ral eigenmodes of this linear system are extracted. Both numerical
procedures are performed using a finite element method as im-
plemented in the FreeFEM++ package (http://www.freefem.org). A
Newton–Raphson method is employed to identify the steady base
flow for a given setting of σ and Ra. All results presented herein
pertain to σ = 7, consistent with the standard case of Ref. [4]. The
temperature distribution of the base flow at Ra = 107 is repre-
sented in Fig. 1(a). It appears to be indeed identical to the result of
Lopez and Marques [4] (their Fig. 3(a), same colormap). The asso-
ciated velocity fields are also consistent, provided that the values
reported in Ref. [4] are divided by the Prandtl number, σ = 7, as
plotted in Fig. 1(b). It seems that the time scaling in Ref. [4] is based
on thermal diffusivity, whereas a viscous scale is used here. The ac-
curacy of the present base flow results has been verified through
independent time-resolved simulationswith the software package
Gerris [5].

Temporal eigenmodes of the linearized form of Eqs. (1) and (2)
are sought in the form u′(r, θ, z, t) = û(r, z) exp(imθ − iωt),
and accordingly for perturbations T ′ and p′. The eigenvalue is the

complex frequencyω = ωr+iωi, whereωi represents the temporal
growth rate. It is found that all eigenmodes are stable (ωi < 0)
at Rayleigh numbers below the critical value Rac = 3.801 × 107.
At Rayleigh numbers Ra > Rac, one axisymmetric instability
mode (m = 0) becomes unstable, while helical modes (|m| > 1)
remain stable at least up to Ra = 108. The angular frequency
and growth rate of this unstable global mode are displayed as
functions of Rayleigh number in Fig. 2. The critical value for onset
of linear global instability is to be compared to the value reported
in Ref. [4], Ra = 3.854 × 107, at which self-excited axisymmetric
perturbations are observed in the nonlinear simulations. The
global angular frequency of the limit cycle in the simulations is
approximately ω̃g = 28500 in terms of the diffusive time scale,
or ωg = ω̃g/σ ≈ 4070 when rescaled to the viscous time scale
used in the present study. This latter value matches within 0.5%
accuracy the frequency ωr = 4050 that linear instability analysis
predicts at the critical Rayleigh number (see Fig. 2(a)).

Lopez and Marques [4] point out that the oscillation period of
the nonlinear limit cycle corresponds to the propagation time of a
vortex ring along the axis of the plume. The vortex then impacts
the top wall, causing a pressure perturbation, which in turn trig-
gers the formation of a new vortex ring near the bottom wall. Al-
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a b c

Fig. 3. Linear perturbation eigenfunctions of the unstable mode at the critical Rayleigh number Ra = 3.801 × 107 . (a) Temperature perturbation (snapshot). (b) Pressure
perturbation at r = 0.1 as a function of z and time. Two oscillation periods are shown. (c) Structural sensitivity. White is positive, black is negative (or zero in plot (c)).

though the roll-up of a vortex ring is a strongly nonlinear event,
it is remarkable how the linear eigenmode reproduces the same
qualitative behavior. Figure 3(a) displays the linear temperature
perturbation at one instance during the cycle. It resembles very
much the nonlinear snapshots shown in Fig. 10 of Ref. [4]. The
propagation time of disturbances is visualized in the space–time
diagram in Fig. 3(b), which shows pressure perturbations along the
vertical z, at a fixed radial station r = 0.1, as a function of time.
A pressure maximum (minimum) near the top wall coincides pre-
cisely with amaximum (minimum) at the bottomwall, which then
propagates upward. The picture suggests the presence of a pres-
sure feedback, similar to what is observed for instance in cavity
flows [6]. Figure 3(c) finally shows the structural sensitivity of the
unstable eigenmode, in the sense of Giannetti and Luchini [7]. This
quantity is computed as the local product of the norms of the di-
rect eigenfunction and its adjoint. The structural sensitivity of the
unstable eigenmode is seen to be significant only in the vicinity of
the hot spot near the bottom wall. This observation suggests that
this flow region is of particular importance for the destabilization
of the eigenmode. It is plausible that the strong pressure fluctua-
tions generated at the top boundary, where the vorticity impinges
on the wall, induce perturbations in the receptive flow region near
the hot spot at the bottom. Synchronized communication between
these two flow regions establishes a feedback loop that seems to
be the root cause for the observed instability.

It is classically assumed that global instability may either be
linked to pressure feedback, as described here, or to the presence
of local absolute instability [8]. A local analysis has been performed
for the base flowat the critical settingRa = 3.801×107, confirming
that the flow at this setting is convectively unstable everywhere.
Absolute instability therefore does not provide the global instabil-
ity mechanism. All these observations support the interpretation

that the vertical confinement leads to pressure feedback that in-
duces a global instability. It is remarkable that such a seemingly
nonlinear scenario is captured with high quantitative accuracy by
a linear analysis.
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The temporal and spatiotemporal stability of thermal plumes is investigated for
laminar velocity and temperature profiles, under the Boussinesq approximation, in
the far self-similar region as well as in the region close to a finite-size inlet. In
the self-similar case, Prandtl and Grashof numbers are systematically varied, and
azimuthal wavenumbers m = 0, 1 and 2 are considered. In the temporal analysis,
helical modes of m= 1 are found to be dominant throughout the unstable parameter
space, with few exceptions. Axisymmetric modes typically present smaller growth
rates, but they may dominate at very low Prandtl and Grashof numbers. Double-helical
modes of m = 2 are unstable over a very restricted range of parameters. Only the
helical m= 1 mode is found to ever become absolutely unstable, whereas m= 0 and
m = 2 modes are at most convectively unstable. In a temporal setting, an analysis
of the perturbation energy growth identifies buoyancy- and shear-related mechanisms
as the two potentially destabilizing flow ingredients. Buoyancy is demonstrated to
be important at low Grashof numbers and long wavelengths, whereas classical shear
mechanisms are dominant at high Grashof numbers and shorter wavelengths. The
physical mechanism of destabilization through the effect of buoyancy is investigated,
and an interpretation is proposed. In the near-source region, both axisymmetric and
helical modes may be unstable in a temporal sense over a significant range of
wavenumbers. However, absolute instability is again only found for helical m = 1
modes.

Key words: absolute/convective instability, buoyancy-driven instability, plumes/thermals

1. Introduction
The present paper investigates the local stability properties of round laminar plumes

under the Boussinesq approximation. With these premises, the analysis pertains to
physical situations where viscous forces are significant, and where density variations
are sufficiently small. Examples of such situations are magma flows, saline jets,
convective CO2 transport in water, under-ice convection and algae suspensions (see
Thorpe 2005; Lombardi et al. 2011; Nadal et al. 2011, and references therein).

The velocity field of a steady plume resembles that of a jet, with the fundamental
difference that a jet emerges from a nozzle with a given amount of streamwise
momentum, which merely diffuses radially as the fluid convects downstream, whereas

† Email address for correspondence: lesshafft@ladhyx.polytechnique.fr
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the buoyancy in a plume flow continues to generate vertical momentum at any
streamwise station. With regard to unsteady dynamics, buoyancy may provide new
mechanisms of perturbation growth in addition to the well-known shear instabilities
that are present in jets.

Mollendorf & Gebhart (1973) investigated the spatial stability of a self-similar
plume, although in a simplified framework where buoyancy effects were accounted for
by adding a small forcing parameter to a non-buoyant jet analysis, thereby avoiding
the solution of the coupled system of temperature and momentum equations. A spatial
analysis was performed for Prandtl numbers Pr = 2 and 6.7. Weak buoyancy was
observed to destabilize helical perturbations, with azimuthal wavenumber m = 1, but
no instability was found for axisymmetric perturbations (m = 0). These conclusions
were confirmed by the spatial analysis of Wakitani (1980), who solved the fully
coupled Boussinesq equations for settings with Prandtl numbers Pr = 0.7 and 2,
and over a range of Grashof numbers. The observation of stable axisymmetric and
unstable helical perturbations is consistent with the instability properties of fully
developed non-buoyant jets (Batchelor & Gill 1962).

The first temporal analysis of axisymmetric plumes was performed by Riley &
Tveitereid (1984). Their investigation was limited to Pr = 1, and the results were
congruous with the earlier spatial studies. By resorting to the perturbation kinetic
energy equation, it was demonstrated that the instability at low Grashof numbers is
mainly driven by buoyancy effects. The absence of a lower branch of the neutral
instability curve, i.e. a lower limit on unstable wavenumbers, was attributed to the
locally parallel flow assumption. A subsequent non-parallel spatial stability analysis
(Tveitereid & Riley 1992) did indeed yield such a lower limit. However, the absolute
or convective nature of the instability in all these laminar base flows has never been
established, and the pertinence of a spatial analysis therefore remains to be proven.

There is ample experimental and numerical evidence for oscillator behaviour in
plumes and in related flows, suggesting the presence of absolute instability. The large
majority of those settings, however, involve strong density differences outside the
realm of validity of the Boussinesq approximation. Subbarao & Cantwell (1992) as
well as Cetegen & Kasper (1996) observed self-sustained axisymmetric oscillations
in their experiments with helium jets in air. Similar self-excited behaviour has been
documented for planar plumes (Cetegen, Dong & Soteriou 1998) and diffusion
flames (Maxworthy 1999). Jiang & Luo (2000a,b) numerically studied the instability
dynamics of thermal plumes and of diffusion flames, and they examined the role
of buoyancy and baroclinic torque in the vorticity equation in order to explain the
occurrence of self-sustained oscillations. Hattori et al. (2013) identified an instability
of the boundary layer over a heated plate as the cause of sinuous oscillations
in the rising planar plume. Satti & Agrawal (2004, 2006a,b) performed a series of
experimental and numerical studies on helium–air mixture injected into pure air. Their
results indicate that such jets transition from oscillator- to amplifier-type behaviour as
gravity is reduced. However, Lesshafft et al. (2006) found oscillator behaviour in light
jets in the absence of gravity. For the case of a confined plume inside a cylindrical
container, driven by an extended heat source in the bottom wall, Lopez & Marques
(2013) documented a succession of bifurcations, through direct numerical simulation,
leading from steady laminar flow to turbulence. The first of these bifurcations gives
rise to a regular formation of axisymmetric vortices.

Despite all these experimental and numerical studies of intrinsic plume dynamics,
the linear global stability of plumes appears to never have been investigated so far.
The absolute/convective character of local instability has only been examined by
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Lombardi et al. (2011) for the case of a planar plume in a stratified environment.
The present study extends that analysis to round plumes, without the effect of
background stratification, over a large range of Grashof and Prandtl numbers and for
azimuthal wavenumbers between 0 and 2. The Boussinesq approximation is employed
in order to exclude the effect of the density ratio as an additional parameter.

The paper presents instability results for two different types of base flows: a general
self-similar set of velocity and temperature profiles, typical for the flow field far away
from a buoyancy source (§ 2), and one specific case of a ‘forced’ plume close to an
inlet (§ 3), which may also be characterized as a buoyant jet. Within each of these
sections, the base flow is described first, the linear stability problem is posed, and then
the results of temporal and absolute/convective analysis are documented. The physical
discussion focuses principally on the temporal instability modes of the self-similar
base flow (§ 2.3). Conclusions are summarized in § 4.

2. Self-similar plume
2.1. Base flow

A quiescent incompressible fluid is considered, characterized by its temperature
T∞, density ρ∞, kinematic viscosity ν, volumetric expansion coefficient α, thermal
diffusivity κ and conductivity K. All fluid properties are assumed to be independent
of temperature. A point source of heat flux Q is introduced into this quiescent
medium. Buoyancy then induces a flow in the positive z-direction, opposite to the
gravity −gez.

The governing equations for primitive flow variables are written in the Boussinesq
approximation (Tritton 1988):

∇ · u= 0, (2.1a)
Du
Dt
=−∇p

ρ∞
+ ν∇2u− (ρ − ρ∞)g

ρ∞
ez, (2.1b)

DT
Dt
= κ∇2T, (2.1c)

ρ − ρ∞
ρ∞

=−α(T − T∞). (2.1d)

The pressure p includes the hydrostatic correction for ρ∞gz. Under a boundary-layer
type approximation of slow streamwise variations, the steady self-similar base flow is
governed by

∂(ruz)

∂z
+ ∂(rur)

∂r
= 0, (2.2a)

uz
∂uz

∂z
+ ur

∂ur

∂r
= gα(T − T∞)+ νr

∂

∂r

(
r
∂uz

∂r

)
, (2.2b)

uz
∂

∂z
(T − T∞)+ ur

∂

∂r
(T − T∞)= κr

∂

∂r

[
r
∂

∂r
(T − T∞)

]
, (2.2c)

with boundary conditions

ur = ∂uz

∂r
= ∂

∂r
(T − T∞)= 0 for r= 0, (2.3a)

ur, uz, (T − T∞)→ 0 for r→∞. (2.3b)
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Following Yih (1988), the similarity variables are chosen to be

ψ = νzf (η),

T − T∞ = Q
Kz

h(η),

η= r
z1/2

[
αgQ
Kν2

]1/4

,


(2.4)

where ψ is a streamfunction defined by

uz = 1
r
∂ψ

∂r
, ur =−1

r
∂ψ

∂z
. (2.5a,b)

Substituting these variables into (2.2a)–(2.2c), one obtains[
η

(
f ′

η

)′]′
=−ηh− f

[
f ′

η

]′
, (2.6)

ηh′ + Pr fh= 0, (2.7)

where the prime denotes differentiation with respect to η, and the Prandtl number is
defined as Pr= ν/κ . The boundary conditions (2.3) become

h′, f , (f ′/η)′ = 0 for η= 0, (2.8a)
h, f ′/η→ 0 for η→∞. (2.8b)

With the above choice of variables for the similarity transformation, the following
scales for length, velocity and temperature have been adopted:

R(z)= z1/2

(
Kν2

αgQ

)1/4

, (2.9a)

U =
(
αgQ

K

)1/2

, (2.9b)

Θ(z)=Q/Kz, (2.9c)

where R(z) defines a measure of the local plume radius. With these scales, the Grashof
number is defined as

Gr= gαΘ(z)R3(z)
ν2

=
(
αgQz2

Kν2

)1/4

. (2.10)

From (2.4), (2.5) and (2.9), one obtains

uz =UUz =U
f ′(η)
η
, (2.11)

ur =UUr =U
1

Gr

(
f ′(η)

2
− f (η)

η

)
, (2.12)

T − T∞ =ΘT =Θ(z)h(η). (2.13)

Symbols with an overbar denote non-dimensional base flow quantities.
In order to have a unique solution, conservation of the heat flux at any axial

location z is imposed. Furthermore, due to the self-similarity assumption, some



348 R. V. K. Chakravarthy, L. Lesshafft and P. Huerre

boundary conditions in (2.8) are seen to become redundant. The following conditions
are retained:

f ′/η→ 0, as η→∞, (2.14a)
f , (f ′/η)′ = 0, at η= 0, (2.14b)∫ ∞

0
f ′h dη= 1/(2πPr). (2.14c)

The base flow for any given Prandtl number can be derived by solving (2.6), (2.7)
and (2.14). A closed-form solution to these equations is known only for Pr = 1
and 2 (Brand & Lahey 1967; Yih 1988). For all other values, the solution must
be constructed numerically as follows (Worster 1986). Guessed values for f ′(η)/η
and for h are prescribed at η = 0, and the equations are integrated outward using a
Runge–Kutta algorithm. The guessed values for f ′(η)/η and h at η= 0 are improved
based on the errors incurred in satisfying the boundary conditions (2.14a,c). The
resulting base flow profiles at Prandtl numbers between 0.1 and 10 are shown
in figure 1. As Pr increases, both the temperature and the velocity mixing layers
become thinner, measured by their vorticity thickness (see solid symbols in figure 1d).
Yet, remarkably, the maximum value of the shear decreases at the same time (see
open symbols in figure 1d).

2.2. Formulation of the linear stability problem
In the context of local stability analysis, the base flow is assumed to be locally
parallel, i.e. the radial velocity ur given by (2.12) is neglected, and perturbations are
assumed to be of the form

(ũr, ũθ , ũz, P̃, T̃)=
[
Â(η), B̂(η), Ĉ(η), P̂(η), T̂(η)

]
ei(kz+mθ−ωt) + c.c. (2.15)

As in any local stability analysis, the locally parallel assumption can be taken as valid
as long as the Grashof number is sufficiently large. The limitations of this assumption
are critically discussed by Crighton & Gaster (1976) in the context of jets. The axial
wavenumber k, which in the following will simply be referred to as the wavenumber,
as well as the frequency ω may take on complex values (ω= ωr + iωi), whereas the
azimuthal wavenumber m is an integer. The non-dimensional, linearized equations that
govern the perturbations are obtained as

ηÂ′ + Â+ imB̂+ iηkĈ= 0, (2.16a)

i(kUz −ω)Â=−P̂′ + 1
Gr

(
Â′′ + Â′

η
−
(

k2 + m2 + 1
η2

)
Â− 2imB̂

η2

)
, (2.16b)

i(kUz −ω)B̂=− imP̂
η

′
+ 1

Gr

(
B̂′′ + B̂′

η
−
(

k2 + m2 + 1
η2

)
B̂+ 2imÂ

η2

)
, (2.16c)

i(kUz −ω)Ĉ+U′zÂ=−ikP̂+ T̂
Gr
+ 1

Gr

(
Ĉ′′ + Ĉ′

η
−
(

k2 + m2

η2

)
Ĉ

)
, (2.16d)

i(kUz −ω)T̂ + T ′Â= 1
PrGr

(
T̂ ′′ + T̂ ′

η
−
(

k2 + m2

η2

)
T̂

)
, (2.16e)

where Uz and T are defined in (2.11) and (2.13).
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FIGURE 1. Self-similar base flow profiles, computed from (2.11)–(2.13) for various
Prandtl numbers as specified in the legend. (a) Axial velocity; (b) radial velocity; (c)
temperature; (d) vorticity thickness δω of the velocity shear layer (scaled by a factor
1/100), and maximum value of the velocity gradient.

In the limit η→∞, all perturbations vanish. The boundary conditions on the axis
depend on m (Khorrami, Malik & Ash 1989):

For m= 0: Â(0)= B̂(0)= 0, Ĉ′(0)= P̂′(0)= T̂ ′(0)= 0, (2.17)

for m=±1: Â(0)± iB̂(0)= 0, Â′(0)= 0, Ĉ(0)= P̂(0)= T̂(0)= 0, (2.18)

for |m|> 1: Â(0)= B̂(0)= Ĉ(0)= P̂(0)= T̂(0)= 0, (2.19)

for all m: Â(∞)= B̂(∞)= Ĉ(∞)= P̂(∞)= T̂(∞)= 0. (2.20)

Equations (2.16) are solved numerically as an eigenvalue problem in ω for given
values of k, and for a set of parameters (Pr, Gr, m). The problem is discretized
using Chebyshev collocation on a finite interval 0 6 η 6 η∞. The value of η∞ is
prescribed to be at least 5000, and up to 50 000 for very low values of k and Gr.
The domain is discretized with 300–350 points for all the cases considered here
and the points are distributed using a mapping function (equation (52) in Khorrami
et al. 1989), which clusters the points close to the axis. Convergence with respect
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FIGURE 2. Eigenvalue spectrum for the base flow at Prandtl number of 2 for two different
resolutions where asterisk markers correspond to 300 discretization points while open
circles correspond to 350 points: (a) m = 1, Gr = 70, k = 0.12; (b) m = 0, Gr = 100,
k= 0.05.

to resolution and domain size has been verified. In all cases, at most one unstable
discrete eigenmode could be identified, i.e. all other eigenmodes appear to belong to
the continuous spectrum. The convergence of the method is demonstrated in figure 2
for two different parameters as an example.

2.3. Temporal analysis
2.3.1. Results

Temporal analysis is performed on the self-similar base flow for Prandtl number
values between 0.1 and 10, and for a range of Grashof numbers between 0.1 and
50 000. Azimuthal wavenumbers m = 0, 1, 2 are considered for each (Gr, Pr)
combination, and the axial wavenumber k is varied such as to cover the entire
unstable range. The principal result from these computations is a set of neutral
stability curves, traced in figure 3, representing contour lines of zero growth rate.
At nearly all Prandtl and Grashof numbers, the domain of instability of the helical
m= 1 mode contains the other two modes. An exception to this rule is observed at
Pr 6 0.2, where instability sets in for axisymmetric m = 0 modes at slightly lower
Grashof numbers than for m= 1 modes. Double-helical m= 2 modes are found to be
unstable only over quite restricted parameter ranges; higher azimuthal wavenumbers
are therefore not considered in this study. For Pr > 5, the double-helical mode is
stable at all locations in the k–Gr plane, and therefore there is no neutral curve to
be shown for these Prandtl numbers in figure 3.

Another important observation from figure 3 is that the unstable range of
wavenumbers in general has no finite lower limit, at least within the considered
range of k. As the present numerical method requires k to be finite, a minimum
value of 10−3 is used. In other words, the neutral curve for m= 1 in most cases has
no lower branch, and it appears as if instability prevails even in the limit k→ 0, for
Grashof numbers above a critical value Grc that is a function of the Prandtl number.
Values of Grc, as a function of Pr, are reported in figure 4 for all m. In the absence
of a lower branch, Grc is taken to be the critical value for k = 10−3. The slight
precedence of m = 0 over m = 1 at very low Prandtl numbers is visible in figure 4.
Above Pr = 0.2, the self-similar plume will always first become unstable to helical
perturbations as the Grashof number increases.



Local linear stability of laminar axisymmetric plumes 351

10–3

10–1 100 101 102 103 104

10–2

10–1

100(a) (b)

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

10–3

10–1 100 101 102 103 104

10–2

10–1

100

k

k

k

k

Gr Gr

(c) (d)

(e) ( f )

(g) (h)

FIGURE 3. Neutral curves for azimuthal wavenumbers m= 0 (dashed), m= 1 (solid) and
m = 2 (dotted) at various Prandtl numbers. Shaded regions indicate the parameter space
over which the flow is stable to m= 1 perturbations: (a) Pr= 0.1; (b) Pr= 0.2; (c) Pr=
0.5; (d) Pr= 0.7; (e) Pr= 1; (f ) Pr= 2; (g) Pr= 5; (h) Pr= 10.

The neutral curve for m= 0 modes in figure 3 shows a peculiar behaviour near a
Prandtl number of unity. No unstable axisymmetric mode is found at Pr= 1, and the
unstable ranges of Gr and k are very different for Prandtl numbers above and below
Pr= 1. We associate this change with an observation in the context of an asymptotic
expansion for large radial distances η. Such a study was attempted, but as it remained
inconclusive, it is not presented here in detail. However, it can be reported that the
analytically obtained solution for the potentially unstable m= 0 mode contains a factor
(Pr − 1)−1. The present numerical results suggest that this factor indeed causes a
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FIGURE 4. Critical Grashof number Grc for onset of temporal instability, as a function of
Prandtl number Pr, for azimuthal wavenumbers m= 0 (solid), m= 1 (solid with triangular
markers) and m= 2 (dashed). The solid line with circular markers denotes the transition
from convective to absolute instability for m= 1, which will be discussed in § 2.4.
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FIGURE 5. Maximum growth rate ωi,max, as a function of Prandtl number Pr, for
azimuthal wavenumbers m= 0 (dashed), m= 1 (solid) and m= 2 (dotted).

singularity at Pr = 1, separating two regimes of distinct character. The m = 0 mode
is found to be always stable in the limit Gr→∞, which implies that the mode is
stable to shear mechanisms. This is consistent with the Rayleigh criterion (Batchelor &
Gill 1962), which states that, for shear instability to exist in an axisymmetric inviscid
non-buoyant flow, the relation

η0

[
η0U′

m2 + k2η2
0

]′
= 0 (2.21)

must be satisfied for some point η0 ∈ (0, η∞). For the base flow under consideration,
expression (2.21) is not satisfied anywhere for the m= 0 mode. Therefore, instability
is excluded in the inviscid (large Gr) limit by the Rayleigh criterion.

The m= 1 mode may be unstable over the largest range of parameters, but nothing
has been said so far about the strength of the instability. Figure 5 compares the
maximum values ωi,max reached by the growth rate over all wavenumbers and Grashof
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FIGURE 6. Variations of growth rate ωi and phase velocity cr with wavenumber k at
a Prandtl number of 2 for various azimuthal wavenumbers m and for Grashof numbers
indicated in the legend: (a,b) m= 0; (c,d) m= 1; (e,f ) m= 2.

numbers, at m = 0, 1 and 2, for different Prandtl numbers Pr. Clearly, the m = 1
mode also dominates by this measure. The overall maximum is reached at Pr = 1,
where the axisymmetric mode vanishes. A more detailed comparison is given for
Pr= 2 in figure 6. Plots to the left show the variations of the growth rate ωi with k
for various values of Gr and for all m; diagrams to the right show the corresponding
phase velocities cr = ωr/k. The growth rates are consistently largest for m = 1 and
smallest for m= 2.

The phase velocities display several characteristic trends. All axisymmetric modes
(figure 6b) have phase velocities approximately equal to the base flow centreline
velocity U(η = 0) = 0.315 (see figure 1a). Unstable helical modes at high Grashof
number (m= 1, figure 6d) display lower phase velocities, corresponding to base flow
velocities in the shear layer. The values of cr at Gr= 50 000 are in fact within 1 % of
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the base flow velocity U(η0) at the radial station η0 where the Rayleigh criterion (2.21)
is fulfilled, indicating that, in this limit, the instability is predominantly shear-driven.
Remarkably, at low values of k and Gr, the phase velocity for m = 1 drops sharply
and even becomes negative. We do not have a clear explanation for this behaviour at
present. Unstable m= 2 modes (figure 6f ) have phase velocities near zero.

2.3.2. Perturbation energy analysis
A useful characterization of the various physical mechanisms that affect the stability

of the base flow can be inferred from the perturbation energy equation. Following
the procedure outlined by Nachtsheim (1963) and adopting the notation of Riley &
Tveitereid (1984), the following equations are obtained:

2ωi

∫ λ
0
〈KE〉 dz=

∫ λ
0
〈Mu〉 dz+

∫ λ
0
〈B〉 dz−

∫ λ
0
〈Du〉 dz, (2.22)

2ωi

∫ λ
0
〈TE〉 dz=

∫ λ
0
〈Mt〉 dz−

∫ λ
0
〈Dt〉 dz, (2.23)

where

KE= ũ2
r + ũ2

θ + ũ2
z

2
, TE= T̃2

2
,

Mu =−(Uz)
′ũrũz, B= ũzT̃

Gr
, Mt =−T ′ũrT̃,

Du = χ̃ · χ̃Gr
, Dt = ∇T · ∇T

PrGr
,

〈( )〉 =
∫ ∞

0
( )η dη, χ̃ =∇× ũ, ũ= (ũr, ũθ , ũz),


(2.24)

and λ = 2π/k is the perturbation wavelength. While KE is the perturbation kinetic
energy, note that TE only represents an ad hoc temperature norm; it is not rigorously
defined as the thermal perturbation energy. The quantities Du and Dt, which represent
the dissipation terms associated with viscous and thermal diffusion respectively,
are positive definite. The only terms that may give rise to a positive growth rate
are therefore Mu, Mt and B. The symbol Mu stands for the work of Reynolds
stresses, i.e. shear-related instability mechanisms, B denotes the work of buoyancy,
and Mt represents the convective transfer of thermal energy between base flow and
perturbations. All these production terms may take on positive or negative values.

In order to compute the various terms in (2.22) and (2.23), the equations are cast
in terms of complex eigenfunctions, leading to

2ωi〈K 〉 = 〈Mu〉 + 〈B〉 − 〈Du〉, (2.25)
2ωi〈T 〉 = 〈Mt〉 − 〈Dt〉, (2.26)

with

K = 1
2
(Â∗Â+ B̂∗B̂+ Ĉ∗Ĉ), Mu =−U′z

2
(Â∗Ĉ+ ÂĈ∗), B = 1

2Gr
(Ĉ∗T̂ + ĈT̂∗),

(2.27a−c)
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Du = 1
Gr

[
m2|Ĉ|2
η2
+ k2|B̂|2 − km

η
(B̂∗Ĉ+ B̂Ĉ∗)+ k2|Â|2 + |Ĉ′|2

− ik(−Â∗Ĉ′ + ÂĈ′∗)+ |B̂|
2

η2
+ |B̂′|2 + |Â|

2

η2
+ B̂∗B̂′ + B̂B̂′∗

η

− im
ÂB̂′∗ − Â∗B̂′

η
− i

ÂB̂∗ − Â∗B̂
η2

]
, (2.27d)

T = |T̂|
2

2
, Mt =−T ′

Â∗Ĉ+ ÂĈ∗

2
, Dt = 1

PrGr

[
|T̂ ′|2 +

(
k2 + m2

η2

)
|T̂|2
]
.

(2.27e−g)
An asterisk denotes the complex conjugate. Riley & Tveitereid (1984) gave identical
expressions for the special case m= 1. A typographical error in their expression for
B is corrected above.

Based on the kinetic energy equation (2.25), the separate contributions of buoyancy,
shear and viscosity to the flow instability can be quantified. Viscosity is always
stabilizing in the present context and will not be further considered. The relative
importance of buoyancy and shear for the helical mode instability in the (Gr, k)
plane is indicated in figure 7 by the contour lines 〈B〉/〈Mu〉 = {0.2, 5}. Clearly,
buoyancy-related effects dominate at low Grashof numbers, and shear effects dominate
at high Grashof numbers. This is expressed in (2.27a−c) by the scaling B ∼ Gr−1.
The shear-dominated character of the instability at high Grashof numbers is consistent
with the accurate prediction of a critical point in η0, from the Rayleigh criterion (2.21),
as observed in § 2.3.1. Figure 7 shows that buoyancy effects gain importance as the
wavenumber is lowered. Markers in figure 7 indicate the (Gr, k) combination at
which the highest growth rate is reached, as reported in figure 5. Invariably, this
combination is found in a region where buoyancy and shear contributions are of
similar importance.

Figure 8 compares eigenfunction shapes of two representative modes in the
buoyancy-dominated and shear-dominated regimes, respectively, for a Prandtl number
Pr= 2. The shear mode (thin lines) has significant amplitudes only inside the plume,
with peaks in several quantities at the critical point η0 = 3.2, whereas the buoyancy
mode (thick lines) spreads over a much larger radial distance.

Figure 7 indicates that a higher Prandtl number favours a stronger dominance
of buoyancy contributions to the instability at low and moderate Grashof numbers.
This trend may be partially ascribed to a base flow effect, as the base flow shear
reduces with increasing Pr (see figure 1d). In addition, the thermal dissipation of
temperature perturbations is decreased (2.27e−g), which should lead to an increase
in 〈B〉 (2.27a−c).

In the high Grashof number regime, the unstable range of wavenumbers increases
steadily with Pr, as seen in figures 3 and 7. This is easily understood from the
fact that the vorticity thickness of the base flow decreases monotonically with the
Prandtl number, as thinner shear layers are unstable to a larger band of wavenumbers.
However, the complete stabilization at Pr = 0.1 cannot be explained from obvious
shear instability arguments. The variations in growth rate with wavenumber, at m= 1
and for various Prandtl number values, are shown in figure 9. The trends for Pr > 1
are fully consistent with classical results for non-buoyant inviscid shear layers: the
unstable range of k grows with increasing Pr, because the vorticity thickness shrinks;
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FIGURE 7. Neutral curves for m= 1 mode instability (thick lines), alongside contour lines
〈B〉/〈Mu〉 = {0.2, 5} (thin lines), at various Prandtl numbers. Triangles mark the point
of maximum growth rate ωi,max: (a) Pr = 0.1; (b) Pr = 0.2; (c) Pr = 0.5; (d) Pr = 0.7;
(e) Pr= 1; (f ) Pr= 2; (g) Pr= 5; (h) Pr= 10.

the maximum growth rate diminishes with increasing Pr, because the maximum
velocity gradient of the base flow decreases. Yet the latter trend is reversed for
Pr < 1, and lower Prandtl numbers stabilize the flow. It is observed, but not shown
here, that the Reynolds stress u′zu

′
r eigenfunction decreases in amplitude at low Prandtl

numbers.
Both the m = 0 and the m = 2 modes are stable in the inviscid limit of high

Grashof numbers (figure 3). According to (2.27a−c), the buoyant energy production
term vanishes as Gr grows large, and the only potential source of instability is the
shear term Mu. However, the Rayleigh criterion (2.21) for a cylindrical geometry
predicts that all self-similar base flows in the present study are stable with respect
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to m = 0 perturbations in the inviscid limit. It is confirmed numerically that the
term 〈Mu〉 takes on negative values for m = 0 under all conditions. Any growth of
axisymmetric perturbations must be attributed to buoyancy effects.

Shear-related instability of m= 2 perturbations cannot be categorically ruled out on
the basis of the Rayleigh criterion; however, earlier studies (Batchelor & Gill 1962;
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velocity; (c) buoyancy work B; (d) shear-related work Mu.

Mollendorf & Gebhart 1973) on non-buoyant and weakly buoyant jets have found
m= 2 modes to be stable in such flows in the presence of viscosity. Comparison of
〈Mu〉 and 〈B〉 in the present calculations consistently identifies the buoyant term as
the dominant contributor to m= 2 instability.

2.3.3. Buoyancy-driven instability mechanism
While the shear-driven instability at high Grashof numbers is among the most

classical phenomena described in the literature (see Drazin & Reid 2004), the
buoyancy-driven instability that prevails in the low Grashof number regime deserves
some further attention. Insights into the physical mechanisms are sought from an
examination of the instability eigenfunctions.

Figure 10 presents contour plots of some relevant perturbation quantities for the
case m = 1, Pr = 1, Gr = 5 and k = 0.01. A Cartesian (y, z) plane is shown for
convenience, where y is identical with the radial coordinate η at positive values,
and y = 0 is the centreline of the plume. Perturbation streamlines are superposed
on temperature perturbation contours in figure 10(a). Note that the true streamlines
in an m = 1 geometry are three-dimensional; for the purpose of our argument, the
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FIGURE 11. (Colour online) Axisymmetric m=0 eigenmode for parameters Pr=10, Gr=
50 and k= 0.1. All quantities are shown in a Cartesian plane, with the centreline of the
plume at y = 0. (a) Perturbation isotherms and perturbation streamlines; (b) perturbation
axial velocity; (c) buoyancy work B; (d) shear-related work Mu.

azimuthal velocity component may be safely ignored, as it does not contribute to the
convection of base flow quantities. It is clear from figure 10(a) that the perturbation
velocity convects hotter fluid from the centreline, where the base flow temperature
is maximum, into the regions of positive perturbation temperature. We may therefore
interpret this temperature perturbation as an effect of the velocity perturbation. In turn,
this temperature perturbation induces a vertical motion (figure 10b) that reinforces
the circulating flow in the sense of the streamlines. This action of buoyancy therefore
constitutes a positive feedback on the fluid motion, providing a plausible scenario
for an instability mechanism. Figure 10(c) demonstrates that the resulting buoyancy
work B is indeed positive everywhere for the chosen parameter combination, i.e. the
phase relation between T̃ and ũz is such that the feedback mechanism is destabilizing
at every point in space. The shear-related work Mu is visualized in figure 10(d). Its
net contribution is clearly positive, and therefore destabilizing, but the amplitudes are
lower than those of the buoyancy work by a factor of around 5.

A similar situation for an unstable m= 0 mode is shown in figure 11. Parameters
Pr = 10, Gr = 50 and k = 0.1 are chosen, corresponding to a comparatively
strong axisymmetric instability. The perturbation streamlines show the presence of
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counter-rotating toroidal vortices. These vortices deform the column of hot fluid,
thus leading to positive and negative values of the temperature perturbation along
the axis, which in turn drive the vertical convection. Stationary vortices would lead
to maximum temperature perturbation at the hyperbolic points, whereas buoyant
acceleration would be most efficient with the temperature maxima just between
two hyperbolic points. In the case shown in figure 11, the position of temperature
maxima is between these two extremes; by virtue of this compromise, temperature
perturbations grow due to convection of base flow temperature, and at the same time
they drive the convection rolls.

2.4. Absolute/convective analysis
Everyday observations, for example in cigarette smoke (van Dyke 1982, figure 107),
suggest that laminar plumes may spontaneously bifurcate to a state of periodic
oscillations. Such behaviour is usually linked to an absolute instability of the steady
flow state. The possibility of absolute instability, in parameter regimes defined by m,
Gr and Pr, is investigated in this section.

The absolute instability mode in a given base flow profile (§ 2.1) is identified
by tracking a saddle point of the complex-valued function k(ω), according to the
Briggs–Bers criterion (see Huerre & Monkewitz 1985). This analysis turns out to
be very delicate in the present flow case, and the following procedure is found to
yield the most accurate results: values of ω are computed on a grid of complex k
values in an area of interest in the k-plane. The group velocity vg associated with
these modes is obtained as detailed in Lesshafft & Marquet (2010). The saddle
point, characterized by zero group velocity, is then identified through successive mesh
refinements. A convergence criterion |vg|< 10−4 is used for all results presented here.
The absolute instability mode is characterized by its complex frequency ω0 and its
complex wavenumber k0. If the growth rate ω0,i is positive, the flow is absolutely
unstable.

Absolute instability is found to occur at Grashof numbers above a critical value,
Gr>Grca, which depends on the Prandtl number. The absolute mode is always found
to be of the helical type (m= 1). Indeed, no convective–absolute transition is observed
for any other azimuthal modes over the investigated parameter range. The variation
of the critical Grashof number Grca(Pr) is presented in figure 4 (circles). Its value is
close to unity at all Prandtl numbers.

The variations of ω0 and k0 with Grashof number at Pr= 1 are shown in figure 12.
Transition from convective to absolute instability (sign change in ω0,i) takes place
at Grca = 1.627, and the flow remains absolutely unstable at all Gr > Grca. As the
Grashof number is proportional to the square root of vertical distance (2.10), this
transition station will typically be located close to the source. However, both ω0 and
k0 asymptote to zero as the Grashof number tends to infinity. Very small values of
ω and k correspond to perturbations that are quasi-steady in time and quasi-constant
in z, and such perturbation modes are difficult to track numerically. The analysis is
therefore limited to Grashof number values below 1000.

The near-zero asymptotic variations of both ω0 and k0 are rather peculiar, and
require a validation. In particular, it must be ascertained that no other undetected
saddle point might dominate the long-time dynamics. Three-dimensional time-resolved
direct numerical simulations are therefore performed, using the linear evolution
equations for perturbations of a parallel base flow. The code of Deloncle (2007)
has been adapted to the present problem; typical simulations run over 2000 time



Local linear stability of laminar axisymmetric plumes 361

–2.0 –5

–4

–3

–2

–1

0

1

100 101 102 103 100 101 102 103

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

–0.03 –0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

100 101

Gr Gr
102 103 100 101 102 103

–0.02

–0.01

0

0.01

0.02

0.03

(a) (b)

(c) (d)

FIGURE 12. (Colour online) Variations of ω0: (a) ω0,i; (b) ω0,r and k0: (c) k0,i; (d) k0,r
as a function of Grashof number at a Prandtl number of unity. Results obtained from
eigenvalue problems (——) and from direct numerical simulation of the linear impulse
response (q).

steps on 108 grid points. Starting from an initial impulse, the long-time perturbation
wavepacket is computed, and the absolute mode is recovered from a spatiotemporal
Fourier transform (Delbende, Chomaz & Huerre 1998). The (ω0, k0) values obtained
with this procedure, represented as triangles in figure 12, clearly validate the results
found from direct solution of eigenvalue problems. The eigenvalue procedure is
significantly cheaper, and more accurate.

Variations of the absolute growth rate ω0,i with Grashof number at various Prandtl
numbers are displayed in figure 13. The qualitative features do not vary significantly
with Pr; in all cases, absolute instability sets in at a Grashof number around 1, and
the maximum growth rate is reached shortly after. The overall maximum of ω0,i
is found at Pr = 1. The spatial distribution of the eigenfunction for the absolutely
unstable m = 1 helical mode at absolute wavenumber k0 is shown in figure 14 for
two different Grashof numbers at Pr = 1. It is seen that the phase relation between
the temperature and velocity perturbations strongly resembles the temporal results
shown in figure 10, indicating a similar mechanism for destabilization of the absolute
mode. Note that in order to show this correlation between velocity and temperature
perturbation clearly, the imaginary part k0,i is set to zero. However, as the imaginary
part of k0 only contributes to the amplitude, the arguments about the phase continue
to hold for the actual case of k0,i 6= 0.
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FIGURE 14. (Colour online) Perturbation isotherms and perturbation streamlines for
helical m=1 eigenmode for Pr=1 at the absolute wavenumber k0 at two different Grashof
numbers: (a) Pr = 1, Gr = 4 and (b) Pr = 1, Gr = 100. All quantities are shown in a
Cartesian plane, with the centreline of the plume at y= 0.

We surmise that this quasi-steady absolute mode is the local trace of a non-
oscillatory global instability mode. If this is the case, then the spatially developing
plume is expected to first bifurcate to a new steady flow state that breaks the axial
symmetry; in analogy to axisymmetric wakes (Pier 2008; Meliga, Sipp & Chomaz
2010), the result would be a deflected steady flow, which may exhibit secondary
oscillatory instabilities. This scenario remains to be confirmed in future studies.

3. Plume near a finite-sized inlet
3.1. Base flow

The self-similar base flows investigated in the preceding section represent laminar
plumes far away from the buoyancy source. However, as it has been found that the
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convective–absolute transition takes place at low Grashof number, i.e. close to the
source, the global dynamics are likely to be determined in the near-source region. The
defining characteristic of the self-similar flow regime is its generality; upstream of this
region, the base flow profiles depend on the specific form of the buoyancy source.
Such a source may be a heated body, a jet of light fluid, a flame, or other, and any
such configuration would require an individual analysis. In this section, the particular
case of hot fluid issuing from a circular orifice is examined. The fluid is injected at
z= 0 with finite momentum; the initial flow near the orifice is therefore a buoyant jet,
characterized by a thin shear layer at z= 0. With increasing distance from the orifice,
the velocity profiles are more and more dominated by the momentum that is induced
by buoyancy, and the influence of the inlet condition is lost. The self-similar profile
shapes of § 2.1 are asymptotically recovered.

Specifically, the following flow configuration is considered: a fluid is injected
with a prescribed velocity u(r) and temperature T(r) from an inlet of radius R
into a quiescent ambient at temperature T∞ and density ρ∞. Non-dimensionalizing
the governing equations (2.1) with the centreline axial velocity at the inlet Uc and
centreline temperature difference (Tc − T∞) at the inlet, one obtains

∇ · u= 0, (3.1a)
Du
Dt
=−∇p+ 1

Re
∇2u+ Ri(T − T∞)ez, (3.1b)

DT
Dt
= 1

PrRe
∇2T, (3.1c)

where Richardson number Ri = gαR(Tc − T∞)/U2
c and Re = UcR/ν. These are

related to the Grashof number from § 2 as Gr = RiRe2. All quantities are made
non-dimensional with Uc as the velocity scale, R as the length scale and (Tc − T∞)
as the temperature scale. The base flow is computed by a Newton–Raphson method,
using finite elements as implemented in FreeFEM++ (Garnaud et al. 2013), on a
domain of size 20 × 200 in the radial and streamwise directions. Analytic inflow
profiles of the form

u(r, z= 0)= T(r, z= 0)− T∞ = sech20 [20× r20
]
, r 6 2, (3.2a)

u(r, z= 0)= T(r, z= 0)− T∞ = 0, r> 2. (3.2b)

are prescribed at z= 0, which give a momentum thickness of the shear layer and the
thermal mixing layer that is 1/46 of the orifice radius. At the lateral boundary, vertical
velocity is set to zero and temperature is set to T∞, while a Neumann condition for
the radial velocity allows an entrainment influx. Stress-free boundary conditions are
imposed at the outlet, and axial symmetry is enforced at r= 0. Domain convergence
is verified on a grid of dimension 50× 300.

A single configuration is presented here, with parameters Pr = 1, Re = 100 and
Ri = 1. The base flow is documented in figure 15(a–d), which shows axial velocity
and temperature as a function of r at several streamwise positions, as well as the
streamwise development of the centreline values. The asymptotic behaviour of the
latter characterizes the approach towards the self-similar solution. It is stressed again
that all following results pertain to the very specific case that is considered here as
an example.
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FIGURE 15. Velocity and temperature evolution of the base flow. (a) Radial profiles of
axial velocity at various streamwise positions indicated in the legend; (b) corresponding
radial profiles of temperature; (c) streamwise development of centreline velocity;
(d) streamwise development of centreline temperature.

3.2. Temporal analysis
The linearized instability equations for a local analysis are identical to (2.16), with the
substitutions η→ r, Gr→Re in the viscous and thermal diffusion terms, and Gr−1→
Ri in the buoyancy term.

The temporal growth rates as functions of real-valued k are plotted in figure 16 for
several vertical positions. Unlike in the self-similar flow, where the helical m=1 mode
is clearly dominant, axisymmetric and helical modes present similar growth rates in
the near-inlet region. The axisymmetric mode then stabilizes rapidly with increasing
distance from the inlet. At large distance z, the results are fully consistent with those
obtained earlier for the self-similar region: the m = 1 growth rates at z = 190 from
figure 16 match the corresponding values from the self-similar analysis, at Gr= 630
and appropriately rescaled, within 1 %.

3.3. Absolute/convective analysis
Absolute frequency and wavenumber, as functions of the vertical distance z, are
displayed in figure 17 for the helical m = 1 mode. Also in the present case of a
spatially developing base flow with thin initial shear layer, axisymmetric perturbations
are found to never become absolutely unstable, just like in the self-similar analysis
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of § 2.4. However, the helical mode is seen to be absolutely unstable everywhere along
z, starting from the inlet. The values of ω0 and k0 are again very small, especially at
larger distances from the inlet. Saddle points could be reliably identified only down
to z= 40, due to numerical difficulties that arise when ω0 and k0 tend to zero.

All absolute/convective instability results presented herein are markedly different
from what is typically found in jet flows (Lesshafft & Huerre 2007). If the present
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analysis is consistent with classical jet results, the described helical absolute instability
must arise from the Boussinesq-type buoyancy term. The saddle point represented in
figure 17 is the most unstable one, which therefore dominates the long-time behaviour
of the linear impulse response, but other saddle points arise as well. Several such
saddle points in the complex ω- and k-planes are displayed in figure 18. Open symbols
represent saddle points of the inlet profile if buoyancy is completely removed. The
addition of buoyancy (filled symbols) shifts the positions of these points moderately,
but most importantly it creates a new saddle point, with higher absolute growth rate
than all others, that has no counterpart in the non-buoyant case. This is the saddle
point that has been described above, the one that causes absolute instability in the
plume; it follows that the occurrence of this absolute instability is conditioned by the
presence of buoyancy.

4. Conclusions

The local linear stability of laminar plumes has been investigated, first in full
detail in the self-similar region far away from the buoyancy source, then for one
particular setting in the vicinity of an orifice from which exits a hot fluid with
imposed initial momentum. The temporal stability properties as well as the absolute
instability modes have been documented over a wide range of Grashof and Prandtl
numbers, under the Boussinesq approximation, and the physical origin of the flow
instability has been discussed. Shear and buoyancy are the two ingredients that may
give rise to instability. With rare exceptions, helical perturbation modes (m = 1)
have been found to dominate the temporal instability properties of the self-similar
flow under all conditions. It has been shown for these modes that buoyancy effects
drive the instability at low Grashof numbers and wavenumbers, whereas shear effects
are prevalent in the high Grashof number and wavenumber regime. The strongest
temporal instability is found at intermediate parameters, where the two effects are of
comparable strength. For axisymmetric perturbations, the Rayleigh criterion precludes
an instability of the self-similar flow profiles by shear mechanisms alone; therefore a
destabilization through buoyancy effects is necessarily involved whenever an m = 0
mode becomes unstable.
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Interpretations for the physical mechanisms behind buoyancy-driven instability in
plumes have been proposed, both for m = 0 and m = 1 perturbations, based on the
observed eigenfunction shapes. Temperature perturbations induce vortical structures
through buoyancy, which in turn convect the base flow temperature. Instability arises
if the temperature perturbations and the convection rolls cooperate constructively.

Instability persists down to Grashof number values near unity. However, as
instability appears to set in at inaccessibly low values of k, the critical value of the
Grashof number could not be determined unambiguously for most Prandtl numbers.
It cannot be excluded that zero-wavenumber perturbations are unstable in the limit
of zero Grashof number. Yet this question is quite irrelevant for practical purposes,
as the parallel base flow hypothesis is not valid at low Grashof numbers and long
wavelengths.

Absolute instability arises in all self-similar profiles above a critical Grashof number
close to unity. The absolute mode is always of the m = 1 type; absolute instability
of axisymmetric perturbations has not been observed at any parameter setting in the
present investigation. The dominant absolute instability mode is linked to a saddle
point of the dispersion relation that only exists due to the buoyancy term in the
governing equations; it vanishes if the buoyancy term is removed. However, both
the frequency and the wavenumber of the absolute mode are nearly zero, which
characterizes this mode as being quasi-steady and quasi-constant in the vertical flow
direction. An ad hoc interpretation of this result, which will have to be confirmed
in future studies, is that this absolute mode is associated with a non-oscillatory
global instability of the spatially developing plume. Such an instability is expected to
provoke a first bifurcation that leads to a non-axisymmetric steady flow state.

Classical theory predicts that the dynamics of globally unstable flows is dominated
by the local properties near the transition station from convective to absolute
instability. The results obtained for self-similar plumes suggest that this transition
station indeed lies far upstream (at small local Grashof number), where the
parallel flow hypothesis may not be well justified. This consideration motivated
the investigation of the flow region near a finite-sized inlet. The principal conclusions
from this extended investigation are consistent with the observations in the self-similar
region. Absolute instability is found only for helical m= 1 perturbations, and indeed
all throughout the flow domain, starting from the inlet, with very small values of the
absolute frequency and wavenumber. The temporal analysis shows that axisymmetric
perturbations, although convective, exhibit similarly strong growth rates as their helical
counterparts in the jet-like region very close to the inlet. The self-similar behaviour
is recovered at a far distance from the inlet.

The dominance of helical modes in the jet-like region, where the shear layer is thin
compared to the inlet radius, contrasts with the absolute instability of axisymmetric
perturbations in non-buoyant light jets (Monkewitz & Sohn 1988). Experiments as
well as numerical simulations of plumes with strong density differences, e.g. Subbarao
& Cantwell (1992), Satti & Agrawal (2004) and Jiang & Luo (2000b), also show
evidence of axisymmetric self-excited instability structures. A major difference
between those settings and the present investigation lies in the use of the Boussinesq
approximation in this paper, which is valid only for small density variations. In
particular, the Boussinesq approximation eliminates the baroclinic torque term from
the dispersion relation, which has been shown to be responsible for the occurrence
of absolute instability in light jets by Lesshafft & Huerre (2007). We hope to be able
to report soon on our ongoing investigation about the influence of the density ratio
on the instability characteristics of plumes.
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A new framework for the analysis of unstable oscillator flows is explored. In linear set-
tings, temporally growing perturbations in a non-parallel flow represent unstable eigen-
modes of the linear flow operator. In nonlinear settings, self-sustained periodic oscilla-
tions of finite amplitude are commonly described as nonlinear global modes. In both
cases the flow dynamics may be qualified as being endogenous, as opposed to the ex-
ogenous behaviour of amplifier flows driven by external forcing. This paper introduces
the endogeneity concept, a specific definition of the sensitivity of the global frequency
and growth rate with respect to variations of the flow operator. The endogeneity, de-
fined both in linear and nonlinear settings, characterizes the contribution of localized
flow regions to the global eigendynamics. It is calculated in a simple manner as the local
point-wise inner product between the time derivative of the direct flow state and an ad-
joint mode. This study demonstrates for two canonical examples, the Ginzburg–Landau
equation and the wake of a circular cylinder, how an analysis based on the endogeneity
may be used for a physical discussion of the mechanisms that drive a global instability.
The results are shown to be consistent with earlier ‘wavemaker’ definitions found in the
literature, but the present formalism enables a more detailed discussion: a clear distinc-
tion is made between oscillation frequency and growth rate, and individual contributions
from the various terms of the flow operator can be isolated and separately discussed. In
particular, in the context of nonlinear saturated oscillations in the cylinder wake, such an
analysis allows to discriminate between the quasi-linear dynamics of fluctuations around
a time-averaged mean flow on one hand and the effect of harmonic interactions on the
other hand; the results elucidate why a linear analysis of the mean flow in this particular
case provides accurate predictions of the nonlinear dynamics.

1. Introduction

Global instability in flows denotes the possibility of a spontaneous bifurcation from
a steady flow state to a time-periodic state of synchronised oscillations in the entire
flow field. A commonly observed scenario is that of a supercritical Hopf bifurcation,
where linearly unstable perturbations of small amplitude first experience exponential
growth, until nonlinear effects lead to amplitude saturation. The final time-periodic flow
state is named a nonlinear global mode (Huerre & Monkewitz 1990); the exponentially
growing small-amplitude perturbations in the early stage of the bifurcation correspond to
eigenmodes of the linearized flow operator, traditionally called linear global modes. The
attribute global is used here to designate an analysis that resolves all non-homogeneous
flow directions, as opposed to a local Ansatz, which implies the approximation of locally
parallel flow.

Nonlinear global modes are usually obtained as asymptotic oscillatory states from time-
resolved numerical simulations, whereas linear global mode analysis requires the solution
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of linear eigenvalue problems. Complex eigenvalues represent the temporal growth rate
and the oscillation frequency; the associated eigenfunctions characterize the spatial distri-
bution of fluctuation amplitude and phase. Linear global mode analysis is now routinely
applied to two- and three-dimensional flow configurations. Beyond the primary question
whether or not perturbations at small amplitude are unstable, a physical discussion of
linear global modes is usually centered around two questions: (i) what are the physical
mechanisms that give rise to unstable growth, and (ii) by what means can instability be
reduced or enhanced? The first of these questions addresses the endogenous (or intrin-
sic) flow behaviour, the second question concerns the control of those dynamics through
exogenous (or extrinsic) manipulation.

Huerre & Monkewitz (1990) describe the conceptual notion of a ‘wavemaker’ (a word
first used by Monkewitz 1990) as the region where instability waves are intrinsically
generated in globally unstable flows. The interpretation by Koch (1985) of global in-
stability in a wake already uses the same principal idea. Chomaz et al. (1991) derive a
formal criterion for the global frequency selection in the context of the linear Ginzburg–
Landau equation, based on the local absolute instability properties. Their formalism is
rooted in a WKBJ approximation of instability wavepackets developing in a weakly non-
parallel open flow. Within this approximation, local instability waves with upstream- and
downstream-oriented group velocity emanate from a streamwise station, the ‘wavemaker’
location, where the two mode branches can be matched by means of a non-physical an-
alytic continuation of the dispersion relation, defined as a function of a complex spatial
x-coordinate. Such intrinsically generated waves grow and decay as they propagate. While
the localized ‘wavemaker’ selects the frequency and drives the global instability mode,
it is in general not characterized by large oscillation amplitudes. The spatial separation
of the region where waves are generated and the region where they reach their maxi-
mal amplitude is caused by convective instability mechanisms in a local sense, or by the
non-normality of the linear Navier–Stokes operator in a global sense (Cossu & Chomaz
1997).

A quantitative theory of frequency selection in nonlinear systems, still based on the
assumption of slow streamwise flow development and for the Ginzburg–Landau model
equation, has been proposed by Couairon & Chomaz (1997) and by Pier et al. (1998).
These studies draw on the theory of front dynamics (van Saarlos 1988, 1989), leading
to the simple criterion that the nonlinear global mode frequency is given to first order
by the absolute frequency at the upstream boundary of a (locally) absolutely unstable
flow region of finite extent. Subsequent applications to wake flows (Pier & Huerre 2001;
Pier 2002; Chomaz 2003) suggest that the accuracy of this criterion is only limited by the
non-parallelism of the base flow over the distance of amplitude saturation. The transition
from (upstream) convective to (downstream) absolute instability marks the ‘wavemaker’
location within the framework of this nonlinear model.

Linear global modes in non-parallel flows may now be computed directly, without
the need for the hypothesis of slow streamwise development. However, the notion of a
cause-and-effect relation between different streamwise regions is lost along with this ap-
proximation, and the localisation of a ‘wavemaker’ region within a global structure must
be accomplished through new criteria. The sensitivity of the linear eigenvalue (frequency
and growth rate) with respect to localized changes of the flow operator provides the
appropriate concepts for a formal definition of a global ‘wavemaker’. Yet the sensitivity
problem may be posed in several ways, depending on the physical premise of what ‘drives’
an instability.

Giannetti & Luchini (2007) provide a discussion of the cylinder wake instability based
on the structural sensitivity of the unstable linear eigenmode. The structural sensitivity,
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in their definition, quantifies how an eigenvalue is affected by the introduction of localized
forcing of a given perturbation quantity, proportional in strength to the same or another
perturbation quantity. It thereby provides a measure in every point in space for the effect
of internal feedback between perturbations. Giannetti & Luchini (2007) conjecture that
those regions where an altered coupling induces the strongest change of the eigenvalue
must also be the most significant regions for the action of internal feedback mechanisms
that underpin the genuine eigenmode dynamics. At present, this formalism is arguably
the most commonly accepted definition of the ‘wavemaker’ in a global analysis framework.
The concept is quite naturally extended to nonlinear global modes by way of Floquet
theory (Luchini et al. 2008). However, one inconvenience of this approach is that it does
not distinguish between frequency and growth rate, as the Cauchy–Schwarz theorem is
invoked in order to define an upper bound for the drift of the modulus of the eigenvalue.
Another stems from the large number of feedback relations between the various flow
quantities that may prove to be significant. The formalism does not allow to single out
the influence of specific terms in the flow equations.

Marquet et al. (2008) investigate the sensitivity of the linear cylinder wake instability
with respect to localized modifications of the base flow. As far as linear instability is
linked to the interaction between perturbations and the base flow, it may be argued that
such an analysis is well suited to identify the principal flow regions where instability
originates. The formalism distinguishes between frequency and growth rate, yet it is
clearly cast in the form of a control problem. The question how an instability mode is
affected by exogenous alterations, be it alterations of the internal feedback (Giannetti &
Luchini 2007) or of the base flow (Marquet et al. 2008), is conceptually different from
the question how its endogenous dynamics come into being.

The objective of the present paper is to propose a variant of the sensitivity problem for
linear as well as nonlinear global modes that identifies more directly those endogenous
eigendynamics. For the sake of comparison and validation, these concepts are demon-
strated for the two traditional test settings used in the literature on wavemakers: the
one-dimensional Ginzburg–Landau equation and the two-dimensional cylinder wake. It
is hoped that the formalism will be useful for the analysis of physical instability phenom-
ena in a wide range of applications.

The paper is organised as follows. Section 2 documents linear and nonlinear global
mode results for the Ginzburg–Landau equation and for the cylinder wake. This section
does not contain genuinely new results, but rather serves as a repertory and review.
The configurations discussed here are used in the following as examples in order to
demonstrate the proposed formalism. The endogeneity concept is introduced for linear
settings in §3, and its application for the analysis of linear global modes is demonstrated
for the two example configurations. The extension of the formalism to fully nonlinear
situations is laid out in §4. Conclusions are given in §5. An appendix addresses the
implications of general inner products for the analysis.

2. Linear, nonlinear, direct and adjoint global modes

The evolution equation of a flow variable q(x, t) is considered in the general form

B ∂tq = N (q) , (2.1)

where N is a nonlinear operator, and B is an operator of very simple structure that
indicates on which component of q the time derivative applies. In what follows, it will
always be assumed that B is self-adjoint.



4 Olivier Marquet & Lutz Lesshafft

A base flow qb is a steady solution of the nonlinear equation, N (qb) = 0. The linear
stability of such a steady base flow is investigated by superposing small-amplitude time-
dependent perturbations q′. The dynamics of these perturbations is governed by the
linear equation

B ∂tq′ = Lqb
q′ , (2.2)

where the linear operator Lqb
is obtained as the linearisation of N around the base flow:

N (qb + εq′) = N (qb) + εLqb
q′. Eigenvalues λj and associated eigenfunctions φj(x) of

Lqb
are obtained as solutions of the eigenvalue problem

λj Bφj = Lqb
φj . (2.3)

The eigenmodes q′j(x, t) = φj(x) exp(λjt) form a complete basis for the range of Lqb
. In

physical terms, the real and imaginary parts of a complex eigenvalue represent temporal
growth rate σ and frequency ω of a linear eigenmode. The convention λ = σ − iω is
adopted here, i.e. the frequency is given by the negative imaginary part of λ.

For the purpose of deriving an adjoint equation associated with the direct equation
(2.2), the following inner product of vector-valued functions is introduced:

{f(x, t), g(x, t)} =

∫ T

0

∫
Ω

f∗(x, t) · g(x, t) dx dt , (2.4)

where the star denotes the complex conjugate. The adjoint linear operator L†qb
is then

derived by requiring{
q†,B ∂tq′ − Lqb

q′
}

=
{
−B ∂tq† − L†qb

q†,q′
}
. (2.5)

The adjoint equation associated with (2.2) is thus found as

−B ∂tq† = L†qb
q† . (2.6)

The linear adjoint operator has eigenmodes q†j(x, t) = φ†j(x) exp(λ∗j t). Adjoint eigen-
values λ∗j are the complex conjugate values of the corresponding direct eigenvalues λj .

Adjoint eigenfunctions φ†j(x) satisfy

λ∗j Bφ†j = L†qb
φ†j . (2.7)

The direct and adjoint eigenfunctions form biorthogonal sets,

〈φ†j ,Bφk〉 = δjk , (2.8)

with respect to the purely spatial inner product

〈f(x), g(x)〉 =

∫
Ω

f∗(x) · g(x) dx . (2.9)

In the definition of Huerre & Monkewitz (1990), a nonlinear global mode is a time-
periodic solution of the nonlinear evolution equation (2.1), denoted here by q0(x, t). In
the examples considered in the present investigation, such a nonlinear global mode is the
limit-cycle solution that is reached as the result of amplitude saturation of an initially
growing linear eigenmode. The nonlinear global mode has a real-valued global frequency
ωg = 2π/T , with T being the cycle period.

The linear stability of this time-periodic solution is investigated by considering the
temporal evolution of small perturbations q′(x, t), governed by the linear equation

B ∂tq′(x, t) = Lq0(t) q′(x, t) . (2.10)
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The tangential linear operator Lq0(t) is obtained by linearizing the nonlinear operator N
around the time-periodic solution q0(t). As Lq0(t) is also time-periodic, a fundamental
set of solutions to (2.10) is given by ψj(x, t) exp(ζjt) (see Iooss & Joseph 1997). The
Floquet modes ψj(x, t) are T -periodic in time, and the associated Floquet multipliers
exp(ζjT ) characterize the temporal growth or decay of a mode over one cycle period. The
real part of ζj is in fact the Lyapunov exponent, the imaginary part of ζj corresponds to
a variation of the fundamental frequency.

An interesting property is that the time derivative of the time-periodic solution, ∂tq0, is
a neutral Floquet mode of the autonomous periodic operator Lq0(t). This property results
from the phase invariance of the time-periodic solution. Both q0(x, t) and q0(x, t + δt)
represent T -periodic solutions of the nonlinear equation (2.1), therefore their difference
δq = q0(x, t+ δt)− q0(x, t) is T -periodic as well. A Taylor expansion for small δt gives
δq = ∂tq0(x, t)δt. It follows that ∂tq0(x, t) is a T -periodic solution of (2.10), and is
therefore a neutral Floquet mode:

ψ1(x, t) = ∂tq0(x, t) , ζ1 = 0 . (2.11)

An adjoint tangential operator L†q0(t) can also be defined by requiring{
− B ∂tq† − L†q0(t)q

†,q′
}

=
{
q†,B ∂tq′ − Lq0(t)q

′} , (2.12)

from where follows the adjoint equation associated with (2.10),

−B ∂tq†(x, t) = L†q0(t)q
†(x, t) . (2.13)

The linear operator L†q0(t) is also T -periodic. Equation (2.13) has fundamental solutions

in the form of adjoint Floquet modes ψ†j(x, t) exp(ζ∗j t). The sets ψ†j and ψk are again
biorthogonal, with respect to the spatio-temporal inner product (2.4), such that with a
suitable normalisation they fulfill

{ψ†j ,Bψk} = δjk . (2.14)

Only the adjoint Floquet mode ψ†1 associated with the neutral Floquet mode ψ1 and
ζ1 = 0 will be used in the following analysis.

2.1. Ginzburg–Landau equation

The Ginzburg–Landau equation has often served as a simple model for flow instability
dynamics (Huerre 2000). Its scalar state variable q(x, t) only depends on one spatial coor-
dinate, yet its dispersion relation permits a double branch point that allows to distinguish
between absolutely and convectively unstable situations, analogous to open shear flows.
The nonlinear Ginzburg–Landau equation is used here in the form

∂tq = N (q) = −U∂xq + µ(x)q + γ∂xxq − β|q|2q . (2.15)

The operator B, in the general notation (2.1), in this case is simply the identity, and the
operator N is given by the right-hand side in (2.15). It is composed of terms representing
convection, linear reactive sources, diffusion, and cubic nonlinearity. Following Cossu &
Chomaz (1997), constant convection and diffusion parameters are chosen, U = 6 and
γ = 1− i, while a parabolic variation of the reactive parameter is prescribed as

µ(x) = µ0 + 0.5µ2x
2 . (2.16)

Different values of µ0 will be used in the following, while µ2 = −0.1 is maintained
throughout. This variation yields a strong local stability of the system far from x = 0.
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All following calculations are performed on an interval x ∈ [−40, 40], and in all cases
the fluctuation amplitudes are indeed negligibly small at the numerical boundaries. The
nonlinearity parameter is chosen as β = 1 − i, except when linear situations β = 0 are
considered.

2.1.1. Linear Ginzburg–Landau

Note that the zero state q ≡ 0 is a steady solution of the nonlinear Ginzburg–Landau
equation (2.15). Linearisation around that state yields the linear Ginzburg–Landau equa-
tion

∂tq = Lq = −U∂xq + µ(x)q + γ∂xxq , (2.17)

which is equivalent to (2.15) with β = 0. A subscript 0 could be attached to L, denoting
the zero base state, but this will be omitted in the following. The associated adjoint
operator is obtained as

L†q† = U∂xq
† + µ(x)q† + γ∗∂xxq

† . (2.18)

As derived by Chomaz et al. (1987), the leading eigenmodes of the direct problem
λφ = Lφ and of the adjoint problem λ∗φ† = L†φ† are found as

λ = µ0 −
U2

4γ
−
√
−µ2γ

2
, (2.19)

φ(x) = exp

(
Ux

2γ
−
√−µ2

2γ

x2

2

)
, (2.20)

φ†(x) = exp

(
−Ux

2γ∗
−
√−µ2

2γ∗
x2

2

)
. (2.21)

For fixed values of U , γ and µ2, the real-valued parameter µ0 completely determines the
eigenvalue, but it has no influence on the eigenfunction shape. The direct and adjoint
eigenfunctions are shown in figure 1. Their maxima are located at x = 8.6 and x = −8.6,
respectively. According to Cossu & Chomaz (1997), global instability arises when µ0 > µc,
with a critical value

µc =
U2

4|γ|2 +

∣∣∣∣
√
−µ2γ

2

∣∣∣∣ cos

(
arg γ

2

)
. (2.22)

The local instability properties are given by Chomaz et al. (1988). The model is locally
stable wherever µ(x) < 0, convectively unstable for 0 < µ(x) < U2/4|γ|2 and absolutely
unstable for µ(x) > U2/4|γ|2. The extent of these regions depends on the value of µ0.

2.1.2. Nonlinear Ginzburg–Landau

Pier et al. (1998) report that the Hopf bifurcation in a nonlinear Ginzburg–Landau
system is supercritical. Nonlinear global instability therefore follows from linear global
instability, µ0 > µc, and the nonlinear global mode emerges after saturation of the
growing linear global mode. A strongly supercritical setting is considered here, with
µ0 = 2µc.

The direct nonlinear global mode is computed by time-stepping (2.15), starting from
the linear global mode shape (2.20) as an initial perturbation at low amplitude, until an
asymptotic time-periodic state q0 is reached. The linearisation of Equation (2.15) around
the oscillating state q0 is accomplished as detailed in Hwang (2015). The nonlinear term
β|q|2q is properly linearized by augmenting the complex state variable with its complex
conjugate, i.e. writing out the nonlinear and linear equations in terms of state vectors
(q, q∗)T . In the present study, the direct linear equation is in fact never needed, except
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Figure 1. Direct and adjoint eigenfunctions (2.20, 2.21) of the linear Ginzburg–Landau equa-
tion. Absolute values are shown as thick blue lines, real parts as thin red lines. Solid lines
represent the direct mode, dashed lines represent the adjoint mode. The scaling is such that
〈φ†, φ〉 = 1.

for the derivation of the adjoint linear equation,

−∂tq† − U∂xq† − µq† − γ∗∂xxq† − 2β∗|q0(t)|2q† + β∗q2
0(t)q†∗ = 0 . (2.23)

With the known time-periodic solution q0(t), this equation is numerically integrated back-

ward in time, until convergence towards a periodic solution q†1 is reached. The existence
of such an asymptotic solution is guaranteed, because this is the adjoint Floquet mode
associated with the neutral direct Floquet mode q1, defined as the time-derivative of the
nonlinear time periodic solution q1 = ∂tq0. Details on Floquet theory can be found in
Iooss & Joseph (1997).

A Crank–Nicolson scheme is used for the time integration of the nonlinear direct and
the associated linear adjoint problem. The use of upwinding finite-difference stencils
(seven points) for the spatial discretisation of the direct problem, and downwinding for
the adjoint problem, is essential in order to achieve the required numerical accuracy.

Figure 2(a) shows the nonlinear global mode q0 as it is recovered after transients have
disappeared. The amplitude envelope has the emblematic shape of an ‘elephant’ mode
(Pier et al. 1998), with a sharp upstream wavefront and a softer downstream decay.
According to WKBJ theory, the front should be situated at the upstream boundary of
the absolutely unstable region in x. In the present case, absolute instability prevails in
the interval x ∈ [−10, 10], and the foot of the front is indeed placed around x = −10.
The adjoint Floquet mode, represented in figure 2(b), has significant amplitudes only
upstream of the direct wavepacket, with a maximum near x = −13.

It is to be noted that the nonlinear global mode of the Ginzburg–Landau equation
only contains one single frequency, because the nonlinear term is of such a form that
it does not generate harmonics. As a result, the time signal in each point shows pure
sinusoidal oscillations with zero mean. This property proves to be very convenient for
all further discussion, whereas the harmonics and the non-zero mean oscillations that
are characteristic for the nonlinear dynamics of the Navier–Stokes equations add further
complexity to the analysis (see §4.4).

2.2. Two-dimensional cylinder wake

The wake of a cylinder is the most commonly used example of an oscillator-type shear
flow. The critical Reynolds number for onset of self-sustained vortex shedding, Rec = 47
according to the experiments by Provansal et al. (1987), has been repeatedly recovered



8 Olivier Marquet & Lutz Lesshafft

a) b)

�20 �10 0 10 20

�2

0

2

x

q

�20 �10 0 10 20

-0.05

0

0.05

x

q†

1

Figure 2. a) Direct nonlinear global mode of the Ginzburg–Landau equation, with parameters
as given in the text. Thick blue line: amplitude envelope; thin red line: snapshot of the real part
of q. b) Associated neutral adjoint Floquet mode. Same line styles as in a.

with high precision as the critical value for the onset of linear global instability (see
for instance Barkley 2006; Sipp & Lebedev 2007). Furthermore, the nonlinear global
instability of wakes is rather accurately predicted by local theory (Pier 2002; Chomaz
2003). The cylinder wake has been chosen to illustrate the sensitivity studies by Giannetti
& Luchini (2007), by Marquet et al. (2008), by Luchini et al. (2008) and by Luchini &
Bottaro (2014). The case at Re = 80, well above the instability threshold, is considered
in the present study.

In the general notation (2.1), the state vector q = (u, p) now gathers the velocity
vector and the pressure field, which together satisfy the incompressible Navier-Stokes
equations, and the operators B and N are defined by

B =

(
I 0
0 0

)
, N (q) =

(
−(u ·∇)u−∇p+ Re−1∆u

∇ · u

)
. (2.24)

2.2.1. Linear instability of the cylinder wake

The cylinder wake problem permits a non-trivial steady solution qb = (ub, pb), sat-
isfying N (qb) = 0, which will serve as a base flow. Linear perturbations q′ = (u′, p′)
developing on this base flow are governed by the linear equations (2.2) with

Lqb
q′ =

(
−(ub ·∇)u′ − (u′ ·∇)ub + Re−1∆u′ −∇p′

∇ · u′
)
. (2.25)

Eigenmodes of this linear operator are obtained numerically as described in Sipp &
Lebedev (2007). Only one unstable mode is found for Re = 80, with an eigenvalue
λ = σ − iω = 0.1018− 0.7852i . The streamwise velocity of the real part of this mode is
shown in figure 3(a). The black line represents the stagnation-point streamline of the base
flow, demarcating the recirculation region. The streamwise velocity u† of the associated
adjoint eigenmode is displayed in figure 3(b). As discussed in detail by Giannetti &
Luchini (2007), Marquet et al. (2008) and others, the direct and adjoint eigenmode are
localized upstream and downstream of the recirculation region, respectively.

2.2.2. Nonlinear instability of the cylinder wake

As the growing linear eigenmode reaches finite amplitude levels, the nonlinear terms
become significant and the cylinder wake settles into a saturated periodically oscillat-
ing state, the Bénard–von Kármán vortex street. This time-periodic solution q0(x, t)
is obtained numerically by time-marching the nonlinear equations with a semi-implicit
second-order temporal discretisation, and a spatial discretisation identical to the one used
for the eigenvalue problem. At each temporal iteration, an unsteady Stokes problem is
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(a) (b)

Figure 3. Unstable linear eigenmode of the cylinder wake at Re = 80. The real frequency is
ωr = 0.785, and the temporal growth rate is ωi = 0.102. a) streamwise velocity perturbations
u of the direct eigenmode; b) adjoint streamwise velocity perturbations u† of the associated
adjoint mode.The black line indicates the recirculation region in the steady flow.

(a) (b)

Figure 4. Nonlinear global mode of the cylinder wake at Re = 80: a) total streamwise velocity
U + u; b) adjoint streamwise velocity perturbations u† of the associated adjoint Floquet mode.
Both snapshots are taken at the same instant. The black line indicates the recirculation region
in the mean flow.

solved with a preconditionned Uzawa algorithm (see Cuvelier et al. 1986) implemented in
the FreeFem++ software. At Re = 80, the global frequency is found to be ωg = 0.9957,
which is to be compared to the frequency of the linear eigenmode, ω = 0.7852. The
nonlinear correction to the global frequency is significant in this supercritical setting. A
snapshot of the total streamwise velocity of the nonlinear global mode is shown in figure
4(a), where the black line now represents the stagnation-point streamline contour of the
time-averaged flow. In the same way as discussed in §2.1.2 for the nonlinear Ginzburg–
Landau equation, see (2.13, 2.23), an adjoint mode associated with the neutral Floquet
mode of the nonlinear periodic state can be obtained by backward time-stepping of the
adjoint tangential equation. Its streamwise velocity component u† is shown in figure 4(b),
taken at the same instant as the direct flow field in figure 4(a).

3. Active flow regions in linear global modes

3.1. Sensitivity of the eigenvalue

The sensitivity of an eigenvalue measures how this value varies in response to changes
of the operator. In the present context, only linear sensitivities are considered, i.e. all
variations are assumed to be infinitesimally small. If the original linear equation (2.2) has
eigenmodes that satisfy λjBφj = Lφj , a small perturbation εδL of the operator leads to
a perturbed eigenvalue problem,

(λj + εδλj)B(φj + εδφj) = (L+ εδL)(φj + εδφj) , (3.1)

which at order ε can be rearranged to give

(λjB − L) δφj = −δλjBφj + δLφj . (3.2)

The Fredholm alternative states that this inhomogeneous problem in δφj has a solution
if and only if the right-hand side term is orthogonal to the nullspace of the left-hand side
operator, i.e. 〈φ†j ,−δλjBφj+δLφj〉 = 0. If the direct and adjoint modes are normalized
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such that 〈φ†j , Bφj〉 = 1, this condition leads to

δλj = 〈φ†j , δLφj〉 . (3.3)

On the basis of (3.3), Giannetti & Luchini (2007) consider spatially localized perturba-
tions of the operator,

δL = δ(x− x0) C0 , (3.4)

where C0 represents some artificially added coupling between the various flow variables
at the location x0. If φj(x0) and φ†j(x0) are understood to be vectors containing the
n flow variable values at x0 (n = 1 for the Ginzburg–Landau equation and n = 3 for
the cylinder wake), then C0 is represented by an n × n matrix, C0, and the eigenvalue
variation is obtained from (3.3) as

δλj
∣∣
x0

= φ†?j (x0) · C0 · φj(x0) . (3.5)

Taking the norm of C0 to be unity without loss of generality, application of the Cauchy–
Schwarz theorem yields an upper bound for the modulus of the eigenvalue variation,
induced by an operator variation at x0 (Giannetti & Luchini 2007):

|δλj |x0
6 ‖φ†j(x0)‖ ‖φj(x0)‖ . (3.6)

Marquet et al. (2008) define the operator variation in (3.3) specifically as being due to
variations δU of the base flow, δL = (∇UL) δU . This definition allows to quantify how
a given small modification of the base flow, localized or distributed, alters the frequency
ω and the growth rate σ. Both approaches represent the mathematical formulation of a
well-posed question, based on different interpretations of what constitutes a ‘wavemaker’:
in the case of Giannetti & Luchini (2007), it is the localized ‘internal feedback’ between
perturbations, whereas in the case of Marquet et al. (2008) it is the feeding of perturbation
growth on base flow energy. In both approaches, the answer is sought by probing the
system with exogenous modifications of the operator structure.

3.2. Endogeneity analysis of linear global modes

With the question in mind how a localized region in the flow contributes to the global
dynamics, we note that the admittance of any arbitrary operator C0 in (3.4) may be
too general for the purpose of identifying the specific interactions that are inherent in
the linear Navier–Stokes operator. Retaining the idea of considering the sensitivity of
the eigenvalue with respect to localized changes of the operator, we stipulate that those
changes preserve the local structure of the operator. This naturally leads to choosing

δL = δ(x− x0)L . (3.7)

The variation of the operator at x0 is chosen to be proportional to the original operator
itself in that same location. The sensitivity with respect to such variations quantifies
directly how much the eigendynamics in a given point in space contribute to the frequency
and to the growth rate; it is therefore suitable for an investigation of the endogenous
global dynamics. We call this specific sensitivity

E(x) = φ†?j (x) ·
(
Lφj

)
(x) (3.8)

the endogeneity of the eigenmode (λj ,φj). Its computation is straightforward if the direct
and adjoint eigenmodes as well as the operator are available. The dot-product in (3.8)
again only denotes the scalar multiplication of two vectors containing the various state
variables in one point in space.
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Figure 5. Endogeneity distribution of the leading linear Ginzburg–Landau eigenmode. (a)
real part Eσ, related to growth rate, (b) negative imaginary part Eω, related to frequency.

An essential property of the endogeneity is that its integral over x is equal to the
eigenvalue λj :∫

Ω

E(x)dx =

∫
Ω

φ†?j ·
(
Lφj

)
dx = 〈φ†j , Lφj〉 = 〈φ†j , λjBφj〉 = λj . (3.9)

It is important to note that, while any spatial distribution can be normalised to yield
any integral scalar value, the endogeneity is the unique quantity that represents local
contributions to the eigenvalue. For instance, the endogeneity allows to exclude any
point in space from the integration, and the result reflects how the eigenvalue is altered
due to the missing local contribution.

An endogeneity-based analysis clearly distinguishes between the promotion of unstable
growth, contained in the real part of E(x), and the frequency selection, given by the
negative imaginary part. For the sake of clarity, let

Eσ(x) = < [E(x)] and Eω(x) = −= [E(x)] (3.10)

be defined, such that E(x) = Eσ(x)− iEω(x), analogous to λ = σ − iω. The distinction
between these two components is of great importance for a physical discussion, and the
following examples will show that Eσ and Eω in general present quite different spatial
structures. Furthermore, with the definition (3.8) it is straightforward to decompose the
operator L, for instance into convection, diffusion and other terms, and to examine the
individual contributions of these separate parts. Such a decomposition will be discussed
in §3.4 for the cylinder wake.

3.3. Example 1: linear Ginzburg–Landau equation

The endogeneity formalism is first applied to the global instability modes shown in figure
1, with the parameters as given in § 2.1.1. Choosing µ0 = µc, as defined by (2.22), the
system is marginally unstable in a global sense. The endogeneity is found by multiply-
ing φ†∗ with Lφ in every point x, where the eigenfunctions φ(x) and φ†(x) are given
analytically by (2.20, 2.21), and the operator L is written out in (2.17).

Both parts of the endogeneity, Eσ and Eω, are shown in figure 5: both are even func-
tions, with their maximum values at x = 0. The integral of E(x) is exactly equal to
the associated eigenvalue, λ = −4.398i. In the Eσ(x) distribution, shown in figure 5(a),
negative and positive regions exactly counterbalance each other, totalling a zero growth
rate. The largest contribution to both the frequency selection and the growth rate stems
from the region around x = 0, not from regions where the magnitude of either the direct
or adjoint eigenmodes is large (compare to figure 1).

This result is compared to the saddle point criterion given by Chomaz et al. (1991). In
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(a) (b)

Figure 6. Endogeneity distribution of the linear cylinder wake instability. a) Eσ(x), related to
growth rate; b) Eω(x), related to frequency. The spatial integral of Eσ equals the growth rate
σ = 0.102, the spatial integral of Eω equals the frequency ω = 0.785.

their model, the ‘wavemaker’ location is defined by a saddle point of the local absolute
frequency ω0 in the complex x plane, ∂xω0 = 0. In the present case, one finds ω0(x) =
iµ(x)− iU2/4γ, and therefore ∂xω0 = i∂xµ, with a single saddle point precisely at x = 0.
The ‘wavemaker’ location according to the criterion of Chomaz et al. (1991) is identical
with the maximally endogenous location in this example. But whereas their WKBJ-
based criterion identifies a singular location, the endogeneity quantifies contributions to
the growth rate and the frequency from any point in the domain, thereby characterizing
a distributed ‘wavemaker’.

3.4. Example 2: unstable linear global mode of the cylinder wake

The endogeneity of the unstable linear eigenmode φ of the cylinder wake, displayed in
figure 3(a), is now examined. It is readily computed by point-wise multiplication of the
complex conjugate of the adjoint eigenmode φ†, displayed in figure 3(b), with Lφ where
the definition of L is given in (2.25). As the divergence of perturbation velocity is zero
in every point, the continuity equation along with the adjoint pressure p† vanishes from
the endogeneity definition, and one is left with

E(x) = −u†∗ · [(ub · ∇)u]− u†∗ · [(u · ∇)ub]− u†∗ · ∇p+Re−1 u†∗ ·∆u , (3.11)

where again it is understood that the left-hand side is to be evaluated in every point
x, such that all vectors only contain two scalar elements (x- and y-components). The
endogeneity of the linear cylinder-wake instability mode is displayed in figure 6. The
distribution of Eσ(x), depicted in figure 6(a), shows where the temporal growth rate is
generated, whereas Eω(x), shown in figure 6(b), indicates how the various flow regions
influence the global frequency selection.

A few general conclusions can be inferred from figure 6. Mainly, it is observed that
the endogeneity (real and imaginary parts) is concentrated around the shear layers of
the separation region, delimited in the figures by black lines. The frequency selection is
clearly concentrated in two symmetric maximum locations. This part of the endogeneity
resembles the quantity displayed by Giannetti & Luchini (2007) in their figure 17. The
distribution of Eσ(x) however bears a more faceted structure. Some regions are positive,
contributing to global instability, others are negative, thus stabilising the eigenmode. The
entire flow downstream of the separation region has practically no influence on frequency
and growth rate, consistent with the conclusions of Giannetti & Luchini (2007) and
Marquet et al. (2008).

A more insightful analysis of physical mechanisms may be based on a decomposition
of the endogeneity into contributions from the various left-hand side terms in (3.11). In
the given order, these terms account for the effects of base flow convection; production
through base flow shear; pressure forces and diffusion. Their spatial distributions (real
parts only, reflecting contributions to the growth rate) are shown in figure 7. The effect
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(a) (b)

(c) (d)

Figure 7. Real parts of the individual endogeneity terms in (3.11) (from left to right). a)
Convection by the base flow; b) production through base flow shear; c) pressure forces; d)
diffusion. The sum of these contributions gives Eσ(x), shown in figure 6a. The same color scale
is used here.

of convection by the base flow is dominantly stabilising (figure 7a). In the outer vicinity
of the separation bubble, the downstream convection of perturbations counteracts their
capacity of in situ growth, and renders the instability more convective. Inside the recir-
culation region, the upstream convection has the opposite effect. The production term
(figure 7b) provides the principal source of global unstable growth.

The workings of pressure forces are not as obvious to interpret in physical terms,
and their integrated net contribution to Eσ and Eω is exactly zero in an incompressible
setting. Since the adjoint velocity field is divergence-free, ∇ · u† = 0, it is easily found
that ∫

Ω

u† · ∇p dx = −
∫

Ω

(∇ · u†) p dx = 0 (3.12)

Yet this term contributes strongly to the local values of the overall endogeneity. Tenta-
tively, it may be argued that the role of the perturbation pressure gradient is to enforce
the continuity condition, thereby causing a perturbation volume flux across the shear
layer. As the instability perturbations tend to shorten the length of the separation bubble
(manifest in the nonlinear mean flow), the stagnation-point streamline is forced toward
the symmetry line, lessening the convective effect outside the bubble, and enhancing it
inside.

The diffusion term is globally stabilizing, although inside the separation bubble near
the cylinder it provokes a weak destabilisation. This seems to be the consequence of
viscous transport of perturbation velocity into the shear layer. However low the ampli-
tude of the diffusive contribution, it is crucial for accurately determining the instability
threshold. The Reynolds number is expected to have two distinct effects on the insta-
bility. First, the stabilizing effect of the perturbation diffusion should weaken when the
Reynolds number is increased. This is confirmed in figure 8(a), which shows the trends of
the convection, production and diffusion contributions to the growth rate, as functions
of the Reynolds number. The stabilizing diffusion effect lessens with increasing Reynolds
number. Secondly, the steady base flow is influenced by the Reynolds number, affecting
the instability mechanism via the production and convection terms. Individually, these
contributions appear to be dominant, but with opposite effects on the growth rate. As
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Figure 8. Net contributions of individual terms in the endogeneity definition (3.11), (a) to the
linear growth rate, and (b) to the global frequency, as a function of the Reynolds number Re.
Convection (-c-), production (-p-) and diffusion (-d-) contributions are shown, as well as the
sum of convection and production (c+ p) and the total values of σ and ω (thick red lines). The
pressure gradient contribution is zero for all Reynolds numbers.

the Reynolds number is increased, the destabilisation by the production term overcomes
the stabilisation by the convection term. The combined effect of these competing terms,
represented by a line marked c+ p in figure 8(a), is then comparable in strength to the
diffusion effect. On the other hand, the role of the diffusion in the frequency selection
is all but negligible, as seen in figure 8(b). As for the growth rate, the dominant con-
tributors are the production and convection terms. Both contribute here to increase the
frequency. Their combined effect (c + p) gives a good prediction of the linear frequency
(red line), especially at high Reynolds number.

4. Active flow regions in nonlinear global modes

4.1. Sensitivity of the global frequency

The general sensitivity formulation for nonlinear time-periodic oscillations of a bifurcated
flow state adopted here is similar to the analysis by Luchini et al. (2008), with some vari-
ations in the notation. Consider a nonlinear global mode q0(x, t), time-periodic solution
of (2.1), with fundamental frequency ωg. In order to make the frequency explicitly visible
in the equation, the time variable is rescaled as τ = ωgt, such that q0(x, τ) is 2π-periodic
in τ and satisfies

ωg B ∂τq0 = N (q0) . (4.1)

Just as in the linear case of §3.1, small variations of the left-hand side operator cause
variations of the solution, including its frequency:

(ωg + εδωg)B ∂τ (q0 + εδq0) = (N + εδN )(q0 + εδq0) . (4.2)

With the introduction of the tangential linear operator Lq0(t) and its neutral Floquet
mode ψ1 = ∂τq0, defined in (2.10, 2.11), variations are governed at order ε by the relation

(ωgB − Lq0(t)) δψ1 = −δωg Bψ1 + δN (q0) , (4.3)

The Fredholm alternative can be written out with the aid of the neutral adjoint Floquet
mode ψ†1 (see §2), normalised to give {ψ†1,Bψ1} = 1, which leads to

δωg =
{
ψ†1, δN (q0)

}
. (4.4)
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Figure 9. Endogeneity Eω (thick blue line) of the nonlinear global mode of the Ginzburg—
Landau equation, as shown in figure 2, compared with the quantity h(x) (thin red line), which
is obtained with the formalism described by Hwang (2015) according to (4.7). The dotted line
marks the location xca, and the dashed line traces the envelope shape of the nonlinear global
mode.

If ψ†1 is known, then the impact of any small operator variation δN on the global fre-

quency can be immediately evaluated from (4.4). In practice, ψ†1 is obtained in the fol-
lowing way: first, the nonlinear equation is numerically integrated by time-stepping until
the periodic nonlinear global mode regime is fully attained. Then the (linear) adjoint tan-
gential equation is stepped backwards in time, starting from an arbitrary initialization,
over as many cycles of the nonlinear global mode as necessary. During this backward-in-
time integration, the adjoint solution converges asymptotically towards the sought-after
neutral mode.

4.2. Endogeneity analysis of nonlinear global modes

Analogously to the linear case in § 3.2, the endogeneity of a nonlinear global mode is
defined by considering variations of the nonlinear operator that preserve its structure but
are localized in space, and also in time, since the nonlinear operator is time-dependent,

δN = δ(x− x0)δ(τ − τ0)N . (4.5)

The inner product in (4.4) involves integration in x as well as in τ . Integration over the
Dirac functions yields the expression for the influence of spatio-temporal variations in
the operator on the frequency selection,

Eω(x, τ) = <
[
ψ†∗1 (x, τ) · N (q0(x, τ))

]
. (4.6)

Only the frequency selection in nonlinear global modes is considered at present, because
it is assumed here that both quantities, in practice, are obtained from a flow solver in
the form of real-valued variables. The scaled time τ denotes the temporal phase within
an oscillation cycle.

4.3. Example 1: the nonlinear Ginzburg–Landau equation

The nonlinear global mode and its neutral adjoint Floquet mode of the Ginzburg–Landau
equation (figure 2) have been discussed in §2.1.2. The associated endogeneity, according
to (4.6), is shown in figure 9. It is noted that the endogeneity is independent of τ in the
present case of the Ginzburg–Landau equation.

The Eω distribution is nonzero in a narrow region around x = −9, and its integral in
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x and over one period 0 6 τ 6 2π is exactly equal to the global frequency, ωg = 3.70.
According to Pier et al. (1998), the global frequency of a nonlinear Ginzburg–Landau
system with slowly varying coefficients is selected at the location xca, where the local
instability changes from upstream convective to downstream absolute. In the limit of
marginal global instability, the global frequency is then predicted to correspond to the
absolute frequency at xca. In the present example, one finds xca = −10, and the absolute
frequency at this location is ω0(xca) = 4.50. The chosen parameter configuration (see
§2.1) is strongly globally unstable, and the parameter µ varies significantly in x around
xca, therefore the present case does not respect the limiting assumptions of Pier et al.
(1998), and the frequency prediction is quite inaccurate as a result. The endogeneity
however provides a clear and accurate picture of the frequency selection process. The
maximum contribution to the global frequency is found at x = −9, indeed not far from
the ‘wavemaker’ location xca as defined by Pier et al. (1998).

The present results may be compared to the structural sensitivity of nonlinear global
modes as defined by Hwang (2015), who adapted the formulation of Luchini et al. (2008)
to analyze nonlinear global modes of the Ginzburg–Landau equation. According to Hwang
(2015), worst-case variations of the global frequency due to added ‘closed-loop pertur-
bations’ (synonymous to ‘internal feedback’), written in the notation of this paper, are
characterized by the spatial distribution

h(x) =

∣∣∣∣∣q∗0(x)ψ†1(x)

N

∣∣∣∣∣ , with N =

∫ T

0

∫ ∞
−∞

(ψ†∗1 q0 − ψ†1 q∗0) dx dt . (4.7)

Figure 9 compares this distribution, multiplied with 2ωg for consistent scaling, with
the endogeneity Eω. The two curves are very similar, and in particular the position of
their maxima is identical. Again it is pointed out that the analysis of Hwang (2015), in
contrast to the endogeneity formalism, considers modifications of the operator that do
not preserve its original structure.

In conclusion, just as in the linear analysis of §3.2, the results obtained from the non-
linear endogeneity analysis are consistent with the ‘wavemaker’ definition from classical
asymptotic theory, but they go further in a quantitative description of the dynamics, be-
cause the endogeneity fully accounts for the effects of non-parallelism and supercriticality.
It is also consistent with recent formulations that describe the structural sensitivity, but
it reveals the endogenous dynamics that are specific to the operator under consideration.

4.4. Example 2: Nonlinear frequency selection in the cylinder wake

The endogeneity of the time-periodic flows developing in the wake of the circular cylinder,
described in §2.2.2, is explicitly obtained as

Eω(x, τ) = u†1 ·
[
−(u0 · ∇)u0 −∇p0 +Re−1∆u0

]
, (4.8)

where q0(x, τ) = (u0, p0) is the 2π-periodic nonlinear solution and u†1 is the velocity
component of the 2π-periodic solution of the linear adjoint equation.

The spatio-temporal endogeneity (4.8) is integrated over one oscillation cycle, and
the result, shown in figure 10, demonstrates that the endogenous region resembles a
front, localized around x = 2. Similarly to the earlier observations in the context of the
Ginzburg-Landau equation, the endogenous region of the nonlinear global mode in the
cylinder wake is located further upstream than that of its linear counterpart (compare
to figure 6b). The separation line of the recirculation regions both in the base flow and
in the time-averaged mean flow are depicted by grey and black lines, respectively, in
figure 10. Interestingly, the endogenous region of the nonlinear global mode appears to



Identifying the active flow regions that drive linear and nonlinear instabilities 17

Figure 10. Time-integrated endogeneity Eω(x) of the nonlinear global mode in the cylinder
wake at Re = 80. The nonlinear frequency is ωg = 0.995. The black (resp. grey) lines indicate
the recirculation region in the time-averaged mean flow (resp. base flow).

be supported by the recirculation region in the mean flow, as opposed to the base flow.
This observation suggests that further investigation of the nonlinear dynamics should
focus on the analysis of fluctuations around the mean flow state.

To this aim, the nonlinear global mode state is first decomposed as q0 = q̄ + q′

into a time-averaged component q̄ = (ū, p̄)T and a zero-mean fluctuation component
q′ = (u′, p′)T . Introducing this decomposition into the Navier-Stokes operator (2.24),
and time-averaging over one oscillation cycle, one obtains the steady nonlinear equations
that govern the mean flow,

(ū · ∇)ū+∇p̄−Re−1∆ū = −(u′ · ∇)u′, (4.9)

∇ · ū = 0 . (4.10)

By subtraction, the unsteady nonlinear equations for the fluctuations are obtained as

ωg ∂τu
′ + (ū · ∇)u′ + (u′ · ∇)ū+∇p′ −Re−1∆u′ = −(u′ ·∇)u′ + (u′ ·∇)u′, (4.11)

∇ · u′ = 0 . (4.12)

The right-hand side forcing terms both in (4.9) and in (4.11) arise from the nonlinear
interaction of fluctuations. The temporal mean of (u′ ·∇)u′ forces the mean flow, whereas
its zero-mean fluctuation forces the flow fluctuations. At small amplitudes of u′, these
terms are negligible, such that the steady and unsteady equations reduce to the base flow
and linear perturbation equations. By contrast, when a linear eigenmode experiences
exponential growth and reaches finite amplitude levels, the effect of the forcing terms
in (4.9) and (4.11) will become significant. The right-hand side in (4.9) drives the base
flow towards the mean flow. The right-hand side in (4.11) modifies the dynamics of
the fundamental oscillations at frequency ωg, and it generates harmonic components at
integer multiples of ωg. Thus the effect of nonlinearity on the frequency selection can be
attributed to two distinct origins. The first is a nonlinear deformation of the mean flow,
which in turn modifies the left-hand side linear operator in (4.11). The second one is the
nonlinear interaction of fluctuation harmonics, induced by the right-hand side forcing
term in (4.11).

The endogeneity definition (4.8) is now expanded in terms of mean flow and fluctuation
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(a) (b)

Figure 11. Contributions to the time-integrated endogeneity of the nonlinear global mode. (a)
Quasi-linear dynamics around the mean flow defined by (4.15) and (b) interaction between high
harmonical components defined by (4.15). The color bar shown in figure 10 is also used here.
The black line indicates the recirculating flow region in the mean flow. Re = 80.

components. With this decomposition, as developed above, one obtains

Eω(x, τ) = u† ·
[
− (ū · ∇)ū−∇p̄+Re−1∆ū− (u′ · ∇)u′

]
(4.13)

+ u† ·
[
− (u · ∇)u′ − (u′ · ∇)u−∇p′ +Re−1∆u′

]
+ u† ·

[
− (u′ · ∇)u′ + (u′ · ∇)u′

]
.

The first line in the above equation vanishes because the expression in square brack-
ets is the momentum equation for the mean flow (4.9. By further splitting the adjoint

velocity into mean and fluctuation components, denoted u† and u†
′

respectively, the
time-integrated endogeneity simplifies to∫ 2π

0

Eω(x, τ) dτ =

∫ 2π

0

Em(x, τ) dτ +

∫ 2π

0

Eh(x, τ) dτ , (4.14)

with

Em(x, τ) = u†
′ ·
(
−(u · ∇)u′ − (u′ · ∇)u−∇p′ +Re−1∆u′

)
, (4.15)

Eh(x, τ) = u†
′ ·
(
−(u′ · ∇)u′ + (u′ · ∇)u′

)
, (4.16)

All contributions involving the mean adjoint velocity vanish. The component Em(x, τ)
highlights spatial regions where the quasi-linear dynamics around the mean flow con-
tribute to the frequency selection, whereas Eh(x, τ) identifies regions where the interac-
tion of harmonic components influences the global frequency.

The time-integrated components Em and Eh, for the nonlinear global mode in the
cylinder wake at Re = 80, are shown in figure 11. The sum of these two contributions,
according to (4.14), gives the time-integrated frequency endogeneity displayed in figure
11. In the present configuration, the frequency selection process is clearly dominated
by the quasi-linear dynamics around the mean flow, whereas harmonic interactions con-
tributes only very weakly. The total contributions

ωm =

∫
Ω

∫ 2π

0

Em(x, τ) dτ dx , ωh =

∫
Ω

∫ 2π

0

Eh(x, τ) dτ dx , (4.17)

are reported in table 1 for various values of the Reynolds number. For all values of the
Reynolds number investigated in this study, the contribution ωm of the quasi-linear mean
flow dynamics to the global frequency is greater than 97%.
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Re ω ωg ωm(%) ωh(%)

50 0.7676 0.8159 0.8087 (99.1) 0.0072 (0.9)
75 0.7742 0.9726 0.9543 (98.1) 0.0182 (1.9)
80 0.7852 0.9957 0.9768(98.1) 0.0189(1.9)

100 0.7553 1.0703 1.0493 (98.0) 0.0210 (2.0)
125 0.7246 1.1382 1.1127 (97.7) 0.0255 (2.3)
150 0.6896 1.1922 1.1596 (97.2) 0.0325 (2.8)

Table 1. Endogeneity-based decomposition of the nonlinear global mode frequency, for various
values of the Reynolds number Re. Linear eigenmode frequency ω of the base flow; nonlinear
global mode frequency ωg; contributions to ωg from quasi-linear dynamics in the mean flow
(ωm) and from harmonic interaction (ωh), as defined by (4.17).

This result explains a posteriori why a global stability analysis of the time-averaged
flow accurately predicts the frequency of the time-periodic vortex shedding in the cylin-
der wake (Barkley 2006). Mantic-Lugo et al. (2014) recently proposed a self-consistent
nonlinear model based on the marginal stability of the mean flow, which accurately deter-
mines both the mean flow and the frequency of the vortex shedding in the cylinder wake.
However, the influence of higher harmonics in the frequency selection of nonlinear insta-
bility is not negligible in all circumstances. Indeed, Turton et al. (2015) recently showed
that in thermosolutal convection driven by opposite thermal and solutal gradients, oscil-
lation frequencies of travelling convection waves can be predicted from stability analysis
of the mean flow, but not those of standing waves. The application of endogeneity anal-
ysis to the thermosolutal convection problem is not attempted here, but it is expected
to reveal a stronger influence of the harmonic interactions in the frequency selection of
standing waves.

Finally, a decomposition of the endogeneity component (4.15) similar to the demon-
stration in §3.4 characterizes the contributions of the various terms to the quasi-linear
dynamics. For Re = 80, the contributions of production and mean flow convection to the
global frequency are displayed in figures 12a,b, and the contributions of diffusion and
pressure gradient are shown in figures 12c,d. The production contribution is dominant,
concentrated in the shear layers of the mean recirculation region. Inside this region, the
action of the pressure gradient further increases the frequency. Table 2 summarizes all
total contributions, ωpm, ωcm, ωdm, of the production, convection and diffusion terms at
various Reynolds numbers . The net integral of the pressure gradient term is always iden-
tically zero. At all Reynolds numbers, the effects of diffusion and mean flow convection
approximately compensate each other, and their balance is small compared to the strong
contribution of the production term.

5. Conclusions

A novel sensitivity formalism has been introduced, named the endogeneity, which al-
lows to precisely quantify the influence of each point in the flow field on the global fre-
quency selection and on the promotion of unstable growth, both in the context of linear
temporal eigenmodes and of nonlinear global modes. Its application has been demon-
strated for the Ginzburg–Landau equation and for the wake of a circular cylinder, in
linear as well as nonlinear settings. The results obtained have been shown to be con-
sistent with earlier ‘wavemaker’ definitions, in particular the WKBJ-based saddle point
criterion of Chomaz et al. (1991) and the structural sensitivities defined by Giannetti &
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(a) (b)

(c) (d)

Figure 12. Spatial distribution of various contributions to the endogeneity of the quasi-linear
mean flow dynamics: (a) production by the mean flow, (b) convection by the mean flow, (c)
diffusion and (d) pressure gradient. The black line delimits the recirculation region in the mean
flow.

Re ωm ωpm ωcm ωdm

50 0.8087 0.9997 0.0023 −0.1933
75 0.9543 0.9435 0.1567 −0.1459
80 0.9768 0.9482 0.1679 -0.1394

100 1.0493 0.9999 0.1696 −0.1203
125 1.1127 1.0989 0.1224 −0.1087
150 1.1596 1.1721 0.0853 −0.0978
175 1.1935 1.2220 0.0604 −0.0889

Table 2. Decomposition of the quasi-linear contribution to the fresquency into three contribu-
tions: the production term ωpm, convection term ωcm and diffusion term ωd in the quasi-linear
mean flow dynamics.

Luchini (2007), Luchini et al. (2008) and Hwang (2015). The novel aspect with respect
to the latter sensitivity approaches arises from the specific form of operator variations
that are considered: the endogeneity characterizes the sensitivity of the eigenvalue with
respect to localized operator variations that preserve the specific structure of the original
operator. This sensitivity may therefore be interpreted as the local contribution of any
point in the flow field to the global eigendynamics, in terms of frequency selection and
unstable growth. Contributions to these two parts of the eigenvalue are clearly distin-
guished, contained separately in the real and imaginary parts of the endogeneity. Further
analysis of the role of individual terms of the operator follows naturally within this frame-
work. In particular, a decomposition of a nonlinear flow operator into time-averaged and
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fluctuating parts gives insight into the role of quasi-linear dynamics developing on the
mean flow versus the nonlinear interaction of harmonic fluctuation components. This
latter part of the analysis, exemplified for the case of the cylinder wake, has important
implications for the characterisation of nonlinear time-periodic flow states, in relation to
recent investigations (Mantic-Lugo et al. 2014; Turton et al. 2015).

The authors are grateful to Patrick Huerre, Jean-Marc Chomaz and Denis Sipp for
their helpful comments. Lutz Lesshafft acknowledges financial support from the Agence
Nationale de la Recherche under the “Cool Jazz” project.

Appendix A. Influence of the inner product

The question may arise whether and how the choice of an inner product different from
(2.9) affects the endogeneity definition. In particular, many flow problems are investi-
gated in cylindrical coordinates, where the standard inner product includes the radial
coordinate r as part of the volume element. For practical purposes, the procedure is
outlined here for discrete eigenvalue problems, with a generalized inner product.

Let φ̃j be a discrete representation of the linear eigenfunction φj , in a discrete space

where the inner product 〈φ1,φ2〉 between two flow states is expressed as φ̃H1 Qφ̃2. The
matrix Q is typically diagonal, with real elements that represent volume elements of the
mesh, and possibly any further weight functions. It will only be assumed here that Q is
invertible, but even this condition can be relaxed with some additional effort.

The discrete direct and adjoint eigenvalue problems are defined by

−iωjBφ̃j = Lφ̃j , (A 1)

iω∗jQ
−1,HBHQHφ̃†j = Q−1,HLHQHφ̃†j . (A 2)

The matrix Q−1,H on both sides of (A 2) can be omitted. It is found that φ̌†j = QHφ̃†j is
the adjoint eigenvector satisfying

iω∗jB
Hφ̌†j = LHφ̌†j . (A 3)

Let Φj(xk) be defined as the vector Φj(xk) = δ(x − xk)Lφ̃j for convenient writing,
where xk denotes the discrete mesh points. The endogeneity definition, written in terms
of discrete vectors and operators, is then

−iE(xk) = 〈φ†j , δ(x− xk)Lφj〉 = φ̃†Hj QΦj(xk) = φ̌†Hj Φj(xk). (A 4)

It follows from (A 4) that the endogeneity is invariant with respect to the choice of
the inner product. This holds true also for the example of cylindrical coordinates: it
seems unnecessary to account for the r factor. Without the need to specify a Q matrix,
E(xk) may be computed directly from the discrete adjoint eigenvector, obtained from
the transpose conjugate problem (A 3). This will generally be the simplest option.
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true dynamics of a turbulent jet can be represented by a model based on linear instability. 
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1. Introduction 

Since the experiments by Mollo-Christensen ( Mollo- 

Christensen, 1963 ) and by Crow & Champagne ( Crow and 

Champagne, 1971 ), it has been recognized that turbulent jets 

exhibit large-scale vortical structures of relatively high spatial 

and temporal coherence. These structures are well described as 

wavepackets of synchronized frequency, with streamwise ampli- 

tude and phase modulations. It has furthermore been established 

that the dominant noise radiated from such jets is correlated 

with these wavepacket structures, as for instance in the numerical 

study by Freund ( Freund, 2001 ). Many investigations have since 

been based on the idea that the coherent wavepackets in turbulent 

jets and other shear flows may be modeled as instability waves 

(e.g. Cavalieri et al., 2013; Crighton and Gaster, 1976 ), linear or 

nonlinear, that develop in some steady state, either a laminar 

steady solution of the Navier–Stokes equations or an empirically 

determined mean flow. Such a model is tempting, because it opens 

a way for the analysis of the perturbation dynamics and, if the 

model carries that far, of the sound-producing mechanisms that 

are responsible for the jet noise. 

However, the description of wavepackets in turbulent jets as 

instability waves within a steady flow state requires an empirical 

justification. A recent review ( Jordan and Colonius, 2013 ) cites sev- 

eral studies that corroborate the pertinence of such an approach. In 

particular, Suzuki and Colonius (2006) present sophisticated exper- 

∗ Corresponding author. 

E-mail address: semeraro@ladhyx.polytechnique.fr (O. Semeraro). 

imental measurements of near-field pressure fluctuations outside 

the shear layer of subsonic high Reynolds number jets, and they 

demonstrate that the coherent fluctuations compare well with the 

local k + instability mode characteristics. Cavalieri et al. (2012) take 

this approach further, by comparing PIV data obtained in the inte- 

rior of a Ma = 0 . 4 jet with linear PSE instability calculations. Their 

study shows remarkable agreement in the development of vorti- 

cal wavepackets throughout the potential core of the mean flow, 

for Strouhal numbers between 0.3 and 0.9. At lower Strouhal num- 

bers, and at streamwise distances beyond the potential core, mea- 

surements and PSE predictions differ significantly. 

The aim of this study is to extend the comparison between ex- 

periment and theoretical modeling to a framework of fully global 

linear stability analysis, named the linear frequency response. Op- 

timization is performed in order to identify the most energy- 

efficient linear forcing of a jet at a given Strouhal number. New 

high-quality experimental data, obtained in a jet at Ma = 0 . 9 and 

Re = 10 6 , is used for a detailed comparison between linear flow- 

response wavepackets and coherent turbulent structures. A sim- 

ilar investigation by Jeun et al. (2016) established good agree- 

ment between linear frequency response and LES results for a jet 

at nominally identical operating conditions. Linear frequency re- 

sponse analysis has been applied in earlier work ( Garnaud et al., 

2013a, 2013b ) to different jet configurations. In the present paper, 

the formalism is applied for the first time to experimental jet data. 

The paper is organized as follows. The experimental setup is 

described in Section 2 ; mean flow quantities are shown, and 

the main frequency-resolved PIV results are summarized. The fre- 

quency response analysis, and some details on numerical pro- 

cedures, are presented in Section 3 . Linear analysis results are 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.10.010 

0142-727X/© 2016 Elsevier Inc. All rights reserved. 
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Fig. 1. The “Bruit et Vent” experimental set-up. 

documented in Section 4 and compared to experimental data in 

Section 5 . 

2. Experimental setup 

Experiments were conducted at the ”Bruit et Vent” jet-noise fa- 

cility at the CEAT, PPRIME Institute, Poitiers, France. The measure- 

ments were carried out at a Mach number ( Ma = U j /c, where U j is 

the jet velocity and c the ambient speed of sound) equal to 0.9 in 

isothermal conditions. The nozzle diameter D was 0.05 m, giving a 

Reynolds number of Re D = ρU j D/μ ≈ 10 6 . Transition in the incom- 

ing internal boundary layer is triggered using a Carborundum strip 

glued on the wall upstream from the nozzle exit. 

The PIV system consisted of a Photron SAZ camera and a 

532 nm Continuum MESA PIV laser providing 6 mJ of light pulse 

energy. The system was placed on a traverse parallel to the jet axis 

in order to scan the jet flow field from axis location close to the 

nozzle up to 20 jet diameter. The camera was equipped with a 

100 mm macro lens with low optical distortion, the aperture set 

at f#4. A photograph of the set-up in given in Fig. 1 . 

Two different field of views (FOV) were used during the ex- 

perimental campaign. The first FOV measured the velocity field in 

an area of about 2 D × 2 D , and was used for axial positions from 

the nozzle exit up to x = 6 D . The second FOV measured the ve- 

locity field in an area of 4 D × 4 D , and was used for more down- 

stream locations, i.e. x > 5 D . Hence, a finer spatial resolution was 

obtained for measurements close to the nozzle exit to ensure a 

good capture of the local velocity gradients. The complete mea- 

surement of the jet flow was obtained with the use of 11 ac- 

quisitions performed at various downstream locations. In between 

each of these locations an overlap of 20% of the FOV was set in 

order to control the correct alignment of the measured velocity 

fields. A calibration was made at all acquisition positions in or- 

der to be able to correct for both the remaining optical distor- 

tions and laser light sheet/measurement plane misalignment using 

a self-calibration procedure ( Wieneke, 2005 ). 

Both the jet flow and the surrounding air were seeded using 

glycerin smoke particles, whose diameter lays in the range be- 

tween 1 and 2 μm, thus sufficiently small to follow the velocity 

fluctuations of interest in this paper. The particles formed images 

of 2–3 particles in diameter, and no evidence of peak-locking was 

found in the data set. 

The image acquisition was performed at 20 kHz (10,0 0 0 PIV 

samples a second) at a resolution of 1024 × 1024 pixels. The 

time between the two laser pulses was set according to the lo- 

cal velocity amplitude and to the laser sheet width (which was set 

at 2 mm), and ranged between 4 and 5 μs. For each acquisition 

42,0 0 0 image pairs were acquired. 

PIV calculations were carried out using a commercial software, 

and a multi-pass iterative PIV algorithm with deforming interro- 

gation area ( Scarano, 2002 ) to account for the local mean velocity 

gradients. The PIV interrogation area size was set to 32 × 32 pix- 

els for the first pass, decreased at 16 × 16 pixels for the remaining 

passes, with an overlap of 50% between two neighboring interro- 

gation areas. Displacement computed were retained only the cor- 

relation peak-ratio was higher than 1.3. After each pass a Univer- 

sal Outlier Detection (UOD) ( Westerweel and Scarano, 2005 ) is ap- 

plied on a 3 × 3 vector grid to avoid corrupted data and enhance 

the particle motion calculation. Finally, prior to the computation 

of the flow statistical quantities a 5-sigma filter is applied to re- 

move the remaining outliers and they are replaced using the UOD 

technique. 

2.1. Mean flow measurements and postprocessing 

The mean flow for which all further analysis will be performed 

is computed from the PIV measurements through time-averaging. 

The axial velocity component u is presented in Fig. 2 a , and the 

correlation u ′ v ′ of velocity fluctuations around the mean flow, 

from which the turbulent viscosity will be estimated, is shown in 

Fig. 2 b . The potential core extends about six diameters downstream 

of the nozzle exit. 

Fig. 2. PIV results: the spatial distribution of the meanflow axial velocity and the u ′ v ′ fluctuations are shown in ( a ) and ( b ), respectively. 
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Fig. 3. ( a ) Extrapolated axial mean flow velocity u and ( b ) turbulent viscosity νt , obtained from processed experimental measurements. ( c ) Velocity profiles at four different 

x -locations; solid lines: processed mean flow as in ( a ), markers: experimental data as in Fig. 2 a . 

Smooth mean flow profiles must be constructed from this 

data, throughout a large numerical domain, for density, radial 

and axial velocity. We closely follow the procedure outlined in 

Gudmundsson and Colonius (2011) ; in particular, the mean axial 

velocity is extrapolated in the outer regions r / D > 1 and x / D > 20 

by use of a Gaussian profile ( Troutt and McLaughlin, 1982 ), given 

by 

u 

U j 

= 

⎧ ⎨ 

⎩ 

1 , if r < R (x ) 

U c (x ) exp 

(
− (r − R (x )) 2 

δ(x ) 2 

)
, otherwise . 

(1) 

R ( x ) characterizes the radial extent of the potential core, U c ( x ) rep- 

resents the evolution of the centerline velocity, and δ( x ) marks 

the radial position along x where u (x, 0) = U c (x ) / 2 . Outside the 

streamwise interval where experimental data is available, the pro- 

file parameters R ( x ), U c ( x ) and δ( x ) at x / D > 20 are extracted from 

a large eddy simulation (LES) of the same setting ( Brès et al., 2015; 

Jordan et al., 2014 ), and the velocity profiles for the pipe flow and 

the nozzle region are directly taken from this simulation as well. 

The LES was performed with the solver “Charles” from Cascade 

Technologies, and it has been shown to reproduce the reference 

experiment with remarkable precision. 

The axial velocity component u of the final mean flow model is 

shown in Fig. 3 a . Some smoothing with high-order moving-average 

filters ( Berland et al., 2007 ) has been applied for reasons of numer- 

ical resolution. The agreement between the experimental data and 

the reconstructed mean flow model is very satisfactory, as shown 

in Fig. 3 c . The maximum difference between the numerical mean 

flow from LES and the reconstructed experimental one is approxi- 

mately 7% of the velocity u in the mixing layer at locations x / D > 

10. Corresponding mean density variations are computed from the 

Crocco–Busemann relation, and the radial mean velocity v is finally 

obtained from the continuity equation. 

3. Frequency response methodology 

As the jet behaves as an amplifier of external flow perturba- 

tions, the appropriate theoretical framework for a global analysis 

is the frequency response formalism ( Garnaud et al., 2013a ), which 

is synonymously referred to as ‘resolvent analysis’ or ‘input-output 

analysis’ in the literature. This section provides the problem for- 

mulation and an outline of the numerical procedure. 

3.1. Governing equations 

The fully compressible Navier–Stokes equations are written in 

terms of conservative variables ( ρ , ρu, ρv, ρE ) in axisymmetric 

cylindrical coordinates ( r, x ). Axial and radial velocity components 

are denoted as u and v , respectively, ρ is the density and E the to- 

tal energy. Only axisymmetric dynamics are considered, therefore 

all quantities are independent of the azimuthal coordinate θ , and 

the azimuthal velocity is always zero. The flow quantities are made 

non-dimensional with respect to the diameter D of the nozzle, the 

ambient density ρ∞ 

, and the jet centerline velocity U j , measured 

at the nozzle exit x = 0 . The resulting set of equations reads 

∂ρ

∂t 
+ ∇ ( ρu ) = 0 , (2) 

∂ρu 

∂t 
+ ∇ ( ρu � u ) = −∇ p + ∇ τ, (3) 

∂ρE 

∂t 
+ ∇ ( ρu E ) = −∇h + ∇ ( τu ) . (4) 

The total energy E is defined as 

E = 

T 

γ (γ − 1) Ma 2 
+ 

1 

2 

u 

T u , (5) 

with γ = 1 . 4 . The molecular stress tensor is written as τ , and the 

heat flux is denoted as h . Further details and definitions are given 

in Sandberg (2007) . 

Eqs. (2) –( 4 ) are linearized around the turbulent mean state pre- 

sented in Section 2.1 , in terms of fluctuation variables defined by a 

Reynolds decomposition, ρ = ρ + ρ′ , and accordingly for all other 

flow variables. 

Turbulent viscosity. Our analysis aims at modeling the evolution of 

coherent fluctuation patterns (‘wavepackets’) in a fully turbulent 
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jet. Undoubtedly this evolution is affected by the action of fluctua- 

tions in the Reynolds stresses, and the question how these effects 

are to be accounted for in a linear model has been a topic of de- 

bate for a long time. A systematic approach has been established 

( Reynolds and Hussain, 1972 ) on the basis of a triple decomposi- 

tion , which clearly identified the underlying closure problem. Vari- 

ous strategies have been employed in linear stability studies (use- 

ful discussions can be found in Meliga et al., 2012; Mettot et al., 

2014 ), and new approaches have been presented in the recent lit- 

erature ( Beneddine et al., 2016 ; Tammisola and Juniper, 2016 ), but 

all of these still rely on empirical models and ad hoc choices. 

For the present study, we opt for a comparably simple turbu- 

lent viscosity approach, based on the assumption that the unsteady 

RANS equations provide a suitable model for low-frequency motion 

in turbulent jets. The classical turbulent viscosity model, which re- 

places the Reynolds stresses with a diffusive term as u ′ v ′ = −νt ∂ r u , 
has proven to yield accurate results for the steady mean flow of 

round jets ( Pope, 20 0 0 ). Here we extend the application of this 

model to the coherent fluctuations. The turbulent viscosity νt is 

taken to be a function of the coordinates x and r , and it is directly 

obtained from the experimental measurements as 

νt = − u 

′ v ′ 
∂ r u + ε

. (6) 

The original u ′ v ′ measurements are shown in Fig. 2 b . This distri- 

bution has been smoothened and extrapolated in a similar fashion 

as the axial mean flow velocity. Since the mean shear ∂ r u decays 

to zero outside the jet, the fraction in Eq. (6) is regularized with 

a value ε = 10 −4 . The resulting distribution of νt , shown in Fig. 3 c , 

is then added to the molecular viscosity in the linear perturbation 

equations. Note that νt itself is not considered to be a perturbed 

quantity, as this would require additional modeling assumptions. 

3.2. Computation of optimal forcing/response structures 

Following our initial hypothesis, the harmonic component is ob- 

tained as the solution of an optimally forced problem ( Garnaud 

et al., 2013a ). The discretized state vector is denoted as q ∈ C 

n , 

where n is the total number of degrees of freedom, describing the 

amplitude and phase of all fluctuation variables in every point of 

the numerical domain. The domain lies in the ( r, x ) plane, and all 

quantities are taken to be invariant in the azimuthal direction. 

The linear perturbation equations are expressed in compact 

form as 

d q 

d t 
− Lq = B ̂

 f e iωt . (7) 

On the right-hand side, the system is driven by harmonic forcing ̂  f 

at frequency ω. The operator B represents a weight function, which 

is used here in order to place constraints on the forcing. By set- 

ting B to zero everywhere outside the inlet pipe, the forcing is re- 

stricted to the pipe interior. This choice is motivated by the obser- 

vation that the jet dynamics are particularly sensitive to details of 

the flow upstream of the nozzle, and to the development of the 

pipe boundary layer in particular ( Brès et al., 2015 ). 

Introducing the ansatz q = ˆ q e iωt , Eq. (7) can be rewritten as the 

following input-output system 

ˆ q = ( iω − L ) 
−1 B ̂

 f = R ( ω ) B ̂

 f , (8) 

where the resolvent operator R ( ω) plays the role of a transfer func- 

tion at a given frequency ω. The forcing ˆ f is the unknown of our 

system: it is defined such that the ratio between the energy of the 

frequency response and the energy of the forcing input is maxi- 

mized, i.e. 

σ 2 
max = max 

ˆ f 

‖ ̂  q ‖ 

2 
Q 

‖ ̂

 f ‖ 

2 
Q 

= max 
ˆ f 

(
ˆ f † B 

† R 

† QRB ̂

 f 

ˆ f † Q ̂

 f 

)
, (9) 

where the † -superscript indicates the Hermitian transpose. The real 

positive-definite matrix Q represents the norm (see Hanifi et al., 

1996 ) 

‖ ̂  q ‖ 

2 
Q = 

∫ 
�

(
ρ0 ̂  u 

2 + 

p 0 
ρ0 

| ̂  ρ| 2 + 

ρ2 
0 

γ 2 ( γ − 1 ) Ma 4 p 0 
| ̂  T | 2 

)
r d r d x . 

(10) 

The optimal forcing ˆ f and associated gain σ 2 
max at frequency ω 

are recovered as the leading eigenvalue/eigenvector pair of the op- 

erator 

C = Q 

−1 B 

† R 

† (ω) QR (ω) B , (11) 

according to the Rayleigh quotient in Eq. (9) . This maximum-gain 

forcing/response pair will be named the optimal mode in the fol- 

lowing. All subsequent eigenmodes of C are orthogonal among 

each other with respect to the scalar product defined by Q , and 

they can be ordered according to their real eigenvalues (gains). 

These forcing/response pairs will be named sub-optimal modes. 

The global frequency response analysis describes an externally 

forced system, and as such it is closely related to the PSE and to 

the local spatial stability approaches that were used in earlier stud- 

ies ( Cavalieri et al., 2012; Suzuki and Colonius, 2006 ). In contrast 

to these, the present formalism fully accounts for non-parallelism, 

and it does not restrict the flow response to locally exponential 

behavior. The model hypothesis is that the most observable struc- 

tures in the jet response to stochastic forcing, as measured in the 

experiment, will correspond to the most amplified wavepackets, as 

identified in the linear analysis. The acoustic radiation that is asso- 

ciated with near-field wavepackets is obtained as part of the flow 

response to the applied forcing. 

3.3. Numerical methods 

Due to the large dimensions of the discrete linear system, the 

optimization problem is solved by power iteration, which involves 

alternate time-stepping of the direct and adjoint perturbation 

equations. High-order explicit finite difference schemes ( Berland 

et al., 2007 ) are used to resolve spatial derivatives. Time inte- 

gration is performed with a fourth-order Runge–Kutta algorithm. 

Symmetry boundary conditions are imposed at r = 0 , and convec- 

tive boundary conditions and sponge regions are used on all other 

boundaries. 

Convergence tests. The numerical domain extends over the inter- 

val x = [ −18 . 5 D, 21 D ] in the streamwise direction, and over r = 

[0 , 22 D ] in the radial direction. It is discretized with (N r , N x ) = 

(330 , 625) points, concentrated near the nozzle tip with minimum 

spacings �x = 0 . 015 and �r = 0 . 011 . Grid convergence has been 

verified by varying the resolution and the point distribution; three 

examples are reported in Table 1 , labeled as cases A, B and C0 

for the case St = 0 . 4 . The level of convergence is estimated based 

on the maximum amplification rate σmax . In all these test runs, in 

Table 1 

Convergence test configurations, run for St = 0 . 4 . 

�x min �r min T opt σmax 

case A 0 .020 0 .015 60 386 .77 

case B 0 .015 0 .015 60 391 .90 

case C0 0 .015 0 .011 60 394 .77 

case C1 0 .015 0 .011 50 392 .14 

case C2 0 .015 0 .011 70 395 .13 
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Fig. 4. Amplification rate σ , as a function of the Strouhal number, for the four most 

amplified modes. The maximum amplification rate is attained at St = 0 . 4 . Another 

local maximum is found around St = 0 . 7 in all four curves. 

contrast to the results presented in detail in the following section, 

the forcing support was not restricted to the pipe interior, and the 

values of σmax are higher as a result. 

The amplification rate is also affected by the time horizon T opt 

over which the optimization is carried out. For all results presented 

in the following section, direct and adjoint time integration is al- 

ways performed with a time step �t ≈ 0.01 over T opt = 60 nondi- 

mensional units; this time horizon corresponds roughly to twice 

the convection time along the centerline between the nozzle lip 

and the sponge region. The comparison between cases C0, C1 and 

C2 ( Table 1 ) demonstrates very good convergence. The four most 

amplified forcing/response pairs are computed at each Strouhal 

number, using a Krylov space of dimension N k = 15 . 

In order to test the robustness of the results with respect to de- 

tails of the mean flow, the same computations have also been per- 

formed at St = 0 . 4 on the mean flow obtained from LES ( Brès et al., 

2015 ). Some discrepancies in the flow response arise downstream 

of the potential core, where indeed the LES and experimental mean 

flows differ. However, amplification rates and forcing structures are 

found to be in very good agreement for both mean flows. 

4. Near-field and far-field results of the frequency response 

analysis 

The amplification gain σ is shown as a function of the Strouhal 

number St in Fig. 4 for the optimal mode and the first three sub- 

optimal modes. The overall maximum gain is attained at St = 0 . 4 . 

This value is consistent with previous studies of jets without co- 

flow: for instance, Crow and Champagne (1971) report a maximum 

forcing response at St = 0 . 3 in their experiments; Garnaud et al. 

(2013a ) find the maximum gain around St = 0 . 45 in an incom- 

pressible jet, and they show this value to be quite insensitive with 

respect to the Reynolds number and to the restrictions imposed on 

the forcing support. 

Near its maximum, the gain of the optimal mode is more than 

one order of magnitude larger than that of all others. The sub- 

optimal modes exhibit gain values that are comparable among 

each other over the entire range of Strouhal numbers shown in 

Fig. 4 . The clear dominance of the optimal over the sub-optimal 

modes is in contrast with the observations of Jeun et al. (2016) , 

who found little separation between these in a Ma = 0 . 9 jet. The 

mean flow fields used in the present study and in Ref. ( Jeun et al., 

2016 ) are believed to be very similar ( Jordan et al., 2014 ). However, 

a different norm is used, no Reynolds-stress model is included, and 

forcing is applied throughout the free-jet region in Ref. ( Jeun et al., 

2016 ). 

In Fig. 5 , the axial velocity component of the optimal forcing, 

restricted to the pipe interior, is shown alongside the associated 

response wavepackets for six values of the Strouhal number. The 

forcing structures are consistently composed of two elements: a 

plane acoustic wave that travels downstream, and slim vortical 

structures at the pipe wall that are tilted against the flow direction. 

The latter structures, which were also identified in incompressible 

settings ( Garnaud et al., 2013a ), resemble optimal perturbations in 

wall-bounded flows that exploit the Orr mechanism. Such tilted 

structures rotate as they convect, thereby extracting energy from 

the mean flow, until they are aligned with the mean flow velocity 

gradient. 

Close to the nozzle, the flow response in the free jet is clearly 

dominated by a vigorous shear instability. As the mean flow 

spreads quickly, the perturbations invade the entire jet column. 

In the fully developed downstream region of the jet, all pertur- 

bations eventually decay. Low frequencies sustain spatial growth 

over a longer streamwise interval, consistent with the local stabil- 

ity properties of a spreading jet ( Garnaud et al., 2013a ). Indeed, 

all optimal response wavepackets resemble each other, except that 

with growing Strouhal number the characteristic length scales be- 

come shorter, affecting both the carrier wavelength and the enve- 

lope length. 

A peculiar non-monotonic behavior is observed in Fig. 4 in all 

gain curves around St = 0 . 7 . In the optimal mode case ( Fig. 5 ), this 

coincides with a change in the forcing structure: at Strouhal num- 

bers between 0.7 and 0.8, the acoustic component of the forcing 

appears to shift from a plane to an oblique wave pattern, as the 

half-length of an acoustic wave becomes comparable to the pipe 

diameter. We hypothesize that these oblique waves in the pipe in- 

crease the efficiency of the jet forcing. 

Sub-optimal forcing structures and associated flow response 

wavepackets are presented in Fig. 6 . The Strouhal number is 0.4 

in all cases, and singular modes n = 2 , 3 , 4 are shown, from top to 

bottom. The spatial distributions in all three cases are quite dis- 

tinct from the one of the optimal mode in Fig. 5 ; in particular, 

the forcing amplitude peaks in the center of the pipe, although 

it presents again oblique near-wall structures reminiscent of Orr- 

type forcing, and the wavelength corresponds to a convective (non- 

acoustic) phase velocity. The forcing structures of the n = 2 and 4 

modes bear a strong resemblance, but mode 4 displays an addi- 

tional phase change in the radial direction, suggesting that these 

modes are of the same family, with different radial wavenum- 

bers. The same observation is true for the associated response 

wavepackets. It is less obvious how the n = 3 mode may relate to 

the two others, although it still exhibits similar qualitative features. 

All three sub-optimal modes excite perturbations on the jet cen- 

terline, with no discernible shear-type signature. The wavelength 

of the sub-optimal response modes in the potential core is signifi- 

cantly larger than that of the shear-related optimal mode, and their 

phase velocities are positive (directed downstream) throughout the 

near field, including the pipe. 

The acoustic far field of the flow response wavepackets is finally 

visualized in Fig. 7 , for the optimal mode at St = 0 . 4 and 0.64. 

Snapshots of the density perturbation field are shown, with a color 

scale that resolves the low acoustic amplitudes away from the jet. 

The sound waves seem to emanate either from the near-nozzle 

region, where hydrodynamic perturbations grow exponentially, or 

perhaps directly from the nozzle. A double-beam pattern forms at 

St = 0 . 4 , whereas a single beam is found at St = 0 . 64 . Similarly 

marked directivity patterns are characteristic for the acoustic fields 

of the optimally forced wavepackets, also at other Strouhal number 

values. 

5. Comparison with the experiment 

The linear model results can be compared to experimental mea- 

surements, provided that the axisymmetric fluctuation component 
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Fig. 5. Optimal forcing (OF) and flow response (FR) structures for various Strouhal numbers. The axial velocity component is shown. The forcing is restricted to the interior 

of the pipe. 

in the experiment can be isolated. A reasonably easy way to do this 

is to only regard fluctuations of the axial velocity on the jet cen- 

terline; in a Fourier decomposition into azimuthal modes, only the 

axisymmetric mode is non-zero in this velocity component. The 

centerline velocity fluctuations are readily extracted from the PIV 

data, and a temporal FFT is performed. The results are presented in 

Fig. 8 a as logarithmic color contours of the power spectral density 

(PSD) in the x − St plane. 

Corresponding centerline data, obtained from the frequency re- 

sponse analysis, are shown in Fig. 8 b for comparison. The resem- 

blance between the experimental data and the linear model results 

is not particularly convincing at this point. The linear frequency 

response appears to underpredict the amplitudes at low Strouhal 

number, and it does not seem to reproduce a certain anomaly that 

is found in the experimental spectrum at St = 0 . 45 . However, all 

these differences may be due to the amplitude normalization of 

the frequency response results. In Fig. 8 b , it is assumed that the 

forcing energy input is identical at every Strouhal number, which 

is certainly not the case in the experiment. Furthermore, the time- 

resolved PIV measurements in the range 2.2 ≤ x ≤ 3.8 are affected 

by optical distortions, which explains an irregularity in the con- 

tours in Fig. 8 a . 

A more pertinent comparison can be made for individual 

Strouhal numbers. Fig. 9 compares experimental and linear model 

PSD data for eight values of St between 0.1 and 0.8. As the ampli- 

tude in the linear model is an arbitrary constant, the frequency re- 

sponse (FR) curves may be vertically shifted for an eyeball fit with 

the reference data. PIV results in the region 2 ≤ x ≤ 4.5 are ex- 

cluded from these plots. In order to give a more complete picture, 

LES data ( Brès et al., 2015 ) are also included. 

The linear model fails to capture the experimentally observed 

wavepackets at low Strouhal numbers, St ≤ 0.2. At St = 0 . 3 , the ini- 

tial phase of exponential growth in the LES results is fairly well re- 

produced, although only over a short streamwise distance. The ref- 

erence data shows atypical behavior at St = 0 . 4 , which again is not 

reproduced by the linear analysis. At Strouhal numbers between 

0.5 and 0.8, however, the linear predictions compare favorably with 

experiment and LES over the first three diameters. A sometimes 
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Fig. 6. Sub-optimal forcing (OF) and flow response (FR) structures for St = 0 . 4 and modes 2, 3 and 4. The axial velocity component is shown. The forcing is restricted to the 

interior of the pipe. 

Fig. 7. Density fluctuations of the flow response to optimal forcing at ( a ) St = 0 . 4 , and ( b ) St = 0 . 64 . 

Fig. 8. Hydrodynamic near field: power spectral density of axial velocity fluctuations on the jet centerline. (a) PIV measurements; (b) linear frequency response results 

(axisymmetric mode). A logarithmic scale is used in both figures. 

irregular curve shape may seem surprising, but is easily explained 

by the fact that only centerline values are plotted here, whereas 

the fluctuations near the nozzle exit are concentrated in the shear 

layer. 

Far-field acoustic data is found from the microphone array mea- 

surements, taken at 16 azimuthal positions around the jet, at a ra- 

dial distance of 14.2 jet diameters, and at axial positions between 

x = −4 and 39. A cylindrical surface is considered. Averaging over 

all azimuthal positions yields a good approximation of the instan- 

taneous axisymmetric sound component, which is then Fourier- 

transformed in time. The results are shown in Fig. 10 a as a func- 

tion of Strouhal number and radiation angle. The angle with the jet 
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Fig. 9. Power spectrum density (PSD) of the axial momentum fluctuation velocity 

u ′ on the centerline as a function of x / D , at various Strouhal numbers, for three 

different datasets: i) linear frequency response (red, solid line); ii) LES data (black, 

solid line); iii) PIV data (markers). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

axis, measured from the nozzle exit x = 0 , is simply obtained by 

rescaling the axial coordinate; the reported values are not scaled 

with respect to the distance from the nozzle. In experiments at 

Mach numbers between 0.35 and 0.6 ( Cavalieri et al., 2012 ), the 

sound emission associated with the axisymmetric wavepackets is 

dominant at low angles, below 25 °; the present data confirm this 

trend also at Ma = 0 . 9 . Higher-order azimuthal modes (not consid- 

ered here) radiate preferably at higher polar angles. 

Corresponding data from the linear frequency response analy- 

sis are plotted in Fig. 10 b for comparison. It must be noted that 

the comparison between experiment and linear model again suf- 

fers from the arbitrary normalization of the linear results, and a 

uniform forcing norm of unity has been used in order to generate 

this figure. As a result, absolute contour values cannot be expected 

to agree between Fig. 10 a and b , but the directivity patterns at in- 

dividual Strouhal numbers can be compared. Both in the experi- 

ment and in the linear analysis, one dominant beam is identified at 

St < 0.8, and in both cases its angle increases slowly with Strouhal 

number. At St = 0 . 8 , the maximum radiation is found around an 

angle of 50 ° in the linear model, whereas it is closer to 40 ° in the 

experiment. Above St = 0 . 8 , a strong additional acoustic lobe ap- 

pears in the linear results, radiating in the direction perpendicular 

to the jet, and even upstream. This lobe however is absent in the 

experiment. Precisely the same behavior was observed by Garnaud 

et al. (2013b ), who obtained strong upstream radiation in the lin- 

ear frequency response of a jet at high Strouhal numbers, which 

was not at all present in the reference DNS. 

6. Conclusions 

A linear frequency response analysis has been performed, for 

the first time, on a turbulent jet mean flow obtained from ex- 

periments. The jet operates at Ma = 0 . 9 and Re = 10 6 . The lin- 

ear analysis allowed to identify the optimal forcing mode over a 

range of Strouhal numbers, 0.1 ≤ St ≤ 1.2, as well as the three 

following sub-optimal forcing modes, together with the associated 

flow response. Detailed hydrodynamic near-field and some acous- 

tic far-field results have been documented, and they have been 

compared to experimental data. Near-field results from a compan- 

ion LES study ( Brès et al., 2015 ) were included in order to com- 

plement the comparison in flow regions where the experimental 

data was incomplete. The dominant linear mode has been found 

to agree reasonably well with the nonlinear reference data in the 

region close to the nozzle, where the linear approximation is valid, 

at Strouhal numbers between 0.3 and 0.8. The particular value 

St = 0 . 4 is an exception: here, experimental and LES data both dis- 

play markedly different trends than at other Strouhal values, and 

this phenomenon has been described in full detail in recent studies 

( Schmidt et al., 2016 ) to be the manifestation of ‘trapped acoustic 

modes’. Remarkably, no such trapped modes seem to play a domi- 

nant role in the present analysis. 

The failure of a linear instability model based on the optimals 

to predict the flow dynamics at low Strouhal numbers, and several 

Fig. 10. Acoustic far field: power spectral density of acoustic waves outside the jet. (a) microphone pressure measurements (azimuthal average), scaled as dB/Hz; (b) linear 

frequency response results (axisymmetric mode), scaled with respect to unit energy forcing input at each Strouhal number. 
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diameters downstream of the nozzle, is consistent with previous 

studies that used PSE or linearized Euler simulations ( Baqui et al., 

2015; Cavalieri et al., 2013 ). However, recent results suggest that 

it might be possible to overcome some of these limitations within 

the linear frequency response formalism ( Beneddine et al., 2016; 

Semeraro et al., 2016 ). 

The branch of optimal modes exhibits forcing structures that 

are clearly composed of two distinct components: an acoustic wave 

(plane for St < 0.7 and oblique for St > 0.7) and oblique vortical 

waves near the pipe wall that draw their efficiency from the Orr 

mechanism. Both components trigger a shear instability in the po- 

tential core region of the jet, which provides the mechanism for 

strong spatial growth of perturbations. The resulting wavepackets 

are of the same kind as those obtained, for instance, by Crighton 

and Gaster (1976) , or from PSE ( Cavalieri et al., 2013 ). It is noted 

that the relative strength of acoustic versus vortical forcing compo- 

nents necessarily depends on the norm that is used to measure the 

input energy. The frequency response formalism involves several 

choices that affect the results, such as the localization of the forc- 

ing, the choice of the norm and the modeling of Reynolds stresses. 

A recent frequency response analysis of a Ma = 0 . 4 jet 

( Semeraro et al., 2016 ), where turbulent viscosity is not accounted 

for and no localization restriction is imposed on the forcing, iden- 

tifies very similar forcing structures of the optimal mode as found 

in the present results. The sub-optimal modes differ significantly 

however: without localization, both the sub-optimal forcing and 

the response structures reside inside the shear layer of the free 

jet. The present choice to restrict the forcing to the nozzle pipe 

allowed to identify the influence of the upstream flow system 

onto the free-jet dynamics ( Brès et al., 2015 ). The first three sub- 

optimals in this case carry their maximum amplitude on the cen- 

terline of the pipe, and their radial structure suggests that they 

belong to one family, hierarchically ordered by a radial wavenum- 

ber. These centerline perturbations appear to drive jet-column in- 

stability modes in the free jet, which inherit the radial structure 

from the forcing modes. It is interesting to note that all shear- 

layer instability dynamics seems to be contained in the optimal 

forcing, whereas it is absent in the subsequent sub-optimals. The 

frequency response formalism, together with the localized forcing, 

cleanly separates shear-layer and jet-column dynamics inside the 

potential core. 

A rather strong separation has been noted between the optimal 

gain value and that of the highest sub-optimal, at least over the 

relevant interval 0.2 ≤ St ≤ 1. The present results in this respect 

differ from the findings of Jeun et al. (2016) . These differences are 

attributed to the localization assumption, the turbulent viscosity 

model and the choice of the optimization norm. 

Finally, only a preliminary description of acoustic radiation has 

been provided in this study. The comparison between linear anal- 

ysis and experiment is limited to the qualitative directivity of the 

sound emission associated with the axisymmetric mode obtained 

at individual Strouhal numbers, as the available data does not al- 

low to define a consistent scaling of the amplitude for the lin- 

ear results. It can be concluded that the optimally forced linear 

wavepackets emit sound in a beam pattern that resembles the ex- 

perimental measurements. However, the dominant beam angle in 

the linear model is larger by approximately 10 ° than in the ex- 

periment, and a strong additional acoustic lobe around 90 ° arises 

at St > 0.8, which is absent in the experimental data. Similar dis- 

crepancies were observed in the frequency response analysis of a 

DNS mean flow ( Garnaud et al., 2013b ). Notwithstanding, the over- 

all agreement in the present case is clearly encouraging for fur- 

ther investigations into the linear modeling of jet dynamics and 

aeroacoustics. New experiments are under way that will facilitate a 

quantitative comparison of acoustic measurements with linear fre- 

quency response calculations. 
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jets

Onofrio Semeraro∗, Vincent Jaunet†, Peter Jordan‡, André V. G. Cavalieri§
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Coherent fluctuations in a turbulent jet at Ma = 0.4 and Re = 4.6 × 10
5 are analysed by

combining experiments and linear stability analysis. Following the work by Dergham et

al,1 we explore the connection between singular modes of the resolvent operator and the

measured covariance, within the framework introduced by Farrell and Ioannou.2

Instantaneous velocity fields are measured by means of time-resolved, stereoscopic PIV,

in the radial-azimuthal plane at different locations along the streamwise direction. Proper

orthogonal decomposition of the cross-spectral density covariance is applied for extracting

coherent wavepackets, at a given frequency. The mean flow field is used for the linear

stability analysis. We compute the singular value decomposition of the linear resolvent

operator, derived from the fully compressible Navier-Stokes equations, in order to identify

the optimal harmonic forcing and the associated linear flow response.

The analysis shows a remarkable agreement between the modal structures computed

by linear analysis and the wavepackets extracted by statistical analysis of experimental

measurements. These results suggest that the stochastic framework may help in shedding

light on the structure of the non-linear forcing responsible for the wavepackets as observed

in experiments.

I. Introduction

Much evidence has been produced in recent years that the fluctuation dynamics in the potential core
of subsonic turbulent jets sustain coherent wavepackets.3 Within a range of moderate Strouhal numbers,
and in a flow region near the jet nozzle, the structure of these wavepackets has been found to be rather
well predicted by means of local instability analysis,4 by PSE5 or by global analysis.6 It is not clear at
present why the agreement is limited to the near-nozzle region and to a certain band of Strouhal numbers.
Indeed, it is not quite clear either why within these limits the agreement is pertinent: it appears to be a
bold proposition that the coherence of fluctuations in a turbulent jet should resemble harmonically forced
linear perturbations evolving in a quasi-laminar mean flow. The principal objective of the present study is
to justify and validate the relevance of harmonically forced structures for the stochastic jet dynamics, on the
basis of the theory developed by Farrell & Ioannou.2

In particular, accounting for the stochastic nature of fluctuations in jets is likely to be an important
prerequisite for successful jet noise modelling. With regard to the noise that is generated by coherent
wavepackets, linear models fail to give reliable predictions at present. On the one hand, the directivity
pattern measured in direct numerical simulations of a low Reynolds number jet could be reasonably well
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Figure 1. A schematic of the experimental setup is sketched on the left. On the right, the streamwise component of
the meanflow is shown. The experiment operates at Ma = 0.4, corresponding to Reynolds number ReD ≈ 4.6 × 105.

reproduced by singular modes of the resolvent operator,6 and encouraging agreement has been found also
for cases at high Reynolds number.7,8 On the other hand, the absolute intensity of the sound field appears
to elude linear modelling in terms of harmonic flow forcing. Baqui et al.9 showed for high Reynolds number
jets that the expected sound radiation from coherent wavepackets, computed from time-integration of the
linear Euler equations, is significantly weaker than what is observed experimentally. In the same study, and
in full agreement with earlier work,10 the authors demonstrate that “jitter”, or stochasticity, in a wavepacket
is capable of greatly increasing its acoustic output.

In the present study, a well-documented jet configuration with Mach number Ma = 0.4 and Reynolds
number Re = 460 000 is revisited.5 Its mean flow, as measured experimentally, is taken as a basis for
the computation of the linear flow response to harmonic forcing, represented by singular modes of the
resolvent operator at specific Strouhal numbers. This formalism identifies the optimal harmonic forcing, in
the sense of maximum gain between the norms of forcing input and flow response output, as well as ordered
orthogonal sub-optimal input-output pairs. The characteristics of these linear structures, which arise under
perfectly harmonic and coherent flow conditions, are documented and discussed. A theroretical framework
for stochastic dynamics2 is then exploited in order to link these harmonic structures to the flow response to
white-noise forcing, which is assumed to be provided by nonlinear turbulent dynamics.1,11

New experimental data allow to compute the two-point covariance of velocity fluctuations in the near
field of the jet, within and beyond the potential core. POD wavepackets educed from this experimental data
will be compared directly to the linear model results, in order to assess the applicability of the linear theory.

The remainder of the paper is organized as follows. In Sec. II, we provide the details of the experimental
setup and the numerical tools used for the present analysis. The Sec. III describes the theoretical background
and the results of the current investigation. The resolvent operator analysis is described in Sec. III.A, while
the results are presented in Sec. III.A.2. In Sec. III.B, we introduce the stochastic framework by comparing
it with the resolvent analysis; the link between the two approaches is stated. Finally, numerical results are
compared with the experimental modal analysis in Sec. III.C.

II. Experimental and numerical setup

II.A. Experimental setup

Experiments were conducted at the “Bruit et Vent” jet-noise facility of the PPRIME Institute, Poitiers,
France. The measurements were carried out at Mach number (Ma = Uj/c, where Uj is the jet velocity and
c the ambient speed of sound) equal to 0.4 in isothermal conditions. These conditions are the same as used
by Cavalieri et al.5 The nozzle diameter D is 0.05m, giving a Reynolds number Re = ρUjD/µ = 4.6× 105.
The Strouhal number is defined as St = ωD/(2πUj), where ω is the frequency.

Since we focus on low-order azimuthal Fourier modes and their two-point statistics, a dual-plane, time-
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resolved, stereoscopic PIV system was used. The setup consisted of two synchronised TR-SPIV systems that
could be moved independently, measuring instantaneous flow fields in the (r, θ) plane. The arrangement
of the two systems allows the two measurement planes to be either coplanar or axially separated. The
axial positions of the measurement planes were: x1 ∈ [1D, 8D] and x2 ∈ [x1, 8D] in increments of 0.5D,
where x1 refers to the axial position of the upstream system (S1) and x2 to that of the downstream system
(S2). For example, at a fixed position of S1 at x1/D = 1, the second system was successively positioned at
x2/D = {1, 1.5, 2..., 8}, and for each (x1, x2) couple an acquisition was performed. Hence, a complete set of
pairs of instantaneous velocity fields was collected and two-point information was then retrieved for varying
reference points and separations. A schematic of the setup is shown in figure 1.

The image acquisition was performed at 10kHz (5000 PIV samples per second), giving a maximum
resolved Strouhal number of St = 0.9. The instantaneous velocity fields were interpolated onto a polar grid
of 64 points in the radial direction and 64 points in the azimuth for r/D < 0.8, using a bi-cubic interpolation
method. The spatial resolution of the interpolated field has been chosen to match the original one in order
to avoid any loss of information. A more detailed description of the setup together with a validation of the
results is given in Jaunet et al.12

II.B. Mean flow data

The mean flow used for the stability analysis described in the next section is shown in Fig. 1. The axial
(streamwise) velocity component is shown. The present results are in excellent agreement with previous
measurements by Cavalieri et al.;5 therefore, the same mean flow as used by the aforementioned authors is
adopted here. With respect to the original data, the velocity profile is further extended in the region far
downstream (x/D > 15) and along the radial direction by means of self-similar solutions.13 Moreover, we
extrapolated the velocity field in the pipe – fully turbulent – from the data collected in the vicinity of nozzle.
The resulting axial velocity field is used for computing the remaining quantities; temperature and density
distributions are approximated from the Crocco-Busemann relation, and the radial velocity is recovered from
the continuity equation.

II.C. Governing equations

The stability analysis is performed by solving the compressible Navier–Stokes equations linearised around the
mean flow. The equations are cast in conservative variables (ρ, ρu, ρE) in cylindrical coordinates (r, θ, x).
The reference length is taken to be the diameter of the nozzle D; the reference velocity is chosen as the
centreline velocity Uj at the pipe exit at x = 0, and the ambient density is ρ∞. The set of nonlinear
equations in total variables reads

∂ρ

∂t
+∇ (ρu) = 0, (1)

∂ρu

∂t
+∇ (ρu⊗ u) = −∇p+∇τ, (2)

∂ρE

∂t
+∇ (ρuE) = −∇h+∇ (τu) , (3)

where ρ is density, u is velocity and E is the total energy, defined as

E =
T

[γ(γ − 1)Ma2]
+

1

2
uTu, (4)

with γ = 1.4. The molecular stress tensor is τ , and the heat flux is denoted as h. The reference quantities
are used for the non-dimensionalisation of the equations. We refer to the technical report by14 for a detailed
formulation of each of the terms appearing in the equations.

The equations are linearised by introducing a triple decomposition15 of the flow variables; for instance,
the total velocity is decomposed as

u = Ū+ ũ+ u′, (5)
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where Ū represents the time-averaged mean flow, and the remaining terms are fluctuations. The further
analysis focusses on coherent fluctuations ũ, whereas u′ denotes the incoherent part of the turbulent spec-
trum. Within the framework of Reynolds & Hussain,15 we adopt the ‘quasi-laminar’ approach: the molecular
viscosity is computed using Sutherland’s law, and turbulent viscosity is not accounted for in the equations
that govern fluctuations.

In the following, coherent fluctuations ũ are modelled to obey the linearised Navier–Stokes equations.
The analysis of these large-scale fluctuations through linear or nonlinear ansätze has been the object of
numerous recent investigations on their role in the generation of jet noise.3

II.D. Numerical method

The Navier–Stokes equations in cylindrical coordinates are solved by means of numerical simulation. An
axisymmetric geometry is considered. Spatial derivatives are discretised by means of high-order explicit finite-
difference schemes16 on a non-uniform cartesian grid. The discrete mesh consists of [Nr,Nx] = [300, 700]
grid points distributed on a non-uniform Cartesian grid, concentrated near the nozzle lip with minimum
spacings ∆x = 0.02 and ∆r = 0.005. The domain extends in the streamwise direction over the interval
x/D = [−10.5, 22.75], and over r/D = [0, 12.5] in the radial direction. Symmetry boundary conditions are
imposed at r = 0. Characteristic boundary conditions in combination with a sponge region are applied along
all other boundaries.

Time integration is performed with a fourth-order Runge–Kutta algorithm, with ∆t ≈ 0.005. More
details on the numerical method are given in Garnaud.17

III. Harmonic and stochastic optimal forcing

The spatial discretisation allows to write the system in a compact discrete form. The linear flow response
to a forcing input can be written as

∂q

∂t
= Aq+ f , (6)

where the state vector q = (ρ̃, ũx, ũr, Ẽ) contains the fluctuation quantities of density, streamwise and radial
velocity, and total energy. The flow forcing is given by the vector f ; the matrix A represents the Navier–
Stokes operator, linearised around the mean flow, after boundary conditions are applied. The forcing enables
the analysis of the system from an input-output perspective. Two possible choices are explored:

1. time-harmonic forcing at fixed frequency, using resolvent analysis,

2. stochastic noise input, characterised by empirical orthogonal functions (EOF).

In the following, the two approaches are introduced and compared from a theoretical point of view; numerical
and experimental results are discussed.

III.A. Harmonic forcing

The input-output behaviour of the linear system 6, forced at frequency ω, is analyzed by introducing the
forcing ansatz f = f̂eiωt. The time-asymptotic flow response will be of the form q = q̂eiωt, and the spatial
structure of fluctuations around the mean flow is obtained as

q̂ = (iω −A)
−1

f̂ = R (ω) f̂ . (7)

The operator R (ω) = (iω −A)
−1

is named the resolvent operator at frequency ω. A singular-value decom-
position (SVD) of the resolvent operator identifies the optimal forcing structure f̂ that produces the most
energetic flow response q̂, i.e. the maximum energy gain between input and output. This optimal forcing
is given by the leading right singular mode; the associated flow response is the corresponding left singular

mode, and the singular value represents the square root of the energy gain that is achieved between forcing
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Figure 2. Gain curves as a function of the Strouhal number St; the curves are obtained by means of a resolvent analysis
(see Sec. III.A). The optimal and three suboptimal branches are shown.

input and flow response. Suboptimal forcing-response pairs are given by subsequent singular modes. These
modes, which are all mutually orthogonal, are readily ordered according to their gain.

Such analysis of the resolvent operator has been applied in recent years to boundary layers,18,19 to
incompressible20 and compressible jets,6,7 and to the backward-facing step,21 to name just a few examples.

III.A.1. Optimisation procedure

The resolvent operator R(ω) is built from the linearised, fully compressible Navier–Stokes equations. Due
to the large dimension of the discrete linear system, the optimisation problem is solved by power iteration.
This procedure involves alternate time-stepping of the direct and adjoint perturbation equations, with the
energy norm22 defined as

‖q̂‖2 =

∫

Ω

(

ρ0û
2 +

p0
ρ0

|ρ̂|2 + ρ20
γ2 (γ − 1)Ma4p0

|T̂ |2
)

r dr dx . (8)

As a result of this optimisation, we obtain the optimal forcing and maximum amplification rate at a given
frequency, corresponding to the leading right singular mode and the singular value of the SVD, respectively.
The frequency response is computed by solving the linear system forced by the computed forcing, at the
prescribed frequency ω.

The first four singular modes are computed as a function of the Strouhal number, using a Krylov space
of dimension Nkr = 10. The final time of integration for the direct and adjoint simulations is T = 80. All
parameters were tested and found to provide reliable results at resonable computational cost. The numerical
implementation invokes the SLEPC library for the solution of large scale sparse eigenvalue problems.23

Further details on the implementation are given in Garnaud et al.17

III.A.2. Singular modes of the resolvent operator

Fig. 2 displays the energy amplification rate σ as a function of the Strouhal number. Three suboptimal
branches are shown in the same figure. For values St > 0.25, the gain of the optimal branch is consistently
well above the suboptimal ones; the maximum amplification rate is found to occur at St = 0.68. At
this Strouhal number, the maximum amplification is about one order of magnitude larger than the first
suboptimal.

The optimal forcing structures at St = [0.25, 0.50, 0.68, 0.81] are displayed in the left column of Fig. 3.
The optimal forcing in all cases is localised upstream of the nozzle: elongated structures are distributed
all throughout the pipe, with maximum amplitude near the wall and towards the nozzle exit, and tilted
against the gradient of the shear. These structures resemble the typical shape of optimal perturbations in

5

D
ow

nl
oa

de
d 

by
 P

et
er

 J
or

da
n 

on
 J

un
e 

26
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
29

35
 



−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0.44

0.46

0.48

0.5

0.52

x/D

r/
D

 

 

−1

0

1

(a) St=0.25, mode 1 (forcing)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

x/D

r/
D

 

 

−40

−20

0

20

40

(b) St=0.25, mode 1 (response)
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(d) St=0.50, mode 1 (response)
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(f) St=0.68, mode 1 (response)
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(g) St=0.81, mode 1 (forcing)
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Figure 3. Optimal forcing and response mode pairs for St = [0.25,0.50,0.68,0.81]. The streamwise velocity component
is shown with 10 contour levels; blue and red contours indicate negative and positive levels, respectively.

wall-bounded flows (Orr-mechanism18), as observed in previous investigations.6,20 As the Strouhal number
increases, the features of the optimal forcing are preserved, but the streamwise wavelength progressively
shortens; this behaviour can be observed by comparing the structures of the four optimal forcing structures
shown in Fig. 3.

At St < 0.25, the amplification rates of the four different branches take on comparable values, and a
crossing between the first two branches is observed. This low-St range is characterised by strongly elongated
streamwise structures. At the same time, the optimal forcing includes patterns that extend outside of the
pipe. Yet, the most amplified forcing structures are those that develop along the pipe wall for the optimal
and the first suboptimal (not shown).

Associated near-field response wavepackets are shown in the right column of Fig. 3. The flow response
feeds on shear instability, with support inside the shear layer and in the jet column inside the potential core.
All optimal response wavepackets display a similar spatial development, with reduced length scales as the
Strouhal number increases. Note that, as the Stouhal number increases, the perturbation decay in the fully
developed downstream region quickens. This behaviour is consistent with the local stability properties:20

low frequencies sustain spatial growth over a longer streamwise interval.
Suboptimal forcing and response structures are shown in Fig. 4 at the maximally amplified Strouhal

6

D
ow

nl
oa

de
d 

by
 P

et
er

 J
or

da
n 

on
 J

un
e 

26
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
29

35
 



−2 0 2 4 6 8
0.2

0.4

0.6

x/D

r/
D

 

 

−0.2

0

0.2

(a) St=0.68, mode 2 (forcing)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

x/D

r/
D

 

 

−20

0

20

(b) St=0.68, mode 2 (response)

−2 0 2 4 6 8
0.2

0.4

0.6

x/D

r/
D

 

 

−0.5

0

0.5

(c) St=0.68, mode 3 (forcing)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

x/D

r/
D

 

 

−50

0

50

(d) St=0.68, mode 3 (response)
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Figure 4. Three suboptimal forcing and response mode pairs at St = 0.68. The streamwise velocity component is shown
with 10 contour levels; blue and red contours indicate negative and positive levels, respectively.

number 0.68. Also the suboptimal forcing structures are oriented against the gradient of the mean velocity.
In contrast to the optimal forcing, the support of suboptimals extends well into the shear layer of the free
jet. This is particularly evident for the second mode. All forcing structures share common features but
appear to be hierarchically ordered by a radial wavenumber. The suboptimal flow response modes resemble
the optimal wavepackets in that the maximum fluctuation amplitude is located inside the jet column in the
potential core. Inside the shear layer, the radial signature of the forcing carries over to the response structure
(compare Fig. 4d and Fig. 4f). As the Strouhal number increases, not shown in Fig. 4, the suboptimal modes
retain their basic features, but the streamwise wavelength and the wavepacket envelope shortens.

III.B. Stochastic forcing

Incoherent noise input into equation 6 may be modelled by a forcing of the form f(x, t) = F(x)w (t). The
vector w(t) contains random scalar elements with zero mean, 〈w (t) = 0〉, with all components uncorrelated
in time, 〈wi (t)wj (t

′)〉 = δijδ (t− t′). The matrix F characterises the spatial distribution of the forcing; each
column of F is multiplied with one scalar component of w(t). If F is a unitary matrix, FHF = I, the forcing
is uncorrelated also in space.

Under these assumptions, q is now a stochastic state variable; all further analysis focuses on the covariance
of q. The covariance matrix is defined as

Pqq = E [qqH ], (9)

where the vector q is the flow state at any given time, qH is its transpose conjugate and E denotes the
expected value operator. Pqq is a square matrix, with dimensions corresponding to the spatial degrees of
freedom. Similarly, a covariance matrix for the forcing input is defined, Pww = E [wwH ]. By introducing
the solution of the system 6 in the covariance Eq. 9, if the forcing is uncorrelated in time, we can write the
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covariance in time-domain as

Pqq =

∫ τ

0

eA(t−τ)FPwwFHeA
†(t−τ)dτ. (10)

It can be shown2 that the covariance converges to a statistically steady state that is a solution of the
Lyapunov equation

APqq +PqqA
H + FPwwFH = 0, (11)

in the long-time limit τ → ∞. The covariance Pqq is called the Gramian of the system. The orthogonal
eigenmodes of Pqq are referred to as empirical orthogonal functions (EOFs)2 or proper orthogonal modes
(PODs) of the Gramian . The eigenmodes of the dual Gramian Pww represent the forcing structures that
optimally excite the EOFs.1

In order to compute the EOFs, the Gramian Pqq needs to be constructed. The direct solution of the
Lyapunov equation is feasible only if small dynamical systems are considered; indeed, for a number of degrees
of freedom N , the storage requirement is of order N2 and the computational costs of order N3, regardless of
the numerical technique adopted. Therefore, for systems with N > 103, alternative strategies are necessary.
In particular, we can approximate the Gramian by means of the integral definition given in Eq. 10. In this
case, the Gramian is computed by collecting snapshots from a linearised simulation, stochastically forced
with noise uncorrelated in space and time. The integral is approximated by means of discrete quadrature
in time-domain; this technique is often referred to as the snapshot method .24 Equivalently, it has been
demonstrated by Dergham et al.1 that these matrices may be very well approximated in frequency-domain,
in the basis of the optimal forcing and associated response modes obtained from the resolvent operator
analysis, described in the previous subsection. This property is briefly discussed in the next paragraph as it
provides the theoretical link between the resolvent modes and the stochastic framework.

III.B.1. Relation between harmonic and stochastic approach

The covariance matrix Pqq can be rewritten in frequency domain as follows

Pqq =
1

4π2
E
∫ ∫

∞

−∞

q̂(ω1)q̂
H(ω2)e

i(ω1−ω2)tdω1dω2

=
1

4π2
E
∫

∞

−∞

q̂(ω)q̂H(ω)dω =
1

4π2

∫

∞

−∞

P̂q̂q̂(ω)dω, (12)

where the covariance matrix P̂q̂q̂(ω) is defined as

P̂q̂q̂(ω) = E [q̂(ω)q̂H(ω)]. (13)

Thus, the time-domain covariance can be constructed from the frequency-domain covariances, estimated at
each frequency ω; these covariances are called the cross-spectral densities and can be evaluated for both the
inputs and the outputs. Remarkably, they provide an interesting link with the resolvent modes. If the flow
state is expressed with the resolvent operator as q̂ = R(ω)f̂ , the cross-spectral density matrix P̂q̂q̂ and the
resolvent operator are related as

P̂q̂q̂ = E [R(ω)Fw(ω)wH(ω)FHRH(ω)]

= R(ω)FE [w(ω)wH(ω)]FHRH(ω) = R(ω)FP̂ŵŵFHRH(ω). (14)

In the special case of perfectly uncorrelated forcing, the relation FP̂ŵŵFH = I holds. By considering the
singular mode decomposition of the resolvent operator R = UΣV and plugging it into Eq. 14, we finally
obtain

P̂q̂q̂ = R(ω)RH(ω) = UΣVVHΣHUH = UΣ2UH . (15)

Therefore, the eigenmodes of the cross-spectral density matrix, written for the state responses at a given
frequency ω, correspond to the singular response modes of the resolvent if the system is forced by white-noise
forcing.
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In the next section, the resolvent modes obtained by numerical simulation are compared with the eigen-
modes of the cross-spectral matrix obtained from the experimental dataset.

III.C. Comparison between numerical and experimental results

Starting from the PIV data, we compute the cross-spectral density matrix P̂(ω) as the Fourier transform of
the time-domain cross-correlation function

P̂(ω,x,x′) =
1

2π

∫
(
∫

ux(x, t)ux(x
′, t− τ)dt

)

e−iωτdτ, (16)

where x = (x, r). We consider the axisymmetric component m = 0 of the streamwise velocity ux. Following
the theoretical background, the coherent features of the cross-spectral density matrix can be extracted by
means of an eigenvalue decomposition

P̂r(ω,x,x
′)φ = λωφ, (17)

where λω indicate the eigenvalues, while φ is the set of related eigenvectors. Note that the kernel P̂r(ω,x,x
′)

is given by
P̂r(ω,x,x

′) = P̂(ω,x,x′)
√
rr′, (18)

where r and r′ are the radii of the x and y points. This scaling ensures that P̂r is Hermitian. The final EOFs
are rescaled by a spatial factor r−

1

2 along the radial direction. In practice, note that it is rather difficult to
obtain an Hermitian P̂r from the experiments and negative eigenvalues are usually discarded.

The measurements are performed at Nx = 15 points along the streamwise direction, spanning the interval
x/D = 1, 1.5, ..., 8. Along the radial direction, the resolution is Nr = 64, for r/D < 0.8. These values lead
to matrices of dimension N2, where N = Nr ·Nx = 960. An eigenvalue decomposition is performed for each
frequency ω.

Before discussing the results, it is important to stress two aspects. First, the theoretical development
relies on the assumption that the forcing is uncorrelated in space and time, i.e. it is white-noise. If the
forcing is coloured, the covariances are still Hermitian, but the exact relation between resolvent modes and
eigenmodes of the CSD does not hold anymore. Second, the CSD computed from experimental data are
based only on the streamwise velocity component, while the numerical resolvent modes are based on all the
components of the forced system. Discrepancies between the two set of the data discussed in the next section
may result from these differences.

III.C.1. Discussion

In Fig. 5 the EOF modes obtained from the experimental cross-spectral density matrices are compared
with the optimal frequency response at the same Strouhal numbers already discussed in Sec. III.A.2, i.e.
St = [0.25, 0.50, 0.68, 0.81]. The modulus of the streamwise velocity component is plotted, normalised with
respect to the energy norm. At Strouhal numbers above 0.25, the agreement between the experimental
and model results is indeed remarkable. In particular, for St = [0.50, 0.68, 0.81], the linear model correctly
predicts the region of maximum amplitude of the wavepackets and the spatial distribution of the coherent
structure within the potential core. The streamwise extent is well reproduced for modes close to the maximum
gain at St = 0.68. Note also that structures above the critical layer, r/D > 0.5, appear in both the numerical
and experimental results. However, some discrepancies are noted. For instance, the EOF mode educed from
the experiments at St = 0.81 displays a more compact structure in the downstream region. We attribute
this discrepancy to the hypothesis of white-noise forcing underlying the linear analysis.

The scenario is quite different at low Strouhal number, as can be observed by comparing Fig. 5a and
b. In particular, the linear model predicts a stronger amplification in the shear layer, while the structure
observed in the experiment develops mostly along the centerline for x/D > 6. The limitation of linear models
in reproducing the experimental behaviour of the wavepackets at low Strouhal numbers has been already
observed in past investigations (see for instance25). This limitation may be related to the comparable gain
values of the optimal with respect to the suboptimal structures at low Strouhal, as already observed in Fig 2.
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(a) St=0.25, mode 1 (experimental data) (b) St=0.25, mode 1 (numerical data)

(c) St=0.50, mode 1 (experimental data) (d) St=0.50, mode 1 (numerical data)

(e) St=0.68, mode 1 (experimental data) (f) St=0.68, mode 1 (numerical data)

(g) St=0.81, mode 1 (experimental data) (h) St=0.81, mode 1 (numerical data)

Figure 5. In the left column, the EOFs of the cross-spectral matrix, based on experimental measurements, are shown
for Strouhal numbers St = [0.25, 0.50, 0.68, 0.81]. In the right column, the optimal response modes at the same St are
shown, as obtained from the linear numerical simulations. in all cases, the contours represent the spatial distribution
of the modulus of the streamwise component.

In Fig. 6, the linear flow response to suboptimal forcing modes is shown for the maximum of the optimal
gain curve, St = 0.68. The response structure of the second mode, obtained from the numerical simulation,
still agrees well with its experimental counterpart. The same general features observed for the optimal modes
can be noted here. For higher-order modes, the agreement progressively diminishes.

In order to assess the range of validity of these comparisons, the following metric is introduced:

c =
〈ũE

x , ũ
N
x 〉

√

(〈ũE
x , ũ

E
x 〉 · 〈ũN

x , ũN
x 〉)

, (19)

representing an inner product between the numerical and the experimental modal structures, indicated with
the superscripts (·)N and (·)E , respectively. The inner product is computed as the energy integral, scaled
with the denominator of Eq. 19. Values of the inner product close to unity indicate good agreement between
the modal structures. Note that only the streamwise component ũx is used for this comparison and the
numerical data have been interpolated onto the coarser grid of the experimental results.

In Fig. 7, the metric c is plotted as a function of St for the four branches of optimal and suboptimal
modes. Good quantitative agreement is achieved for St > 0.3. In this range of St, a good match is found also
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(a) St=0.68, mode 2 (experimental data) (b) St=0.68, mode 2 (numerical data)

(c) St=0.68, mode 3 (experimental data) (d) St=0.68, mode 3 (numerical data)

(e) St=0.68, mode 4 (experimental data) (f) St=0.68, mode 4 (numerical data)

Figure 6. In the left column, the second, the third and the fourth modes computed as eigenvectors of the cross-spectral
matrix are shown; the results are based on experimental measurements at Strouhal number St = 0.68. In the right
column, the corresponding response modes, computed from the linear resolvent, are shown at the same St for the first
three suboptimals. In all cases, the contours trace the spatial distribution of the modulus of the streamwise velocity
fluctuation.

for the second mode. Lower-order modes are in good agreement when considering higher Strouhal numbers,
namely St ≥ 0.5. Note that this is the range of Strouhal numbers where the highest gain values are found in
the linear analysis. At low Strouhal numbers, good agreement between the numerical and the experimental
results persists in some cases, in particular for the suboptimal branches. The trend of c as a function of St
for the leading branch is less clear.

IV. Conclusions

A linear frequency response analysis was performed on a turbulent jet mean flow. The mean flow is
obtained from experiments operating at Ma = 0.4 and Re = 4.6 × 105. The linear analysis was performed
in the range of Strouhal numbers 0.05 < St < 1.85; the optimal branch and three suboptimal branches were
analysed. The features of the optimal and suboptimal forcing and the associated harmonic responses have
been documented. The linear model results were then compared to experimental data obtained by high-
resolution stereoscopic-PIV of flow fluctuations measured in the radial-azimuthal plane at several locations
along the streamwise direction. Coherent wavepackets were identified in the form of eigenmodes (EOFs) of
the cross-spectral densities matrices at different frequencies, in the range 0.01 < St < 0.9.

Remarkable agreement between the experimental and numerical model results has been observed. Leading
singular modes of the resolvent operator and EOFs computed from the experimental data bear a strong
resemblance at Strouhal numbers above 0.3, whereas modes of suboptimal branches tend to show better
agreement at low Strouhal numbers. These findings demonstrate that the stochastic framework of Farrell &
Ioannou2 provides valuable tools for the analysis of wavepacket dynamics in jets at high Reynolds number,
in particular with regard to the role of nonlinear ingredients in the forcing of linear structures.
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Figure 7. Inner product between the eigenvectors of the cross-spectral density matrices, obtained from the experimental
measurements, and the corresponding linear resolvent modes, as a function of Strouhal number. Good agreement
between experimental measurements and linear model is indicated by values close to 1.

Acknowledgements This work was supported by the Agence Nationale de la Recherche (ANR) under
the Cool Jazz project, grant number ANR-12-BS09-0024. All instability calculations were performed using
HPC resources of TGCC and CINES under the allocation x2016-2a6451 made by GENCI.

References

1Dergham, G., Sipp, D., and Robinet, J.-C., “Stochastic dynamics and model reduction of amplifier flows: the backward
facing step flow,” Journal of Fluid Mechanics, Vol. 719, 2013, pp. 406–430.

2Farrell, B. F. and Ioannou, P. J., “Stochastic forcing of the linearized Navier–Stokes equations,” Physics of Fluids A:
Fluid Dynamics (1989-1993), Vol. 5, No. 11, 1993, pp. 2600–2609.

3Jordan, P. and Colonius, T., “Wave packets and turbulent jet noise,” Annual Review of Fluid Mechanics, Vol. 45, 2013,
pp. 173–195.

4Suzuki, T. and Colonius, T., “Instability waves in a subsonic round jet detected using a near-field phased microphone
array,” Journal of Fluid Mechanics, Vol. 565, 2006, pp. 197–226.
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The global stability of laminar axisymmetric low-density jets is investigated in the low
Mach number approximation. The linear modal dynamics is found to be characterised
by two features: a stable arc branch of eigenmodes and an isolated eigenmode. Both
features are studied in detail, revealing that, whereas the former is highly sensitive
to numerical domain size and its existence can be linked to spurious feedback from
the outflow boundary, the latter is the physical eigenmode that is responsible for the
appearance of self-sustained oscillations in low-density jets observed in experiments
at low Mach numbers. In contrast to previous local spatio-temporal stability analyses,
the present global analysis permits, for the first time, the determination of the critical
conditions for the onset of global instability, as well the frequency of the associated
oscillations, without additional hypotheses, yielding predictions in fair agreement with
previous experimental observations. It is shown that under the conditions of those
experiments, viscosity variation with composition, as well as buoyancy, only have a
small effect on the onset of instability.

Key words: instability, jets

1. Introduction

Submerged jets become globally unstable, achieving a self-sustained oscillatory state,
when their density is sufficiently smaller than that of their surroundings, as clearly
evidenced by many experimental, theoretical and numerical studies. The phenomenon
was first recognised thanks to the pioneering work of Monkewitz & Sohn (1988),
who demonstrated the existence of a region of local absolute instability close to the
injector of a turbulent heated jet by means of a quasi-parallel linear stability analysis.
The global transition has been experimentally characterised in detail both for hot jets
(Monkewitz et al. 1990) and for light jets, where the density difference is due to
the injection of fluid of smaller molecular weight than that of the ambient (Kyle &
Sreenivasan 1993; Hallberg & Strykowski 2006), and also by means of a number

† Email address for correspondence: wicoenen@ucsd.edu
‡ Present address: Safran Tech, Rue des Jeunes Bois, 78772, Magny-Les-Hameaux, France.
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188 W. Coenen, L. Lesshafft, X. Garnaud and A. Sevilla

of local stability analyses which accounted for the origin of the phenomenon with
increasing detail (Jendoubi & Strykowski 1994; Lesshafft & Huerre 2007; Coenen,
Sevilla & Sánchez 2008; Lesshafft & Marquet 2010; Coenen & Sevilla 2012). These
studies have been complemented by direct numerical simulations (Lesshafft, Huerre
& Sagaut 2007) that unambiguously demonstrated the link between the existence of
locally absolutely unstable regions in the near field of low-density jets and the onset
of global self-sustained oscillations.

Recently, several global linear stability analyses of submerged jet configurations,
avoiding the quasi-parallel approximation, have been performed thanks to the
availability of sufficient computational power and the development of appropriate
numerical techniques. Nichols & Lele (2011a) pioneered the use of a global approach
to study hot and cold compressible jets. Garnaud et al. (2013a,b) considered the case
of constant-density incompressible jets, revealing that global modes are strongly
affected by the domain length and the numerical discretisation, while the frequency
response is robust and explains the origin of the preferred mode in globally stable
jets. In contrast with the case of constant-density jets, the important experiments
of Hallberg & Strykowski (2006) strongly suggest the existence of an isolated
eigenmode responsible for the global transition for sufficiently low values of the
Reynolds number. Isolated eigenmodes in low-density jets have indeed been detected
by Nichols & Lele (2010) for supersonic cases, and by Qadri (2014) for a low Mach
number configuration.

The main objective of the present work is to provide a detailed characterisation
of the global stability properties of light He/N2 laminar jets in the low Mach
number limit, by means of modal and frequency response analyses. Two key
questions addressed are whether there exists an isolated eigenmode that explains the
experimentally observed transition in low-density jets, and what are the differences
between the global stability properties of constant-density and low-density jets.

The paper begins with the mathematical formulation in § 2. In § 3 we study a slowly
developing globally stable jet, followed by an analysis of a rapidly spreading helium
jet in § 4. Finally, concluding remarks are given in § 5.

2. Formulation
We consider an axisymmetric laminar low-density He/N2 jet, discharging with a

constant flow rate Q∗ from an injector pipe with radius R∗ into an ambient of N2. The
ratio of the density ρ∗j of the jet and the ambient density ρ∗N2

is given by S=W∗j /W
∗

N2
.

Here W∗j =[Yj/W∗He+ (1−Yj)/W∗N2
]
−1 is the mean molecular weight of the jet mixture,

determined by the initial mass fraction Yj of He. In other terms, to obtain a jet with
jet-to-ambient density ratio S, an initial mass fraction Yj = (S−1

− 1)/(W∗N2
/W∗He − 1)

of He is injected. The viscosity µ∗j of the jet can be related to µ∗He and µ∗N2
through

Hirschfelder, Curtiss & Bird’s law (see Coenen & Sevilla 2012, (2.11)). Note that
in the formulation dimensional quantities are indicated with an asterisk ∗. The jet
exit values ρ∗j , µ∗j are used as scales for the dimensionless density ρ and viscosity
µ, whereas the jet radius R is used as the characteristic length scale, yielding the
dimensionless cylindrical coordinate system (x, r). The velocity field u = (u, v) is
non-dimensionalised with the mean velocity U∗m= 4Q∗/(πR∗2). All flow quantities are
taken to be independent of the azimuth φ throughout this study; only axisymmetric
perturbations are considered.

The Reynolds number of the jet is assumed to be large, Re = ρ∗j U∗mR∗/µ∗j � 1,
resulting in a slender jet flow. The importance of buoyancy effects can be estimated
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Global instability of low-density jets 189

through the Richardson number Ri = (ρ∗N2
− ρ∗j )g

∗R∗/(ρ∗j U∗m
2). For comparison

with experiments, it is useful to write this as Ri = Gr/Re2, where Gr = ρ∗j (ρ
∗

N2
−

ρ∗j )g
∗R∗3/µ∗j

2
= (1/S − 1)g∗R∗3/ν∗j is a Grashof number. The latter only depends on

the injector radius and the properties of the gas mixture, which usually do not vary
within the same experimental campaign. For simplicity, we will neglect buoyancy
effects, i.e. we will assume Ri� 1, except for the comparison with experiments in
§ 4.2. Furthermore, for the description of the resulting jet flow it is assumed that
the characteristic jet velocity U∗m is much smaller than the ambient speed of sound,
so that the simplifications associated with the low Mach number approximation
(Williams 1985; Nichols, Schmid & Riley 2007) can be applied. This implies that
the density variations in the jet are only due to variations in molecular weight, and
are not related to pressure variations. It also means that if the jet discharges with the
same temperature as the ambient, the flow will remain isothermal everywhere, and
the energy equation is not needed in the description. Furthermore, in the low Mach
number limit, the viscous stress term that is proportional to the second coefficient of
viscosity can be incorporated in the definition of the variable p. This p represents
the pressure difference from the unperturbed ambient distribution, scaled with the
characteristic dynamic pressure ρ∗j U∗m

2. The jet is then effectively described by the
continuity, momentum conservation and species conservation equations,

∂ρ

∂t
+∇ · (ρu)= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+

1
Re
∇

2u+ Ri
1− Sρ
1− S

ex, (2.2)

ρ

(
∂Y
∂t
+ u · ∇Y

)
=

1
Re Sc

∇ · (ρ∇Y), (2.3)

together with the relation between the mass fraction Y of He and the density ρ of the
jet,

Y = Yj(1/ρ − S)/(1− S). (2.4)

In (2.3) the Schmidt number Sc=µ∗j /(ρ
∗

j D∗) is based on the values of the viscosity
and density at the jet exit. For example, the two density ratios used in the present
work, S= 0.143 and S= 0.5, correspond to Schmidt numbers Sc= 1.69 and Sc= 0.49,
respectively. For simplicity, the variation of the viscosity with the composition is not
taken into account in the conservation equations (2.1)–(2.3), and is thus neglected in
the results, except for the comparison with experiments of § 4.2, where its influence
is studied separately. To the latter aim, the viscous term in (2.2) is written as Re−1∇ ·

[µ(∇u + ∇uT)] and Hirschfelder’s law (see Coenen & Sevilla 2012, (2.11)) is used
to relate the dimensionless viscosity µ=µ∗/µ∗j to the mass fraction Y .

2.1. Base flow
As a base state for the linear stability analysis, a steady solution (ū, v̄, p̄, ρ̄) of the
low Mach number Navier–Stokes equations (2.1)–(2.3) is employed. The flow domain
under consideration is depicted in figure 1. In order to mimic experimental conditions,
a short injector pipe of length xp is included, bounded by a wall Γw of thickness 0.02
that ends on a 5.7◦ knife edge. At the pipe inlet Γi a velocity profile ūi(r) is imposed,
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FIGURE 1. Schematic representation of the numerical domain. The boxed numbers on the
boundaries indicate the level of refinement through the distance h between discretisation
points. The areas with different grid resolutions that are obtained in this manner are
indicated by the grey shading.

taken from a collection of profiles that is obtained by solving the laminar boundary-
layer equations in a circular pipe (see Coenen & Sevilla 2012, § 2.1.1). Because the
flow in the short injector pipe of the domain will further develop, the velocity profile
ūi(r) at the inlet must be carefully chosen to obtain a certain desired velocity profile
ū0(r) at the jet exit plane. We will characterise the latter profile through the inverse
of its dimensionless momentum thickness D/θ0, defined by

θ0 =

∫
∞

0

ū0(r)
ū0(0)

[
1−

ū0(r)
ū0(0)

]
dr, (2.5)

and scaled with the jet diameter D= 2R for consistency with Hallberg & Strykowski
(2006). For the computations of the results of the present work a pipe length xp = 3
was used, with the exception of the transition points with D/θ0 > 30 of figure 12, for
which a pipe length xp = 1.5 was used. It was verified that larger values of xp did
not affect the results. The remaining boundaries of the flow domain are the axis Γa,
the lateral boundary Γt and the downstream outlet boundary Γo, as labelled in figure 1.
Stress-free boundary conditions are imposed on the latter two. Because the jet entrains
fluid through the lateral boundary, the density at that boundary must be fixed to 1/S
to obtain the desired jet-to-ambient density ratio. The radial extent of the domain was
set to rmax= 10, and it was checked that larger values did not change the results. The
downstream extent xmax does not influence the computation of the base flow, but it
does affect various results of the stability analysis, as will be explained in detail in
§§ 3 and 4; values in the range 406 xmax 6100 were used. To summarise, the boundary
conditions for the base flow are

ū− ūi = v̄ = ρ̄ − 1= 0 on Γi, (2.6)
ū= v̄ = n · ∇ρ̄ = 0 on Γw, (2.7)

ρ̄ −
1
S
=−p̄n+

1
Re

n · ∇
(

ū
v̄

)
= 0 on Γt (2.8)
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FIGURE 2. (Colour online) Radial profiles of axial velocity ū and rescaled density (ρ̄ −
1)/(S− 1) at x= 0, 10, 20, 30, 40, 50, together with streamlines and contours of the density
field ρ̄, for (a) S= 0.143, Re= 360, D/θ0= 24.3 and (b) S= 0.5, Re= 1000, D/θ0= 24.3.

−p̄n+
1

Re
n · ∇

(
ū
v̄

)
= 0 on Γo, (2.9)

v̄ = ∂rū= ∂rρ̄ = 0 on Γa, (2.10)

where n is the outward normal vector on the boundary.
The governing equations are discretised using Taylor–Hood elements, quadratic

(P2) for the density and velocity, and linear (P1) for the pressure, to satisfy the
Ladyzenskaja–Babuška–Brezzi condition. The refinement of the unstructured mesh is
controlled through the distance h between discretisation points on the boundaries of
the domain and on auxiliary lines, as indicated in figure 1. It was checked that the
results were converged with respect to further mesh refinements. The steady base flow
is computed using a Newton–Raphson method and the FreeFem++ software (Hecht
2012). Figure 2 shows the resulting base flow for the two cases that will be studied
in detail in §§ 3 and 4: S = 0.143, Re = 360, D/θ0 = 24.3 and S = 0.5, Re = 1000,
D/θ0 = 24.3.

2.2. Direct eigenmodes
All experimental and numerical evidence indicates that the global instability in light
jets gives rise to axisymmetric flow oscillations, and the present analysis therefore
is restricted to axisymmetric disturbances. All flow quantities are independent
of the azimuthal coordinate, and the azimuthal velocity is always zero. Small
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192 W. Coenen, L. Lesshafft, X. Garnaud and A. Sevilla

unsteady axisymmetric perturbations are introduced into the steady base flow as
(u, v, ρ, p) = (ū, v̄, ρ̄, p̄) + ε(u′, v′, ρ ′, p′). The evolution of these perturbations
(primed quantities) is then governed to leading order by the equations (2.1)–(2.4),
linearised around the base flow,

∇ · u′ =−
1

Re Sc
∇ ·

(
1
ρ̄
∇ρ ′ −

ρ ′

ρ̄2
∇ρ̄

)
, (2.11)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū+

ρ ′

ρ̄
ū · ∇ū=−

1
ρ̄
∇p′ +

1
Re

1
ρ̄
∇

2u′ − Ri
S

1− S
ρ ′

ρ̄
ex, (2.12)

∂ρ ′

∂t
+ ū · ∇ρ ′ + u′ · ∇ρ̄ −

ρ ′

ρ̄
ū · ∇ρ̄ =−

1
Re Sc

ρ̄∇ ·

(
1
ρ̄
∇ρ ′ −

ρ ′

ρ̄
∇ρ̄

)
. (2.13)

Assuming temporal normal-mode solutions

(u′, v′, ρ ′, p′)= (û, v̂, ρ̂, p̂)e−iωt, (2.14)

the linearised equations can be written in the form of a generalised eigenvalue
problem

−iωBq̂=Lq̂, (2.15)

where q̂(r, x)=[û(r, x), v̂(r, x), ρ̂(r, x), p̂(r, x)]T is the vector-valued eigenfunction that
contains all perturbation quantities. For what follows, let q̃, L and B be understood to
be the eigenvector and the matrices of the discretised eigenvalue problem, −iωBq̃=Lq̃,
that is to be solved numerically.

The following boundary conditions are imposed for the perturbation variables
(boundary labels as given in figure 1):

û= v̂ = 0 on Γi, Γw, (2.16)

−p̂n+
1

Re
n · ∇

(
û
v̂

)
= 0 on Γt, Γo, (2.17)

v̂ = ∂rû= 0 on Γa. (2.18)

The discrete system matrices L and B are constructed with a finite element
formalism in FreeFEM++, analogous to the incompressible computations by Garnaud
et al. (2013a), using P2 elements for ρ̂, û, v̂ and P1 elements for p̂. These matrices
are then exported to Matlab for the solution of the eigenvalue problem, by use of
the ARPACK library, and for all further post-processing. The eigenvalue computation
involves an LU decomposition for inversion of the shifted system.

2.3. Adjoint eigenmodes
The physical discussion of eigenmode dynamics in § 4 will be based on the structural
sensitivity formalism proposed by Giannetti & Luchini (2007). Such an analysis
requires the computation of the adjoint discrete eigenvector q̃† associated with a
given eigenvalue ω of the direct problem (2.15). The form of the adjoint eigenvalue
problem, of which q̃† is a solution, depends on the definition of an inner product.
Let the inner product between two perturbation states q̂1 and q̂2 be defined as the
standard spatial integral in cylindrical coordinates,

〈q̂1, q̂2〉 =

∫
Ω

(û∗1û2 + v̂
∗

1 v̂2 + ρ̂
∗

1 ρ̂2 + p̂∗1p̂2)r dr dx= q̃H
1 Qq̃2. (2.19)
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Global instability of low-density jets 193

Again, the symbols q̂1,2 are meant to represent the continuous spatial distribution of
perturbations, whereas q̃1,2 represent the discretised form, containing all N degrees of
freedom of the discrete problem. The N×N matrix Q contains the metric coefficients
for a given spatial discretisation, reflecting the area size of the individual mesh
elements as well as the weight factor r from the integral. It is a diagonal, positive
definite Hermitian matrix.

With this definition, the discrete adjoint eigenvalue problem is found to be

iω†Q−1BHQq̃†
=Q−1LHQq̃†

. (2.20)

Each adjoint eigenvalue ω† is the complex conjugate of an associated direct eigenvalue
ω.

For the presentation of results in §§ 3 and 4, direct eigenvectors are always
normalised such that

‖q̃‖2
= q̃HQq̃= 1, (2.21)

whereupon the associated adjoint eigenvectors are normalised according to

q̃†HQBq̃= 1. (2.22)

2.4. Eigenvalue sensitivity
The sensitivity of an eigenvalue measures how much the eigenvalue is affected
by variations of the associated operator. According to the procedure proposed by
Giannetti & Luchini (2007), a spatial map of the sensitivity of ω with respect
to ‘internal feedback’ interactions can be obtained by measuring the local overlap
between the direct and adjoint eigenfunctions. The idea is to introduce small variations
into the system matrix L that modify the coupling between perturbation variables at
a given point in space. Several choices are possible to estimate the effect of such
modifications in the local structure of the operator on the eigenvalue. We adopt
here the original formulation chosen by Giannetti & Luchini (2007), which provides
an upper-bound estimation of the eigenvalue drift due to modified velocity–velocity
coupling. The formulation is slightly altered to include the density. It is convenient to
first define the 3×N matrix Uxi that extracts from a vector q̃ the velocity components
and density [û(xi), v̂(xi), ρ̂(xi)]

T
= Uxi q̃ at a given discretisation point xi. Following

the derivation in Giannetti & Luchini (2007), the structural sensitivity in the present
context is then characterised by the scalar quantity

λ(xi)= ‖Uxi Qq̃†
‖ ‖Uxi q̃‖. (2.23)

Giannetti & Luchini (2007) argue that flow regions with a large value of λ influence
strongly the eigenvalue selection, and thus represent the ‘core’ or ‘wavemaker’ of the
eigenmode. Additional information can be obtained by analysing the components of
the structural sensitivity tensor S(xi)=Uxi Qq̃†

(Uxi q̃)H , which represent how changes in
the feedback from axial velocity, radial velocity and density into the axial momentum,
radial momentum and species conservation equation can affect the eigenvalue (see,
for example, Qadri, Chandler & Juniper 2015). Note that the Frobenius norm of S
is equal to the structural sensitivity λ. It is noted that the choice to only include the
density and velocity in (2.23) is rather arbitrary. The quantity λ could just as well
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194 W. Coenen, L. Lesshafft, X. Garnaud and A. Sevilla

be based on momentum, vorticity or combinations thereof, if such a choice appeared
physically more sensible.

Marquet, Sipp & Jacquin (2008) developed the theoretical framework to assess the
sensitivity of a global eigenmode to arbitrary (not necessarily solution of the Navier–
Stokes equations) modifications of the base flow. In the present work we will use this
concept to study how modifications in the base flow velocity ū = (ū, v̄) affect the
growth rate ωi:

∇ūωi = (∇ūωi,∇v̄ωi)=Re[−∇(û)H · û†
+∇û†

· û∗], (2.24)

where û and û† contain the velocity components of the direct and adjoint eigenmodes.

2.5. Pseudospectrum
As Trefethen & Embree (2005) note in their preface, ‘eigenvalues might be meaningful
in theory, but they [can] not always be trusted on a computer’. This remark is
highly pertinent for the present study: the linearised Navier–Stokes operator is
known to be non-normal (see the review by Chomaz 2005), and this property has
important implications for the sensitivity of eigenmodes with respect to details of the
discretisation and to finite precision arithmetics. In the study of non-normal dynamics,
the pseudospectrum provides a very valuable basis for physical discussion.

According to Trefethen & Embree (2005), the ε-pseudospectrum can be defined in
at least three equivalent ways. For the purpose of the present study, we will adopt the
definition that a given complex frequency ω is an ε-pseudoeigenvalue of the linear
flow equations if

‖(iωB+ L)−1
‖ = ε−1. (2.25)

The operator (iωB + L)−1 is the resolvent of L, and its spectral norm is given by its
largest singular value σ . In physical terms, the largest singular value represents the
optimal gain that can be achieved when forcing the system at frequency ω. We obtain
ε−1
= σ as the leading singular value in the same way as Garnaud et al. (2013b).

3. Analysis of a slowly developing stable jet: the arc branch
The first case to be investigated is a jet of Reynolds number Re= 1000 and density

ratio S= 0.5. A shear layer thickness given by D/θ0= 24.3 is measured at the nozzle
exit. While Re= 1000 may seem to be a low value for a jet, in laminar conditions it
yields a very slow viscous spreading, as can be seen in figure 2(b).

The eigenvalue spectrum for this setting is shown in figure 3, where different
panels contain results obtained with different numerical box lengths xmax between
40 and 100. The radial extent in all cases is rmax = 10. The dominant feature of
the spectrum is an upper arching branch of eigenvalues, named the arc branch in
the following. Eigenvalues are distributed along it with an even spacing in the real
frequency. All eigenvalues are confined to the stable half-plane of ω, but in the case
of the shortest box length, xmax = 40, the arc branch nearly crosses into the unstable
domain. Clearly, convergence with respect to the box length xmax is not achieved. This
is consistent with the analysis of constant-density jets by Garnaud et al. (2013a), who
argue that a further increase of xmax is not guaranteed to ever lead to convergence. It
seems unreasonable anyway to assume that the linear dynamics more than 100 radii
downstream of the nozzle, in a hypothetical steady flow, should have any physical
relevance.
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FIGURE 3. Eigenvalue spectra of a jet at Re= 1000, S= 0.5 and D/θ0 = 24.3, obtained
in numerical domains of different length.

100
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FIGURE 4. (Colour online) Forcing response of a jet at Re= 1000, S= 0.5 and D/θ0 =

24.3. (a) Optimal gain as a function of real forcing frequency. Different colours denote
results obtained in numerical domains of different lengths, as indicated in the legend.
(b) Pseudospectrum, represented as the inverse of the optimal gain for complex forcing
frequencies, ε = σ−1(ω). The case xmax = 60 is represented.

A lower branch of densely packed eigenvalues is also observed. These modes have
been discussed by Garnaud et al. (2013a), and they will not be investigated in more
depth in this paper.

If the entire spectrum of a flow is stable, its dynamics in a noisy environment
is determined by the response to external forcing. The linear frequency response of
the present jet is represented in figure 4(a) by the optimal energy gain as a function
of real forcing frequency (see § 2.5), as calculated in numerical domains of different
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FIGURE 5. Pressure eigenfunction along r = 1 for several modes of the arc branch for
S= 0.5, Re= 1000 and D/θ0 = 24.3, with a numerical domain length xmax = 60.

length. The gain curve is clearly affected by domain truncation in the case of the
shortest box length, xmax = 40, but all curves obtained with larger domains are seen
to be in close agreement. The maximum gain is reached at ωr = 1.55, corresponding
to a value of the Strouhal number based on the jet diameter St = ωr/π= 0.49. It is
remarkable that the forced (exogenous) dynamics is well converged with respect to
the box length, while the unforced (endogenous) dynamics is not. Note also that the
maximum gain, O(107), is very large compared to that of the constant-density setting,
O(102), investigated by Garnaud et al. (2013b), for the same value of the Reynolds
number. The main difference between the two configurations lies in the choice of the
base state, which in the case of Garnaud et al. (2013b) was a model mean flow with
constant density.

The full pseudospectrum of the slowly developing jet is shown in figure 4(b). Two
observations are pointed out: firstly, the arc branch is seen to align approximately
with a pseudospectrum contour (here with a value of approximately 10−8); secondly,
the pseudospectrum variations below the arc branch are markedly different from those
above the branch. Below the arc branch, the pseudospectrum indeed is nearly constant,
compared to the strong variations in the upper part of the domain.

For a physical interpretation, eigenfunctions of the first six arc branch modes are
represented in figure 5 by their pressure component along the nozzle lip line, r = 1,
as a function of x. Absolute real values |Re(p̂)| are plotted in logarithmic scale, and
the phase is adjusted such that Re(p̂) is zero at x= 59 in all cases. The eigenfunctions
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FIGURE 6. Eigenvalue spectra of a jet at Re= 360, S= 0.143 and D/θ0 = 24.3, obtained
in numerical domains of different length.

take the form of wavepackets; their particularity lies in the fact that each mode fits
an integer number of wavelengths inside the numerical domain. Only the first six
eigenfunctions are shown, but the same characteristic applies to all arc branch modes.
The number of wavelengths increases steadily as one moves along the arc branch from
low to higher real frequency values. This observation suggests that the arc branch
is composed of box modes, similar to resonance modes in a pipe of finite length, a
conjecture that deserves future investigation.

4. Analysis of a rapidly spreading pure helium jet
A jet with parameters S = 0.143 (pure helium), D/θ0 = 24.3 and Re = 360 is

considered next. The strong density contrast is certain to result in absolute instability
close to the nozzle (Coenen & Sevilla 2012), and the low value of the Reynolds
number leads to a fast viscous spreading of the jet base flow, as seen in figure 2(a).

The eigenvalue spectrum for this setting is shown in figure 6, where different panels
again contain results obtained with different numerical box lengths xmax between 40
and 100. The radial extent still is maintained at rmax= 10. One single eigenvalue ω=
0.9197− 0.0042i, very near marginal instability, is identically obtained (within |1ω|=
0.0015) independently of xmax. This eigenmode, indeed the only one that seems to be
converged with respect to box size, will be denoted here as the isolated mode.

An arc branch can be discerned, similar to the one described in § 3. In the spectrum
of the shortest numerical box, figure 6(a), the eigenvalues along this branch are still
evenly distributed. With larger box lengths, this regularity persists at low frequencies,
but breaks down in the vicinity of the isolated mode. The pattern observed here
resembles the ‘zipper phenomenon’, described by Heaton, Nichols & Schmid (2009)
and Nichols & Lele (2011b).

4.1. The isolated mode
The fact that the isolated mode is robust with respect to xmax indicates that it must
be quite distinct from the arc branch modes described earlier. A first characterisation
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FIGURE 7. (Colour online) (a) Spatial structure of the eigenfunction of axial velocity
û corresponding to the most unstable eigenmode for S = 0.143, Re = 360, D/θ0 =

24.3, together with |Re(û)| along r = 0.5. (b) Spatial structure of the adjoint eigenmode
associated with the direct mode shown in (a). (c) Structural sensitivity λ, as defined
by (2.23). (d) Sensitivity ∇ūωi = (∇ūωi,∇v̄ωi) of the growth rate to modifications of the
base flow.

of this mode is attempted by inspecting its spatial eigenfunction, shown in figure 7.
Note that the results that are shown were obtained with xmax= 60, although for clarity
only a fraction of the domain (up to x= 40 and r = 3) is shown. The top frame (a)
represents a snapshot of the axial velocity perturbation. Quite in contrast with the arc
branch modes in figure 5, the region of significant eigenfunction amplitude is found to
be well contained in the centre of the domain. This is seen even clearer when looking
at the inset where the modulus of the perturbation values along a line r=0.5 is plotted
in logarithmic scale. At the inflow and at the outflow boundaries, the perturbations are
at least five orders of magnitude smaller than at their maximum location.

A numerical solution of the associated discrete adjoint eigenvalue problem retrieves
the complex conjugate counterparts of the direct eigenvalues, as shown in figure 6,
with high accuracy (arc branch and isolated mode). The adjoint eigenfunction of the
isolated mode is displayed in figure 7(b). It is strongly localised around the nozzle
edge, marking this region as being the most receptive to initial perturbations for
triggering the direct eigenmode.
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FIGURE 8. (Colour online) Absolute value of the components of the structural sensitivity
tensor S corresponding to the most unstable eigenmode for S= 0.143, Re= 360, D/θ0 =

24.3.

Direct and adjoint eigenmodes may then be multiplied, according to (2.23), in
order to estimate the flow region in which local feedback mechanisms contribute
most to the existence of the global eigenmode. This quantity λ is represented in
figure 7(c). A well-localised maximum is found around x = 13, concentrated near
the lower part of the shear layer; the potential core is also highlighted. Comparing
the individual components of the sensitivity tensor S, shown in figure 8, reveals that
feedback proportional to the density perturbation ρ ′ into the axial and – to a lesser
degree – radial momentum equations forms the strongest contribution to changes in
the eigenvalue. Note that it does not tell us whether these changes are stabilizing
or destabilizing. From inspection of the stability equations (2.11)–(2.13) at zero
Richardson number, we can thus draw the conclusion that the convection term ū · ∇ū
to which ρ ′ is proportional plays a highly important role for the growth rate and
frequency of the isolated eigenmode that is responsible for the self-sustained global
oscillations in low-density jets. The fact that the feedback has a stronger effect in
the axial momentum equation than in the radial momentum equation can easily be
explained by remembering that the slenderness of this moderately large Reynolds
number jet flow implies that ū� v̄ and consequently ū∂ ū/∂x� ū∂v̄/∂x.

It is tempting, but hardly pertinent, to try to relate the spatial distribution of
the structural sensitivity to a supposed jet-column character of the eigenmode. The
distinction between jet-column and shear layer modes is meaningful in the context of
a local analysis. A physical examination of the active instability mechanisms in the
isolated mode should ideally be based on the role of the baroclinic torque, following
the local analysis of Lesshafft & Huerre (2007). However, it is not clear how the
structural sensitivity could be exploited for such a discussion.

It is noted from figure 7 that the shapes of the direct and adjoint eigenmodes,
as well as their pointwise product, compare well with the results of Qadri (2014),
shown in his figure 4.1. Recently, Qadri et al. (2015) have analysed self-sustained
oscillations in lifted diffusion flames. In their configuration, fuel with a density 7
times smaller than that of the ambient is injected at a Reynolds number, based on
the present scales, of approximately 500, with a moderately steep velocity profile,
D/θ0 = 25. Given the similarities with the present set-up, it is not surprising that
there are also many similarities between their ‘mode A’ and the isolated eigenmode
under consideration here. For example, the structural sensitivity component with the
strongest contribution in their work is that associated with changes in the mixture
fraction feedback into the axial momentum equation (figure 6 of Qadri et al. (2015)).
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Upstream of the diffusion flame, in the isothermal jet zone where the sensitivity
of their mode A peaks, the mixture fraction is equivalent to the density, so that
their strongest sensitivity component is in fact the analogue of û†ρ̂∗ in the present
analysis, which has indeed been shown to be the strongest contributor to the structural
sensitivity (figure 8). We would like to point out, however, that the low-density jet
region in Qadri et al. (2015) is bounded by a diffusion flame downstream, and is
thus not a canonical jet configuration.

Figure 7(d) shows the sensitivity of the growth rate of the global mode to arbitrary
modifications of the base flow. The magnitude [(∇ūωi)

2
+ (∇v̄ωi)

2
]

1/2 is indicated by
the colour, whereas the arrows indicate the direction (∇ūωi,∇v̄ωi) in which the base
flow has to be modified to achieve a positive increment in the growth rate, i.e. to
destabilize the global mode. The results are in line with those observed by Tammisola
(2012) for unconfined wake flows, i.e. a region of high sensitivity just downstream
of the injector, followed by on oscillatory pattern in a region that stretches from
approximately 5 to 20 radii downstream of the injector. This sensitivity measure
can be further separated in two parts: the sensitivity to changes in the base flow
advection and the sensitivity to changes in the energy extraction from base flow
gradients (‘production’). It was found (not shown in the figure) that the contribution
of the production part corresponds to the region of high sensitivity adjacent to the
nozzle, while the advection part dominates in the second region of high sensitivity
farther downstream. A change in the velocity profiles just downstream of the injector
in the direction indicated by (∇ūωi,∇v̄ωi) would cause a thinning of the shear layer,
increasing the streamwise velocity gradient while bringing together the inflection
points of the density and velocity profiles. From a local stability point of view
(Lesshafft & Marquet 2010; Coenen & Sevilla 2012), it is not surprising that such a
change would cause a destabilisation of the flow.

If the isolated mode is not the result of non-local pressure feedback, which in the
present setting could only arise from spurious effects at the outflow boundary, then
it is expected to be linked to the presence of local absolute instability. According to
previous studies, for instance Lesshafft et al. (2007), global instability in jets requires
an absolutely unstable region of finite extent adjacent to the nozzle exit. To confirm
the absolute character of the local instability near the nozzle in the present base
flow, a local spatio-temporal stability analysis has been performed. To that aim, at
each downstream position x, the basic flow is assumed to be locally parallel, with
radial profiles of velocity ū(r) = (ū(r), 0) and density ρ̄(r); small perturbations are
introduced as normal modes [ûl(r), iv̂l(r), p̂l(r), ρ̂l(r)] exp[i(kx − ωt)], with complex
axial wavenumber k = kr + iki and complex angular frequency ω = ωr + iωi. Here k,
ω, and t are non-dimensionalised using R∗ and U∗m. Substitution of the normal modes
into the equations of motion, linearised around the steady base flow, yields a system
of ordinary differential equations that, together with appropriate boundary conditions,
provides a generalised eigenvalue problem (see, for instance, Coenen & Sevilla 2012),
to be interpreted as a dispersion relation D(k, ω; Re, S, D/θ0, . . . , ū, v̄, p̄, ρ̄) = 0
between k and ω. Here we are concerned with the absolute or convective character of
the instability. Therefore we need to find the spatio-temporal instability modes with
zero group velocity, i.e. modes for which dω/dk= 0. The growth rate ω0,i of these is
called the absolute growth rate and determines whether the instability is convective,
ω0,i < 0, or absolute, ω0,i > 0. The condition dω/dk= 0 is equivalent to the existence
of a double root, or saddle point, in the complex k-plane, ∂D/∂k|k=k0 = 0. Among all
the saddle points that may exist, only the one with the largest value of ω0,i, while
satisfying the Briggs–Bers criterion, determines the large-time impulse response of the
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FIGURE 9. Results of a local stability analysis for the case S= 0.143, Re= 360,
D/θ0 = 24.3.

flow (see, for instance, Huerre 2000, and references therein). The numerical method
used to determine (ω0,i, k0,i) is described in Coenen & Sevilla (2012).

Figure 9 shows the streamwise variation of ω0,r, ω0,i, and k0,r. Absolute instability
prevails over the interval 06 x6 2.6. Couairon & Chomaz (1999) and Lesshafft et al.
(2006) showed that when an absolutely unstable region is bounded by the jet outlet,
the length xAC of this region needs to be sufficiently large for the global mode to be
triggered. Coenen & Sevilla (2012) used the criterion xAC = C/

√
ωi(x= 0) (Chomaz,

Huerre & Redekopp 1988; Couairon & Chomaz 1999) that contains a free parameter
C. They found that C= 0.85 gave good agreement with the experimental observations
of Hallberg & Strykowski (2006). The same criterion would predict here that the
length of the absolutely unstable region must be 4 radii. In figure 9 we can observe
that for this globally marginally stable flow, this length is approximately 3 radii.
From the spatially oscillating structure of the global mode of figure 7(a), we can
also estimate a wavenumber k = 1.4, to be compared with the value 0.7' k0,r ' 0.9
in the absolutely unstable region of figure 9(c). The frequency of the global mode
for this case is ωr = 0.91, whereas the local stability analysis results in a frequency
that ranges from 0.85 to 0.87. The discrepancies between the two analyses can be
attributed to the rapid spatial development of the flow (see figure 2a) that violates the
parallel flow hypothesis on which the local analysis is based. An clear example of
this was found recently by Moreno-Boza et al. (2016) when studying buoyancy-driven
flickering in diffusion flames.

As the current value S = 0.143 already represents the case of pure helium, in
figure 10 the Reynolds number is varied in order to demonstrate its influence on the
isolated eigenvalue. Indeed, the growth rate ωi is found to increase steadily with the
Reynolds number, crossing into the unstable half-plane before Re = 380, while the
Strouhal number remains almost constant over the plotted interval of Re.

The pseudospectrum of the Re = 360 helium jet is presented in figure 11 for a
complete comparison with the Re= 1000 case in the previous section. Most features
are shared by both configurations, in particular the distinct variations of the energy
gain in the regions above and below the arc branch. The response to forcing at real
frequency is well converged in the case of the Re= 360 jet at all xmax settings. The
most prominent difference with respect to the Re = 1000 case is a sharp resonance

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 E
co

le
 P

ol
yt

ec
hn

iq
ue

, o
n 

23
 Ju

n 
20

17
 a

t 0
8:

13
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
20

3



202 W. Coenen, L. Lesshafft, X. Garnaud and A. Sevilla

0.290

0.291

0.292

0.293

 0

0.02

 0.04

St

(a)

(b)

320 340 380360 400 440420 500460 520480

Re

 – 0.02

FIGURE 10. Evolution of the isolated mode with the Reynolds number for a pure helium
jet (S= 0.143) and D/θ0 = 24.3.
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FIGURE 11. (Colour online) Forcing response of a jet at Re = 360, S = 0.143 and
D/θ0 = 24.3. (a) Optimal gain as a function of real forcing frequency. Different colours
denote results obtained in numerical domains of different lengths, as indicated in the
legend. (b) Pseudospectrum, computed as the inverse of the optimal gain for complex
forcing frequencies. The case xmax = 60 is represented.

peak in the energy gain near the frequency of the isolated mode. The gain remains
finite, because the isolated mode is still slightly stable. The discussion of the arc
branch provided in § 3 remains valid in all aspects in the present configuration.

4.2. Comparison with the experiment
The pure helium jet at Re = 360 discussed in § 4 has been characterised as being
nearly marginally stable. By tracking the values of the control parameters Re and D/θ0
for which the growth rate of the isolated mode ωi is zero, a neutral curve can be
constructed. In figure 12(a), such neutral curves in the Re–D/θ0 plane are presented
for pure helium jets (S = 0.143). The solid circles correspond to the results of the
global mode analysis without taking into account buoyancy effects. To the left of the
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FIGURE 12. (Colour online) (a) Comparison with the experimental results of Hallberg
& Strykowski (2006) for the onset of global instability in a pure He jet (S = 0.143).
The experimental results are indicated with solid squares and error bars, whereas the
predictions based on the global mode analysis of the present work are indicated by the
solid circles. The addition of gravitational effects in the analysis results in the transition
points indicated by the solid triangles, and taking into account the variation of viscosity
with composition results in the solid diamonds. The numbers next to the transition
points indicate the Strouhal numbers corresponding to the oscillating mode of the jet.
(b) Frequency response computed for conditions of the experimentally observed transition
points. (c) The maximum optimal gain for the experimentally observed transition points.

transition points the jet is globally stable (ωi < 0) whereas to the right it is globally
unstable (ωi > 0). These results are compared with the experimental measurements of
Hallberg & Strykowski (2006), indicated in figure 12(a) as squares with error bars.
Care has been taken to convert the experimentally obtained critical Reynolds numbers,
based on the centreline velocity, to Reynolds numbers based on the mean velocity.
Fair agreement is found between the experimental and the linear neutral curves, but
essentially the latter is shifted towards higher Reynolds numbers; in other words, the
onset of global instability in the linear calculations is delayed with respect to the
experimental observations.

Values next to the transition points in figure 12(a) indicate the Strouhal numbers
near criticality. In the global mode calculations, the Strouhal number St is directly
given by the frequency ωr of the marginally stable eigenmode, whereas in the
experiments, it was obtained by measuring the frequency of the self-sustained
oscillations under slightly supercritical conditions. It can be observed that the
agreement between the two is rather good, with relative differences smaller than
10 %.

In an effort to explain the offset between the critical curve given by the stability
analysis and the experimental evidence, we assessed the influence of buoyancy. Strictly
speaking, while estimating the importance of the latter, the characteristic length scale
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204 W. Coenen, L. Lesshafft, X. Garnaud and A. Sevilla

that should be used in the construction of the Richardson number is not the radius
R∗, but the development length of the jet, of order ReR∗. This modified Richardson
number can be written as Gr/Re. In the experiments of Hallberg & Strykowski (2006)
the Grashof number for the pure helium jet (S= 0.143) is Gr= 138, and the marginal
Reynolds numbers lie in the range 200–700. We can therefore expect that buoyancy
has a non-negligible effect in the experiments. Recomputing the critical curve with
the inclusion of the buoyancy term, with Gr= 138, we obtained the solid triangles of
figure 12(a). Indeed, adding buoyancy destabilises the jet, and slightly improves the
agreement with the experimental data. Nevertheless, its influence is not sufficiently
strong to explain the offset between the stability analysis and the experiments.

A second physical aspect whose influence has been investigated is the variation of
viscosity with composition. The viscosity of air is 11 % lower than that of helium,
so that a small effect on the molecular transport can be expected, changing both the
base flow and the stability properties. Figure 12(a) shows that there is indeed a small
shift of the transition curve (solid diamonds). The variable viscosity is seen to have
a slightly stabilising influence. This seems counterintuitive, as a lower viscosity in
the flow field due to variations with the composition would result in an higher local
effective Reynolds number, and would therefore be expected to destabilize the flow.
Nevertheless, subtle changes in the base flow profiles may just as well counteract this,
eventually causing a net stabilization. A more detailed study may be interesting in
flows where variations of the viscosity are stronger, such as heated jets or diffusion
flames.

In figure 12(b) we show the frequency response computed at the transition points
of Hallberg & Strykowski (2006). Because these points are located to the left of the
transition curve obtained with the global mode stability analysis, the jet is globally
stable under these conditions. Nevertheless, the optimal gain is seen to be very high,
O(103–106), in a narrow band around the frequency associated with the global mode
(see also the discussion of figure 11). This means that small perturbations that act
as a forcing to the jet may suffer very strong amplifications that may sustain a
nonlinear global oscillation of the jet at the frequency of maximum amplification. In
an experiment this could cause a shift in the observed critical value of the bifurcation
parameter. Applying this hypothesis to the present analysis would mean that, if both
the incoming noise and the necessary amplification threshold to sustain a nonlinear
oscillation were constant over all experimental conditions, the computed frequency
response at the experimental transition points should have values that are of the
same order of magnitude. Nevertheless, figure 12(b) shows that this is not the case
here. In fact, the maximum gain is seen to be larger for the experimental conditions
corresponding to higher Reynolds numbers (and lower D/θ0). It must be mentioned
that these results correspond to the optimal forcing, whose spatial structure varies
from case to case, and might be very different from realistic noise present under
experimental conditions. To rule out this variability the computations were repeated
for a fixed spatial forcing distribution (a uniform distribution in the injection pipe),
yielding similar results (not shown here) to the ones of figure 12(b), but with generally
lower values of the gain.

Finally, it is worth mentioning that, as the sensitivity to base flow modifications of
figure 7(d) shows, small changes in the region just downstream of the injector have a
strong influence on the growth rate of the global instability. Although care has been
taken to mimic the experimental set-up of Hallberg & Strykowski (2006), some details,
such as the exact nozzle shape and the sharpness of the nozzle lip, are hard to account
for, and may as well play a role in the discrepancy between experiment and linear
theory.
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5. Conclusions
The present work gives, for the first time, a detailed account of the linear global

stability of low-density jets. By making use of the low Mach number approximation,
all dynamic effects of density variations in the limit of zero Mach number are
retained, while avoiding the numerically challenging necessity to resolve acoustic
wave propagation.

We have found that when the spatial development of the jet flow is sufficiently
fast (Re= 360 and S= 0.143), an isolated eigenvalue dominates the global eigenvalue
spectrum. This mode has been shown to arise from the presence of absolute instability
in light jets, documented in numerous earlier studies (e.g. Monkewitz & Sohn 1988;
Lesshafft & Huerre 2007; Coenen & Sevilla 2012). It is this mode that causes global
instability in light jets at low Mach numbers. It has been found to converge without
much effort in our numerical calculations, in particular with respect to the domain
size. The structural sensitivity of this mode is concentrated in a confined region close
to the nozzle; according to Giannetti & Luchini (2007), it is sufficient to resolve this
flow region in order to accurately compute the eigenvalue.

Unlike previous local stability analyses (e.g. Coenen & Sevilla 2012), in which the
length of the absolutely unstable region that is necessary to trigger a global mode
introduces an unknown parameter in the problem, the isolated global eigenmode is
able the determine the critical conditions for the onset of global instability in terms
of the governing flow parameters without any additional hypotheses. This has been
employed to link the isolated mode to the supercritical Hopf bifurcation that was
observed in the helium jet experiments by Hallberg & Strykowski (2006): the neutral
curves for the onset of instability, in the experiments and in the present linear analysis
match, within reasonable accuracy, and the predicted Strouhal numbers agree within
ten per cent with the experimentally reported values at onset. The bifurcation in
the experiments takes place in situations that are characterised as slightly subcritical
in the linear framework. An additional destabilisation due to buoyancy effects has
been demonstrated to be insufficient in order to explain this offset. Including the
variation of viscosity with composition has been shown to have a small stabilising
effect, and is thus also ruled out as an essential ingredient to explain the discrepancy.
An inspection of the pseudospectrum however indicates that small perturbations may
suffer a very strong amplification in the slightly stable regime. According to linear
theory, experimental low-level noise might therefore be amplified and observed as
sustained coherent wavepackets. A dedicated detailed study is required to assess
this hypothesis, for example by comparing with direct numerical simulations with a
controlled low-level forcing.

A second feature of the global eigenvalue spectra of low-density jets is a branch of
eigenvalues, called the arc branch, that, when the spatial development of the jet flow
is sufficiently slow (Re = 1000, S = 0.5) may dominate the spectrum, hindering the
detection of the isolated mode. This arc branch is found to be highly sensitive to the
numerical domain size, consistent with numerous existing studies of jets (Nichols &
Lele 2011a; Garnaud et al. 2013a) and boundary layers (Ehrenstein & Gallaire 2005,
2008; Åkervik et al. 2008). The present results suggest, for the first time, that these
eigenmodes are not only affected by domain truncation, but that their very existence
is dependent on spurious feedback from the outflow boundary. Two observations
support this conjecture: first, the arc branch aligns approximately with isocontours
of the pseudospectrum, suggesting a link between a given level of exogenous energy
input and the occurrence of arc branch modes; second, the associated eigenfunctions
display an integer number of wavelengths between inflow and outflow, suggesting a
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resonance condition. A more detailed study to prove this conjecture is currently being
carried out, but lies out of the scope of the present work.
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Time-delayed feedback technique for suppressing instabilities
in time-periodic flow
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A numerical method is presented that allows to compute time-periodic flow states, even
in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic
components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A
170, 421 (1992)]. Its use in flow problems is demonstrated here for the case of a periodically
forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The
optimal choice of the filter gain, which is a free parameter in the stabilization procedure,
is investigated in the context of a low-dimensional model problem, and it is shown that
this model predicts well the filter performance in the high-dimensional flow system. Vortex
pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response
to harmonic forcing is accurately retrieved. The procedure is straightforward to implement
inside any standard flow solver. Memory requirements for the delayed feedback control
can be significantly reduced by means of time interpolation between checkpoints. Finally,
the method is extended for the treatment of periodic problems where the frequency is not
known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven
cavity in supercritical conditions.

DOI: 10.1103/PhysRevFluids.2.113904

I. INTRODUCTION

Any analysis of linear flow instability first requires the definition of an unperturbed basic flow
state. An obvious problem is that such flow states, if indeed they are unstable, cannot be recovered
as asymptotic solutions by simple time stepping. In the context of steady flow, several methods
exist that allow the computation of unstable steady states. Newton-Raphson iteration [1] and
recursive projection [2,3] are efficient in many such configurations, although they may require
deep modifications of numerical flow solvers, and their convergence is often problematic. A robust
alternative, which furthermore is convenient to integrate into an existing time-stepping simulation
code, has been proposed by Åkervik et al. [4] under the name of “selective frequency damping”
(SFD). This technique has since been used for a wide variety of steady flow configurations.

Time-periodic flows constitute a distinct class of instability problems, and interest in the
computation of periodic states is furthermore not limited to the purpose of instability analysis.
Examples include vortex shedding in shear flows [5], pulsating flow in blood vessels [6], and
complex flow in turbomachines [7].

Even when a flow settles into an asymptotically stable time-periodic state in the long-time limit,
its computation by time stepping may be costly if long transient dynamics prevail. This difficulty can
be overcome by use of the “harmonic balance” technique [8,9], which consists in the simultaneous
computation of all or many temporal Fourier components of a given periodicity. A pseudotime is
typically employed in order to make all Fourier components converge. This approach is widely used
today both in fundamental and in applied contexts. Several improvements of the method address
specific issues: if the fundamental period is not known a priori, a “gradient-based variable time
period” algorithm [10–13] allows us to identify it as an additional unknown of the problem; if the

*leopold.shaabani-ardali@ladhyx.polytechnique.fr

2469-990X/2017/2(11)/113904(20) 113904-1 ©2017 American Physical Society
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flow is simultaneously forced at several frequencies, the method can be generalized [14]. Some
strategies for control and shape optimization have also been devised on this basis [15].

Yet time-periodic flows may sustain hydrodynamic instabilities. In particular, the growth of
subharmonic perturbations is observed in many such cases. Prominent examples are the pairing of
vortices in shear flows [16] and the parametric subharmonic instability (PSI) of internal waves in
stratified media [17]. Such instabilities may arise from linear dynamics, tractable in the framework
of Floquet theory, or from nonlinear effects, as in the case of PSI. It may be possible to retrieve
unstable periodic states through harmonic balance, as long as no harmonics of the fundamental
flow frequency are involved in the instability, but to the best of our knowledge, this has never been
attempted. Shooting methods have been designed to this effect [18,19], and these have been used
successfully in the context of some flow problems [20,21]. However, their implementation requires
a considerable overhead around a given flow solver.

The objective of this study is to present an easy-to-implement filtering technique, similar in spirit
to the SFD method [4] used for steady flow, that allows the exact computation of time-periodic orbits
in stable as well as unstable situations. To this end, an artificial forcing is added to the Navier-Stokes
equations, which is required to leave the dynamics of the fundamental flow frequency and of all its
higher harmonics unaffected, such that the simulation converges in time towards a periodic solution
of the unforced equations. A delayed feedback control [22] achieves this objective. Such time-delay
filters have been extensively used in the context of controlling chaotic dynamics in systems with
a low number of degrees of freedom. In a recent study [23], a similar technique is applied in a
high-dimensional flow problem, in order to suppress spatio-temporal asymmetries in wakes. In the
present paper, the use of time-delayed feedback for flow stabilization is explored.

The phenomenon of vortex pairing in an axisymmetrically forced jet is chosen to illustrate
the procedure. It is demonstrated how the artificial damping efficiently suppresses the growth of
subharmonic perturbations, and thereby the onset of vortex pairing, so that unstable periodic solutions
of the Navier-Stokes equations can be obtained. The feedback optimally eliminates subharmonic
components, letting the fundamental and its harmonic components unaffected, while all nonharmonic
frequencies experience damping. We will show that in weakly stable settings, the feedback can be
used to accelerate the convergence towards the asymptotic state. However, this method, due to the
full period storage, can be memory-consuming; to severely reduce the memory requirements, we
will show how spline interpolation between checkpoints in time can be used, without affecting much
the convergence properties of the algorithm.

When flow periodicity arises from intrinsic dynamics, as opposed to external forcing, the period
length of the asymptotic state is not known a priori. We will show that the stabilization method
for such cases can be extended to identify the period length through iterative adjustment, as will be
demonstrated for a cubic lid-driven cavity. Due to their broad range of application, cavities are well-
studied flow systems, which can sustain several types of instabilities [24]. A configuration is chosen
that is known to give rise to coexisting limit cycles and intermittently chaotic dynamics [25–27].

The paper is organized as follows. The jet flow example is introduced in Sec. II, and the occurrence
of vortex pairing in the absence of artificial damping is discussed. The stabilization method is pre-
sented in Sec. III. A single free parameter needs to be chosen; its optimal value is found in the context
of a simple model problem. Section IV documents the performance of the technique for an unstable
vortex street, with a discussion of the optimal parameter choice. It is further shown how the same
technique accelerates the convergence in stable situations, and how the memory requirements may be
reduced through check pointing and interpolation. Details on the simulation technique are provided
here. Section V extends the stabilization procedure to periodic flows with an unknown period.

II. AN EXAMPLE OF SUBHARMONIC INSTABILITY: VORTEX PAIRING IN JETS

Axisymmetric harmonic forcing at the nozzle of a laminar round jet excites, over a wide range
of frequencies, a shear instability of the steady flow state, leading to exponential growth of the
perturbation amplitude along the axial direction. As the amplitude reaches nonlinear levels, the
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FIG. 1. Vorticity snapshots of paired and unpaired states, obtained without stabilization for two different
parameter settings. The paired state (a) was obtained at Re = 2000 and St = 0.6 while the unpaired state (b)
was obtained at Re = 1300 and St = 0.6. Reynolds and Strouhal numbers are defined in Sec. IV A.

shear layer rolls up into a regular street of vortex rings, which form and convect at the frequency
of the applied forcing. Depending on flow parameters and forcing frequency (more details are
given in Sec. IV A), these vortices may undergo subsequent pairing [28], and if the ambient flow is
sufficiently quiet and the harmonic forcing is well-controlled, this pairing takes place in a perfectly
regular fashion. The numerical method is detailed in Sec. IV A.

In cases where pairing occurs, two neighboring vortices merge into one, such that the passage
frequency of vortices downstream of the pairing location is exactly half that of the imposed forcing. If
the forcing is characterized by the time period T , such that ωf = 2π/T , the “paired state” is globally
2T -periodic (T -periodic upstream of the pairing and 2T -periodic downstream). The velocity field
of a paired state will be denoted up. An example, obtained by direct numerical simulation, is shown
in Fig. 1(a).

Another case at different parameter settings, where no pairing is found to occur, is shown in
Fig. 1(b). Vortices roll up close to the nozzle and advect downstream, until they are dissipated by
viscosity. Such a flow state is (globally) T -periodic and will be called hereafter an “unpaired state.”
Its velocity field will be denoted uu.

The purpose of this study is to show how, for each paired state, a corresponding unpaired state
can be recovered, defining two valid periodic solutions of the Navier-Stokes equations at the same
parameter setting.

III. SUBHARMONIC STABILIZATION

In this section, after a brief presentation of filtering techniques (Sec. III A), a simple model
problem is introduced in order to determine the coefficients of a time-delayed feedback—here an
additional term added to the momentum equation—so that the forced Navier–Stokes simulation
converges towards a T -periodic state.

113904-3
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A. Time-delayed feedback

A fully synchronized paired state can be decomposed into components that are T -periodic and
those that are only 2T -periodic,

up(x,t) =
∑

n

uT
n (x) exp(inωf t) +

∑
n

u2T
n (x) exp

(
i
2n + 1

2
ωf t

)
, with

n = 0,±1,±2, . . . , ± N. (1a)

An unpaired state, in contrast, is purely T -periodic,

uu(x,t) =
∑

n

uT
n (x) exp(inωf t). (1b)

The objective is to design a filter that will damp all 2T -periodic components under the second
sum in Eq. (1a), while leaving any T -periodic flow state unaffected. Of course, this filter should also
lead to a stable global system.

A first approach might be to consider a standard linear band-stop filter H that cuts around the
subharmonic frequency ωf /2 (i.e., gain |H (ωf /2)| � 1), while preserving the steady component and
the fundamental frequency: H (0) = H (ωf ) = 1. However, in order to achieve such characteristics,
a very high-order filter is needed: in logarithmic scale, ωf /2 and ωf are apart by only log(2) = 0.69,
whereas the gains are separated by − log[|H (ωf /2)|] � 1. This filter would be cumbersome to
implement, and it would require a careful stability and pole placement analysis, as described, for
example, by Aström and Murray [29] or by Doyle et al. [30]. Furthermore, such a filter could not
satisfy all requirements: the gain at ωf /2 cannot be strictly zero, and no constraint can be imposed
on the higher 2T -periodic harmonics (± 3

2ωf ,± 5
2ωf , . . .).

A better approach, that will be adopted here, is to use time-delayed feedback (TDF), as described
by Pyragas [22]. When the flow at time t is compared with the flow at time t − T , components of
period T and of period 2T are cleanly distinguished.

The 2T -periodic components in a paired state (1a), which are the target of artificial damping, are
thus isolated as

up(x,t) − up(x,t − T ) = 2
∑

n

u2T
n (x) exp

(
i
2n + 1

2
ωf t

)
, (2)

whereas a T -periodic unpaired state satisfies

uu(x,t) − uu(x,t − T ) = 0. (3)

Then adding a forcing term of the form

f = −λ[u(t) − u(t − T )] (4)

to the right-hand side of (12) allows us to control 2T -periodic fluctuations without any forcing on
T -periodic dynamics. In this framework, λ is a forcing parameter that needs to be prescribed (see
Sec. III B).

The Laplace transform of this forcing term is

L{f } = −λ(1 − e−ωT )L{u}, (5)

so that its gain for a given frequency ω is found as

‖L{f }‖
‖L{u}‖ (iω) = λ

√
2 − 2 cos(ωT ). (6)

The resulting transfer function is plotted in Fig. 2. The time-delayed feedback damps all frequencies
that are not harmonics of ωf , with maximum effect on the subharmonic frequency ωf /2 and on its
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FIG. 2. Gain of the delayed feedback transfer function.

odd harmonics (n + 1/2)ωf . It is neutral with respect to the mean flow, the fundamental frequency
ωf , and its harmonics nωf .

If the forced system converges towards a T -periodic unpaired state, the forcing will vanish, such
that the recovered state is a consistent solution of the unforced Navier-Stokes equations.

B. Choice of the feedback parameter λ

At first glance, it might be expected from (6) that larger values of λ will always lead to more
efficient nonharmonic damping. This however is not the case, similar to what has been demonstrated
in the context of low-dimensional chaotic systems [22].

In order to guide the choice of the feedback parameter λ for the present purpose, a model problem
is proposed. The dynamics of a two-frequency oscillator is considered,

d

dt

⎛
⎜⎜⎜⎝

xs

x̃s

xh

x̃h

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 ωf

2 0 0

−ωf

2 0 0 0

0 0 0 ωf

0 0 −ωf 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xs

x̃s

xh

x̃h

⎞
⎟⎟⎟⎠ − λ

⎛
⎜⎜⎜⎝

xs(t) − xs(t − T )

x̃s(t) − x̃s(t − T )

xh(t) − xh(t − T )

x̃h(t) − x̃h(t − T )

⎞
⎟⎟⎟⎠, (7)

with T = 2π/ωf the period of the fundamental mode. Unlike the flow problem, the two frequencies
ωf and 1

2ωf in this model are uncoupled. After nondimensionalization, ωf t → t and λ/ωf → λ,
the system can be diagonalized as

d

dt

⎛
⎜⎜⎜⎝

ys

ỹs

yh

ỹh

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

i
2 0 0 0

0 − i
2 0 0

0 0 i 0

0 0 0 −i

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ys

ỹs

yh

ỹh

⎞
⎟⎟⎟⎠ − λ

⎛
⎜⎜⎜⎝

ys(t) − ys(t − 2π )

ỹs(t) − ỹs(t − 2π )

yh(t) − yh(t − 2π )

ỹh(t) − ỹh(t − 2π )

⎞
⎟⎟⎟⎠. (8)

In a general linear problem with time-delayed feedback, the eigenvalues are not found in closed
form, and their number is infinite [31]. In contrast, exact eigensolutions of the uncoupled problem
(8) can be found analytically. Introducing exponential modes, the following system is obtained:

ys ∝ eαs t ⇒ αs = i

2
− λ

(
1 − e−2παs )

, (9a)

ỹs ∝ eα̃s t ⇒ α̃s = − i

2
− λ

(
1 − e−2πα̃s )

, (9b)

yh ∝ eαht ⇒ αh = i − λ
(
1 − e−2παh)

, (9c)

ỹh ∝ eα̃ht ⇒ α̃h = −i − λ
(
1 − e−2πα̃h)

. (9d)
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FIG. 3. Real part of eigenvalues αh
j for −4 � j � 4, pertaining to fundamental oscillations, as functions

of λ. It is found numerically that αh
j and αh

−j always have the same real part. The system is neutrally stable for
any value of λ, with the neutral mode αh

0 = i.

As long as real values are chosen for λ, the solutions of Eqs. (9a)–(9d) come in complex conjugate
pairs, α̃s = ᾱs and α̃h = ᾱh. It is therefore sufficient to consider Eqs. (9a) and (9c) and their
closed-form solutions:

αs
j = i

2
− λ + 1

2π
Wj (−2πλe2πλ), (10a)

αh
j = i − λ + 1

2π
Wj (2πλe2πλ), j ∈ Z. (10b)

Wj denotes the j th branch of the Lambert W function, which is the inverse relation of the
complex function z 	→ zez [32]. An infinite number of solutions of Eqs. [(9a) and (9c)] exists,
each corresponding to individual branches of the Lambert function. In particular, W0 gives αh

0 = i

for any value of λ, preserving the harmonic dynamics. For the purpose of flow stabilization, only
the real part of the α values is of interest, as these govern the growth or decay of fluctuations. If, for
a given λ, there exists at least one j such that the real part of αs

j or of αh
j is positive, then the system

is unstable. Therefore, λ must meet two criteria:
(1) It should provide the most efficient damping in the subharmonic component equation (9a).

For a given λ, it is always sufficient to consider the least stable mode among all possible solutions,
i.e., the mode αs

j with the largest real part in Eq. (10a). The optimal value of λ leads to maximal
decay in the least stable mode.

(2) At the same time, λ must not create any instability in the fundamental equation (9c); the real
part of αh

j must be negative for every j ∈ Z. While the neutral fundamental mode αh
0 = i exists

irrespective of λ, it must not be dominated by any unstable mode.
In order to identify the optimal λ according to these requirements, the following result is

demonstrated in the Appendix: if, for a given value of λ, Eqs. (9a) or (9c) has unstable solutions, the
branch j on which this solution lies is such that

|j | < 2λ + 1. (11)

As will be seen later, optimal subharmonic damping is found to be achieved within the range
0 < λ < 2; consequently, the stability of the fundamental component must be ascertained for this
range of λ, and the branches −4 � j � 4 are to be considered.

Figure 3 shows that no fundamental modes on these branches are unstable for any value of λ. As
expected, the neutral eigenvalue αh

0 = i is always recovered, which is consistent with the premise that
the applied forcing does not modify the fundamental dynamics. Therefore, the stability requirement
for the fundamental modes (criterion 2) does not restrict the choice of λ.

Figure 4 demonstrates that the subharmonic modes on branches −2 � j � 2 experience damping
for any value of λ. The same is observed for branches |j | = 3,4. Therefore, all the subharmonic
modes are stable. The least stable modes among these correspond to j = 0 and j = −1. The real
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FIG. 4. Real part of eigenvalues αs
j , pertaining to subharmonic oscillations, as functions of λ. On the left,

eigenvalues for −2 � j � 2; on the right, zoom on small λ values only for j = 0. All these eigenvalues are
stable, but least so for the j = 0 branch. Higher eigenvalues than those shown are even more stable.

parts of αs
0 and αs

−1 are identical for λ > 0.04432. This is identified as the optimal λ value, as it
provides the strongest stabilization of αs

0.
It is now examined whether the damped value αs

0 = −0.203 + 0.501i is still the least stable across
all j branches. It is demonstrated in the Appendix that, if such a mode exists, it must stem from a
branch j such that |j | < 1 + (1 + e2π0.203)λ. For λ < 2, this criterion restricts the search interval
to −10 � j � 10. It can be reported that αs

0 is indeed the least stable eigenvalue of the stabilized
system. Consequently, λ = 0.04432 is the optimal value of the damping parameter, leading to a
system where the maximum subharmonic growth rate is −0.203.

IV. STABILIZED VORTEX STREET

In this section, the TDF technique presented in Sec. III is applied to the case of vortex pairing. The
configuration and the numerical code used in this article (Sec. III A) are first described in more detail.
Then, in Sec. IV B, it is demonstrated that adding a time-delayed feedback makes a Navier-Stokes
simulation converge towards the unstable unpaired state when initialized with the natural paired
state. In Sec. IV C, it is confirmed that the simple model problem provides the optimal coefficient
in the present vortex pairing case. Finally, in Sec. IV D, the technique is shown to also provide an
efficient means to accelerate convergence in the case of a stable unpaired state.

A. Simulation method

Direct numerical simulations were carried out using NEK5000 [33], an incompressible spectral
element code. An axisymmetric laminar jet is described in cylindrical coordinates (z,r), z being the
main flow direction and r being the radial distance from the jet axis. The flow is assumed to be
governed by the incompressible Navier-Stokes equations with zero azimuthal velocity, written in
dimensionless form as

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
�u, ∇ · u = 0. (12)

The velocity u has axial and radial components u and v, and p denotes pressure. The jet diameter
D and the inlet centerline velocity U0 are used to render the flow problem nondimensional, defining
the Reynolds number as Re = U0D/ν, with ν the kinematic viscosity. The computational domain
extends over 15 × 5 diameters in the axial and radial directions, respectively, and it is discretized
with 6600 spectral elements, each containing 64 mesh points. Mesh convergence has been validated
by comparing results for different spectral polynomial orders (n = 4, 6, 8, and 10; 8 being the
standard). Boundary conditions are specified as follows.
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(1) In the inlet plane, z = 0, a hyperbolic-tangent velocity profile is imposed. In dimensionless
form, its amplitude is modulated in time as

u(r,t) = 1

2

{
1 − tanh

[
1

4θ0

(
r − 1

4r

)]}
[1 + A cos(ωf t)]ez, (13)

where A = 0.05 is the forcing amplitude of the jet, θ0 = 0.025 is the initial dimensionless mixing
layer thickness and ωf is the axial forcing frequency. The periodic nature of the flow is imposed
with the periodic inlet forcing, similar as in Jacobs and Durbin [34]. The forcing period is given by
T = 2π/ωf , and the Strouhal number is defined as St = ωf D/(2πU0).

(2) On the centerline of the jet, r = 0, axisymmetric boundary conditions are imposed,

∂u

∂r
= v = ∂p

∂r
= 0. (14)

(3) In the outlet plane, z = 15, and on the lateral boundary, r = 5, a stress-free outflow condition
is applied:

−pn + 1

Re
(∇u)n = 0. (15)

The flow configuration is thus characterized by the Reynolds number Re, the Strouhal number
St, the dimensionless mixing layer thickness θ0, and the forcing amplitude A.

B. Computation of an unstable unpaired state

The stabilization technique described in Sec. III A is now applied, by adding a time-delayed
feedback term

f(t) = −λωf [u(t) − u(t − T )] (16)

to the right-hand side of the Navier-Stokes equations (12). The parameter setting Re = 2000 and St =
0.6 has previously been found to exhibit synchronized vortex pairing in the absence of stabilization
[Fig. 1(a)] and will serve as example case. The action of the feedback is measured by tracing a norm
of nonharmonic (in the sense of non-T -periodic) fluctuations, defined as

e(t) = 1

2

√∫
z

∫
r

r‖u(t) − u(t − T )‖2 dr dz. (17)

This quantity measures the residual during the stabilization process.
The simulation is started at t = 0 from the paired state represented in Fig. 1(a), and the optimal

value λ = 0.04432 as identified in Sec. III B is used first. Feedback is switched on at t = T , because
one flow period needs to be recorded before the TDF term can be evaluated. The evolution of e(t) is
plotted in Fig. 5; four phases in the stabilization process can be distinguished.

During the first phase, the applied forcing quenches the 2T -periodic paired vortices. The distinct
vortex structures downstream of the pairing location are thus replaced by a diffuse band of vorticity,
as seen by comparing Figs. 6(a) and 6(c). The magnitude of the nonharmonic component, ‖u(t) −
u(t − T )‖, which is proportional to the magnitude of the instantaneous forcing, is displayed in
Fig. 6(d): the forcing at this stage is active in the entire paired region, but not in the region of
initial vortex roll-up. This behavior is typical for 0 < t < 5T , when the decay of the nonharmonic
component is fastest, according to Fig. 5. This stage of the stabilization process is conceptually
similar to the subharmonic damping in the model problem of Sec. III B. However, the damping rate
observed in the jet is smaller than predicted by the model. This may be explained by the inherent
positive subharmonic growth in the jet, which the damping has to overcome, whereas no such growth
was assumed in the model problem.

During the following phase, the flow domain is gradually repopulated by a street of unpaired
vortices, essentially by convection, as shown in Fig. 6(e). This interpretation is consistent with the
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FIG. 5. Evolution of the residual norm e(t) [Eq. (17)], in a jet simulation with Re = 2000, St = 0.6, and
λ = 0.04432. Dashed line: decay rate found in the model problem. Markers indicate the instances of snapshots
shown in Fig. 6.
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FIG. 6. Vorticity (left) and nonharmonic component magnitude ‖u(t) − u(t − T )‖ (right) represented at
t = T (a)-(b), 3T (c)-(d), 10T (e)-(f ), 23T (g)-(h) and 44T (i)-(j) for λopt = 0.04432. The vorticity colorbar is
in Fig. 1(b).
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FIG. 7. Residual norm as a function of time for several values of λ : λ � 0.0432 (a) and λ � 0.0432 (b).
Curves for λ = 0.0425, 0.0475 are omitted for clarity. At values of λ larger than 0.5, the convergence is
increasingly ill-behaved, displaying huge oscillating behavior, and results are not reported.

map in Fig. 6(f), where nonharmonic fluctuations are seen to be concentrated around the trailing end
of the emerging vortex array. This behavior dominates the plateau region around t = 10T in Fig. 5.

The third phase begins as the unpaired vortex street reaches the downstream end of the domain,
when the flow visually appears to have reached a periodic state, displayed in Fig. 6(g). The
nonharmonic fluctuations at the trailing end of the vortex street leave the domain at this point,
as seen in Fig. 6(h), and this leads to a second sudden drop in the residual norm e(t) in Fig. 5.

In the final phase, the flow is globally synchronized, and no visible difference between subsequent
periods is observed anymore. Fig. 6(i) shows the flow state at t = 44T . The residual norm continues
to slowly decay in time as residual fluctuations are suppressed. These fluctuations are located far
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FIG. 8. Residual norm e(t) at t = 50T , 100T , and 250T as a function of λ.

from the jet inlet [see Fig. 6(j)], and they do not present any spatial structure that can be associated
with vortex pairing.

C. Validation of the optimality of the feedback parameter λ

In the preceding section, λ has been prescribed as the optimal value derived in the context of a
model problem. The optimality for the present flow problem is now to be assessed. The simulation
from Sec. IV B is repeated, over a time horizon of 250T , with 16 different values of λ between 0.01
and 2. The time evolution of e(t) is documented in Figs. 7(a) and 7(b) for each value 0.01 � λ � 0.5.
Larger values give poor results and are not reported.

Comparable results are achieved with 0.03 � λ � 0.2; all curves in this range display the same
characteristic phases of convergence, albeit with different efficiencies over short times. The long-time
residual e(t � T ) is seen in Fig. 8 to be insensitive to the choice of λ within these limits. However,
an optimal λ value may be identified that induces the fastest convergence towards the final phase,
i.e., the λ for which the end of the third phase defined in Sec. IV B is reached in the shortest time.
Figures 7(a) and 7(b) show that the optimal value in this sense, among all values tried, is indeed
λ = 0.04432, the one obtained in Sec. III B.

D. Convergence acceleration in a stable setting

In the context of steady flows, selective frequency damping is effective in stabilizing unstable
settings, but it also provides accelerated convergence towards a steady state in weakly stable situations
[4]. Time-delayed feedback may achieve the same for weakly stable periodic flow. The case of a
jet at Re = 1300, forced at St = 0.6, is chosen for a demonstration. The stable periodic solution in
this setting is the unpaired state presented in Fig. 1(b). This case is close to the onset of a pairing
instability, as the same configuration with Re = 1400 settles into a stable paired state. Convergence
of the final periodic unpaired state at Re = 1300 is slow as a consequence.

A converged steady laminar state without inflow forcing is chosen as initial condition, and
harmonic inflow forcing (13) is started at t = 0. Simulations are then performed with and without
time-delayed feedback; the nonharmonic component norm e(t) is plotted as a function of time for
both runs in Fig. 9.

Without damping, pairing sets in quickly several diameters downstream of the inlet. The paired
vortex is then convected downstream, while repeated pairing takes place at almost the same location,
such that the global norm of non-T -periodic components continue to grow (dashed line in Fig. 9).
This growth ends at t = 14T , when the first paired ring reaches the outlet, as can be seen in Figs. 10(a)
and 10(b). Subsequently, e(t) decays as the pairing location moves slowly downstream. At the end
of the simulation, at t = 200T , pairing still takes place near the downstream end of the domain, as
shown in Figs. 10(c) and 10(d). Evacuation of the transient pairing through convection is a very slow
process in this setting.
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FIG. 9. Evolution of the residual norm e(t) with and without stabilization applied. The different time steps
defined in Sec. IV D are reported.

In the presence of time-delay feedback, pairing is never observed, and the convergence is
significantly accelerated. According to Fig. 9, subharmonic fluctuations are reduced to residual
levels within 20 forcing periods, which corresponds to the convection time of vortices through the
domain. Snapshots of vorticity and of nonharmonic components are shown in Fig. 11 for three
notable instances, as marked in Fig. 9.

E. Reducing the memory requirements through time interpolation

The TDF method described so far, although easy to implement, needs the storage of one full flow
period, which can be resource-intensive, especially in the case of three-dimensional simulations. A
remedy may be to store all flow variables and their time derivatives only at N equispaced instants
over one period, and to approximate all intermediate time steps through interpolation.

A first interpolation technique could rely on Fourier methods, since the converged flow is T -
periodic. However, since the algorithm is based on the damping of nonperiodic components, accurate
reconstruction of these component precludes the use of Fourier series.

A spline interpolation is tried instead: each period is composed of N�t time steps, and N

equispaced time steps of the previous running period are stored in memory, i.e., one time step every
N�t/N time steps. The time derivative ut of the velocity at each time step, computed with a centered-
difference scheme, is also stored. Then, to reconstruct the flow at t − T , if ti � t − T � ti+1, with
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FIG. 10. Vorticity (left) and nonharmonic component magnitude ‖u(t) − u(t − T )‖ (right) without time-
delayed feedback applied represented at t = 14T (a)-(b) and 200T (c)-(d). The vorticity colorbar is in Fig. 1(b).
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FIG. 11. Vorticity (left) and nonharmonic component magnitude ‖u(t) − u(t − T )‖ (right) with time-
delayed feedback applied represented at t = 4T (a)-(b), 15T (c)-(d) and 23T (e)-(f ). The vorticity colorbar is
in Fig. 1(b).

ti and ti+1 time steps where the flow is stored, the following spline interpolation formula is used:

ũ(r,z,t − T ) = (1 − t ′)2(1 + 2t ′)u(r,z,ti) + t ′(1 − t ′)2 T

N
ut (r,z,ti)

+ t ′2(3 − 2t ′)u(r,z,ti+1) + t ′2(t ′ − 1)
T

N
ut (r,z,ti+1), (18)

with the normalized time

t ′ = t − T − ti

ti+1 − ti
. (19)

This interpolation technique yields interpolated values, continuous up to the first time-derivative,
that match the true velocity and acceleration at every checkpoint. Therefore, the forcing used in the
Navier-Stokes equations (12) is now taken as

f̃(t) = −λωf [u(t) − ũ(t − T )]. (20)

In traditional check-pointing techniques, such as the one used in direct-adjoint optimization
schemes ([35,36]), a new simulation is run from the checkpoint to avoid errors from interpolation.
This strategy cannot be applied in the present case, due to endless interdependency between periods:
the time-delayed feedback at t − T requires the knowledge of the flow at t − 2T , which in turn
depends on the flow state at t − 3T , and so forth.

The reconstruction technique has been evaluated for the paired jet case at Re = 2000 and St =
0.60. Each period of the flow is composed of 1000 time steps, with �t = 5/3 × 10−3. Four cases
have been investigated and compared to the results obtained without interpolation: N = 50, 20, 10,

and 5. These cases respectively need 10, 25, 50, and 100 times less memory than the full-storage
method (as memory is needed for the flow and its derivative).
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FIG. 12. Convergence analysis of the stabilization procedure with interpolation, for different storage
requirements N : (a) residual norm based on the interpolated velocity ẽN (t) as a function of time for different
N and comparison to full-storage residual e(t) and (b) ratio between the exact residual eN (t) and the residual
obtained with full storage e(t) as a function of time for different N . For N = 5, 10 and 20, ẼN is defined as the
maximum peak of ẽN (t) when the residual starts oscillating. For N = 50, no oscillations of ẽN (t) are observed.

In order to evaluate the convergence performance of the algorithm for various values of N , two
residuals are used. The first one, denoted ẽN (t), is based on the interpolated velocity ũ at t − T :

ẽN (t) = 1

2

√∫
z

∫
r

r‖u(t) − ũ(t − T )‖2 dr dz. (21)

The second one, denoted eN (t), is based on the true velocity u at t − T , as defined in Eq. (17).
ẽN (t) is the only available residual when interpolation is applied in general, whereas eN (t) is the true
residual, which is normally unknown. For each N , the evolution of each of these two residuals is
compared to the evolution of the residual e(t) obtained with the full-storage version (see Sec. IV B).

The convergence results with the interpolated residual ẽN (t) are depicted in Fig. 12(a). In every
case, the residual first decreases in the same way as the uninterpolated stabilized flow. However,
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TABLE I. Maximum normalized error between the interpolated and the real flow as a function of N for a
fully stabilized unpaired flow at Re = 2000 and St = 0.60.

N 50 20 10 5

maxt ‖u(t)−ũ(t)‖
e(T ) 3.6 × 10−6 1.3 × 10−4 1.5 × 10−3 1.1 × 10−2

for N < 50, the residual starts to oscillate at a critical residual threshold. These oscillations have a
maximum peak value ẼN , which depends on N , and they descend in all cases to the same residual
level E that is found in the full-storage solution (black line). The oscillation period corresponds to
the interpolation period T/N . It is found that at the precise instants where snapshots are stored, the
residual ẽN (t) is of the same order as the reference residual E.

In order to understand the meaning of this residual peak ẼN , the maximum error between the
interpolated and the real flow field as a function of t and N has been computed for the stabilized
unpaired case. This maximum error occurs at t = (ti + ti+1)/2 and is listed in Table I. For each N ,
the values obtained are of the same order as ẼN from Fig. 12(a). For N = 50, the value 3.6 × 10−6 is
one order of magnitude smaller than mint ẽ50(t) = 6 × 10−5, which explains why oscillations are not
encountered in this case. The residual from the interpolated velocity ẽN (t) can then be understood as
the sum of two components: the non-T -periodic component of the flow eN (t) and the interpolation
error of the flow at t − T . At large times, the interpolation error component seems to dominate the
interpolated residual ẽN (t). We will now prove this statement and show that interpolation does not
affect the overall precision of the reconstructed flow.

For this, Fig. 12(b) displays the evolution of the ratio between the residual eN (t) computed
with the exact flow field for each interpolation level N and the residual e(t) from the full-storage
reference case. For t > 30T , in the final phase of stabilization [see Fig. 12(a)], the exact residual with
interpolation eN (t) is only slightly above the residual from full-storage calculations. As N increases,
the interpolation improves and eN (t) approaches the reference value. It is found that the stabilized
flow state obtained with checkpointing, even for N = 5, is about as accurate as the full-storage
solution, despite large residual values ẽ(t) between checkpoints. When interpolation is used and
only ẽN (t) is available, the convergence of the algorithm should therefore be assessed only at times
t that correspond to checkpoints at t − T .

V. STABILIZATION OF LIMIT CYCLES UNKNOWN FREQUENCIES:
THE LID DRIVEN CAVITY EXAMPLE

When the frequency of the limit cycle is not known a priori, unlike the jet example, some
techniques have been developed in the harmonic balance technique to overcome this issue, such
as the Gradient-Based Variable Time Period [10–13]. This technique is based on considering the
residual as a function of not only t but also T , and to choose T as an extremum of this residual. This
method, based in their case on gradient computations, can easily be transposed to our stabilization
procedure:

(1) A starting guess Tg of the period T0 of the limit cycle is required.
(2) TDF is then applied with this Tg . Both the term u(t − Tg) and the dimensional λ depend on

Tg; see Eq. (16).
(3) At t = t1, when initial transients are stabilized, i.e., when e(t1,Tg) is small enough (for

instance, e(t1,Tg) < 0.01‖u(t1)‖), a new value for Tg is identified as the minimum

Tg = arg min
T ′∈[0.8Tg ;1.2Tg ]

e(t1,T
′), (22)

with the residual e(t,T ) as defined in Eq. (17). This global search, almost inexpensive since u(t) and
u(t − T ′) are already stored, is restricted to [0.8Tg; 1.2Tg] in order to avoid abrupt variations of Tg .

(4) The stabilization procedure is applied again with the new Tg over a time horizon equal to Tg .
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TABLE II. Review of the critical Reynolds number and frequency of the linear unstable mode at Rec for
the cubic lid-driven cavity.

Feldman and Gelfgat ([25]) Kuhlmann and Albensoeder ([26]) Loiseau et al. ([27])

Rec 1914.0 1919.5 1914.0
ωc 0.575 0.586 0.585

(5) The global search is regularly carried out at ti+1 = ti + Tg .
We prefer performing regular global searches for Tg instead of calculating ∂e/∂T , because the

full storage of the past period allows us to perform a cheap and quick optimization over a full range
of Tg values ([0.8Tg; 1.2Tg]) and because of the superior robustness provided by global methods
compared to local methods.

As the limit-cycle frequency in the forced jet is prescribed by the applied forcing, it would be
contrived to treat it as an unknown. The flow in a three-dimensional cubic lid-driven cavity is chosen
instead for a demonstration. It has been shown that the steady solution of such a flow, above a critical
Reynolds Rec, is no longer stable [25–27], and that it bifurcates towards a limit cycle in a slightly
subcritical fashion [26]. The bifurcated state is unsteady and, close to Rec, it evolves at the frequency
ωc predicted by linear stability theory. Critical Reynolds number and frequency are listed in Table II.
However, as shown in Refs. [26,27], this limit cycle is not stable since it experiences intermittent
chaos: short bursts occur that destabilize the cycle before disappearing. Therefore, without applying
any stabilization technique, it cannot be expected that this cycle will converge naturally.

These simulations have been carried out again with NEK5000, on the same mesh as used in Ref. [27].
The driving velocity and the cube side length are used to nondimensionalize the problem. A Reynolds
number of 1930, above the critical limit, is chosen. At this Reynolds number, the limit-cycle frequency
is kept unchanged at ω0 = 0.585 ([27]). The time step was fixed to �t = 2.0 × 10−3. In this study,
all time steps have been stored (the method described in Sec. IV E was not applied). At t = 0, the
cavity is at rest: u(t = 0) = 0.

To understand the performance of the algorithm, several cases have been investigated:
(1) With no forcing.
(2) With forcing applied at the fixed frequency of the limit cycle, ω0 = 0.585.
(3) With variable-frequency forcing applied, starting from an initial guess. Five estimated values

have been tried: ωg = 0.50, 0.55, 0.60, 0.65, and 0.585. The frequency interval covered is ω0 ± 15%.
The results are reported in Fig. 13. First, it can be stated that the method works for every ωg

studied: the convergence is improved by at least two orders of magnitude compared to the time
stepping without stabilization. Moreover, the convergence of the flow and ω is achieved whatever
ωg studied, which shows the robustness of the technique. Convergence is achieved in about 25T0

whatever ωg , which is the same physical time needed for the case with fixed ω0 to settle. Therefore,
the frequency search does not augment significantly the computational cost. However, contrary to
the unpaired jet, the decrease of the residual is not monotonic, which can be linked to the fact that
the cavity flow is not receptive to ω0/2 perturbations but to other frequencies [27].

VI. CONCLUSION

A time-delayed feedback method, introduced by Pyragas [22] in the context of ODEs with few
degrees of freedom, has been applied to a flow problem for the purpose of computing unstable
time-periodic states. It has been demonstrated that spontaneous vortex pairing in a harmonically
forced jet is efficiently suppressed by this method, such that an unpaired vortex street, synchronized
at the frequency of the prescribed inflow forcing, is recovered. In this final converged flow state,
the stabilizing feedback term vanishes, and the recovered state is therefore a true solution of the
flow equations, uncompromised by artificial damping. The one free numerical parameter for this
procedure has been chosen based on a simple model problem, where the optimal value could be
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FIG. 13. Convergence analysis of the lid-driven cavity: (a) norm of the residual component as a function
of time for the different cases studied normalized with the total velocity norm at t = 50T0 for the fixed ω0 case
and (b) evolution of the global frequency guess for each case as a function of time.

determined analytically. It has then been found that the same value provides optimal convergence
also in the jet calculations.

The same technique has been shown to be useful also in weakly stable situations, where
uncontrolled time stepping converges towards a T-periodic state, but only slowly so. Artificial
damping through time-delay feedback greatly increases the rate of convergence in this case.

The described method is very easy to implement with a given flow solver, as it requires only
the addition of a simple source term, as well as the storage of one full cycle of the flow. The latter
aspect may be memory resource-intensive. An interpolation method has been proposed in order to
overcome this limitation. In the jet example, the storage requirement could thus be reduced by a
factor 100, without significant loss of accuracy, and at negligible additional cost.

The suppression of vortex pairing in the present example enables a stability analysis of the
recovered unpaired state, and the results of such analysis will be reported in a forthcoming study.

The time-delayed feedback method has finally been adapted to stabilize limit cycles in unforced
flows, where the frequency is not known a priori. This was demonstrated for a lid-driven cubic cavity
case with intermittent chaos. The procedure has been found to be very effective, enabling limit-cycle
stabilization at the correct frequency. The iteration identification of the limit-cycle frequency, as
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an additional unknown, did not lead to prolonged simulations in the cavity example. As in the
harmonically forced jet, the recovered state is a true solution of the flow equations.
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APPENDIX: STABILITY OF SOLUTIONS TO EQS. (9a) AND (9c)

Consider the equation

α = ki − λ(1 − e−2πα), (A1)

with both k and λ having positive real values. Solutions [32] are found as

αj = ki − λ + 1

2π
Wj (2πλe2π(λ−ik)), j ∈ Z. (A2)

The j th solution involves the j th branch Wj of the Lambert function. Assuming that there exists
a branch Wj such that Re(αj ) > β for a given λ, the triangular inequality, applied to Eq. (A1),
guarantees

|αj | � |ki| + λ|1 − e−2παj | � k + (1 + e−2πβ )λ. (A3)

The imaginary part of (A2) is evaluated as

Im(αj ) = k + 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A4)

Positive and negative integer values of j need to be considered separately.

1. Case j > 0

In this case, from [32], as Im[Wj (z)] > 0 for all complex number z and k > 0:

|Im(αj )| = k + 1

2π
Im[Wj (2πλe2π(λ−ik))], (A5)

so that, as |αj | � |Im(αj )|:

|αj | � k + 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A6)

Therefore, combining (A3) and (A6):

Im[Wj (2πλe2π(λ−ik))] � 2π (1 + e−2πβ )λ. (A7)

From the properties of the Lambert function [32], and because j > 0, Im[Wj (z)] > 2π (j − 1) for
all complex z. Therefore a necessary condition for Re(αj ) > β with j > 0 is

|j | < 1 + (1 + e−2πβ )λ. (A8)

2. Case j < 0

In this case, from [32], as Im[Wj (z)] < 0 for all complex number z and k > 0:

|Im(αj )| = k − 1

2π
Im[Wj (2πλe2π(λ−ik))], (A9)
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so that, as |αj | � |Im(αj )|,

|αj | � k − 1

2π
Im[Wj (2πλe2π(λ−ik))]. (A10)

Therefore, combining (A3) and (A10):

−Im[Wj (2πλe2π(λ−ik))] � 2π (1 + e−2πβ )λ. (A11)

From the properties of the Lambert function [32], and because j < 0, Im[Wj (z)] < 2π (j + 1) for
all complex z. Therefore a necessary condition for Re(αj ) > β with j < 0 is

|j | < 1 + (1 + e−2πβ )λ. (A12)

3. Conclusion

The two cases j ≶ 0 leads to the same conclusion, which is also valid for j = 0. Therefore, for
a given λ, any mode αj such that Re(αj ) > β must derive from branches Wj with

|j | < 1 + (1 + e−2πβ )λ. (A13)

This criterion is strict and holds for any value of k.
In particular, for a given λ, the unstable modes, if they exist, must derive from branches Wj with

|j | < 1 + 2λ.
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Global stability of buoyant jets and plumes
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The linear global stability of laminar buoyant jets and plumes is investigated
under the low-Mach-number approximation. For Richardson numbers in the range
10−4 6Ri6 103 and density ratios S= ρ∞/ρjet between 1.05 and 7, only axisymmetric
perturbations are found to exhibit global instability, consistent with experimental
observations in helium jets. By varying the Richardson number over seven decades,
the effects of buoyancy on the base flow and on the instability dynamics are
characterised, and distinct behaviour is observed in the low-Ri (jet) and in the high-Ri
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms
are responsible for the global instability dynamics in both regimes. In buoyant jets
at low Richardson number, the baroclinic torque enhances the basic shear instability,
whereas buoyancy provides the dominant instability mechanism in plumes at high
Richardson number. The onset of axisymmetric global instability in both regimes is
consistent with the presence of absolute instability. While absolute instability also
occurs for helical perturbations, it appears to be too weak or too localised to give
rise to a global instability.

Key words: buoyancy-driven instability, jets, plumes/thermals

1. Introduction
Vertical injection of light fluid into a denser ambient creates a flow that either

bears the characteristics of a jet, if the injected momentum is dominant over the
buoyant forces, or those of a plume, if the momentum that is generated by buoyancy
is dominant over the momentum that is imparted at the orifice.

The instability behaviour of jets is known to be strongly affected by density
variations, even if buoyancy is not taken into account. Monkewitz & Sohn (1988)
found that jets at a jet-to-ambient density ratio below 0.72 in zero gravity display
absolute instability, which leads to the self-sustained formation of ring vortices
at a well-defined frequency. This phenomenon has been observed experimentally
(Sreenivasan, Raghu & Kyle 1989; Monkewitz et al. 1990; Boujemaa, Amielh &
Chauve 2004; Hallberg & Strykowski 2006) and numerically (Lesshafft et al. 2006;
Nichols, Schmid & Riley 2007). Lesshafft & Huerre (2007) established that the
absolute instability arises from non-buoyant baroclinic effects. Mollendorf & Gebhart
(1973) included the action of buoyancy in the form of weak forcing terms in a local
instability analysis. Recently, Coenen et al. (2017) performed a global instability

† Email address for correspondence: lesshafft@ladhyx.polytechnique.fr
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analysis for light jets in the zero-Mach-number limit, achieving good agreement with
the helium jet experiments of Hallberg & Strykowski (2006). A small Richardson
number in these experiments characterises buoyant effects as being small, and the
global analysis confirms that their impact on the instability behaviour is negligible in
this regime.

The instability of plumes, at high Richardson numbers, has received far less
attention from a theoretical perspective. Wakitani (1980) and Riley & Tveitereid
(1984) investigated the local instability characteristics, both temporal and spatial,
of self-similar plumes within the limits of the Boussinesq approximation. Under
the same assumption, Chakravarthy, Lesshafft & Huerre (2015) considered the
convective/absolute nature of local instability in plumes, both in the self-similar
regime far removed from the buoyancy source, and in the near-source region for
one particular configuration. It was established that helical perturbations of azimuthal
wavenumber m= 1 undergo a transition to absolute instability, due to a saddle point
in the dispersion relation that is conditioned on the presence of buoyancy. However,
the associated growth rates seem to be small, and their relevance for global and
non-Boussinesq dynamics remains to be proved. The axisymmetric mode was found
to be at most convectively unstable.

The instability of internal plumes in a confined domain appears to be a separate
subject. In direct numerical simulations performed in the Boussinesq limit, Lopez &
Marques (2013) document a sequence of global state bifurcations in such closed flows,
occurring at successive critical Rayleigh numbers. A linear global instability analysis
of the same configuration (Lesshafft 2015) suggests that at least the first of these
bifurcations arises due to pressure feedback between the top and bottom solid walls.

Numerous experiments have been performed on plumes with large density
differences, where the Boussinesq approximation is not justified. Subbarao & Cantwell
(1992) conducted helium-air experiments, and they reported periodic axisymmetric
puffing at Reynolds and Richardson numbers, Re and Ri, above critical values. Similar
observations were made by Cetegen & Kasper (1996) for a larger range of Ri. A
power law was obtained in the latter study that relates the puffing Strouhal number to
Re and Ri. These experimental findings were corroborated by numerical simulations
(Jiang & Luo 2000; Satti & Agrawal 2006) and in additional recent experiments by
Bharadwaj & Das (2017). Through systematic variation of the gravity parameter, Satti
& Agrawal (2006) demonstrated that the onset of self-sustained oscillations in their
setting is contingent on the presence of gravity. The large majority of experiments and
simulations suggest a dominant role of axisymmetric instability structures, contrary
to the conclusions drawn from local instability analysis of self-similar Boussinesq
plumes by Chakravarthy et al. (2015).

The present investigation addresses the linear instability of buoyant jets and plumes
in a global and non-Boussinesq framework. The low-Mach-number approximation of
McMurtry et al. (1986) is used in a form where density variations arise from heating
of a single-species fluid. This formulation allows one to examine the stability of
buoyant jets and plumes on a continuous scale provided by the Richardson number,
while the density ratio as an independent parameter characterises the departure from
the Boussinesq condition. Special attention will be given to the physical origin of
flow instability, by means of sensitivity analysis.

A similar approach has been pursued by Bharadwaj & Das (2017) in their analysis
of helium plumes. That study demonstrated close agreement between the occurrence
of self-excited puffing in experiments and the onset of global linear instability.
Furthermore, the linear analysis was shown to accurately predict the puffing frequency,
even far from the instability threshold.
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The paper is organised in the following manner. Section 2 introduces the governing
equations and the numerical procedures employed for the computation of base flows
and their instability characteristics in global and local frameworks. Global instability
results are presented in § 3, followed by a discussion of the relevant physical
mechanisms in § 4. The global results are complemented by a local absolute/convective
analysis in § 5, which provides a link with the study by Chakravarthy et al. (2015)
of local instability in Boussinesq settings. Conclusions are offered in § 6.

2. Problem formulation
2.1. Governing equations

A calorically perfect fluid is injected into an unstratified quiescent ambient of the
same fluid at lower temperature, from a circular orifice in an adiabatic wall. In order
to model a flow with strong density variations but negligible compressibility, a low-
Mach-number approximation of the compressible Navier–Stokes equation is used. This
approximation, which retains all the effects of variable density in the convective terms,
but discards the compressible dependency of density on pressure, was introduced by
McMurtry et al. (1986) for a study of non-buoyant jets in the limit of zero Mach
number. It was then extended to include a buoyancy term by Nichols et al. (2007)
and Chandler (2010), and their formulation is used in the present investigation. The
dimensional governing equations in this approximation are given by

∂ρ̃

∂t
+ div(ρ̃ũ)= 0, (2.1a)

ρ̃
Dũ
Dt
=−grad p̃+µ

[
1ũ+

1
3

grad(div ũ)
]
+ g(ρ̃∞ − ρ̃)ez, (2.1b)

ρ̃Cp
DT̃
Dt
= α1T̃, (2.1c)

ρ̃RT̃ = p0, (2.1d)

where ρ̃, ũ, p̃, T̃ denote the dimensional density, velocity, pressure and temperature,
ρ̃∞ is the ambient density, g is the acceleration due to gravity, α is the thermal
conductivity, Cp is the specific heat, µ is the dynamic viscosity, and R is the specific
gas constant. Note that the pressure in this formulation is split into a thermodynamic
component p0, which is constant throughout the flow, and a fluctuating hydrodynamic
component p̃. While the continuity and momentum equations (2.1a) and (2.1b) are of
the same form as in the fully compressible case, the energy equation (2.1c) simplifies
to a simple advection–diffusion equation for temperature.

In dimensionless form, scaled with the nozzle radius R, the inlet centreline velocity
ũj, the temperature difference T̃j − T̃∞ between inflowing and ambient fluid, and the
ambient density ρ̃∞, equations (2.1) become

∂ρ

∂t
+ div(ρu)= 0, (2.2a)

ρ
Du
Dt
=−grad p+

1
ReS

[
1u+

1
3

grad(div u)
]
+

Ri
S− 1

(1− ρ)ez, (2.2b)

ρ
DT
Dt
=

1
PrReS

1T. (2.2c)

ρ(1+ T(S− 1))= 1. (2.2d)
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Global stability of buoyant jets and plumes 657

A reduced temperature T = (T̃ − T̃∞)/(T̃j− T̃∞) is used, and in all further calculations,
this variable is expressed in terms of ρ by use of (2.2d). The flow is characterised by
the following parameters:

Prandtl number Pr=
µCP

α
, (2.3)

density ratio S=
ρ̃∞

ρ̃j
, (2.4)

Reynolds number Re=
ρ̃jũjR
µ

and (2.5)

Richardson number Ri= gR
(ρ̃∞ − ρ̃j)

ρ̃jũ2
j

. (2.6)

In the homogeneous limit S→ 1, the state equation (2.2d) prescribes ρ → 1, and
the system (2.2) is then identical to the Boussinesq equations used in Chakravarthy
et al. (2015), provided ρ − 1 is taken to be of order S − 1; the present formulation
is therefore consistent with our earlier study. A rigorous derivation of the Boussinesq
equations and a discussion on the underlying assumptions may be found in Tritton
(2012).

2.2. Base flow

In a cylindrical coordinate system (r, θ, z), the flow variables q = (ρ, u, p, T)T are
split into steady and unsteady components as

q(r, θ, z, t)= q(r, θ, z)+ q′(r, θ, z, t). (2.7)

The numerical tools used for the construction of the base flow, as well as for the
linear perturbation analysis described in § 2.3, are very similar to those employed
by Coenen et al. (2017), except that density variations are modelled as an effect
of heating, rather than species mixing. Equations (2.2) are discretised with finite
elements in FreeFEM++, and a steady axisymmetric solution q is obtained from
Newton–Raphson iterations (Garnaud et al. 2013). The numerical domain is 80 radii
long in the streamwise direction and 30 radii in the transverse direction. Iterations are
performed until all flow quantities are converged to within 10−9 times their maximum
values. At the inlet, z= 0, boundary conditions

uz =
1
2
+

1
2

tanh
[

5
2

(
1
r
− r

)]
, ur = 0 and ρ = 1−

(
1−

1
S

)
uz (2.8a−c)

are prescribed for the axial velocity uz, the radial velocity ur and the density ρ.
The initial shear layer momentum thickness is 10 % of the nozzle radius. All other
boundary conditions are specified as

1
Re
∂u
∂r
− per = 0, ρ = 1 at r= rmax, (2.9a,b)

1
Re
∂u
∂z
− pez = 0,

∂ρ

∂z
= 0 at z= zmax, (2.9c,d)

∂uz

∂r
= ur =

∂ρ

∂r
=
∂p
∂r
= 0 at r= 0. (2.9e)
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FIGURE 1. (Colour online) Axisymmetric steady base flows obtained for Ri= 10−4 (a,b)
and for Ri= 103 (c,d). Axial velocity (a,c) and density (b,d) are shown in the (r, z) plane.

These boundary conditions are obtained from the kinematic constraints on the axis
(Khorrami, Malik & Ash 1989), and by imposing zero normal stresses at rmax and
zmax, together with Dirichlet and Neumann conditions for the density.

As the objective is to characterise the role of buoyancy in the instability dynamics,
the main parameters to be varied are the Richardson number and the density ratio. The
ranges of parameters 10−4 6Ri6 103 and 1.056 S6 7 will be investigated. The effect
of the Reynolds number above a value of 100 is found to be weak, and a standard
value of Re= 200 (in some cases Re= 500) will be used, while Pr= 0.7 is maintained
throughout.

For a strong density ratio S= 7, and the two extreme values Ri= 10−4 and Ri= 103,
steady base flow profiles of axial velocity and density are shown in figure 1. The
flow at low Ri is dominated by the momentum of the injected fluid, which diffuses
radially with axial distance under the effect of viscosity. This is clearly the case of
a jet, in a configuration where buoyancy has no noticeable impact on the base flow
dynamics, despite the strong density variations. The flow at high Ri, in contrast, is
principally driven by the buoyancy force, as the injected momentum is negligibly weak
in comparison. The fluid in this case is not pushed out of the orifice, but rather pulled
out by buoyancy, forming a slender rising column around the axis (note the different
radial scales in figure 1). This flow is characteristic of a plume, and it is often called
a ‘lazy’ plume, as the momentum at its base is much lower than that of a self-similar
profile, where momentum and buoyancy are in balance.
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FIGURE 2. Variations of the centreline velocity along z. (a) Ri= 10−4; (b) Ri= 103.

Between the two extremes shown in figure 1, the aspect of the base flow at
different Richardson numbers changes gradually. Cases with Ri < 1 will be denoted
‘buoyant jets’ in the following, as opposed to ‘plumes’ with Ri> 1. Vertical variations
of the centreline velocity are shown in figure 2 for the same two configurations
as in figure 1. The jet, at Ri = 10−4, exhibits a short potential core region, where
the centreline velocity is constant, followed by hyperbolic decay. The plume flow,
at Ri = 103, accelerates progressively with vertical distance from the inlet, and the
centreline velocity approaches asymptotically a limit value in the self-similar regime
(Yih 1988). Buoyant jets at low but finite Richardson number behave as plumes at
large distances from the nozzle, when their excess momentum is sufficiently diffused.
While a jet entrains ambient fluid only through momentum diffusion, entrainment
into a plume tends to be much stronger due to its continuous production of axial
momentum. The plume base flow presented in figure 1(c,d) is particularly marked by
radial entrainment close to z= 0.

2.3. Linear stability problem
Infinitesimal perturbations of a steady base flow are sought with a global ansatz

[ρ ′, u′, p′, T ′]T = [ρ̂(r, z), û(r, z), p̂(r, z), T̂(r, z)]Tei(mθ−ωt)
+ c.c. (2.10)

The integer m denotes the azimuthal wavenumber and ω = ωr + iωi is a complex
frequency. Upon linearising the governing equations (2.2), and substitution of (2.10),
the linear perturbation equations are found as

−iωρ̂ + divm(ρ̂ u+ ρ û)= 0, (2.11a)

−iωρû+ ρ[(gradmu) · û+ (gradmû) · u] + ρ̂(gradmu) · u

=−gradmp̂−
Ri

S− 1
ρ̂ez +

1
ReS

[
∆mû+

1
3

gradm(divmû)
]
, (2.11b)

−iωρT̂ + ρ[(gradmT) · û+ (gradmT̂) · u] + ρ̂(gradmT) · u=
1

PrReS
∆mT̂, (2.11c)

ρ̂ + ρ2T̂(S− 1)= 0. (2.11d)

Differential operators in the above equations are written with a subscript m in order
to indicate that azimuthal derivatives are replaced with a factor im; these operators
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660 R. V. K. Chakravarthy, L. Lesshafft and P. Huerre

are documented in appendix A. While the base flow is taken to be swirl free, uθ =
0, the azimuthal perturbation velocity u′θ may in general be non-zero. Homogeneous
Dirichlet conditions are imposed on û and ρ̂ at the inlet, z= 0, and a homogeneous
Neumann condition is prescribed for p̂. On the axis, depending on the azimuthal mode
considered, appropriate boundary conditions as detailed in Khorrami et al. (1989) and
Chakravarthy et al. (2015) are enforced. On the outer boundaries at rmax and zmax, no-
stress conditions consistent with (2.9) are used.

The system (2.11) is cast into the form of an eigenvalue problem

ωBq̂= Lq̂. (2.12)

According to the ansatz (2.10), the real part of the eigenvalue, ωr, represents
the oscillation frequency while the imaginary part, ωi, is the growth rate of the
perturbation. As before, the variable T̂ is eliminated through the equation of state
(2.11d). So-called global eigenmodes are computed by resolving ρ̂, û and p̂ in both r
and z, such that spatial variations of the base flow and the perturbation quantities are
accounted for without further limiting assumptions (Theofilis 2003). The eigenvalue
problem (2.12) is then solved with an iterative shift-invert Arnoldi algorithm, in the
same way as in Garnaud et al. (2013), with an accuracy close to machine precision.

In addition, a local analysis is performed in § 5, in order to identify the absolute
mode in a parallel base flow (Huerre & Monkewitz 1990). Perturbations (2.10) are
then Fourier-transformed in z, leading to the standard ansatz

[ρ̂(r, z), û(r, z), p̂(r, z), T̂(r, z)]T = [ρ̌(r), ǔ(r), p̌(r), Ť(r)]Teikz. (2.13)

3. Global spectra and eigenfunctions

Instability results obtained from the global formulation (2.10) are presented first for
axisymmetric modes, m= 0, since experimental and numerical evidence suggests their
leading role in the self-sustained dynamics of plumes, as discussed in § 1. A brief
discussion of helical perturbations, m= 1, follows in § 3.2.

3.1. Axisymmetric perturbations

Eigenvalues ω obtained for two configurations, Ri = 10−4 and 103, with otherwise
identical parameters S= 7 and Re= 200, are presented in figure 3 as black symbols.
These are the two extreme jet and plume cases discussed in § 2.2.

The jet, at Ri = 10−4 (figure 3a), exhibits one unstable mode with ω = 0.558 +
0.025i. When buoyancy effects are eliminated, by setting Ri = 0 in the perturbation
equations but still using the same base flow, eigenvalues shown as red crosses are
obtained; visibly, the buoyancy term in the perturbation equations has no significant
impact on the instability dynamics. This observation, as well as the overall appearance
of the spectrum, is fully consistent with the non-buoyant and slightly buoyant results
of Coenen et al. (2017), and many more details on the unstable eigenmode of pure
jets are provided in their study.

The plume, at Ri = 103 (figure 3b), possesses five unstable modes, one being
strongly dominant with ω = 29.4+ 11.3i. When the perturbation Richardson number
is set to zero in this configuration, all unstable modes vanish from the spectrum. It
can be concluded that buoyancy plays a determining role for the instability of this
plume, not only by setting up the base flow, but also by the coupling of density and
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FIGURE 3. (Colour online) Global spectra of axisymmetric perturbations (m= 0), for the
two configurations shown in figure 1. (a) Ri = 10−4, jet case; (b) Ri = 103, plume case.
Re= 200 and S= 7 are set identically for both cases. True eigenvalues (E) are compared
to their counterparts (+) that are obtained when the buoyancy term in (2.11b) is removed.

velocity perturbations. It is also noted that the high-Ri plume base flow is not subject
to the non-buoyant instability that affects the low-Ri jet.

Unstable eigenvalues of the plume take on significantly higher values, both in their
real and in their imaginary parts, than those of the jet. This is clearly a result of the
scaling with the inflow centreline velocity, which appropriately characterises a jet, but
is less pertinent for ‘lazy’ plumes. A common scaling is employed here for the sake of
consistency across the full range of Richardson number values; if only high-Ri plumes
were considered, a buoyancy-based velocity scaling would be more suitable.

The distinct nature of the instability modes of the jet and the plume flows is also
apparent in the shape of their eigenfunctions. Figure 4 shows the spatial distribution
of the axial velocity amplitude in the dominant modes for the two respective cases.
At low Richardson number, the maximum perturbation amplitude is found on the
centreline, 12 radii downstream of the nozzle. Perturbations are confined inside the
jet column, as documented in more detail by Coenen et al. (2017). In the high-Ri
plume, the spatial eigenmode structure is very different: the maximum amplitude is
located inside the mixing layer very close to the inflow, in the region where the
density gradient in the base flow is maximal.

In the reference experiments by Cetegen & Kasper (1996) and Bharadwaj & Das
(2017), a slightly different definition is chosen for the Richardson number, which
corresponds to 2Ri/S in our nomenclature. Variations of the dominant eigenvalue
in the present analysis are therefore presented as functions of Ri/S in figure 5 in
order to facilitate a comparison. The baseline case, with Re= 200, S= 7 and inflow
conditions (2.8), is represented by solid circles. Eigenvalues of this configuration
display continuous variations both in the Strouhal number St = ωr/(2π) and in the
growth rate ωi. Strouhal number values are asymptotically constant in the low-Ri/S
regime, whereas they follow a power law at values Ri/S> 0.1. A regression fit yields
the dependence St = 0.55(Ri/S)0.43, which is in good agreement with experimental
results in the range 1 6 Ri/S 6 250: after conversion to the present definition of
the Richardson number, the power law determined by Cetegen & Kasper (1996) in
this regime is given by St = 0.52(Ri/S)0.38 (shown as a line in figure 5a), and the
corresponding measurements of Bharadwaj & Das (2017) for plumes from an orifice
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FIGURE 4. (Colour online) Spatial distributions of axial velocity eigenfunctions ûz,
corresponding to the most unstable modes of the two respective cases shown in figure 3.
(a) Jet at Ri= 10−4, S= 7 and Re= 200; (b) plume at Ri= 103, S= 7 and Re= 200.

convert to St = 0.51(Ri/S)0.39. A different scaling, measured as St ∝ (Ri/S)0.28 for
Ri/S > 250 by Cetegen & Kasper (1996), is outside the parameter range considered
here. The growth rate in the baseline configuration, shown in figure 5(b), increases
monotonically with Ri/S, and it is positive throughout.

Eigenvalues from three other flow configurations are included in figure 5 in order
to assess the sensitivity of the instability with respect to the Reynolds number, to the
density ratio and to the inlet velocity profile. With the standard profile (2.8), parameter
combinations Re=500, S=7 (open circles) and Re=200, S=4.5 (squares) are chosen.
The Strouhal number values in figure 5(a) are barely affected by these changes, and
the growth rates in figure 5(b) follow a similar trend as in the baseline case. The less
heated configuration (squares) is stable at Ri < 0.1, consistent with the analysis by
Coenen et al. (2017).

Triangle symbols indicate results for a special case where Re= 200 and S= 7 are
maintained, but the velocity inlet profile is changed to a parabolic pipe flow, while the
density profile is still given by (2.8). This flow case is introduced in order to better
approach the experimental conditions of Subbarao & Cantwell (1992) and Cetegen
& Kasper (1996), where the fluid exits from a nozzle as a developed laminar pipe
flow. This change in the velocity profile has barely any effect on the Strouhal number
across all Ri/S values, but it does inhibit the global instability in the low-Ri/S regime.
The latter is consistent with the absence of self-excited behaviour at low Ri in the
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FIGURE 5. (a) Strouhal number and (b) growth rate of the global eigenvalue ω, as a
function of Ri/S. Legend: (u) Re= 200, S= 7; (E) Re= 500, S= 7; (@) Re= 200, S=
4.5; (A) Re = 200, S = 7, with parabolic inlet velocity profile. All other configurations
take the inlet velocity profile (2.8). (——) Power law from the Cetegen & Kasper (1996)
experiments, rescaled to match the present definition of Ri.

experiments of Subbarao & Cantwell (1992) and Cetegen & Kasper (1996), and in
the simulations of Satti & Agrawal (2006).

As the effect of heating enters the problem both through the density ratio S
and through the Richardson number Ri, the onset of instability is examined for
independent variations of these two parameters. The main results of the local (see
§ 5) and global instability analyses are summarised in the state diagram in the (Ri, S)
plane shown in figure 6. The thin line delineates the neutral boundary separating
locally convectively unstable inlet base flows (in white below the curve) from locally
absolutely unstable ones (in blue and red above the curve). The thick neutral line
separates the globally stable states (in white and blue below the curve) from the
globally unstable states (in red above the curve). In the white area, convective
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Convectively unstable,
globally stable
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S

FIGURE 6. (Colour online) Instability regimes in the S–Ri plane for the axisymmetric
mode at Re= 200. The thick line denotes the global stability boundary, and the thin line
denotes the boundary between local convective and absolute instability of the inlet profile.

instability prevails, and in the blue and red areas, absolute instability prevails. Along
a diagonal line in the state diagram, the flow changes from convectively unstable to
absolutely unstable to globally unstable, once the absolutely unstable region is large
enough. For buoyant jets (low Ri) and plumes (large Ri) the same sequence takes
place as S increases at a given Ri. Note that the globally unstable domain is reached
much ‘sooner’ for plumes than for buoyant jets. The dip in the global stability neutral
curve for Ri of order unity signals a gradual shift from a shear-dominated instability
to a buoyancy-dominated instability, as further discussed in § 4.

3.2. Helical perturbations
The local analysis of plumes in the Boussinesq limit S→ 1 by Chakravarthy et al.
(2015) concluded that absolute instability only occurs for helical perturbations,
m = 1, whereas axisymmetric perturbations in that setting were found to be only
convectively unstable. Although the global instability of axisymmetric eigenmodes in
non-Boussinesq situations, as documented above, appears to be fully consistent with
experimental and numerical observations of self-excited behaviour, the possibility of
helical global instabilities remains to be explored.

Eigenvalues pertaining to helical instability modes are displayed in figure 7 for
two different calculations, both for the same physical parameter setting S= 7, Ri= 1
and Re = 200. One case, represented by blue unfilled circles, was computed with
the same boundary conditions as all previous results. A branch of regularly spaced
modes is seen to be unstable over the interval 0.8 6 ωr 6 4. The features of this
branch are very similar to several jet cases discussed by Coenen et al. (2017), as
well as observations made in many different flow cases, especially in the boundary
layer calculations by Åkervik et al. (2008). In a recent study (Lesshafft 2017), the
occurrence of such ‘arc branches’ is ascribed to the presence of spurious pressure
feedback from the downstream end of a truncated flow domain, and it is predicted
that artificial damping near the outflow should be effective in reducing the growth
rate of such unphysical modes.
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0 1 2 3 4 5
−1.0

−0.5

0

0.5

FIGURE 7. (Colour online) Global spectrum of helical perturbations (m = 1), for the
configuration S = 7, Ri= 1 and Re= 200. Results from two calculations are shown: (E)
without absorbing layer; (u) with absorbing layer at z> 30.

Indeed, if artificial damping is applied in an ‘absorbing layer’ (Colonius 2004) at
z> 30, the growth rates of the arc branch modes decrease, and all modes recede to
the stable half-plane if the damping is sufficiently strong. Such a case is represented
by red filled circles in figure 7, where a damping term −λ(z)q̂ has been added to
the right-hand side of (2.12). The damping coefficient λ(z) ramps up from zero to
16, over the interval 30 < z < 50, according to equation (2.4) of Chomaz (2003).
No unstable helical modes are found with this boundary treatment. In contrast, the
same artificial damping has no discernible effect on the unstable eigenvalues for
axisymmetric perturbations shown in figure 3. This behaviour is in full agreement
with the arguments of Lesshafft (2017), as m = 0 perturbations are locally stable
in the downstream flow region, whereas m = 1 perturbations remain convectively
unstable, as will be shown in § 5.

4. Influence of buoyant, baroclinic and shear-related mechanisms

The results discussed in § 3.1 suggest that different mechanisms drive the global
instability dynamics in the low- and the high-Ri regimes. These mechanisms are
investigated in the present section, on the basis of the formalism proposed by
Marquet & Lesshafft (2015). This formalism is introduced here in a slightly different
and weaker manner, which is sufficient for the present purpose.

A sensitivity analysis is to be performed, in order to quantify the influence of
the various forces in the momentum equation onto the unstable growth of velocity
perturbations. The latter are governed by the equation

− iωû= C + S +P +B+ V, (4.1)

with the right-hand-side terms

C =−(grad û) · u, (4.2a)
S =−(grad u) · û, (4.2b)
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666 R. V. K. Chakravarthy, L. Lesshafft and P. Huerre

P =−
grad p̂
ρ
+
ρ̂ grad p
ρ2 , (4.2c)

B=−
Ri

S− 1
ρ̂

ρ2 ez, (4.2d)

V =
1

ReS

[
1
ρ

(
1û+

grad(div û)
3

)
−
ρ̂

ρ2

(
1u+

grad(div u)
3

)]
. (4.2e)

These individual terms represent the mechanisms of base flow convection C, base
flow shear S , pressure force P , buoyancy B, and viscous diffusion V . As only
axisymmetric m = 0 perturbations are considered in this chapter, it is not necessary
to append a subscript m to the differential operators.

For a better physical discussion, the pressure force can be split into a divergence-
free (baroclinic) and a curl-free (barotropic) component; the former is linked to the
baroclinic torque in the vorticity equation, after application of the curl operator to
(4.1), whereas the latter does not affect the evolution of perturbation vorticity.

A Helmholtz decomposition is performed on the pressure force P , such that

P = curlA− gradφ, (4.3)

where A and φ are found from

A=
1

4π
(curlP)⊗ (1/r), (4.4a)

φ =
1

4π
(divP)⊗ (1/r). (4.4b)

The operator ⊗ denotes a convolution over the entire volume V of the numerical
domain, and r represents any position in V . This decomposition is performed
numerically, such that P =P1+P2 is explicitly obtained, with a baroclinic component
P1 and a barotropic component P2.

Further analysis is restricted to the action of shear, baroclinic and buoyant forces,
because all other contributions are found to be strictly stabilising at all Richardson
numbers. The dependence of an eigenvalue ω on these three components is obtained
by introducing small variations into (4.1),

− iωû= C + (1+ εS)S + (1+ εP)P1 +P2 + (1+ εB)B+ V, (4.5)

from where sensitivities can be defined as

∂Sω=
∂ω

∂εS
=
〈q̂†
, S〉

〈q̂†
, Bq̂〉

, ∂Pω=
∂ω

∂εP
=
〈q̂†
,P1〉

〈q̂†
, Bq̂〉

, ∂Bω=
∂ω

∂εB
=
〈q̂†
,B〉

〈q̂†
, Bq̂〉

. (4.6a−c)

Note that the terms S , P1 and B contain components of the eigenvector q̂, and that
q̂† is the associated adjoint eigenvector, defined with respect to the scalar product
〈·, ·〉. A standard non-weighted discrete scalar product has been chosen in the present
calculations, but the scalar quantities ∂ω in (4.6) are independent of this choice, as
demonstrated by Marquet & Lesshafft (2015).

The sensitivities (4.6) are interpreted in the following way. An infinitesimally
small positive value εS proportionally increases the strength of the shear-related
force term, resulting in an eigenvalue variation δω = εS∂Sω. If the imaginary part of
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FIGURE 8. (Colour online) Sensitivity of the growth rate with respect to (q) shear,
(u) baroclinic and (p) buoyancy terms, as functions of the Richardson number, with
parameters S= 7 and Re= 200.

∂Sω is positive, then S has a destabilising effect; if it is negative, then S acts in a
stabilising way. The same reasoning applies to ∂Pω and ∂Bω. The three sensitivities are
commensurate, so that a larger absolute value of one compared to another indicates
a stronger stabilising or destabilising effect.

Results from this analysis are presented in figure 8 over the full range of Ri
values, for the standard setting S = 7 and Re = 200. Imaginary values of ∂Sω, ∂Pω

and ∂Bω are shown in two separate diagrams for low and high Richardson numbers,
for better readability. In the jet regime Ri < 1, the strongest destabilising force
is due to the base flow shear. At very low Ri, the effect of buoyancy vanishes,
while the baroclinic force provides a small additional destabilisation. The local
analysis of Lesshafft & Huerre (2007) demonstrated that the baroclinic torque is
the determining ingredient that renders a non-buoyant heated jet absolutely unstable,
through co-operation with the basic shear instability. The present global results are
consistent with that conclusion. In the plume regime Ri > 1, the buoyancy force
becomes strongly destabilising, dominating all other contributions for Ri > 5. Shear
and baroclinic effects are negligible in comparison at very high Ri; the baroclinic
force even becomes stabilising above Ri= 100.

It is concluded that the observed global instability in the jet and plume regimes
indeed involve distinct physical mechanisms. In buoyant jets at low Richardson
number, the dynamics are driven by a shear instability, which is strengthened by a
baroclinic force. In high-Ri plumes, the instability arises principally from buoyancy
effects. These conclusions are fully consistent with the results of Bharadwaj & Das
(2017), who observed that the leading eigenmode could be stabilised through artificial
compensation of the baroclinic torque at low Ri, and through suppression of the
buoyancy force at high Ri.

5. Local analysis

The results so far have shown a dominance of axisymmetric global instabilities,
which is in stark contrast to our earlier local analysis in the S→ 1 Boussinesq limit
(Chakravarthy et al. 2015), where absolute instability was found only for helical
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FIGURE 9. Variation of the absolute frequency ω0 with streamwise location z for the
axisymmetric mode m= 0 and Ri= 10−4 (a,c) and Ri= 102 (b,d) at S= 7, Re= 200.

perturbations. The absolute/convective nature of local instability in non-Boussinesq
settings is now investigated.

The same algorithm as in Chakravarthy et al. (2015) is used for tracking
saddle points of the local dispersion relation in the complex k plane. Again, the
group-velocity root-finding procedure of Lesshafft & Marquet (2010) has been found
to be more efficient and robust than the classical Briggs or the cusp map methods
(see Schmid & Henningson 2001).

5.1. Axisymmetric perturbations, m= 0

For the standard setting S = 7 and Re = 200, and for Richardson numbers of 10−4

and 102, variations of the absolute frequency ω0 along the streamwise z direction are
shown in figure 9. In the more extreme case Ri = 103, numerical difficulties led to
unreliable results. In both configurations, the flow is found to be absolutely unstable
(ω0,i > 0) over a streamwise interval of 6 or 7 radii downstream of the inlet. In the
weakly non-parallel case of Ri = 10−4, the real part ω0,r shows moderate variations
around a value of 0.5, in reasonable agreement with the global frequency ωr = 0.56
as given in figure 5(a). In the strongly non-parallel setting Ri = 102, ω0,r displays
a variation between 1.3 and 80 over the absolutely unstable interval. This is not
inconsistent with the global frequency ωr = 10.99, but it does not provide a means
of predicting ωr at leading order.
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FIGURE 10. Absolute growth rate ω0,i of helical perturbations, for Re= 200 and Ri= 1:
(a) at the inlet, as a function of the density ratio S; (b) as a function of z, for S= 7.

Nonetheless, the link between local absolute and global instability of axisymmetric
perturbations is very plausibly confirmed by these results, both in the low- and in
the high-Richardson-number regime. The neutral curve for the onset of absolute
instability in the (Ri, S) plane is reported in figure 6 for axisymmetric perturbations
at z = 0. It is found that the transition from convective to absolute local instability
at the inlet, with increasing Ri and S, occurs before global instability sets in. This is
consistent with the common observation, both in model problems (Chomaz, Huerre &
Redekopp 1991) and in slowly varying flow (e.g. Lesshafft, Huerre & Sagaut 2007),
that absolute instability must prevail over a sufficiently long streamwise region with
sufficient growth rate in order to prompt a global instability.

5.2. Helical perturbations, m= 1
The saddle point in the complex k plane that is associated with helical absolute
instability in the study of Chakravarthy et al. (2015) is also recovered in the analysis
of the present inflow profiles. The absolute growth rate ω0,i for m = 1 perturbations
at z = 0 is displayed in figure 10(a) as a function of S, for parameters Ri = 1
and Re = 200. A unity Richardson number is chosen here for comparison with the
analysis in § 3 of Chakravarthy et al. (2015), but higher values of Ri lead to the same
conclusions. The density ratio S characterises the departure from the Boussinesq limit,
and it is seen to have a very weak effect on the growth rate ω0,i of the absolute
helical mode.

The spatial variation of ω0,i, over a short interval of z adjacent to the inlet, is
shown in figure 10(b) for the highly non-Boussinesq setting S= 7; values beyond this
streamwise region could not be obtained with sufficient confidence, due to numerical
difficulties. The absolute helical growth rate at S = 7 displays the same qualitative
characteristics as the one described in Chakravarthy et al. (2015) for the Boussinesq
limit: the growth rate declines quickly downstream of the inlet, perhaps asymptotically
tending towards zero. It is not surprising that under these conditions the weak absolute
instability of m= 1 perturbations does not lead to a global flow destabilisation, as was
found in § 3.2.
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670 R. V. K. Chakravarthy, L. Lesshafft and P. Huerre

6. Conclusions
The linear instability dynamics in spatially developing buoyant jets and plumes have

been investigated for a wide range of values of the Richardson number and the fluid
density ratio. In the limit of zero Mach number, all variable-density effects have been
taken into account in the mathematical formulation, so that configurations outside the
realm of validity of the Boussinesq approximation could be considered.

Axisymmetric global instability modes have been found and documented over the
entire investigated range of parameters, whereas no helical global instability could
be identified. Some doubts remain only in the regime of very high Richardson
number, Ri > 100, where spurious helical modes could not be entirely stabilised
due to numerical limitations. The preponderance of axisymmetric instability is in
agreement with experimental observations by Subbarao & Cantwell (1992), Cetegen
& Kasper (1996) and Bharadwaj & Das (2017), who reported axisymmetric puffing
in free plumes. The present global analysis furthermore reproduces the experimentally
measured frequencies with satisfactory accuracy. In particular, the experimental power
law ωr ∝ (Ri/S)0.38 has been retrieved as ωr ∝ (Ri/S)0.43 in the present calculations. It
is noted that Bharadwaj & Das (2017) found even closer agreement from their linear
analysis, which was designed to specifically model helium plumes, as opposed to
thermal plumes in the present study.

The physical mechanisms behind global instability have been characterised by
means of a sensitivity analysis. As proposed by Marquet & Lesshafft (2015), the
sensitivity of the perturbation growth rate with respect to individual terms in the
linear equations has been evaluated, which provides a quantitative measure for the
stabilising or destabilising role of mechanisms represented by these terms. The main
conclusion is that instability in the low-Ri jet regime is caused primarily by a shear
mechanism, aided by a baroclinic force that arises from density variations, whereas
the instability in the high-Ri plume regime is brought about principally by way of the
buoyancy force, with a small contribution from shear. Nothing in the results indicates
an abrupt switching between two distinct instability modes; the most unstable mode
appears instead to vary smoothly as a function of Ri, with a gradual shift from the
dominance of one mechanism to a dominance of the other.

These global results contrast with the conclusions of Chakravarthy et al. (2015), on
the basis of local analysis in the Boussinesq limit, that the instability dynamics of
self-similar plumes are dominated by helical perturbations. In particular, that earlier
study showed axisymmetric perturbations to be only convectively unstable, whereas
helical perturbations exhibit absolute instability, as well as larger temporal growth
at real wavenumbers than axisymmetric modes. The global analysis in the present
study was performed on base flows that develop from an orifice with prescribed inlet
profiles, and that only relax asymptotically in the streamwise direction towards a self-
similar flow solution. Close to the orifice, these base flows are markedly different
from self-similar conditions, and this is the flow region where unstable axisymmetric
perturbations reside in high-Ri plumes, according to the present results (see figure 4b).
Global instability in low-Ri buoyant jets has been shown to depend on baroclinic
effects, which are absent in the Boussinesq approximation. The Boussinesq framework
used by Chakravarthy et al. (2015) is therefore inappropriate for an instability analysis
in this regime.

It has finally been demonstrated, for selected configurations, that the global
instability characteristics are consistent with the absolute or convective nature of local
instability. All globally unstable settings in the (Ri, S) plane, with Re= 200, feature
an absolutely unstable flow region in the vicinity of the inflow. In the examined
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Global stability of buoyant jets and plumes 671

cases, the absolute growth rate of axisymmetric perturbations is significantly larger
than that of helical perturbations, and it remains positive over a longer streamwise
region. Although absolute instability also arises for helical perturbations, it appears
to be too weak to set off a global instability.

It must be cautioned that the conclusions drawn from the present results may
not be easily extendable to generic plume and jet flows. In particular, the instability
characteristics seem to be rather sensitive to details of the inflow profiles: with similar
but not identical inflow profiles, axisymmetric perturbations are absolutely unstable
in the present settings, but convectively unstable in the configuration of Chakravarthy
et al. (2015). Test calculations, documented in Chakravarthy (2015), indicate that
the functional shape of the density profile has a marked influence on the local
stability characteristics, even when the mixing layer thickness is matched. Subbarao
& Cantwell (1992) point out, for instance, that helium release and diffusion flames
create plumes with very distinct density variations, which therefore may present quite
different instability dynamics. It can also not be ruled out that nonlinear effects alter
the threshold of global instability (Couairon & Chomaz 1997). The influence of the
Prandtl number has not been investigated in this study, but it has been shown by
Lakkaraju & Alam (2007) that the instability behaviour of planar plumes undergoes
qualitative changes as Pr is varied far from unity.
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Appendix A. Differential operator definitions for azimuthally decomposed field
quantities

The operators for divergence, gradient, Laplacian and advection in cylindrical
coordinates in equations (2.11) are written with a subscript m. This is meant to express
that azimuthal derivatives of perturbations (2.10) are included in these operators in
the form of terms in m, such that formally

grad (û eimθ)= (gradmû) eimθ , (A 1a)
div (û eimθ)= (divmû) eimθ , (A 1b)
∆(û eimθ)= (∆mû) eimθ , (A 1c)

and accordingly for all other flow variables. All relevant terms from the (2.11) are
written out below for the sake of completeness:

divm(ρ̂u+ ρu)=
1
r
∂r(rρ̂ur + rρûr)+

im
r
ρûθ + ∂z(ρ̂uz + ρûz), (A 2)

(gradmu) · û= [ûr∂rur + ûz∂zur]er +
ûθur

r
eθ + [ûr∂ruz + ûz∂zuz]ez, (A 3)

(gradmû) · u = [ur∂rûr + uz∂zûr]er + [ur∂rûθ + uz∂zûθ ]eθ
+ [ur∂rûz + uz∂zûz]ez, (A 4)
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(gradmT) · û= ûr∂rT + ûz∂zT (A 5)

(gradmT̂) · u= ur∂rT̂ + uz∂zT̂, (A 6)

gradmp̂= ∂rp̂ er +
im
r

p̂ eθ + ∂zp̂ ez, (A 7)

gradm(divmû) =
[
∂r
∂r(rûr)

r
−

2im
r2

ûθ +
im
r
∂rûθ + ∂rzûz

]
er

+
1
r

[
im∂rûr +

im
r

ûr −
m2

r
ûθ + im∂zûz

]
eθ

+

[
∂rzûr +

∂zûr

r
+

im
r
∂zûθ + ∂zzûz

]
ez, (A 8)

∆mû =
[
∂r
∂r(rûr)

r
−

m2

r2
ûr + ∂zzûr −

2im
r2

ûθ

]
er

+

[
∂r
∂r(rûθ)

r
−

m2

r2
ûθ + ∂zzûθ +

2im
r2

ûr

]
eθ

+

[
∂r(r∂rûz)

r
−

m2

r2
ûz + ∂zzûz

]
ez, (A 9)

∆mT̂ =
∂r(r∂rT̂)

r
−

m2

r2
T̂ + ∂zzT̂. (A 10)
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Artificial eigenmodes in truncated flow domains

Lutz Lesshafft

July 16, 2018

Abstract Whenever linear eigenmodes of open flows are computed on a numerical domain that is truncated
in the streamwise direction, artificial boundary conditions may give rise to spurious pressure signals that are
capable of providing unwanted perturbation feedback to upstream locations. The manifestation of such feed-
back in the eigenmode spectrum is analysed here for two simple configurations. First, explicitly prescribed
feedback in a Ginzburg–Landau model is shown to produce a spurious eigenmode branch, named the ‘arc
branch’, that strongly resembles a characteristic family of eigenmodes typically present in open shear flow
calculations. Second, corresponding mode branches in the global spectrum of an incompressible parallel jet in
a truncated domain are examined. It is demonstrated that these eigenmodes of the numerical model depend on
the presence of spurious forcing of a local k+ instability wave at the inflow, caused by pressure signals that
appear to be generated at the outflow. Multiple local k+ branches result in multiple global eigenmode branches.
For the particular boundary treatment chosen here, the strength of the pressure feedback from the outflow to-
wards the inflow boundary is found to decay with the cube of the numerical domain length. It is concluded
that arc-branch eigenmodes are artifacts of domain truncation, with limited value for physical analysis. It is
demonstrated, for the example of a non-parallel jet, how spurious feedback may be reduced by an absorbing
layer near the outflow boundary.

1 Introduction

Linear instability analysis of open flows today is commonly carried out in a so-called ‘global’ framework,
where at least two non-homogeneous spatial directions of a steady base state are numerically resolved. In
contrast to ‘local’ analysis, where the base state is assumed to be parallel, and unbounded in the flow direction,
a global discretisation of an open flow problem in a truncated numerical domain necessitates the formulation
of artificial streamwise boundary conditions for flow perturbations. The question then arises in how far such
boundary conditions influence the instability dynamics of the truncated flow system.

This paper investigates the effect of spurious pressure feedback, due to domain truncation, on the eigen-
mode spectrum of incompressible open flow problems. The investigation is motivated by observations made in
recent linear instability studies of jet flows [12, 7], where a prominent family of eigenmodes (black symbols in
Fig. 1), referred to as the ‘arc branch’ from here on, was found to present features that suggest a resonance be-
tween the inflow and outflow boundaries. Such branches are in fact ubiquitous in many, if not all, global spectra
of truncated open shear flows found in the literature: boundary layers [10, 11, 1], cylinder wakes [24, 20], jets
[22, 12], plumes [4], three-dimensional boundary layers with roughness elements [19, 17] — all these and
many others present similar characteristic branches of eigenvalues that are often described as being highly
dependent on the type or position of outflow boundary conditions. Typically, no convergence with respect to
the length of the numerical box can be attained for such modes.

Ehrenstein & Gallaire [10] remark on the resemblance between arc-branch-type global eigenmode struc-
tures obtained for a flat-plate boundary layer and spatial modes as found in a local analysis. Åkervik et al. [1]
document the dependence of boundary layer eigenvalues on the type of outflow boundary conditions. Heaton
et al. [13] characterise arc branch modes in the spectrum of a Batchelor vortex as artifacts, speculating that
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Fig. 1 Spectrum and pseudospectrum of a jet at Re = 1000, showing a typical arc branch. Eigenmodes are drawn as black symbols. The
definition of ε values, shown as colour contours, is given in Sect. 2. The figure is made from the data of Coenen et al. [7].

these arise from the limited precision of their numerical scheme, not from domain truncation. Cerqueira &
Sipp [3] demonstrate that such precision errors indeed lead to spurious ‘quasi-eigenmodes’, but that these
differ from the arc branch. In their analysis, quasi-eigenmodes appear in regions of the complex frequency
plane where pseudospectrum ε values [25] are very small, below approximately 10−12. These modes, also
visible in the lower left corner of Fig. 1, are very sensitive to the numerical scheme, to mesh refinement and to
the eigenvalue shift parameter. Arc branch modes are found to be robust with respect to those details[3], but
strongly dependent on the numerical domain length. Coenen et al.[7] show that arc branch eigenfunctions of
a jet are characterised by an integer number of wavelengths between the inflow and outflow boundaries, and
they suggest an analogy with acoustic modes in a pipe of finite length. This analogy implies that arc branch
modes are the result of unwanted resonance between the numerical boundaries, potentially leading to a spu-
rious instability of the numerical system. The present study expands on all these observations, and it aims at
a detailed characterisation of unphysical resonance due to imperfect boundary conditions in open shear flow
calculations.

The possibility that global instability in truncated systems may be brought about by spurious pressure
feedback from boundary conditions was probably first described by Buell & Huerre[2]. In direct numerical
simulations of perturbations in a mixing layer, unstable perturbation growth was observed at long times, in
a configuration that was only convectively unstable in a local sense. Such behaviour is inconsistent with the
interpretation of local convective instability, and it was demonstrated to be caused by unphysical pressure
perturbations emanating from the outflow boundary, which in turn provoked the formation of vortical pertur-
bations at the inflow boundary. Chomaz [5, section 3.2.2] interprets pressure feedback as a non-local operator
variation, arguing that strong non-normality in the spectrum of convection-dominated flows is likely to induce
a high sensitivity of global eigenmodes with respect to such feedback.

While the spurious generation of acoustic pressure waves from artificial boundary conditions is an impor-
tant and much-discussed problem in compressible flow simulations, especially those that aim to accurately
capture the acoustic radiation from shear flows [8], the question of how such artifacts may affect the global
stability behaviour remains largely unexplored, both in compressible and in incompressible configurations.

The problem is approached here in the following manner. Section 2 presents a global instability analysis
of the Ginzburg–Landau equation with explicit feedback from a downstream sensor to an upstream actuator,
in order to examine the effect of such feedback on the eigenvalue spectrum in a controlled setting. This model
study fully describes the suspected mechanism behind arc branch modes. In Sect. 3 the analysis is extended
to a parallel jet flow in a finite-size numerical domain. Global eigenmodes are projected onto their local coun-
terparts, the global pressure field is examined, and spurious feedback effects are analysed. The question how
spurious feedback may be reduced in a practical manner is addressed in Sect. 4, for the example of a spatially
developing jet.

2 A Ginzburg–Landau model problem

The hypothesis put forward by Coenen et al.[7], that the arc branch may be the manifestation of a non-physical
upstream scattering of perturbations from the outflow boundary, is first investigated with the help of a simpli-
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fied model. The linear Ginzburg–Landau equation is written as

∂tψ =−U∂xψ +µ(x)ψ + γ∂xxψ + f (x,ψ) . (1)

The complex scalar variable ψ(x, t) is a function of time t and of one single spatial coordinate x. Constant
parameters U = 6 and γ = 1− i are chosen ad hoc, whereas the coefficient µ varies linearly in x as

µ(x) =
U2

8

(
1− x

20

)
. (2)

With this particular variation of µ , the system is marginally absolutely unstable at x = 0, convectively unstable
for 0 < x < 20, and stable for x > 20, all in a local sense. Ginzburg–Landau systems of this form, with lin-
early decreasing µ(x) and without feedback, f ≡ 0, have been extensively used to model the global instability
behaviour of spatially developing flows in semi-infinite domains [see for instance 9]. The instability charac-
teristics mimic, in a very simple and qualitative manner, those of a spreading jet. However, the system (1) is
not intended here to predict or reproduce the dynamics of any specific flow.

A forcing term f (x,ψ) is added in (1) in order to provide an explicit closed-loop forcing between the
upstream and the downstream end of the flow domain. Some aspects of closed-loop forcing in the Ginzburg–
Landau equation are discussed by Chomaz [5]; in the present context, it is used to model a suspected spurious
feedback in global shear flow computations. Taken to be of the form

f (x,ψ) =C exp
(
− (x− xa)

2

0.12

)
ψ(xs), (3)

a forcing proportional to ψ(xs) is applied in a close vicinity of xa, such that a feedback loop is established
between a (downstream) sensor location xs and an (upstream) actuator location xa. The complex coefficient
C governs the amplitude and phase of the feedback, and the Gaussian spreading around xa is introduced for
reasons of numerical resolution.

Equation (1) is discretised on an interval 0 6 x 6 40, with a step size ∆x = 0.1, using an upwind-biased
seven-point finite difference stencil for the spatial derivatives. A homogeneous Dirichlet boundary condition
for ψ is imposed at the upstream boundary, consistent with typical jet conditions. Actuator and sensor locations
are chosen close to the boundaries, at xa = 1 and xs = 39, where spatial derivatives are well resolved.

Temporal eigenmodes of (1) are sought in the form ψ(x, t) = ψ̂(x)e−iωt . The eigenvalues of the system
without feedback, C = 0, are known analytically to be

ωn = i

{
U2

8
−U2

4γ
+ γ

1
3

U
4
3

160
2
3

ζn

}
, (4)

where ζn is the nth root of the Airy function [6]. These values are represented in Fig. 2 as circles. Each
frame 2(a–d) also displays the numerically computed eigenvalues of systems with feedback, shown as bullet
symbols, for different non-zero values of the coefficient C. Already with very low-level feedback, C = 10−10,
the spectrum is clearly affected: only the leading three eigenvalues of the unforced system are recovered, and
the lower part of the spectrum is replaced with two new stable branches. These branches, named feedback
branches in the following, move upward in the complex ω plane as the feedback coefficient is increased,
masking more and more of the original unforced eigenvalues. Note that those affected original eigenvalues are
not merely altered by the feedback, but they rather disappear abruptly from the spectrum as they fall below the
new branches.

The spectra obtained with C = 10−6 and 10−2 resemble those of pure helium jets, as shown in figure 6
of [7], and those of cylinder wakes obtained by Marquet et al.[20, their figure 16]. The least stable original
eigenvalue lies just above the feedback branches, apparently unaffected. In the strongest feedback case, C =
102, the feedback branches have merged into one, overarching the entire spectrum of the feedback-free system,
which has altogether disappeared. This picture (Fig. 2d) resembles the spectrum of the slowly developing jet
of Coenen et al.[7], reproduced in our Fig. 1.

The similarity between the feedback branches in the present model and the arc branch in the jet spectrum
(Fig. 1) is also manifest in the pseudospectra. If feedback is thought of as a variation of the operator [5],
it should be possible to relate feedback-induced eigenvalues to the pseudospectrum. The pseudospectrum is
defined here by the spectral norm of the resolvent operator,

∂tψ = Lψ → ‖(iωI+L)−1‖= ε
−1, (5)
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a) C = 10−10 b) C = 10−6

c) C = 10−2 d) C = 102
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Fig. 2 Spectra of the Ginzburg–Landau equation (1) with various feedback coefficients C. Eigenvalues with closed-loop feedback (•),
and analytical eigenvalues (4) of the case without feedback (◦).
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Fig. 3 Pseudospectra of the Ginzburg–Landau equation; (a) without feedback, C = 0, and (b) with feedback, C = 10−6. Contours of ε ,
defined in (5), are represented in logarithmic colour scale.

at any complex frequency ω [25]. Pseudospectrum ε-contours of the Ginzburg–Landau equation are compared
between the unforced setting with C = 0, Fig. 3(a), and the forced setting with C = 10−6, Fig. 3(b). It is
seen that the feedback branches align closely with an isocontour of the feedback-free pseudospectrum. This
criterion also applies to all other cases displayed in Fig. 2, with different values of C, and it is fully consistent
with observations made in three flow configurations [13, 3, 7]. Furthermore, the pseudospectrum of the system
with feedback is identical to that of the system without feedback above the feedback branches, whereas the
pseudospectrum is flattened, nearly constant, below the feedback branches. The same behaviour is found in
the jet pseudospectrum shown in Fig. 1.

Finally, the discrete distribution of feedback modes along the branch is investigated. The strong feedback
case C = 102 is considered for illustration. Eigenfunctions of successive feedback modes are presented in
figure 4, analogous to the representation of jet results in figure 5 of [7]. The absolute value of ψ is traced in
logarithmic scale as a function of x. The phase of ψ is always chosen such that the real part of ψ is zero in the
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Fig. 4 Eigenfunctions of the feedback branch for C = 102. Left column: position of the eigenvalue in the spectrum; right column: corre-
sponding eigenfunction log10 |Re(ψ)| along x. Zero wavelengths are present in the top frame, one in the second, and so forth up to four
wavelengths in the bottom frame. The series continues further along the branch.

sensor location xs = 39, with the exception of the first mode (Fig. 4a), which has no interior wave nodes. Only
positive real frequencies are considered.

Clearly, the eigenfunctions are characterised by integer numbers of wavelengths between the actuator and
sensor locations, starting from zero wavelengths in the case of the lowest real frequency (Fig. 4a, only am-
plitude variations but approximately constant phase), to one wavelength in Fig. 4(b), and so forth with a
continuously increasing count. The series could be continued further along the entire arc branch. The present
model seems to reproduce very well the characteristics of arc branch eigenfunctions, as displayed in figure 5
of [7].

The position and spacing of eigenvalues along the branch curve, fixed approximately by an isocontour of
the pseudospectrum, appears to be determined by a fitting phase relation between ψ at the actuator location
and the applied feedback. To further illustrate this mechanism, the phase of the feedback coefficient C is
varied. Figure 5 shows the arc branch as it is obtained with values C = 102 (bullets, same as before), C = 102i
(crosses), C = −102 (plus signs) and C = −102i (squares). All symbols fall onto the same curve, confirming
that the position of feedback eigenmodes, which represent singularities in the pseudospectrum, is fixed by the
phase of the feedback relation, such that resonance can occur between both ends of the loop.

3 A parallel jet

The effect that imperfect numerical boundary conditions can have on eigenmode computations in a two-
dimensional flow domain is now investigated for the case of axisymmetric perturbations in a parallel round jet,
governed by the incompressible axisymmetric Navier–Stokes equations,

0 = ∂rur +
ur

r
+∂xux, (6a)

∂tur =−ur∂rur−ux∂xur−∂r p+
1

Re

(
∂rrur +

∂rur

r
− ur

r2 +∂xxur

)
, (6b)

∂tux =−ur∂rux−ux∂xux−∂x p+
1

Re

(
∂rrux +

∂rux

r
+∂xxux

)
. (6c)
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Fig. 5 Eigenvalues of the feedback branch for |C|= 102 with varying phase: (•) C = 102, (×) C = 102i, (+) C =−102, (�) C =−102i.

Boundary conditions are prescribed as

ur = ux = 0 at x = 0, (7a)

Re−1
∂xux− p = 0 at x = xmax, (7b)

ur = ∂rux = 0 at r = 0 and r = rmax. (7c)

The stress-free outflow condition is a common and convenient choice for finite-element computations. Jet
radius and centreline velocity are the dimensional length scales in this formulation, and the Reynolds number
is chosen as Re = 100.

The advantage of using a parallel base flow profile is that the global results can be rigorously compared
with local instability properties. The standard analytical model of Michalke [21] is adopted,

U(r) =
1
2

(
1+ tanh

[
1

4θ

(
1
r
− r
)])

, (8)

and a momentum thickness θ = 0.1 is chosen for this example.
The axisymmetric perturbation equations that follow from linearization of (6) about the base flow (8)

are discretized with finite elements on a domain of length xmax = 20 and radial extent rmax = 50, using the
FreeFEM++ software. This domain is resolved with 80 equidistant elements in x, and with 360 non-equidistant
elements in r. The equations are solved for eigenmodes [ur,ux, p]T (r,x, t) = [ûr, ûx, p̂]T (r,x)exp(−iωt), where
the eigenvalue ω = ωr + iωi contains the angular frequency ωr and the temporal growth rate ωi.

The global spectrum is shown in Fig. 6. It features a clean upper arc branch (red) with maximum growth
rate at ω1 = 1.111− 0.052i. This mode, labelled ‘1’, is chosen for further analysis. A lower branch (blue)
is also present, from which the mode labelled ‘2’ with ω2 = 0.912− 1.211i will be examined. Similar lower
branches are visible in wake spectra [24] and in boundary-layer calculations [1].

3.1 Projection onto local instability modes

For comparison, the corresponding local instability problem, for a domain of infinite extent x ∈ (−∞,∞), is
solved with a standard Chebyshev collocation technique on a staggered grid [16], using a coordinate transfor-
mation adapted for jet profiles [18]. Identical radial collocation point distributions are used in the global and
local computations, such as to eliminate the need for interpolation. Consistent boundary conditions (7c) are
imposed in the local problem.

Spatial local instability modes are computed for the ω values corresponding to the global modes labelled
in Fig. 6. The flow is convectively unstable, with an absolute frequency ω0 = 1.074−0.286i. Both direct and
adjoint modes are solved for. The adjoint local modes represent the dual basis associated with the set of direct
modes, and they serve for projecting the spatial structure of the global mode onto the local direct modes.

This projection is carried out in the following way, similar to the procedure used by Rodríguez et al.[23]:
at a given streamwise station x, the radial variations of the global mode perturbation quantities are extracted.
Since the eigenvector of the spatial local problem contains auxiliary variables kûr and kûx [see 18], these must
also be added to the extracted slice of the global mode. This is accomplished by computing the streamwise
derivative of the global ûr and ûx fields, and by augmenting the extracted vector [ûr, ûx, p̂]T with [−i∂xûr,−i∂xûx]

T .
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Fig. 6 Spectrum of the parallel jet in a finite domain with inflow and outflow boundary conditions. Red: arc branch; blue: lower branch.
Labelled modes are discussed in the following.
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Fig. 7 Spatial eigenvalues from a local analysis of the parallel jet. Lines represent branches obtained by varying the real part of the
frequency. a) global mode 1: ω = 1.111−0.052i; b) global mode 2: ω = 0.912−1.211i.

This augmented global slice is finally projected onto the local modes, via scalar multiplication with the asso-
ciated adjoint modes. As usual, the adjoint modes are normalised beforehand in such a way that their scalar
product with the associated direct mode is unity, whereas the direct modes are by themselves scaled to have
unit norm.

The spatial local spectrum of the parallel jet profile, shown in Fig. 7 for the frequency values of global
modes 1 and 2, is composed of discrete k+ and k− modes [15], which represent downstream- and upstream-
propagating hydrodynamic perturbations inside and near the jet. The labels in Fig. 7 rank all k+ and k− modes
according to their spatial growth rate −ki.

Figure 8 displays absolute values of the projection coefficients, obtained for global mode 1, pertaining
to the three dominant local modes. These are the first two k+ modes and the first k− mode. Blue symbols
represent the k+1 mode (the only one displaying unstable spatial growth). Except very near the Dirichlet inlet,
the streamwise variation of this local mode amplitude is perfectly exponential, with a spatial growth rate
0.4604, as measured by a regression fit over 16 x6 19. This value matches within 0.01% the imaginary part
of the local eigenvalue. The amplitude of the global mode component ûx on the jet centerline is shown as a
black line for reference.

Green symbols in Fig. 8 denote the amplitude of k+2 , and red symbols the amplitude of k−1 . Straight lines
indicate the corresponding growth rate of the local eigenvalue for comparison. It is seen that both projections
follow the amplitude variations expected from local analysis in a region close to one boundary, where their
amplitude is maximal. Clearly, the k+2 mode originates at the upstream boundary, whereas the k−1 mode is
forced at the downstream end. Farther away from those boundaries, both projections approximately follow
the slope of the dominant k+1 branch. This behaviour results from imperfections in the numerical projection,



8 Lutz Lesshafft

0 2 4 6 8 10 12 14 16 18 2010−8

10−7

10−6

10−5

10−4

10−3

10−2

x

Fig. 8 Projection of global mode 1 onto spatial local modes of frequency ω = 1.111−0.052i: absolute values of the projection coefficients
as functions of x. Legend: (•) k+1 ; (+) k+2 ; (×) k−1 ; ( ) global mode component ûx(0,x) on axis; colored lines indicate the growth rates
according to local analysis.
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Fig. 9 Projection of global mode 2 onto spatial local modes of frequency ω = 0.912−1.211i: absolute values of the projection coefficients
as functions of x. Legend: (•) k+2 ; (+) k+3 ; (×) k±; ( ) global mode component ûx(0,x) on axis; colored lines indicate the growth rates
according to local analysis.

which apparently only allows a clean distinction between these local modes down to amplitude ratios around
10−3 in the present setup. Higher spatial resolution in the local and global computations does not improve this
threshold. Note that these three modes are highly non-orthogonal, which makes their distinction numerically
delicate.

Overall, local mode contributions other than from the k+1 mode to the global mode 1 are tractable but rather
negligible. Modulations of the centerline velocity perturbation (black line in Fig. 8) are instead attributable to
global pressure modes, as will be shown later on.

Very similar results are obtained for the global mode 2, for which the local mode amplitudes are displayed
in Fig. 9. However, the local spectrum in this case differs from that of mode 1, as the global frequency ω2 =
0.912−1.211i has an imaginary part below that of the absolute frequency ω0 = 1.074−0.286i. Therefore, in
the analysis of global mode 2, the local spatial modes are selected from a spectrum where pinching of the k+1
and the k−1 has already occurred (see Fig. 7b). In this setting, it is now the k+2 mode that displays the strongest
downstream growth, followed by the k+3 mode. A mode from the mixed branch, formed from the k+1 and k−1
branches after pinching, is denoted k±.

The global mode 2, as represented by a black line in Fig. 9, is clearly dominated by the k+2 mode (blue
bullet symbols), but the k+3 and k± modes are again discernible down to amplitudes three orders of magnitude
below k+2 . It is not clear a priori how the k± mode is to be interpreted, in particular with regard to its up-
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or downstream propagation. However, the projection results plainly show that this mode is generated at the
downstream end, from where it propagates upstream; thereby, it behaves as a mode of k− type.

It is stressed that the analysis of spatial branches below the absolute growth rate is indeed meaningful
in the present context. Spatial analysis below the absolute growth rate, i.e. after pinching has taken place, is
usually said to be in violation of temporal causality, formally expressed by the fact that no integration path can
be found in the complex k-plane that separates k+ and k− branches [14]. This argument however arises in the
context of the asymptotic flow behaviour at long times, when indeed the system dynamics are determined by
the absolute mode. In the same sense, a global system is asymptotically determined by only the most unstable
eigenmode (here: global mode 1). Notwithstanding, global eigenmodes with lesser growth rate do exist, and
they are observable in the transient system dynamics. The spatial local modes used in the analysis of global
mode 2 are justified in the same way.

In summary, the projections onto local spatial modes demonstrate that global mode 1 is supported by a local
k+1 mode, whereas global mode 2 relies on a k+2 mode. In all likelihood, the same holds true for any global
mode of the arc branch (k+1 ) and of the lower branch (k+2 ). Moreover, although not shown in Fig. 6, further
lower branches exist at lower growth rates ωi < −1.5, for which a match with higher local k+ branches is
anticipated. The link between the arc branch and the dominant k+ mode has been pointed out in earlier studies
[for instance 10, 1, 12]. However, the argument so far has one loose end: the presence of a local k+ mode is
contingent on it being forced upstream. The present results show that this forcing takes place immediately at
the upstream boundary. The essential ingredient that can give rise to a global mode with a k+ wave is feedback
from downstream.

3.2 Global pressure feedback

The ellipticity of the global linear jet problem is contained in the pressure gradient and in the viscous terms.
The latter will only be noticeable over distances much shorter than the numerical box length, and they are not
considered in the following analysis. The pressure, as noted by Ehrenstein & Gallaire [10], obeys a Poisson
equation, which in the present case of parallel flow takes the form

∆ p̂ =−2∂rU∂xûr, (9)

with homogenous Dirichlet and Neumann conditions at the upstream and lateral boundaries, respectively, and
with p̂ = Re−1∂xûx at the outflow.

The following analysis is restricted to the arc branch mode labelled ‘1’ in Fig. 6, but results for mode
2 are not fundamentally different. The pressure amplitude of mode 1 is shown in Fig. 10(a) as log10 |p̂|. Its
structure is somewhat irregular in the downstream near-field region of the jet, yet the characteristic wavelength
2π/kr = 4.1 of the k+1 mode is apparent. The stress-free outflow boundary condition is seen to result in p̂≈ 0,
and the pressure at r & 5 is essentially a superposition of fundamental solutions of the homogeneous equation
∆ p̂ = 0, with Dirichlet conditions at the inflow and outflow. These are given by

p̂ j =

[
A jI0

(
jπ
L

r
)
+B jK0

(
jπ
L

r
)]

sin
(

jπ
L

x
)
, j ∈ N, (10)

where I0 and K0 are the modified Bessel functions of the first and second kind, respectively, and L = 20 is
the streamwise length of the numerical box. The K0 functions are exponentially decaying in r, manifestly
dominant in the present problem, whereas the I0 functions grow exponentially in r. These only enter the global
mode at very low amplitude (A j/B j � 1) in order to satisfy the Neumann condition at rmax = 50. Only the
p̂1 component is clearly visible in Fig. 10a, because it experiences the slowest radial decay, but a projection
confirms that at least the first five p̂ j components enter the pressure field with comparable global norms.

It is known from the analysis in Sect. 3.1 that the global mode involves a strong k+1 wave. In the present
section, the complementary part is sought that may provide the upstream-reaching part of a feedback loop.
Therefore, the k+1 component of the global mode is subtracted from the pressure field, using the already known
projection coefficients shown in Fig. 8. This ‘stripped’ pressure field p̃ is presented in Fig. 10(b), as log10 |p̃|.
A remarkably clean structure is recovered, suggestive of a solution of the Laplace equation ∆ p̃ = 0 which is
forced at the outflow boundary near the jet axis. A small inhomogeneity is also observed at the inflow near the
the jet axis.

Note that the local k+1 mode by construction represents a particular solution of (9) in a domain of infinite
streamwise extent. Within the limits of the simplifying assumption that the propagating perturbations in the
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Fig. 10 Pressure perturbation fields of global mode 1. a) total pressure perturbation log10 |p̂|; b) pressure perturbation log10 |p̃|, obtained
by subtraction of the k+1 component.

0 2 4 6 8 10 12 14 16 18 20
10−6

10−5

10−4

10−3

10−2

x

pr
es

su
re

am
pl

itu
de

Fig. 11 Pressure signal amplitudes along x at the critical point, rc = 0.92. (•) total pressure |p̂|; ( ) pressure associated with k+1 wave;
( ) ‘stripped’ pressure |p̃|. Note that all signals are numerically zero at x = 0.

region of ∂rU 6= 0 are indeed given by the k+1 mode alone, in the interior of the bounded domain, the stripped
pressure field p̃ only needs to satisfy the inhomogeneities that arise from the boundary conditions. These
inhomogeneities on both ends of the domain are thus coupled through the Laplace equation in p̃.

As a final plausibility check, the amplitudes of the supposed downstream-propagating and upstream-
reaching components of the feedback loop are compared in Fig. 11 along a path at constant r. The radial
position of the critical point of the local k+1 mode is chosen, rc = 0.92. A thin blue line represents the pressure
amplitude of the k+1 mode component, according to the projection carried out in Sect. 3.1, a thick red line
represents the amplitude of the pressure feedback signal p̃, and black symbols mark the amplitude of the total
pressure field p̂. The up- and downstream branches have approximately equal amplitude at the downstream
boundary, nearly cancelling each other. Near the upstream boundary, the feedback signal is larger by about a
factor 3 than the k+1 wave — this appears reasonable in view of the assumption that the latter is forced by the
former.
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Fig. 12 Influence of the numerical box length on eigenvalues. In all figures, different symbols denote different box lengths: (�) L = 25;
(•) L = 20; (�) L = 15; (N) L = 10. a) Arc branch eigenvalues. b) Effective reflection coefficients according to (11), absolute values. c)
Effective reflection coefficients, phase. d) Effective reflection coefficients, absolute value scaled with L3.

3.3 The influence of box length

Arc branch modes in the literature are consistently found to be sensitive to the length of the numerical box. In
some instances [e.g. 12], a longer box yields eigenvalues with lower growth rates, in other instances [e.g. 10]
the opposite effect is observed. If the present feedback model is correct, it should allow an estimation of the
influence of the numerical box length on the arc branch growth rates.

Eigenmodes of the parallel jet (8) have been computed in numerical domains of streamwise lengths L =
10,15 and 25, for comparison with the standard configuration L = 20; in all cases, the radial discretisation and
the constant step size ∆x are unchanged. Resulting modes of the arc branch are displayed in Fig. 12(a). As L
is increased, the entire branch is seen to shift to higher growth rates, and the modes are more densely spaced.

The analysis so far suggests that a downstream-convecting k+ mode and the elliptic pressure field are
coupled in small regions near the inflow and outflow boundaries. In analogy with the Ginzburg–Landau model
discussed in Sect. 2, an effective reflection coefficient C may be defined, which relates the forcing of the k+

mode at the inflow to the k+ amplitude at the outflow, thus lumping the narrow interaction regions into singular
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actuator and sensor positions in x. The effective forcing at the Dirichlet inflow boundary is modelled as

− iω q̂ =Cq̂eikL → C =−iωe−ikL, (11)

where ω is the global eigenmode frequency, and (k, q̂) denote the relevant local k+ mode. The coefficient C
includes the effects of coupling on both ends of the domain, as well as the upstream decay of the pressure
signal, seen in Fig. 11.

Numerically obtained values of C are reported in figures 12(b,c), in terms of their absolute value and their
phase, for the arc branch in all four numerical domains. In each domain, the reflection coefficient decreases
with real frequency, but only weakly so for frequencies larger than one. This effect may be caused by the
slower radial decay of q̂ at low frequencies, resulting in radially more extended interaction regions on both
domain ends. The phase of C varies only slightly with frequency, and it is independent of box length.

If the reflection coefficients are scaled with the cube of the box length, as shown in Fig. 12(d), they neatly
collapse onto one curve. Consequently, the effective feedback imparted by boundary reflections decreases with
the domain length as L3. This scaling factor indicates that the relevant component of the pressure signal, which
couples the downstream with the upstream end of the k+ wave, is of a quadrupole type (signals from monopole
and dipole sources at x = L would decay as L and L2, respectively).

It is then straightforward to interpret the effect of an increased numerical box length on a given arc branch
mode: if the exponential growth of the dominant k+ mode over the added streamwise interval is larger than
the algebraic decay of the upstream-reaching pressure signal, over the same added distance, then the spurious
inlet forcing will increase in strength, resulting in a higher growth rate ωi. If the k+ mode in the added region
is locally stable, then the inlet forcing will decrease, and the global growth rate will be lower as a result.

This interpretation appears to be consistent with the two cited examples: the boundary layer investigated
by Ehrenstein & Gallaire [10] is locally unstable at the outflow, as confirmed by the authors, and longer
domain sizes are found to result in higher global growth rates. In contrast, the rapidly spreading jet considered
by Garnaud et al.[12] is locally stable at the outflow with respect to axisymmetric perturbations, and indeed
lower global growth rates are obtained for the arc branch in longer domains. This criterion may of course
be frequency-dependent: certain (complex) frequencies may be locally stable at the outflow while others are
unstable, and opposite trends ought to be observed in these frequency ranges. This seems indeed to be the case
in the Re = 360 setting of Coenen et al.[7].

4 Possible remedies, tested for a non-parallel jet

While the preceding analyses of the Ginzburg–Landau equation and of the parallel jet served to characterise
the global feedback mechanism due to domain truncation, the question how such feedback may be reduced is
addressed in this section for the example of a spatially developing jet. With this choice, the results from the
previous section can be largely transferred to the new setting.

Each type of open flow may present particular problems in view of domain truncation. In favourable con-
figurations, the numerical boundaries can be placed in stable flow regions, as for instance in a uniform flow
upstream of a solid obstacle, like a cylinder. In other cases, the need for truncation may be avoided by prescrib-
ing consistent physical boundaries, like confining solid walls, which are then part of the flow configuration.

Jets belong to a more problematic category. They are created by some upstream source of momentum,
and it is in general not feasible to include the entire upstream apparatus (fan, chamber, nozzle, etc.) in the
calculations, which would furthermore defeat the purpose of any generic description of jet dynamics. The
formulation of upstream flow and boundary conditions is therefore necessarily imperfect with respect to any
flow realisation, as potentially important regions are not accounted for.

For the present study, the jet is modelled as issuing from an orifice in a solid wall, very similar to the
configuration of Garnaud et al.[12]. Upstream of the orifice, the flow develops in a straight circular pipe, from
where it exits with a fairly thin boundary layer. The base flow is computed as a steady, axisymmetric solution
of the incompressible Navier–Stokes equations (6), with an inflow condition

U(r) = tanh
[

5
2

(
1
r
− r
)]

(12)

imposed at x = −10. Newton–Raphson iterations are performed in order to converge to a steady flow state.
The numerical domain for these base flow calculations is truncated downstream at xmax = 50 and radially
at rmax = 50, where stress-free conditions are applied. The Reynolds number is set to 1000 in the free jet.
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Fig. 13 Steady state of a spatially developing jet, used as a base flow in all calculations of Sect. 4. a) Contours of axial velocity near
the orifice at x = 0. Contour values are distributed between 0 and 1, with constant spacing of 0.1. The base flow is computed on a
larger domain, with −10 6 x 6 50 and 0 6 r 6 50. b) Streamwise development of the shear layer momentum thickness. c) Streamwise
development of the centreline velocity.

xmin xmax upstream BC absorbing layer

case 1 0 40 Dirichlet no
case 2 −5 40 Dirichlet no
case 3 −10 40 Dirichlet no
case 4 0 40 stress-free no
case 5 −5 40 stress-free no
case 6 −10 40 stress-free no
case 7 −5 40 Dirichlet yes, λmax = 0.5
case 8 −5 50 Dirichlet yes, λmax = 0.75

Table 1 Numerical configurations of the various eigenmode calculations discussed in this section.

However, in order to maintain a thin shear layer at the orifice, this value is varied exponentially inside the pipe,
between Re = 105 at x =−10 and Re = 103 at x>−0.2, in the base flow calculation. The resulting flow field
near the orifice at x = 0 is represented in Fig. 13, together with the characteristic streamwise variations of the
shear layer momentum thickness θm and of the centreline velocity.

Eigenmode calculations are carried out on smaller domains, where portions of the base flow are cropped at
the inflow, the outflow, or both, in order to probe the effect of domain truncation. All configurations are listed
in table 1. The Reynolds number in these calculations is set to 1000 throughout the domain.

The influence of upstream truncation on eigenmodes is considered first. Figure 14a shows spectra for three
different domains, with homogeneous Dirichlet conditions (7a) imposed at xmin = (0,−5,−10), respectively.
The downstream end of the numerical domain is placed at xmax = 40, where stress-free conditions (7b) are
applied in all three cases. Unconverged and lower-branch eigenvalues are not shown here and in the following
for clarity; the criterion for convergence is that an eigenvalue could be reproduced within three-digit accuracy
using two different shift values.

It is seen from Fig. 14a that the arc branch is quite insensitive to the position of the upstream Dirichlet
boundary. Even a full truncation of the upstream pipe (case 1) only results in a slight stabilisation at high
frequencies. Eigenvalues obtained with pipe lengths of 5 and 10 radii (cases 2 and 3) are virtually identical.
Stress-free inflow conditions (cases 4, 5 and 6, spectra shown in Fig. 14b) are found to perform less favourably.
When applied at x = 0, these conditions give rise to global instability; the inclusion of portions of the pipe has
a stabilising effect, but even with xmin =−10 the growth rates along the entire arc branch are still significantly
higher than those obtained with Dirichlet conditions.
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Fig. 14 Arc branch spectra obtained in calculations with (a) Dirichlet and (b) stress-free upstream boundary conditions.
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Fig. 15 Arc branch spectra obtained in calculations with (×,•) and without (+) absorbing layer. Circles mark the individual modes for
which eigenfunctions are shown in Fig. 16.

It is to be expected that global pressure fluctuations induce a generation of vorticity waves at the solid
corner at x = 0, and the independence of the eigenvalues in cases 2 and 3 (Fig. 14a) on the upstream boundary
position suggests that this physical effect is dominant over spurious pressure-vorticity coupling at xmin. It
remains to be determined to what extent the downstream boundary conditions emit spurious pressure signals,
and how these may be reduced.

Garnaud et al. [12] tested stress-free and convective outflow conditions in an almost identical jet configura-
tion, and found no significant difference in the resulting spectra. In the present study, the potential of absorbing
layers [8] for a stabilisation of the arc branch is examined. To this end, an artificial damping term is added to
the linear perturbation equations, with the purpose of reducing perturbation amplitudes before they reach the
numerical boundary at xmax. If the original global eigenvalue problem is written

− iωBq̂ = Lq̂, (13)

then the eigenvalue problem with absorbing layer is defined as

− iωBq̂ = [L−λ (x)B] q̂. (14)

For cases 7 and 8 (see table 1), the damping parameter is prescribed as

λ (x) =


0 for x6 19,

0.00625x2−0.2375x+2.25625 for 19 < x < 21,
0.025(x−20) for x> 21.

(15)
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Fig. 16 Amplitude variations in x of selected eigenfunctions, as marked in Fig. 15. The amplitude is defined in Eq. (16).

This variation of λ is continuous in its first derivative, and it has maximum values 0.5 and 0.75 at xmax = 40
and xmax = 50, respectively.

The effect of absorbing layers on the eigenvalue spectrum is documented in Fig. 15. Damping in the
downstream region 19 6 x 6 40 (case 7) is seen to reduce the growth rates of arc branch modes significantly
(compared to case 2). Eigenfunctions of selected modes, marked by circles in Fig. 15, are compared in Fig. 16.
An integral amplitude measure is defined as

A(x) =
[∫ 1

0

(
|ûr|2 + |ûx|2

)
r dr
] 1

2

, (16)

and the amplitude curves in Fig. 16 are normalised with respect to their values at the outflow boundary for com-
parison. While the red curve (case 2, no absorbing layer) shows a monotonic growth of perturbation amplitude
throughout the domain, similar to the parallel jet results in figures 8 and 9, the blue curve (case 7) reaches
a maximum inside the absorbing layer and subsequently decays in x. Remarkably, the ratio A(xmax)/A(0) is
identical in both cases, which is consistent with the interpretation of these modes as being the result of spuri-
ous feedback from the outflow, in the same way as detailed in Sect. 3 for the parallel jet. The absorbing layer
reduces the gain of the k+ hydrodynamic branch of the feedback loop, and thereby the temporal modal growth
rate.

Based on the discussion in Sect. 3, stronger artificial damping of the hydrodynamic branch ought to lead
to ever smaller modal growth rates; longer domains should furthermore lead to a reduced amplitude of the
incident pressure signal upstream, due to its cubic decay. Both conditions are combined in case 8 (see table 1),
of which results are included in figures 15 and 16. Indeed, the temporal growth rates are further reduced, and
the spatial decay of the eigenfunction amplitude in the absorbing layer is more pronounced than in the case 7.

However, the shape of the arc branch in case 8 displays some differences with respect to all other cases,
and similar mode patterns have been reported from jet calculations on long domains by Coenen et al. [7],
where no artificial damping was applied. In the vicinity of the least stable mode (circled in Fig. 15), a regular
spacing in ωr is still observed, but with larger distances between consecutive modes than in cases 2 and 7.
The corresponding amplitude function in Fig. 16 shows that the ratio A(xmax)/A(0) is smaller than in the two
other cases, whereas the cubic decay of the reflection coefficient with box length, as described in Sect. 3,
should have resulted in a larger ratio. Furthermore, stronger damping through higher values of λ , tried in test
calculations that are not shown here, does not decrease the maximum growth rate much further, but it quickly
leads to ill-conditioned system matrices. Case 8 seems indeed to mark an efficiency limit of absorbing layers
for the stabilisation of the arc branch.

The above observations, in particular the increased spacing of modes in ωr, suggest that pressure feedback
in the strongly damped case 8 may originate from the interior of the domain, possibly from the location of the
amplitude maximum. Such feedback may be spurious, in the sense of Heaton et al. [13], or it may be physical.
This hypothesis is suggested for further examination.
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5 Conclusions

A family of linear instability eigenmodes, named the arc branch, has been analysed in view of its physical
or numerical origin. Branches of this type have previously been observed in a large variety of open flows.
All results presented herein lead to the conclusion that arc branch modes in incompressible flow calculations
are an artifact of domain truncation, due to spurious pressure feedback between numerical inflow and outflow
boundaries.

A Ginzburg–Landau model was investigated first, because in this setting the effect of explicitly prescribed
feedback between a downstream sensor and an upstream actuator could be examined without ambiguity. In
the presence of feedback, a branch of eigenmodes was observed to arise that exhibits all typical characteristics
of the arc branch described by Coenen et al.[7] for the example of light jets. These modes align with a con-
tour of the pseudospectrum, spaced at regular intervals of the real frequency, and their spatial eigenfunction is
characterised by an integer number of wavelengths between actuator and sensor locations. As the strength of
the feedback is increased, the branch moves steadily upward to higher growth rates in the complex frequency
plane. Eigenmodes of the feedback-free system that lie below the arc branch are no longer detectable. An im-
portant observation is that this arc branch in the Ginzburg–Landau equation with feedback has no counterpart
in the feedback-free spectrum: these eigenmodes are not merely affected by the presence of feedback, indeed
without it they do not exist.

An incompressible parallel jet in a truncated domain was examined next. No explicit feedback was pre-
scribed in this setting, but a similar arc branch of eigenmodes was nonetheless found to dominate the spectrum.
A lower branch of eigenmodes with stronger temporal decay was also described, which may correspond to sub-
dominant branches observed in wakes and boundary layers. Both the arc-branch and the lower-branch modes
in the parallel jet were shown to be composed primarily of one downstream-propagating k+ wave, as computed
from a local spatial analysis. Each of the two branches involves a different k+ mode. This observation raises
the question how a k+ wave is generated at the upstream boundary of the numerical domain. The analogy with
the Ginzburg–Landau model from Sect. 2 suggests feedback from downstream.

The most plausible mechanism for global feedback in a truncated domain is the generation of pressure
perturbations due to the artificial downstream boundary condition, as described by Buell & Huerre[2]. The
pressure field of the least stable arc branch mode was decomposed into one portion associated with the promi-
nent k+ wave, which cannot be involved in upstream feedback, and into a residual part that is essentially
governed by a Laplace equation forced at the domain boundaries. The latter appears to be strongly dominated
by a source region at the outflow, near the jet axis. A numerical evaluation of effective reflection coefficients,
in analogy with the Ginzburg–Landau model of Sect. 2, established as a principal result that the strength of
upstream feedback decays with the numerical box length to the third power. This scaling is indicative of a
spurious pressure quadrupole situated at the outflow. The algebraic nature of the pressure decay allowed a
prediction of the effect of box length variations on arc-branch growth rates, depending on the local stability or
instability of the flow, apparently consistent with common observations. While this study has been limited to
incompressible flow settings, similar mechanisms will also be present in compressible calculations, with the
difference that spurious pressure signals are then propagated by a wave equation. This may in fact result in
stronger feedback, as the far-field acoustic pressure only decays with the first power of the distance from the
source.

Finally, possible strategies for a reduction of spurious pressure feedback have been examined for the ex-
ample of a spreading jet. On the one hand, upstream boundary conditions must be chosen that minimise the
unphysical conversion of pressure feedback from downstream to vortical perturbations. It has been found, in
this particular flow example, that Dirichlet conditions perform much better than stress-free conditions in this
regard. On the other hand, the generation of spurious pressure signals from the outflow boundary must be re-
duced. It has been demonstrated that artificial damping in a downstream absorbing layer provides an efficient
means to achieve this. An advantage of this technique is that it is straightforward to implement in any usual
open shear flow problem. It has been noted, however, that increasingly strong damping does not reduce the
growth rate of the arc branch to arbitrarily low levels.
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Léopold Shaabani-Ardali1,2†, Denis Sipp2 and Lutz Lesshafft1
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The spontaneous pairing of rolled-up vortices in a laminar jet is investigated as a global
secondary instability of a time-periodic spatially developing vortex street. The growth
of subharmonic perturbations, associated with vortex pairing, is analysed both in terms
of modal Floquet instability and in terms of transient growth dynamics. The article has
the double objective to outline a toolset for global analysis of time-periodic flows, and
to leverage such an analysis for a fresh view on the vortex pairing phenomenon.

Axisymmetric direct numerical simulations (DNS) of jets with single-frequency inflow
forcing are performed, in order to identify combinations of the Reynolds and Strouhal
numbers for which vortex pairing is naturally observed. The same DNS calculations
are then repeated with an added time-delay control term, which artificially suppresses
pairing, so as to obtain time-periodic unpaired base flows for linear stability analysis. It
is demonstrated that the natural occurrence of vortex pairing in nonlinear DNS coincides
with a linear subharmonic Floquet instability of the underlying unpaired vortex street.
However, DNS results suggest that the onset of pairing involves much stronger temporal
growth of subharmonic perturbations than what is predicted by modal Floquet analysis,
as well as a spatial distribution of these fast-growing perturbation structures that is
inconsistent with the unstable Floquet mode. Singular value decomposition of the phase-
shift operator (the operator that maps a given perturbation field to its state one flow
period later) is performed for an analysis of optimal transient growth in the vortex
street. Non-modal mechanisms near the jet inlet are thus found to provide a fast route
towards the limit-cycle regime of established vortex pairing, in good agreement with DNS
observations.

It is concluded that modal Floquet analysis accurately predicts the parameter regime
where sustained vortex pairing occurs, but that the bifurcation scenario under typical
conditions is dominated by transient growth phenomena.

1. Introduction

When the shear layer of a jet is subjected to low-level forcing at the nozzle, pertur-
bations within a band of unstable frequencies are amplified as they travel downstream
(Michalke 1971). When the perturbation amplitude reaches nonlinear levels, the shear
layer rolls up into vortices. In the case of laminar jets, forced axisymmetrically at a
single frequency, a regular street of ring vortices is formed, where the passage frequency
of vortices is controlled by the nozzle forcing. It has long been observed that such
vortices may, in certain parameter regimes, spontaneously undergo regular pairing : two
neighbouring vortices then merge into one, such that a new vortex street is formed, with
a periodicity that corresponds to the subharmonic of the applied forcing frequency. This

† Email address for correspondence: leopold.shaabani-ardali@ladhyx.polytechnique.fr
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Figure 1: Experimental visualisation of pairing in a jet, snapshot of a movie by Schram
(2003).

scenario is illustrated in figure 1, which shows a flow visualisation from the experiments by
Schram (2003). The first systematic studies of the pairing scenario have been conducted
by Zaman & Hussain (1980) and Hussain & Zaman (1980). While the merging of two
vortices is clearly a nonlinear process, it remains to be clarified to what extent the
occurrence of regular vortex pairing is governed by linear mechanisms, and how such
linear dynamics may be properly formalised.

Numerous past studies have sought to explain the pairing phenomenon by investigating
the consistency of the paired flow state itself. Monkewitz (1988) developed a theoreti-
cal framework based on weakly nonlinear interaction between the forced fundamental
instability wave and its subharmonic. His formalism leads to a phase-relation criterion
for subharmonic resonance, which has subsequently been validated experimentally by
Husain & Hussain (1989), Raman & Rice (1991), Paschereit et al. (1995) and others.

A different approach consists in considering the bifurcation process from a harmonic
unpaired to a subharmonic paired state. This viewpoint leads to the question whether
an array of vortices convecting at the imposed forcing frequency is unstable with respect
to subharmonic perturbations. In forced jets, vortex pairing occurs as a self-sustained
process, and the pairing location is stationary in a spatially non-periodic flow. Therefore,
the appropriate framework will have to be based on either locally absolute/convective,
or fully global analysis. Brancher & Chomaz (1997) investigate the absolute nature of
pairing instability in a periodic array of Stuart vortices, as a model for a rolled-up
two-dimensional plane shear layer. In order to apply the notion of absolute/convective
instability (Huerre & Monkewitz 1990), commonly used for steady configurations, they
conduct their analysis in a co-moving frame of reference, where the vortices are station-
ary. By varying the concentration factor of the vortices, they show that the required
backflow rate for absolute instability decreases as the vortex concentration increases.
This formalism pertains to a spatially periodic array of vortices and does not account for
viscous effects.

In the present study, we aim to describe the onset of vortex pairing as a secondary
instability in a global analysis framework. As the underlying basic state, the unpaired
vortex street resulting from the primary shear instability, is time-periodic, a classical
Floquet formalism is employed. Modal instability as well as transient growth scenarios
will be explored within this framework. Global instability analysis has become a standard
approach in the context of steady base flows (Theofilis 2011). Linearisation of the
governing flow equations around a steady base flow yields an autonomous operator; the
spectrum of this operator indicates the possibility of perturbation growth in the long-time
limit. However, the base flow in our case is not steady but periodic in time, the periodicity
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being controlled by the harmonic forcing of the jet. Therefore, the global analysis method
must be adapted to account for this periodicity, by use of the Floquet theorem (Floquet
1883). A global Floquet formalism has been successfully applied by Barkley & Henderson
(1996) to the secondary instability of a cylinder wake around Re = 200 and more recently
by Jallas et al. (2017) to a study of secondary instabilities in wake flows.

Another possible scenario for the onset of instability would be through transient
growth; this phenomenon has first been described in parallel flows by Trefethen et al.
(1993): if the linearised flow operator is non-normal, then, even though the system is
stable, in the sense that at an infinite time horizon any perturbation decays towards
zero, intial perturbations can be greatly amplified over a short time. For stationary jets,
Nichols & Lele (2011) and Garnaud et al. (2013) studied this phenomenon and shown its
significant role in the bifurcation. However, we aim at studying transient growth of a time-
periodic jet. Several authors (Barkley et al. 2008; Blackburn et al. 2008; Arratia et al.
2013; Johnson et al. 2016) applied direct-adjoint looping in order to identify finite-time
optimal perturbations in unsteady base flows. In the present paper, we use a technique
that allows us to retrieve optimal perturbations based on direct time-stepping alone, and
which takes full advantage of the time-periodicity of the underlying base flows.

As a prerequisite for our analysis, periodic base flow states without vortex pairing
must be computed even in situations where such pairing arises naturally. Standard
methods for the computation of periodic flow states may be based on Newton–Picard
shooting methods, as described in Roose et al. (1995); Lust & Roose (1998) and applied
to several flows in Sánchez et al. (2004); Sánchez & Net (2010). One alternative is
the harmonic balance technique, in which several temporal Fourier components of a
given periodicity are calculated simultaneously (Hall et al. 2002; Thomas et al. 2002).
In a recent publication (Shaabani-Ardali et al. 2017), we describe how subharmonic
fluctuations in time-stepping simulations can be efficiently suppressed by way of time-
delayed feedback control ; this technique is employed here in order to construct the
periodic base states.

The paper is organised as follows: a comprehensive literature review is provided
in § 2, in order to delineate the context of our investigation. Section 3 presents a
systematic study of the parameter regimes where vortex pairing is observed in direct
numerical simulations (DNS) of laminar jets at moderate Reynolds numbers. Modal
Floquet analysis is performed in § 4, and it is shown that the Floquet-unstable parameter
regime coincides with the observation of pairing in the DNS. Non-modal transient growth
dynamics are investigated in § 5, and their relevance for the bifurcation scenario is
demonstrated.

2. Review of the literature on vortex pairing

2.1. Discovery

The pairing of vortex rings in jets was described for the first time by Becker & Massaro
(1968): in jet experiments at moderate Reynolds number, acoustic single-frequency
forcing was observed to give rise to regular vortex formation and subsequent pairing.
Winant & Browand (1974) investigated the same phenomenon in a plane mixing layer:
pairing was found to occur intermittently in these experiments, punctuated by occasional
“shredding” events, i.e. the destruction of vortex cores by a subharmonic strain field,
which interrupt the pairing process. The authors proposed a phenomenological model
based on Stuart vortices. In the context of jets, Petersen (1978) examined the influence of
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higher Reynolds numbers, and they inferred an argument on the basis of wave dispersion
intended to predict the location of vortex pairing.

More detailed experimental investigations of vortex pairing in jets were carried out by
Zaman and Hussain (Zaman & Hussain 1980; Hussain & Zaman 1980). These authors
considered high Reynolds number (Re = O(104)) jets with a thin initial mixing layer,
forced at a single frequency. Pairing was found to arise in two distinct frequency bands,
one around Stθ = fθ/U ≈ 0.012 and the other around StD = fD/U ≈ 0.85. These
Strouhal numbers are formed with the jet exit velocity U , forcing frequency f , and
either the initial shear layer thickness θ or the jet diameter D. According to their
characteristic scaling, the two bands were identified with a “mixing layer mode” and
a “jet column mode”, respectively. In the former case, the vortices are very thin and
dissipate quickly, whereas in the latter case, their radial extent is comparable to the jet
radius, and their viscous dissipation takes place over a much longer travel distance. Both
articles describe in much detail the vortex dynamics, their trajectories and velocities,
as well as the transition to turbulence. When turbulence sets in close to the nozzle, the
pairing becomes intermittent. High-quality flow visualisations of vortex pairing in jets,
at Reynolds number 2300, are shown by Meynart (1983).

Vortex pairing is also a common event in plane shear layers. Ho & Huang (1982) found
that very low-amplitude subharmonic forcing in their shear layer experiments led to a
vigorous flow response in the form of regular pairing, associated with a strongly increased
spreading of the mean flow. Intermittently, simultaneous coalescence of several vortices
occurred, and was described as “collective interaction”. Similar observations had been
made in jet experiments by Kibens (1980). Ho & Huang (1982) established experimentally
that spatial growth of the subharmonic component only occurs in situations where its
phase velocity is equal to that of the fundamental flow perturbation.

2.2. Interpretation in terms of wave interaction

Prior to theoretical explanations, Arbey & Ffowcs Williams (1984) demonstrated
experimentally the importance of the phase difference between fundamental and subhar-
monic perturbations for the onset of vortex pairing. A jet at Reynolds number 17500 was
forced at moderate amplitude (about 2% of the centreline velocity) at two frequencies
ω and ω/2. The spatial growth of perturbations at both frequencies was found to be
strongly dependent on the relative phase of the applied forcing. Thanks to a numerical
model, Mankbadi (1985) argued that pairing arises when the subharmonic component
acquires sufficient energy, both from the fundamental wave and from the mean flow,
to become the largest-amplitude perturbation in the jet. He observed that one or more
stages of subsequent pairing can occur; in his framework, the number of stages and their
spatial localisation depends on the Strouhal number.

A deeper theoretical understanding of the wave interaction involved in vortex pairing
was reached by Monkewitz (1988), who formulated a weakly nonlinear model for the spa-
tial development of fundamental and subharmonic instability waves in a parallel mixing
layer. This model reflects the role of the phase shift between the two waves in triggering
resonance, resulting in either pairing or “shredding” of vortices. It was predicted that the
fundamental wave needs to reach a critical amplitude before subharmonic perturbations
may phase-lock and grow. The same conclusions are supported by the more general theory
of Cheng & Chang (1992).

The model of Monkewitz (1988) was confirmed experimentally by numerous studies:
in a mixing layer, Husain & Hussain (1989) showed that simultaneous forcing of a
fundamental frequency and its subharmonic could either enhance or attenuate the pairing
and shredding phenomena. Subsequently, detailed statistical analysis of experimental
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data was performed, first for uncontrolled “natural” perturbations in a mixing layer (Hajj
et al. 1992), then for explicitly forced fundamental and subharmonic waves in the same
setup (Hajj et al. 1993). These two studies gave clear evidence of a parametric resonance,
determined by the phase difference between both waves. Husain & Hussain (1995) carried
out similar investigations of jets with a very thin shear layer, confirming that pairing was
amplified for a large band of phase differences, but attenuated for a narrow band of phase
differences. Moreover, these authors studied the influence of a slight frequency detuning
in the subharmonic forcing, finding that the occurrence of vortex pairing depended on
the instantaneous phase difference in the forcing. A parametric experimental study of
pairing in jets was conducted by Raman & Rice (1991), who varied the Strouhal number,
phase difference and forcing amplitude for both the fundamental and the subharmonic
instability wave. Consistent with the theoretical predictions, it was shown that a critical
fundamental amplitude was necessary to trigger subharmonic resonance, the growth rate
being controlled by the phase difference at small forcing amplitude. When the forcing
was strong enough, however, the subharmonic growth became independent of the phase
difference. Paschereit et al. (1995) confirmed these results, and further demonstrated that
the subharmonic growth draws its energy from the mean flow, whereas the fundamental
wave merely acts as a catalyst. In all these studies, explicit forcing of the subharmonic
wave controlled the location of vortex pairing in turbulent jets.

The modal interaction framework was used by Bradley & Ng (1989) to study inter-
actions between more than two frequencies, or between frequencies different from the
fundamental ω and its subharmonic ω/2. These authors experimentally studied a jet
forced either at ω and ω/2 or at ω and ω/3 and studied the influence of frequency,
amplitude ratio and phase shift. In the ω and ω/3 forcing case, they found more diverse
behaviour, with collective interactions, or pairing between vortices of different sizes.

2.3. Further developments on pairing

2.3.1. Chaotic behaviour

In less controlled configurations, vortex pairing events are often observed to be irreg-
ular and intermittent. Broze & Hussain (1994, 1996) conducted jet experiments with
single-frequency excitation; depending on the Strouhal number StD and on the forcing
amplitude af , different types of behaviour were reported, as summarised in figure 2.
Regular dynamics were found to arise over large parameter regions, namely no pairing
(FO regime in figure 2), stable pairing (SP) and stable double pairing (SDP), the latter
referring to the occurrence of two successive stages of vortex pairing. Irregular dynamics
were observed either in the mild form of “aperiodic modulations” of the first (AM) or
the second pairing stage (SPMQ), or in more erratic ways, categorised as intermittency,
chaos (QCA) and “nearly-periodic modulations” (NPMP).

The results of Broze & Hussain (1996) do not appear to depend significantly on the
Reynolds number within their operating conditions of 11000 6 Re 6 90000. Drawing on
chaos theory, the authors characterised the pairing dynamics in terms of attractors. For
irregular scenarios, it was demonstrated that the occurrence of pairing of two vortices is
strongly influenced by previous pairing events, implying that upstream-directed feedback
is involved in the subharmonic growth. This observation is fully consistent with the wave-
interaction model discussed in § 2.2. Narayanan & Hussain (1997) attempted to stabilise
the pairing dynamics in chaotic regimes.

2.3.2. Pairing-related jet noise

High-speed jets are potent sources of noise, and the role of vortex pairing as an
aeroacoustic source mechanism has received much attention. Bridges & Hussain (1987)
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Figure 2: Pairing dynamics observed experimentally in turbulent jets at Re = O(104),
forced at a Strouhal number StD with amplitude af . No subharmonic forcing is applied.
From Broze & Hussain (1996).

determined that the radiated noise is dominated by pairing events only in cases where
the initial shear layer is laminar; in fully turbulent jets, vortex pairing appears to be
acoustically unimportant. The dominant role of vortex pairing in laminar jet noise was
further analysed numerically by Bogey & Bailly (2010). A detailed description of sound
generation from vortex interaction in jets was given by Inoue (2002), and model-based
predictions of radiated sound levels were derived by Schram et al. (2005).

2.3.3. Kinematical modelling of vortex-ring interaction

Vortex interaction can be conveniently modelled by use of the Biot–Savart law. An
account of early applications of such approaches to vortex rings is given by Shariff &
Leonard (1992); these studies were largely concerned with the initial roll-up or with
the collective motion of a limited number of co-axial vortices. A common representation
characterises a vortex ring by its core centre position and core radius, from which a semi-
analytical induction law can be derived (Saffman 1992). Contrary to vortex elements in a
two-dimensional plane, axisymmetric vortex rings move at a self-induced velocity, which
becomes infinitely large as the core radius approaches zero. Some simplifications arise
from the assumption that the core radius is much smaller than the ring radius.

Within the limiting assumptions of inviscid flow and compact cores, such a conceptual
model then yields low-dimensional systems representing the mutually induced motion
of a collection of vortex rings. The “leapfrogging” interaction between two rings, when
one passes through the other, corresponds to the early nonlinear stage of pairing in a
jet before actual merging occurs. A model of a plane jet, consisting of counter-rotating
vortex pairs, was studied by Tophøj & Aref (2013), who formulated a linear stability
criterion for the occurrence of leapfrogging. Similarly, Borisov et al. (2013, 2014) derived

Page 6 of 38



Vortex pairing in jets as a global Floquet instability 7

stability criteria for sets of two and three co-axial vortex rings, and validated these with
respect to numerical simulations of viscous flow at high Reynolds number. Their work
was completed by Cheng et al. (2015), who explicitly portrayed parameter regions in
which leapfrogging could occur, depending on the Reynolds number and the aspect ratio
of the vortex arrangement. Meunier et al. (2002) discovered a merging criterion for two
co-rotating vortices in a two-dimensional plane.

2.3.4. Pairing of helical vortices

In several industrial applications, such as helicopter rotors or wind turbines, a wake
composed of several nested helical vortices is formed (Vermeer et al. 2003). Further
downstream, these helical vortices diffuse and can interact together as well as with the
hub vortex (Delbende et al. 2015; Felli et al. 2011).

Formally, these vortices form a time-periodic three-dimensional flow, which can be
regarded as a steady state in a frame of reference rotating with the blades. In addition,
assuming no interaction between vortices, they diffuse slowly in the far wake, allowing
for a quasi-static approximation (Selçuk et al. 2017b) when neglecting variations of the
vortex structure in the axial direction. Therefore, Selçuk et al. (2017a) carried out a
global stability analysis of these quasi-static states reduced to steady flows. At low pitch
values, they found the existence of unstable modes that trigger leapfrogging, overtaking
and eventually pairing when superposed onto the quasi-static base flow.

3. Vortex pairing in simulations at various Reynolds and Strouhal
numbers

In this section, we give a general overlook of the vortex pairing phenomenon in
axisymmetric laminar jets. After explaining the numerical simulation details, we show
that, depending on the jet parameters and the forcing considered, vortex pairing can
occur or not. When it does, we take a close look on a pairing sequence. Eventually, we
finish with a parametric study to characterise its occurrence domain.

3.1. Setup of direct numerical simulations

Simulations were carried out using Nek5000 (Nek 5000), an incompressible spectral
element code. A perfectly axisymmetric jet is described in cylindrical coordinates (z, r),
z being the main flow direction and r being the radial distance from the jet axis. The flow
is assumed to be governed by the incompressible axisymmetric Navier–Stokes equations
with zero azimuthal velocity, written in dimensionless form as
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where the velocity u has axial and radial components u and v, and p denotes pressure. The
jet diameter D and the inlet centerline velocity U0 are used to render the flow problem
nondimensional, leading to a definition of the Reynolds number as Re = U0D/ν, with ν
the kinematic viscosity. The computational domain extends, unless specified otherwise,
over 40× 5 diameters in the axial and radial directions, respectively, and it is discretised
with 17600 spectral elements, each containing 64 mesh points.
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Boundary conditions are specified as follows. In the inlet plane, z = 0, a hyperbolic
tangent velocity profile is imposed. Its amplitude is modulated in time as

u(z = 0, r, t) =
1

2

{
1− tanh

[
1

4θ0

(
r − 1

4r

)]}
(1 +A cos (ωf t)) ez, (3.2)

where A is the forcing amplitude, θ0 = 0.025 is the initial non-dimensional shear layer
thickness and ωf is the forcing frequency. The forcing period is given by T = 2π/ωf , and
the Strouhal number is defined as StD = ωfD/(2πU0).

On the jet centreline, axisymmetric boundary conditions are imposed as

∂u

∂r
= v =

∂p

∂r
= 0 at r = 0. (3.3)

In the outlet plane, zmax = 40, and on the lateral boundary, rmax = 5, the standard
outflow formulation provided by Nek5000 is employed. This prescribes a stress-free
condition
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The flow configuration is thus characterised by the Reynolds number Re, the Strouhal
number StD, the initial shear layer thickness θ0 and the forcing amplitude A. A single
value θ0 = 0.025 is used throughout this study.

3.2. Two distinct behaviours

Depending on flow parameters and forcing Strouhal number, rolled-up vortices may
spontaneously undergo subsequent pairing. In the absence of free-stream turbulence, and
if the harmonic forcing is well-controlled, this pairing takes place in a perfectly regular
fashion.

In cases where pairing occurs, two neighbouring vortices merge into one, such that the
passage frequency of vortices downstream of the pairing location is exactly half that of the
imposed forcing. An example, obtained by direct numerical simulation with parameters
Re = 2000, StD = 0.6 and A = 5%, is shown in figure 3a. If the forcing is characterised
by the time period T , the “paired state” is globally 2T -periodic. The velocity field of a
paired state will be denoted up.

A different behaviour is observed when the Reynolds number is lowered to Re = 1300,
as shown in figure 3b. Vortices roll up close to the nozzle and advect downstream, until
they are dissipated by viscosity, but no spontaneous pairing is observed at this parameter
setting. Such a flow state is globally T -periodic and will be called hereafter an “unpaired
state”. Its velocity field will be denoted uu.

When the natural time-asymptotic flow state for a given set of parameters involves
pairing, it is still possible to recover an unpaired state as an alternative solution of the
flow equations, by use of time-delayed feedback control (see § 4.1 and Shaabani-Ardali
et al. (2017)). The unpaired state obtained in such a way for the previous configuration
with Re = 2000 is shown in figure 3c. This solution is an exact solution of the Navier-
Stokes equations without the time-delayed feedback.

3.3. The dynamics of vortex pairing

The process of the pairing of two vortices is inspected from snapshots of the vorticity,
presented in figure 4, at four different phases of one pairing cycle. At t = 0 (figure 4a),
two successive vortices, located around z = 1 and 2, have rolled up due to the primary
shear instability. One half-cycle of the forcing period later (figure 4b), the leading vortex
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(a) Paired state (2T -periodic) at StD = 0.6, Re = 2000 and A = 5% at t = 3T/2. This
is the same state as in figure 4d.
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(b) Unpaired state (T -periodic) at StD = 0.6, Re = 1300 and A = 5% at t = T/2.
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(c) Unpaired state (T -periodic) stabilised using time-delayed feedback control, defined
in § 4.1, at StD = 0.6, Re = 2000 and A = 5% at t = T/2.
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Figure 3: Vorticity snapshots of the periodic paired and unpaired states, obtained
naturally for two different parameter settings. Forcing amplitude, Reynolds and Strouhal
numbers are defined in § 3.1.

has slightly expanded radially, while the trailing one has contracted. This movement is
accompanied by a deceleration of the expanding vortex, and inversely an acceleration of
the contracting vortex, through the influence of the vortex ring radius on its self-induced
propulsion. The same process continues at t = T (figure 4c), when the trailing vortex
begins to pass through the interior of the leading vortex. At t = 3T/2 (figure 4d), both
vortices are in the process of merging into one, which is largely achieved at the end of
the cycle (figure 4a).

Conceptual arguments for the occurrence of vortex pairing in the literature are typically
based on the interaction between fundamental and subharmonic fluctuations, and the
possibility of energy transfer to the latter (Monkewitz 1988). Spatial energy variations of
the fundamental ωf and the subharmonic ωf/2 Fourier modes are readily extracted from
the present numerical simulations. These are presented in figure 5, for the configuration
Re = 2000, StD = 0.6 and A = 5%, in the form of radially integrated kinetic energy.
This plot allows the distinction of various stages in the pairing process. Immediately
downstream of the inlet, the fundamental mode grows from its forced initial amplitude
to its peak value at z = 1.4. This streamwise position may be identified with the shedding
of a fully formed vortex (see figure 4). The subharmonic component experiences strong
exponential growth over the same interval, starting from a much lower level, as the
boundary condition imposes zero amplitude at the inlet. Subharmonic growth continues
down to z = 3.1, where figure 4(d) shows strong pairing dynamics. The energy of the
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Figure 4: Vorticity snapshots of a paired case at Re = 2000 forced harmonically at
StD = 0.60 and A = 5%. Only the region near the inlet is shown. The colour coding is
the same as in figure 3c.
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Figure 5: Total energy of the fundamental û1 and subharmonic û1/2 Fourier components
in each plane z = const. as a function of z at StD = 0.6, Re = 2000 and A = 5%.

fundamental mode decreases over the distance 1.4 < z < 3.1, although a local maximum
is found at the peak location of the subharmonic mode. As pairing is accomplished, at
z > 3.1, both the fundamental and the subharmonic mode decay slowly in z, both at a
similar rate, due to viscous dissipation of the convecting vortices.

Consistent with these observations, Monkewitz (1988) argued that a growth of sub-
harmonic perturbations must be fed by energy transfer from the fundamental mode,
which requires that both modes propagate at the same phase velocity. Phase velocities
of fundamental and subharmonic fluctuations in the present simulation are compared in
figure 6 as solid and dashed lines. The reported phase velocities are measured, for each
streamwise location, at the radial distance where each respective Fourier mode has its
maximum amplitude along r. The values for both modes match quite closely throughout
the relevant interval upstream of the pairing location. They continue to match in the
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Figure 6: Phase speed along the line of maximum subharmonic mode of the subharmonic
and fundamental modes of a paired jet at (Re = 2000, StD = 0.60), and comparison with
the phase speed of the fundamental mode along the lime of maximum fundamental mode
of the corresponding stabilised (unpaired) jet. The phase of the Fourier mode is denoted
as ϕ.

downstream region, but this is only the result of the fundamental mode being slaved to
its subharmonic counterpart as a passive harmonic.

For comparison, energy and phase velocity results obtained for the fundamental mode
of the corresponding stabilised (unpaired) flow are also presented in figures 5 and 6
(dotted lines), alongside the values found in the paired state. Upstream of the roll-up
location, the fundamental modes show identical energy growth in both configurations.
Between the roll-up and the pairing locations, the fundamental energy decay in the
paired case is stronger than in the unpaired case, which again indicates that the growth
of subharmonic perturbations feed on the energy of the fundamental mode. However,
downstream of the pairing location, the fundamental mode in the stabilised case decays
significantly faster, and at an increasing rate. This difference is also visible when one com-
pares figures 3a and 3c: it appears that the lower frequency and the stronger circulation
of the paired vortices hinders their diffusion and allow them to be sustained longer. When
comparing the phase velocities in figure 6, it is seen that the unpaired fundamental mode
propagates faster than its paired counterpart upstream of the pairing location, whereas
their velocities are again equal in the downstream region. The discrepancy upstream
of the pairing can be linked to different positions of the vortices: in the paired case,
the vortices are radially more expanded than in the unpaired case, therefore moving at
a slower speed. Vortex pairing does not only influence the flow downstream, but also
upstream.

3.4. Parametric study

All simulations presented in this section were carried out on a domain with zmax = 15
in order to save computational resources. Test runs with zmax = 40 were performed for
selected cases, showing no effect of domain truncation on the results presented here.

3.4.1. Effect of Reynolds number and Strouhal number

The effect of Reynolds and Strouhal numbers on the onset of vortex pairing is inves-
tigated first, for a fixed forcing amplitude A = 5%. Direct numerical simulations were
run, first in an exploratory fashion for many (Re, StD) combinations. After an initial
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Figure 7: Occurrence of vortex pairing as a function of Reynolds number and Strouhal
number for configurations with forcing amplitude A = 5% and initial shear layer thickness
θ0 = 0.025. Only points near the pairing boundary are represented.

transient phase, the flow settles into an asymptotic time-periodic state. Asymptotic states
that involve regular vortex pairing were found in a restricted region in the (Re, StD)
plane, and the boundary of that region was then determined more accurately by running
simulations well into the asymptotic regime. Results of these simulations are mapped in
figure 7. Pairing is found to occur first around a critical Reynolds number Rec = 1375, for
the fundamental forcing Strouhal number StD = 0.6. Up to Re = 2500, the maximum
value considered in this study, vortex pairing at asymptotic times is restricted to the
band 0.5 6 StD 6 0.8. With increasing Reynolds number, the pairing becomes more
vigorous, and its location gradually shifts nearer to the inlet.

Close to the instability thresholds, it becomes difficult to precisely characterise the flow
behaviour, because of the long simulation times needed to achieve convergence. When the
Reynolds number is about 1350, computations were run on full-length domains (40D),
and even after several hundred forcing periods, the paired or unpaired nature of the final
flow state cannot be determined. For instance, at StD = 0.6, the final state for Re = 1350
is unpaired, for Re = 1400 it is paired. For intermediate values Re = 1360, 1372 or 1375
(close to threshold Rec = 1371 predicted in § 4.4), the pairing location moves gradually
downstream as time evolves, but with no indication whether it will eventually become
stationary. These ambiguous data points are not displayed in figure 7.

As mentioned in § 2.1, a first parametric study of vortex pairing in terms of Reynolds
and Strouhal numbers has been carried out experimentally by Zaman & Hussain (1980),
for Reynolds numbers greater than 104 and thin initial mixing layer θ/D ≈ 0.25%). They
found that pairing could occur in two frequency bands, one characterised by a Strouhal
number Stθ = fθ/U based on the shear layer thickness, the other by a Strouhal number
StD = fD/U based on the jet diameter. Pairing has been reported for Stθ around 0.012
and for 0.75 6 StD 6 1.0. With our choice of the initial shear layer thickness being 5%
of the diameter, these two regimes are only weakly separated, which explains why our
findings of a single band of instability at a given Reynolds is coherent; both scalings are
indicated in figure 7.
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Figure 8: Occurrence of vortex pairing as a function of the Reynolds and the Strouhal
number for two different forcing amplitudes A = 1% and 10%. The same symbols as in
figure 7 are used.

Again for Reynolds numbers greater than 104, and for a 5% forcing amplitude, Broze
& Hussain (1994), found several flow regimes depending on StD (see figure 2): no pairing
for StD < 0.52, aperiodic modulations and coexistence of different states (stable or
modulated pairing) for 0.52 < StD < 0.77, stable pairing for 0.77 < StD < 0.97,
stable pairing with quarter-harmonic modulations for 0.97 < StD < 1.02 and stable
double pairing for StD > 1.02, with some intermittent cases. The Stθ-dependance is not
documented in that study. In our computations, we do not encounter such a richness of
scenarios, because our inlet condition is fully laminar and time-periodic, and because our
Reynolds number is one decade lower; however, the occurrence of pairing, reported in
figure 7, is consistent with the experiments of Broze & Hussain (1994). Multiple stages
of successive pairing are never observed in our computations, even at StD > 1. This
difference with respect to the experiments is certainly owing to the lower Reynolds
number, as Cheng et al. (2015) demonstrated that viscosity inhibits pairing. However,
the modulated states described by Broze & Hussain (1994) for StD ≈ 1 may be linked
to our observation of fluctuations of the pairing position (triangle in figure 7).

Cheng et al. (2015) investigated numerically the leapfrogging of coaxial vortex rings.
For a system of two adjacent vortices, they systematically documented the occurrence
of leapfrogging as a function of Reynolds number and vortex separation. The Reynolds
number, defined as the ratio of the ring vorticity over the viscosity and chosen of the order
of 103 is related to the product between Reynolds and Strouhal numbers in our present
notation. The ratio of the vortex spacing over the ring radius is related to the inverse
of the Strouhal number as defined here. Cheng et al. found that leapfrogging occurs
only above a critical Reynolds number, and for a narrow Strouhal band that increases
with Reynolds number. This is consistent with our findings (figure 7), as pairing can be
understood as an advanced stage of leapfrogging (figure 4).

3.4.2. Effect of forcing amplitude

The effect of forcing amplitude is investigated by including computations with two
additional values, A = 1% and 10%. Instability maps in the (Re, StD) plane for these
configurations are displayed in figure 8a and 8b. An increase in the forcing amplitude is
seen to shift the onset of pairing towards lower Reynolds number values.
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Figure 9: Total energy of the fundamental and subharmonic modes in each plane z =
const as a function of z at StD = 0.6 and Re = 2000. Three values of the inlet forcing
amplitude are considered, A = 1%, 5% and 10%.

Another effect of increasing A is to move the roll-up and pairing locations upstream,
as can be seen in figure 9. In the same way as discussed for figure 5, the energy of the
fundamental mode in all cases grows from the inflow towards its maximum at the roll-up
location, whereas the subharmonic mode peaks at the location of pairing. Increasing the
fundamental amplitude at the inflow reduces the distance needed before roll-up, and it
catalyses the subharmonic mode, inducing an earlier pairing.

However, by comparing the difference between the modes at A = 1% and 5%, and
between the modes at A = 5% and 10% in figure 9, it is anticipated that a further
increase in A will only marginally change the paired flow behaviour. This is consistent
with Broze & Hussain (1994): as shown in figure 2, increasing the forcing amplitude
above 5% does not induce significant topological changes in the final state, but below
1% forcing, no stable pairing is observed in the experiments. Raman & Rice (1991) also
found that a critical minimal amplitude of the fundamental forcing was required to trigger
pairing. Therefore, an expansion of the study to lower amplitude levels A < 1% could be
of interest; however, this would require higher values of Re to be considered, rendering
the assumption of laminar flow increasingly doubtful.

In their leapfrogging study of two vortex rings, Cheng et al. (2015) varied the vortex
thickness, and thereby the vortex concentration, which is similar to varying the amplitude
of forcing. Consistent with the present study, they concluded that stronger vortices
undergo pairing at lower Reynolds numbers.

3.4.3. Effect of inlet noise

In configurations where vortex pairing does not arise intrinsically, the flow may still be
receptive to low-level subharmonic extrinsic perturbations, in the sense of a “slightly
damped oscillator” (Huerre & Monkewitz 1990), and exhibit vortex pairing in their
presence. In the following, this receptivity is probed by imposing a random noise in
addition to the fundamental forcing at the inlet, such that the inflow condition is
prescribed as

u(r, t) =
1

2

{
1− tanh

[
1

4θ0

(
r − 1

4r

)]}
(1 +A cos (ωf t) + εnoise(t)) ez, (3.5)
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Figure 10: Vorticity snapshots at Re = 750, StD = 0.60 and A = 5% with Aε =
1.0% taken at two different times, and both at the same phase. Pairing is intermittent,
occurring in (a) and not in (b). The colorbar is rescaled compared to figure 3b, to magnify
the behaviour of downstream vortices.

with εnoise a white noise, constant in r, with a specified standard deviation. Four Reynolds
number values are selected, Re = 500, 750, 1000 and 1300, and two values of the standard
deviation Aε =

√
〈εnoise, εnoise〉 = 0.1% and 1% are tested. The latter are chosen such

as not to exceed the level of coherent forcing A. The fundamental forcing in all cases is
prescribed with StD = 0.6 and A = 5%.

Four distinct types of the flow response are observed:

(i)At low Reynolds number, the noise barely impacts the flow behaviour. For instance, at
Re = 500 and for both noise levels, no significant departure from the purely harmonically
forced jet is observed.

(ii)The noise induces a subharmonic modulation of the vortices, but the flow diffuses too
quickly for pairing to occur, for instance in the case Re = 750 and Aε = 0.1%.

(iii)Intermittent pairing is triggered, for instance at Re = 1000 and Aε = 0.1%, or at
Re = 750 and Aε = 1.0% (figure 10). In the latter case, pairing occurs far downstream,
where the vortices are indistinct due to diffusion.

(iv)Continuous pairing is sustained by noise input, but its location fluctuates in time. This
is observed for Re = 1000 with Aε = 1%, and for Re = 1300 with Aε = 0.1% (figure 11)
as well as 1.0%. As described experimentally by Ho & Huang (1982); Husain & Hussain
(1989), other phenomena such as shredding, where one single vortex “escapes” between
two successful pairing events, or collective interaction, where more than two vortices
interact at once, can be observed, for instance in figure 12.

4. Vortex pairing as an unstable global Floquet mode

In this section, it is investigated whether the onset of vortex pairing can be described
as the manifestation of a global Floquet instability of the periodic unpaired state. This
unpaired state must first be computed for a given combination of flow parameters (§ 4.1).
After a short reminder of Floquet theory (§ 4.2), and a presentation of the numerical
implementation (§ 4.3), the linear Floquet stability of the unpaired vortex street is
analysed (§ 4.4), and the instability characteristics are compared to the observations
documented in the previous section.
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Figure 11: Vorticity snapshots at Re = 1300 and StD = 0.60 with Aε = 0.1% taken
at two different times, and both at the same phase. This shows the pairing location
fluctuation, emphasised in grey, in this setup. The colorbar is in figure 10.

Figure 12: Vorticity snapshots at Re = 1000 and StD = 0.60 with Aε = 1.0%: (b) is
taken two forcing periods after (a). The three vortices located in the shaded are on (a)
merge altogether, as an example of collective interaction. The colorbar is in figure 10.

4.1. Computation of T -periodic states without vortex pairing

Periodic flow states are obtained through direct numerical simulation, as described
in § 3.1. In order to suppress vortex pairing in configurations where it naturally arises,
subharmonic fluctuations are actively damped by means of time-delayed feedback control.
A short description of this method follows, for details the reader is referred to Shaabani-
Ardali et al. (2017).

A fully synchronised paired state can be decomposed into one component that is T -
periodic and another that is only 2T -periodic,

up(x, t) =
∑

n

uTn (x) exp (inωf t) +
∑

n

u2T
n (x) exp

(
i
2n+ 1

2
ωf t

)
, (4.1)

with n = 0,±1,±2, . . . ,±N.

In a T -periodic unpaired state, the second sum is zero. Time-delayed feedback control is
applied by adding a forcing term of the form

f = −λ(u(t)− u(t− T )), (4.2)

to the right-hand side of the governing equations (3.1a)–(3.1c). Such forcing attenuates all
2T -periodic fluctuations, but leaves T -periodic components unaffected. The simulations
converge towards a purely T -periodic state, in which the artificial forcing term vanishes.

Page 16 of 38



Vortex pairing in jets as a global Floquet instability 17

This solution is therefore a full solution of the Navier-Stokes equations. An example of
such a stabilised unpaired state is shown in figure 3c.

The value of λ in equation (4.2) affects the convergence of the stabilisation procedure.
In a previous publication (Shaabani-Ardali et al. 2017), it has been demonstrated that
very small values of λ do not lead to convergence, as the resulting damping is insufficient
to counteract the natural instability of the system. Similarly, too large values of λ result
in overshooting of the damping force, which also inhibits convergence. An optimal value
λ = 0.0432ωf was derived from a model problem, and has been used in the present
calculations.

4.2. Floquet framework

The Floquet stability problem for a T -periodic unpaired base flow (Uu(t), Pu(t)) is set
up by superposing small-amplitude perturbations (u′, p′), which are governed to leading
order by the linear equations

∂u′

∂t
+ (Uu(t) · ∇) u′ + (u′ · ∇) Uu(t) = −∇p′ + 1

Re
∆u′, ∇ · u′ = 0. (4.3)

The following boundary conditions are implemented. In the inlet plane, the flow is
unperturbed, u′(r, z = 0, t) = 0. We do not allow perturbations directly at the inlet,
since we consider only the behaviour of intrinsic perturbations. On the centreline of
the jet, r = 0, axisymmetric boundary conditions as in the nonlinear case are imposed,
∂ru
′ = v′ = ∂rp

′ = 0. In the outlet plane z = 40 and on the lateral boundary r = 5,
stress-free conditions (3.4) are chosen.

The equations are written in compact form as

∂q′

∂t
= L(t)q′, (4.4)

where q′ = (u′, p′) represents the perturbation state vector.
According to Floquet theory (Floquet 1883), one may seek modal solutions of (4.4) in

the form

q′(t) = P (t)eAtq′(0), (4.5)

with P (t) a T -periodic and A a constant matrix. Noting that

q′(T ) = eATq′(0), (4.6)

due to P (T ) = P (0) = Id, the time-shift operator Φ = eAT is introduced, such that
q′(nT ) = Φnq′(0). The eigenvalues µi of Φ are known as Floquet multipliers, and
the associated eigenmodes vi are the Floquet modes of the system (4.4). For a modal
perturbation q′(0) = (ṽi, p̃i), the Floquet multiplier µi such that q′((n+1)T ) = µiq

′(nT )
represents the complex amplitude gain over one cycle period. Therefore, the stability of
the system is indicated by the modulus of µi: if all Floquet multipliers have a modulus
lower than unity, all perturbations decay at long time and the system is stable. Floquet
modes with an associated |µi| > 1 experience exponential temporal growth.

The complex phase of a Floquet multiplier, arg(µi), characterises the time-periodicity
of its associated mode. At zero phase, the mode evolves with the same periodicity as the
base flow, and may be qualified as being harmonic. A phase of arg(µi) = π, indicates
that two base flow periods are needed to complete one perturbation cycle, and the mode
therefore evolves as ωf/2. Such a mode is qualified as being subharmonic. As vortex
pairing is a 2T -periodic phenomenon, subharmonic Floquet modes are expected to arise.
Floquet multiplier phases that are not integer multiples of π characterise modes with
periodicities unrelated to that of the base flow.
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A standard result of Floquet theory applied to the linearised Navier-Stokes equations
is that the time derivative of the base flow, (∂tU

u, ∂tP
u), represents a neutral Floquet

mode of the system, with µ = 1. However, such a mode does not exist in the present
problem, because it is inconsistent with the boundary conditions. While the base flow is
periodically forced at the inlet boundary, according to equation (3.2), linear perturbations
are prescribed to be zero there.

4.3. Numerical implementation

The evolution of the linearised system (4.4) is calculated using a fully implicit finite-
difference time-stepping scheme of second order implemented in FreeFem++ (Hecht
2012). The mesh has the same size and resolution as the one used in the Nek5000
calculations. P2 finite elements are used for the velocity perturbation whereas P1 finite
elements are used for the pressure.

In the numerical implementation of the Floquet mode calculation, only the velocity
perturbation u′ is considered. This is possible in incompressible flow, since the full state
q′ = (u′, p′) is fully determined by u′ alone. Therefore, the standard projection operator
Pq→u from the q-space to the u-space can be defined, as well as its inverse Pu→q. The
operator Φ′ = Pq→uΦPu→q maps a given velocity perturbation to its value after one flow
period. The modal stability properties of Φ′ are the same as those of Φ, and Φ′ will be
considered in what follows.

By use of a block-Arnoldi method (Saad 2011), it is possible to construct a matrix
representation of Φ′ in a reduced orthonormal basis, generated by power iterations.
A Nvec-vector block-Arnoldi is iterated over N stages, each stage consisting in time-
integration of the linear flow equations over one flow period. Contrary to the standard
Arnoldi algorithm, where the image of only one vector is calculated in each iteration
stage, Nvec vectors are advanced simultaneously in the block-Arnoldi method. A value
Nvec = 30 was used in all calculations presented in this section. Eigenvalues of the
resulting matrix, of reduced dimension NNvec × NNvec = 750 × 750, may then be
obtained. Concretely, the algorithm involves the following steps:
(i)An orthonormal basis of Nvec initial velocity perturbation vectors û0

i is built, with
i = 1, . . . , Nvec. Orthonormalisation of these vectors with respect to the energy scalar
product

〈u,v〉 =

∫∫

Ω

ru(r, z) · v(r, z)drdz (4.7)

is enforced.
(ii)At iteration n ∈ [1, N−1], the images Φûn−1i of each vector ûn−1i after one flow period
are computed simultaneously by time-stepping.

(iii)The Gram–Schmidt algorithm is employed to extract and normalise the component
ûni of Φ′ûn−1i for 1 6 i 6 Nvec that is orthogonal to the already existing set of vectors

{ûji′}, with 1 6 i′ 6 Nvec when 0 6 j 6 n − 1 and 1 6 i′ < i when j = n. Thereby, the

orthonormal basis {ûji} is augmented by dimension Nvec in every iteration n.
(iv)In the end, after N iterations over one flow period, a fully orthonormal Krylov basis
{û0

i , . . . , û
N−1
i } and their images {Φ′û0

i , . . . , Φ
′ûN−1i } after one period of time-stepping

are obtained. Let R denote the matrix of this basis,

R =
[
û0
1, . . . , û

0
Nvec

, . . . , ûN−11 , . . . , ûN−1Nvec

]
, (4.8)

which is of dimension Ndof × NNvec, with Ndof the number of degrees of freedom of

the initial velocity perturbation. It is then possible to construct the projection Φ̃ of the
infinite-dimensional operator Φ′ onto the finite-dimensional space spanned by R. Φ̃ is
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Re StD A N

500 0.60 5% 25
750 0.60 5% 25
1000 0.60 5% 25
1300 0.60 5% 25
1350 0.60 5% 25
1375 0.60 5% 25
1400 0.60 5% 25
1500 0.60 5% 25

Re StD A N

1750 0.60 5% 25
2000 0.60 5% 25
2250 0.60 5% 25
2000 0.45 5% 25
2000 0.50 5% 25
2000 0.70 5% 30
2000 0.75 5% 35
2000 0.80 5% 35

Re StD A N

2000 0.85 5% 35
2000 0.90 5% 40
2000 0.95 5% 40
2000 1.00 5% 40
2000 1.10 5% 45
2000 0.60 1% 25
2000 0.60 10% 25

Table 1: Parameter combinations for which Floquet analysis is performed.

represented by the matrix

Φ̃nNvec+i,n′Nvec+i′ = 〈Φ′ûn′

i′ , û
n
i 〉 or Φ̃ = RTM (Φ′R) , (4.9)

with M the mass matrix associated with the scalar product (4.7).
(v)By computing the eigenvalues µk and eigenvectors αk of Φ̃, defined such as dim(αk) =
NNvec, the Floquet multipliers µk are obtained directly, and the Floquet modes vk can
be reconstructed as

vk =
N−1∑

n=0

Nvec∑

i=1

αknNvec+iû
n
i = Rαk (4.10)

As pointed out by Saad (2011), the orthonormalisation step (iii) is essential for the
recovery of non-dominant eigenmodes in the nth iteration amidst the numerical noise on
the level of round-off error.

The above algorithm is designed to maximise numerical efficiency in combination with
a linear flow solver based on implicit time-stepping. As the base flow is time-dependent, a
linear operator is constructed and factorised at each time step. It would not be economical
to use this factorised operator for the time advancement of one single state vector; by use
of the block-Arnoldi method, Nvec vectors can be advanced in time simultaneously, thus
lowering significantly the numerical burden of constructing a high-dimensional Krylov
subspace.

A minimum of N = 25 flow-period iterations has been used to generate the following
results. This number was increased in steps of 5 as necessary in order for the dominant
eigenvalue to converge to four significant digits.

The list of all examined flow configurations is given in table 1; the influence of
the Reynolds number, the Strouhal number and the forcing amplitude may thus be
characterised. For high values of StD, a larger number of block-Arnoldi iterations are
required in order to achieve convergence. Two competing time scales characterise the
dynamics: the forcing period, which decreases with increasing StD, and the convection
time, which is constant in all cases. Therefore, a constant number of iterations at high
Strouhal number corresponds to a shorter convection time.

4.4. Floquet instability modes

As shown in table 1, nearly all calculations have been performed for constant forcing
amplitude A = 5%, and with fixed values of either StD = 0.6 or Re = 2000, in order to
track the isolated influence of Strouhal and Reynolds number on the instability behaviour.
In nearly all cases, one strictly subharmonic Floquet mode is identified, characterised by
a negative real Floquet multiplier µ. This mode is observed to be unstable over certain
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Figure 13: Absolute value of the dominant subharmonic Floquet multiplier for different
(Re, StD), obtained for A = 5%. When the system is unstable, the most unstable mode is
always subharmonic (e.g. real negative), except for the two labeled cases in (b), where the
most unstable mode is almost subharmonic. When the system is stable, the represented
mode are the least stable of the subhamonic domain. Black and grey bars represent
parameter regimes with and without vortex pairing, according to uncontrolled DNS (see
figure 7).

ranges of StD and Re, where µ falls below −1. The absolute value |µ| = −µ for StD = 0.6
and A = 5% is plotted as a function of Re in figure 13a: by linear interpolation of the
critical Reynolds at which µc = −1, instability in this case is found to arise for Re > 1371.
This is to be compared to the critical band Re ∈ [1350; 1400], above (resp. below) which
sustained pairing was found to occur (resp. not to occur) in the DNS, as discussed in
§ 3.4.1. The paired and unpaired regimes, as identified in the DNS, are indicated in
figure 13a by black and grey bars, in order to highlight the agreement with the onset of
subharmonic Floquet instability.

Results for variations in StD, at fixed values Re = 2000 and A = 5%, are presented
in the same manner in figure 13b. A finite band of subharmonically unstable Strouhal
numbers is identified, again in agreement with the prevalence of vortex pairing as observed
in the DNS. Two values of µ reported in this diagram are distinct from the others: at
StD = 0.75, the Floquet multiplier of the most unstable mode appears as a complex
conjugate pair with small imaginary parts, as indicated in the figure. This mode is
therefore nearly subharmonic, but not strictly so, and further iterations of the block-
Arnoldi procedure do not change this result. Higher deviations from the negative real
axis are found in the stable case StD = 0.9. For StD = 0.75, the unstable mode is slightly
detuned, but the DNS does not display any irregular behaviour.

The effect of the forcing amplitude A on the instability is demonstrated for a single
setting Re = 2000 and StD = 0.6. As shown in table 2, a higher amplitude leads to
stronger instability, consistent with the DNS observations discussed in §3.4.2. Vortex
pairing was found to occur in all three configurations.

The spatial shape of an unstable subharmonic Floquet mode is presented in figure 14,
for parameters Re = 2000, StD = 0.6 and A = 5%, associated with µ = −1.17. A
snapshot of perturbation vorticity is shown. Its axial wavelength corresponds to twice
the spacing between vortices in the unpaired base flow, and its amplitude maximum
occurs far downstream, around z = 20. The latter seems rather surprising, because the
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Forcing amplitude 1% 5% 10%

Most unstable Floquet multiplier −1.06± 0.069i −1.17 −1.19

Table 2: Evolution of the most unstable Floquet multiplier with the forcing amplitude
for Re = 2000 and StD = 0.60.
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Figure 14: Vorticity component of the most unstable Floquet mode at Re = 2000 and
StD = 0.60. It peaks far downstream.
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Figure 15: Vorticity snapshot of the base periodic unpaired flow at Re = 2000 and
StD = 0.6 slightly perturbed by the most unstable Floquet mode: u′ = Uu + εṽ1, with
ε = 0.2.

base flow vortices at this position are already quite diffuse, as can be seen in figure 3c.
Furthermore, vortex pairing in the unstabilised flow is observed around z = 3.

In order to demonstrate the effect of this modal shape onto the unpaired base flow, the
two are superposed, with a perturbation amplitude that is chosen ad hoc. The resulting
vorticity field is shown in figure 15. It is seen that the perturbation indeed displaces the
vortices around z = 20 in a fashion that indicates pairing. This pattern was also found by
Selçuk et al. (2017a): the superposition of their quasistatic helical base flow and of their
most unstable mode shows that their global mode shifts the helical vortices to trigger
pairing.

However, in the current problem, the result from the superposition is very distinct from
that of the fully developed paired state shown in figure 3a. To explain this discrepancy,
it might be speculated that nonlinear adjustments could occur, or that a different, non-
dominant Floquet mode could be responsible for the onset of pairing. Indeed, a second
unstable mode exists at this parameter setting, characterised by a Floquet multiplier
value −1.03 ± 0.14i, and its vorticity distribution is given in figure 16. It displays the
same spatial pattern as the first Floquet mode, but shifted several diameters further
downstream, and this shift presumably accounts for its weaker growth. As this mode is
not strictly subharmonic, it does not evolve precisely at ωf/2; still its growth may trigger
subharmonic pairing in the nonlinear regime. However, this mode does not provide a more
plausible interpretation of the observed vortex pairing much further upstream.
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Figure 16: Real part of the vorticity component of the second most unstable Floquet
mode at Re = 2000 and StD = 0.6. Its peak is located far downstream.

5. Transient growth analysis

In this section, we show that the transient dynamics is essential to understand the
bifurcation from an unpaired unstable flow to a paired flow. Indeed, it will be demon-
strated that even though the stability analysis predicts in which parameter range pairing
occurs, the transition from an unpaired state arises much faster and much closer to the
inlet that what modal theory predicts. In contrast, transient dynamics predicts more
accurately the transition rate and the perturbation structures, and it allows to explain
the occurrence of intermittent phenomena in sub-critical but noisy jets shown in § 3.4.3.

5.1. Growth of random initial perturbations

The jet at Re = 2000, forced at StD = 0.6 with 5% amplitude is considered throughout
this section. The natural state in this case is the paired one, shown in figure 7, consistent
with an unstable Floquet multiplier µ = −1.17 as discussed in § 4.4. Direct numerical
simulation results are presented here, which aim to show how pairing is triggered in the
unstable unpaired flow.

A first simulation is performed starting from the stabilised unpaired state, displayed
in figure 3c, as initial condition. Residual non-T -periodic components (u(t)−u(t−T ))/2
in this flow state are of the order of 0.01% of the reference jet velocity.

Two additional simulations have been carried out with the same state, but with
added white noise velocity perturbations, u(r, z, t = 0) = Uu(r, z, t = 0) + ε(r, z).
This noise exhibits zero spatial mean ε = 0, and two different standard deviations√
ε2 = (10−3, 10−3)T and (10−4, 10−4)T are prescribed in the two simulations.
Non-harmonic components of the flow state at any given time are measured by a norm

defined as

e(t) =
1

2

√∫∫
‖u(t)− u(t− T )‖2r dr dz. (5.1)

The time evolution of this norm is traced in figure 17 for the three different initial
conditions. While all three cases evolve into the same paired attractor state, they arrive
there along different trajectories.

5.1.1. Modal growth from very low perturbation amplitude

Starting from the unpaired state, as it has been obtained through flow stabilisation,
without any added random noise, the initial perturbation that may give rise to a growing
subharmonic component is given by the residual non-T -periodicity that remained when
the stabilised calculation was halted. The total vorticity after one period T is shown
in figure 18a, and the magnitude of the non-T -periodic residual at the same instant is
presented in figure 19a. Note that this residual is computed by comparing the state at
time t with that from time t − T ; therefore time-stepping over one period is required
before the stabilisation effect can be evaluated.
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Figure 17: Growth of non-harmonic components in simulations with and without added
initial noise. The modal Floquet growth rate is indicated for comparison.

Over the first forty periods, the subharmonic perturbation is dominated by a slow
growth of the residual structure, but at such small amplitude that the total vorticity
field in figures 18b and 18c is not noticeably affected. Then, as can be seen by comparing
figures 19c and 19d with figure 14, the exponentially growing unstable Floquet mode
becomes manifest. Its amplitude growth per flow period, between t = 40T and 60T ,
is estimated from figure 17 as a factor 1.14, to be compared to the absolute value
1.17 of the computed Floquet multiplier. The spatial structure of this perturbation,
displayed in figure 20, exhibits a similar structure as the one of the corresponding
Floquet mode, shown in figure 14. Beyond t = 60T , a nonlinear saturation of the
subharmonic perturbation sets in (figure 17), accompanied by a change in its spatial
shape. At t = 90T , as the flow approaches the asymptotic periodic regime, the maximum
perturbation amplitude has moved upstream to z ≈ 10 (figure 19e), where a pronounced
pairing of vortices is observed in figure 18e. This pairing location still moves further
upstream with time, until it will finally stabilise near z = 3, in the natural asymptotic
paired state shown in figure 3a.

5.1.2. Non-modal growth from initial white noise

The simulations with added white noise in the initial condition (solid lines in figure 17)
show a much faster convergence to the final paired flow state than the case discussed in
the preceding section (dotted line in figure 17). In particular, the initial growth of e(t)
in these two cases is markedly stronger than that of the unstable Floquet mode.

The time development from an initial condition with
√

ε2 = (10−3, 10−3)T (thick solid
line in figure 17) is visualised in figure 21 by successive snapshots of the total vorticity. It
is seen that vortex pairing not only sets in faster than in the previous case of figure 18,
but also much further upstream. Corresponding non-periodic perturbations are again
displayed in figure 22: the smallest scales of the random initial condition are quickly
dissipated (figure 22a), and a growing coherent perturbation structure is evident after
a few period cycles (figure 22b). The maximum perturbation growth in this phase, as
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Figure 18: Vorticity snapshots at five different instances without added initial noise. The
colour coding is the same as in figure 3b.

measured from figure 17, corresponds to a factor 2.01 per period, much stronger than
the modal growth factor 1.17. Persistent vortex pairing is fully established at t = 10T
(figure 22c); subsequently, the pairing location slowly moves upstream, and stabilises
around z = 3.

Vorticity perturbations after five flow periods, in these simulations with added initial
noise, are represented in figure 23. At this early stage, their dynamics may still be
regarded as linear; however, the perturbations are now located close to the inlet, and their
spatial distribution bears no resemblance with the unstable Floquet mode (figure 14).
Therefore, a non-modal mechanism is expected to underpin this growth.

Simulations with a lower initial noise level of 10−4 show a similar behaviour, although
slightly delayed (figure 17). The exponential phase is longer, since the amplitude takes
more time to saturate, and the maximum growth rate is 2.16 per forcing period.

In both the “unperturbed” and “randomly perturbed cases”, one should also note the
absence of any sustained leapfrogging or overtaking events before pairing, contrary to
what was observed by Selçuk et al. (2017a). This can be understood because the jet
vortex rings are much thicker compared their helical vortices, making leapfrogging and
overtaking difficult.

5.2. Optimal linear perturbation growth over one cycle

In order to further analyse and understand the mechanism behind the non-modal
onset of vortex pairing, as observed in § 5.1.2, the optimal growth of subharmonic
perturbations is now investigated. One cycle period T is chosen as the time horizon
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Figure 19: Perturbation magnitude ‖u(t)− u(t− T )‖ at five different instances without
added initial noise.

0 5 10 15 20 25 30 35 40
0
1
2

z

r

−3.8 −2 0 2 3.8 ·10−2

Figure 20: Vorticity field of the perturbation without any forcing applied at t = 40T .
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Figure 21: Five snapshots of vorticity, evolving out of initial white noise level 10−3. The
colour coding is the same as in figure 3b.

over which optimisation is performed. As discussed in the context of (4.6), perturbations
are propagated over one cycle by the time-shift operator Φ′. The optimal perturbation
is then found as the solution to the maximisation problem

‖uopt(T )‖ = max
u′(t=0)

‖u′(t = T )‖
‖u′(t = 0)‖ = max

u′(t=0)

‖Φ′u′(t = 0)‖
‖u′(t = 0)‖ , (5.2)

The norm used in the following is derived from the standard real u-scalar product in
cylindrical coordinates (equation (4.7)). This scalar product defines a full norm for u,
but only a semi-norm for q, because the separation condition is not fulfilled. The solution
of the maximisation problem (5.2) is given by the norm of the operator Φ′.

To evaluate this norm, the orthonormal basis {ûni } calculated in the context of modal
analysis (§ 4.3) is once more exploited. Instead of maximising the norm of Φ′, a infinite-
dimensional operator, we maximise the norm of its projection Φ̃, of finite dimension, onto
this basis.

A perturbation state u′ is projected onto {ûni } as

u′ =
N−1∑

n=0

Nvec∑

i=1

βnNvec+iû
n
i + r′, (5.3)
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Figure 22: Perturbation magnitude ‖u(t)−u(t−T )‖ at five different instances evolving
out of initial white noise level 10−3.
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Figure 23: Vorticity field of the perturbation with random forcing (level 10−3) at t = 5T .
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βnNvec+i = 〈u′, ûni 〉 such that β = RTMu′ (5.4)

The residual r′ is orthogonal to the basis {ûni }, such that ‖u′‖2 = ‖β‖2+‖r′‖2. Therefore,

Φ′u′ =

N−1∑

n=0

Nvec∑

i=1

βnNvec+i (Φ′ûni ) + Φ′r′ (5.5)

=
N−1∑

n=0

Nvec∑

i=1

(
Φ̃β
)
nNvec+i

ûni + Φ′r′ (5.6)

and

‖Φ′u′‖2 = ‖Φ̃β‖2 + ‖Φ′r′‖2 + 2

〈
N−1∑

n=0

Nvec∑

i=1

(
Φ̃β
)
nNvec+i

ûni , Φ
′r′

〉
, (5.7)

with the norm of Φ̃β calculated in a finite-dimensional space of dimension NNvec. There-
fore, maximising ‖Φ′u′‖ is equivalent to maximising the right-hand side of the previous
equation. However, the ûni -basis has not been chosen randomly: being constructed from
the successive iterations of a single group of random vectors, it selects numerically the
fastest-growing modes of the full system, in a similar way as power iterations (Saad 2011).
These modes are then gradually excluded from the residual space of r′, and the norm
of the image of r′ through Φ′ decreases as the number N of Krylov subspace iterations
is increased. On the right-hand side of equation (5.7), the first term becomes dominant
as N increases ; the second and third terms are bounded by ‖Φ′r′‖2 and ‖Φ̃β‖‖Φ′r′‖,
respectively. Therefore, the approximation ‖Φ′u′‖ ≈ ‖Φ̃β‖ is valid for large N . This
explains why, for a given value of NNvec, a trade-off needs to be found between N and
Nvec: N must be large enough to capture the salient flow dynamics, whereas Nvec must
be sufficiently large to make the block-Arnoldi calculations computationally efficient.

The norm ‖Φ̃β‖ is evaluated by use of the singular value decomposition (SVD)

Φ̃ = ŨΣṼ T , (5.8)

with Σ a real positive diagonal matrix, and Ũ and Ṽ real unitary matrices. Columns
ṽk and ũk represent forcing and response pairs in the orthonormal basis of the {ûni }.
Σ contains the singular values ordered in descending order, such that Φ̃ṽk = σkũk with
σk > σk+1 > 0.

Note that the Krylov base constructed in § 4.3 is orthonormal with respect to the
scalar product (4.7). Therefore, the optimal initial perturbations or responses in the
reduced space correspond to the optimal initial perturbations or responses in the full-
state space, using the R matrix to change basis. For a given optimal initial perturbation
(resp. response) ṽk (resp. ũk) in this reduced basis, the corresponding full-state initial
perturbation velocity (resp. response velocity) vk (resp. uk) is obtained as vk = Rṽk
(resp. uk = Rũk). The corresponding matrices of optimal initial perturbations and
responses are V = RṼ and U = RŨ . Because of this preserved optimality, the maximum
linear gain achievable over one period in the full-state is still σ1, obtained by perturbing
the velocity field at t = 0 with v1. After one period, the perturbation velocity field is
given by u1.

This method is computationally efficient, as it is entirely based on the results already
available from the modal analysis. This is in contrast with the additional computations
required in a direct-adjoint approach. Moreover, with the direct-adjoint approach, the
optimisation is carried out for a single time horizon Tf . In this section, only Tf = T has
been chosen ; however, as will be seen in the next section, this can be extended with little
additional effort to any time-horizon of integer periods Tf = nT . Time-horizons that are
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Figure 24: Norm of the time-shift operator for different Reynolds and Strouhal numbers,
with a 5% forcing level and a normalised momentum thickness of 5%. The grey or
black domains represent the parameters values for which DNS calculations show that
the “natural” solution is unpaired or paired, as shown in figure 7. In figure 24b, the
leading amplification rates are also depicted rescaled over one dimensionless time unit.
Additional singular values for lower Reynolds number flows are discussed in § 5.4.

Forcing amplitude 1% 5% 10%

‖uopt(T )‖ 3.96 3.40 3.32

Table 3: Evolution of the optimal perturbation gain over one period with the forcing
amplitude for Re = 2000 and StD = 0.60.

not integer multiples of T , corresponding to transient phenomena within a forcing period,
are not considered here.

Singular value decomposition of Φ′ has been carried out for all flow configurations
listed in table 1. The maximum gain values σ1 are shown in figure 24 for fixed values of
StD and Re. Variations of σ1 with the forcing amplitude A are given in table 3 for one
setting Re = 2000 and StD = 0.6. In all cases, the achievable transient amplification over
one period is significantly higher than the maximum modal growth rate. A comparison
with results of perturbed DNS flows (figure 17) is discussed in § 5.3.

At fixed Strouhal number (figure 24a), the leading singular value changes weakly as a
function of Reynolds number, even as the system goes from stable to unstable. Variations
of σ1 are within 20% as the value of Re is doubled.

At fixed Reynolds number (figure 24b), variations of the Strouhal number also do not
affect σ1 in a strong way. Doubling StD from 0.45 to 0.9 is accompanied by a 10% decrease
of the maximum gain over one flow period. However, when σ1 is rescaled to give the mean
amplification over a constant time unit, as σ̃1 = σ1StD, this rescaled gain increases by
more than 30% over the investigated interval of StD. This is consistent with Broze &
Hussain (1994, 1996) : in their parametric study, as shown in figure 2, they found that
when the Strouhal number is increased, the jet is more prone to experience non-T - or non-
2T -periodic behaviour (periodic or not modulations, intermittency or chaos). Our study
shows that the larger the Strouhal number, the more amplified random perturbations
can be over a given time unit.
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Figure 25: The twenty first singular values of Φ′ for Re = 2000, StD = 0.6 and A = 5%.

With increasing forcing amplitude, the maximum gain is moderately diminished (ta-
ble 3). This may indicate that the receptivity to subharmonic perturbations is larger
when the shear layer is not yet fully rolled up, since increasing forcing amplitude results
in a faster roll-up of vortices, as shown in figure 9. Again, this is coherent with Broze &
Hussain (1994, 1996): as shown in figure 2, with larger forcing levels, except at Strouhal
numbers greater than those considered in our study, the flow is less prone to non-periodic
behaviour, which may be brought about by transient amplification of small disturbances.

The leading singular mode may not be the only relevant way to trigger transient
growth. For the case (Re = 2000, StD = 0.6), the 20 largest singular values are
represented in figure 25. Indeed, a strong dominance of the optimal perturbation cannot
be affirmed: the first value is 15% larger than the second, 27% larger than the third, and
only 87% larger than the twentieth.

The shapes of the optimal initial perturbation and response structures are shown for
the case (Re = 2000, StD = 0.6) in figures 26a and 26b, respectively. In comparison with
the Floquet mode discussed in § 4.4 (see figure 14), these perturbation structures are
localised much closer to the inlet. Over the course of one period, the perturbation shape
is largely conserved, while it is convected at the same pace as the rolled-up vortices. The
manifestation of these perturbations in the total vorticity field is visualised in figure 27,
where the linear optimal initial perturbation and response structures are superposed
onto the periodic base state with a small amplitude of 5%. It can be observed that the
optimal perturbation structures displace the vortices towards and away from the axis,
in an alternating fashion. This displacement is furthermore oriented at an oblique angle,
such that the distance between neighbouring vortices is modulated, thus initiating the
pairing interaction.

The second singular mode pair in the same configuration, corresponding to σ2, is
displayed in figure 28. It exhibits a very similar structure as the first singular mode, the
main difference being that the maximum amplitude is shifted downstream to the next
vortex pair.

5.3. Optimal linear perturbation growth over many cycles

The technique that has been described in the previous section for optimisation over a
single flow period T is easily extended in order to construct optimal perturbations for
time horizons of multiple periods nT . Let fn denote the optimal perturbation at t = 0
that leads to the largest possible flow response rn at t = nT . The associated amplitude
gain is then given by the norm ‖uopt(nT )‖ = ‖rn‖/‖fn‖, which is identical to the largest
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Figure 26: For Re = 2000 and StD = 0.6, vorticity of (a) the optimal perturbation and
(b) its response after one flow period. The maxima are located close to the inlet.
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Figure 27: Superposition of the base flow and (a) the optimal perturbation, (b) the
associated linear response after one flow period. The total vorticity is shown, for velocity
fields u′ = Uu + 0.05u1 and u′ = Uu + 0.05σ1v1, respectively, for the case Re = 2000
and StD = 0.6. Both u1 and v1 have unit norm.

singular value of the nth power of the operator Φ. Substituting Φ with its approximation
Φ̃, the SVD of Φ̃n is straightforward to compute.

The ensuing variation of the optimal gain with nT is traced in figure 29, alongside the
perturbation growth associated with the most unstable Floquet mode (§ 4.4). Optimal
perturbation at t = 0 enables a vigorous transient growth over short time horizons; at
longer times, however, the optimal growth rate approaches that of the modal solution,
given by the modulus of the dominant Floquet multiplier. This behaviour is identical to
that of perturbation growth in steady base flows, which has been discussed theoretically
by Trefethen & Embree (2005). In the present case, the transient non-modal growth
provides a significant boost, on the order of 105, of the overall long-time amplitude gain.
This additional factor corresponds to 73 cycle periods of modal growth.
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Figure 28: For Re = 2000 and StD = 0.6, vorticity of (a) the second singular mode: (a)
perturbation and (b) its response after one flow period. The maxima are located further
downstream than in the optimal setting shown in figure 26.
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Figure 29: Transient growth gain achieved by a (Re = 2000, StD = 0.60) jet forced with
5% amplitude and comparison with modal growth.

The evolution and convergence of the optimal initial perturbation and response struc-
tures are examined in figure 30 in terms of projections. The scalar products of the initial
perturbation and response structures obtained for any number of cycles with those at
n = 1 and n = 50 are represented. It is observed that the optimal initial perturbation
structure does not evolve much with time, and that the shape determined for one single
period is close to optimality for all time horizons. In contrast, the shape of the optimal
response changes significantly through time; the optimal response at t = 50T is indeed
localised at a different location than its counterpart at t = T . While the optimal initial
perturbation structure always retains a nearly identical shape, the optimal response
structure gradually shifts downstream with increasing time horizon, and eventually it
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Figure 30: Projection of the optimal initial perturbation and response at time nT over
the optimal initial perturbation and responses at times T and 50T for a jet at Re = 2000
and StD = 0.60 forced with a 5% amplitude. While the optimal initial perturbation
experiences little change, the optimal response changes drastically. All vectors considered
have unit norm.

|〈f1, ṽ1〉| |〈f50, ṽ1〉| |〈r1, ṽ1〉| |〈r50, ṽ1〉|
1.24× 10−3 1.10× 10−5 3.60× 10−3 9.9990× 10−1

Table 4: Scalar products (4.7) between the Floquet mode ṽ1 and the optimal finite-time
initial perturbations fn and responses rn. All modes and perturbations have unit norm.
Consistent with the notations introduced in § 5.2, f1 is identical to v1, and r1 to u1.

converges towards the structure of the Floquet mode (see figure 14). The projection
values in table 4 demonstrate this convergence. It is expected on theoretical grounds
(Trefethen & Embree 2005) that, at long time horizons, the optimal response structure
corresponds to the dominant Floquet mode, whereas the optimal forcing is given by the
associated adjoint mode of the time-shift operator.

The different evolution from different initial perturbations, documented in § 5.1.1
and 5.1.2 can now be interpreted in terms of the optimal perturbation results.

In the two cases that were initialised with white noise perturbations, this initial condi-
tion contained significant components of strongly amplified optimal initial perturbation
modes. After approximately five periods, these structures emerged from the background
noise, as may be inferred from a qualitative comparison between figures 23, 26b and 28b.

However, the maximum growth observed in figure 17 for
√

ε2 = (10−3, 10−3)T corre-
sponds to a factor 2.16 per period, whereas the leading singular value was determined to
be 3.40 in § 5.2 for the time horizon t = T . Yet, the optimal growth rate decreases with
time; this is shown in figure 31, which represents the marginal gain σm(nT ) at t = nT
of the nT -optimal perturbation:

σm(nT ) =
‖uopt[(n+ 1)T ]‖
‖uopt(nT )‖ (5.9)

with ‖uopt(nT )‖ plotted in figure 29. Therefore, the maximum growth value 2.16, ob-
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Figure 31: Marginal gain σm(nT ) of the optimal perturbation at the horizon time nT
for Re = 2000, StD = 0.60 and A = 0.05. The marginal growth rate asymptotically
converges towards the modulus of the most unstable Floquet multiplier.

Reynolds number 500 750 1000 1300
Floquet multiplier −0.51± 0.031i −0.64 −0.82 −0.97
Leading singular value 1.85 2.28 2.58 2.83

Table 5: For StD = 0.6 and A = 0.05, evolution of the least stable subharmonic Floquet
multiplier and of the maximum growth rate over one period as a function of Re in the
stable case.

served in figure 17, is consistent with the marginal gains observed after 5 to 10 periods
in figure 31.

In the case discussed in § 5.1.1, initialised without added noise, the exponential growth
observed between 40T and 60T has been associated with the unstable Floquet mode. The
initial perturbation (figure 19a) is spatially disjoint from optimal perturbations near the
inflow. At t = 20T , a non-modal pairing perturbation is faintly visible in figure 19b,
still in the process of transitionning towards the Floquet mode in figure 19c, the optimal
linear response at long times.

Whether or not transient processes lead to a rapid onset of nonlinear vortex pairing
depends on the energy level of oscillatory perturbations near the inflow, with appropriate
wavelengths for subharmonic vortex modulation.

5.4. Importance of transient dynamics at low Re

In § 3.4.1, a Reynolds number threshold was determined below which pairing did no
longer occur naturally. However, in § 3.4.3, it has been demonstrated that forcing a jet
harmonically with a small noise level was able to trigger pairing for Reynolds numbers
where pairing does not normally occur. It is now examined how this behaviour can be
explained in the light of the transient growth analysis developed in the previous section.
At StD = 0.6 and A = 5%, four Reynolds number values 1300, 1000, 750 and 500 are
considered here. All these cases are modally stable, as seen in table 5. The transient
growth of these cases is shown in figure 32.

Although in all cases, the gain decreases in the long term, the maximum achieved
during the transient growth varies largely, between 4.5 after 6 periods for Re = 500, and
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Figure 32: Transient growth gain for a jet forced at StD = 0.60 with 5% amplitude at
different subcritical Reynolds number values.

8.3 × 103 after 26 periods for Re = 1300. This change explains the different behaviour
observed in § 3.4.3. At Re = 500, whatever the forcing level, the noise is not energetic
enough to trigger pairing. On the other hand, at Re = 1300, even very small perturbations
eventually initiate pairing via transient growth. At intermediate Reynolds numbers, the
behaviour observed depends on the perturbation level.

6. Conclusion

The onset of sustained vortex pairing in the street of axisymmetric vortices in a laminar
jet has been investigated by means of global instability analysis.

The numerical framework developed for this study is applicable to the instability
analysis of any spatially developing time-periodic flow. It includes the computation of a
strictly T -periodic base flow by means of DNS with added time-delay control (Shaabani-
Ardali et al. 2017), the identification of dominant linear Floquet modes, and a singular
value decomposition of the propagator in order to characterise non-modal transient
growth phenomena. The modal and non-modal analysis are both achieved via time-
stepping of the linearised flow equations, without the need for adjoint calculations, in
combination with a block-Arnoldi algorithm (Saad 2011).

It has been demonstrated that self-sustained vortex pairing in a jet is the manifestation
of a subharmonic linear Floquet instability of the underlying periodic vortex street. Direct
numerical simulations of axisymmetric laminar jets, forced harmonically at Strouhal
number StD at the inlet, have been perfomed in order to delineate the region in the
Re-StD parameter plane where pairing in the ensuing vortex street arises spontaneously.
This parameter regime has then been shown to be characterised by subharmonic Floquet
instability. Furthermore, the phase velocities of fundamental and subharmonic fluctua-
tions in the simulation results have been found to be consistent with the resonance model
proposed by Monkewitz (1988). DNS results also show a strong influence of inflow forcing
amplitude as well as random ambient noise on the onset of vortex pairing.
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The spatial structure of the unstable linear Floquet mode, throughout the parameter
regime considered in this study, reaches its maximum amplitude far downstream of the
inlet, whereas the subharmonic perturbation amplitude in the nonlinear saturated paired
flow state peaks a few diameters away from the inlet, where stationary vortex pairing
occurs. When DNS calculations in the unstable regime are initiated with extremely low
subharmonic perturbations, the Floquet mode structure and growth rate are indeed
observed over a short time interval in the bifurcation process. However, when addi-
tional random noise is added to the initial condition, considerably faster subharmonic
perturbation growth is observed, with spatial amplitudes concentrated near the inlet.
This behaviour motivated a linear optimal perturbation analysis. It has been found that
linear transient mechanisms may induce, for a standard configuration with Re = 2000
and StD = 0.6, an additional amplitude gain of about five orders of magnitude with
respect to purely modal growth. Furthermore, the spatial structure of the linear optimal
perturbation response reflects the DNS observations at early times, when subharmonic
perturbations may be assumed to be governed by linear dynamics.

While the asymptotic occurrence of vortex pairing is determined by modal Floquet
instability, its emergence is dominated by non-modal transient growth mechanisms.
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Selçuk, C., Delbende, I. & Rossi, M. 2017a Helical vortices: linear stability analysis and
nonlinear dynamics. Fluid Dyn. Res. 50 (1), 011411.
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Coherent turbulent wavepacket structures in a jet at Reynolds number 460000 and Mach
number 0.4 are extracted from experimental measurements, and are modelled as linear fluc-
tuations around the mean flow. The linear model is based on harmonic optimal forcing
structures and their associated flow response at individual Strouhal numbers, obtained from
analysis of the global linear resolvent operator. These forcing/response wavepackets (‘re-
solvent modes’) are first discussed with regard to relevant physical mechanisms that provide
energy gain of flow perturbations in the jet. Modal shear instability and the non-modal Orr
mechanism are identified as dominant elements, cleanly separated between the optimal and
sub-optimal forcing/response pairs. A theoretical development in the framework of spec-
tral covariance dynamics then explicates the link between linear harmonic forcing/response
structures and the cross-spectral density (CSD) of stochastic turbulent fluctuations. A low-
rank model of the CSD at given Strouhal number is formulated from a truncated set of linear
resolvent modes. Corresponding experimental CSD matrices are constructed from exten-
sive two-point velocity measurements. Their eigenmodes (SPOD modes) represent coherent
wavepacket structures, and these are compared to their counterparts obtained from the linear
model. Close agreement is demonstrated in the range of ‘preferred mode’ Strouhal numbers,
around a value of 0.4, between the leading coherent wavepacket structures as educed from
the experiment and from the linear resolvent-based model.

I. INTRODUCTION

The presence of orderly structures in many turbulent shear flows has been abundantly docu-
mented over the last fifty years; in the case of jets, such studies have largely been motivated by the
need to reduce their noise generation. It was recognised early on that coherent structures in turbu-
lent jets strongly resemble instability wavepackets, as if they were governed by linear dynamics of
small-amplitude fluctuations in a time-averaged mean flow [1]. Many variants of linear analysis
techniques have since been explored, in order to identify a model that may faithfully reproduce the
coherent turbulence structures in jets. Based on the assumption that linear jet instability is driven
by incoming disturbances from upstream, Michalke [2] computed the spatial growth of linear per-
turbations in parallel jet profiles, followed by the inclusion of weakly non-parallel effects by way
of multiple-scales expansion [3] or parabolised stability equations (PSE, [4]), as well as fully non-
parallel linear simulations with inlet forcing [5]. As discussed by Jordan & Colonius [1], all these
studies successfully predict the observed spatial growth of coherent turbulence structures near the
nozzle, over a dominant but restricted range of frequencies. However, the underlying theoretical
model a priori pertains to deterministic linear perturbations developing in a steady laminar base
flow, and the justification for extending it to stochastic nonlinear fluctuations around a statistical
turbulent mean state has remained vague.
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Laws that govern the statistical moments of turbulent flow, like average and covariance val-
ues, can be obtained by considering the linearized Navier–Stokes system subject to stochastic
forcing [6]; this approach has recently evolved into the ‘statistical state dynamics’ framework,
where stochastic forcing of higher-order statistical moments is considered [7]. Application of this
framework to the aerodynamic turbulent jet problem is very promising; the interpretation, given
in Ref. [7], that “turbulence in shear flow can be essentially understood as determined by quasi-
linear interaction occurring directly between a spatial or temporal mean flow and perturbations”,
whereas “the role of nonlinearity in the dynamics of turbulence is highly restricted”, is clearly born
out by the empirical evidence of turbulent jet studies [1]. While most of the literature on stochastic
forcing in the linearized Navier–Stokes equations, including the reviews by Schmid (Sec. 4 in [8])
and Bagheri et al. [9], focuses on time-domain formulations of covariance dynamics, coherence
in jet turbulence has often been analysed in the frequency domain. In particular, several recent jet
studies make use of spectral proper orthogonal decomposition (SPOD, see [10], not to be con-
fused with [11]) as a means to extract empirical coherent structures at a given frequency from
experimental or numerical flow data [4, 12, 13].

Linear instability analysis of jets in recent years has increasingly been carried out in a
frequency-domain framework based on optimal forcing and associated flow response structures,
with no limiting assumptions about the spatial development of the base state [14–20]. Forcing
and response structures in this formalism are distributed throughout the interior of the flow, in
contrast to the assumption of pure upstream boundary forcing made in most previous models (as
cited above), and they are found as the singular modes of the global resolvent operator [8]. This
global resolvent framework, also referred to as ‘frequency response’ [14, 21] or ‘input-output’ [16]
analysis, has similarly been applied in the study of boundary layers [22–24], and its potential for
the modelling of stochastic dynamics has been explored for backward-facing step flow [25–27].
The question at this point remains, exactly what stochastic quantities can be consistently modelled
on the basis of linear resolvent analysis? Dergham et al. [25] use a low-rank resolvent model in
order to construct approximations of time-domain POD modes, whereas Boujo & Gallaire [26]
follow the arguments of Farrell & Ioannou [21] in order to estimate the frequency spectrum of the
stochastic flow response to white-noise forcing. Beneddine et al. [27] go further and set out to
model the spatial distribution of coherent fluctuations in the frequency domain; they demonstrate
convincing agreement between the spatial structures of the optimal linear flow response and the
leading SPOD mode, obtained from numerical simulations.

A formal justification for a direct comparison between optimal linear response structures and
SPOD modes has subsequently been suggested in two conference papers [18, 28], and the details
and conditions for their equivalence are elaborated in the recent work of Towne et al. [19]. On
this basis, Schmidt et al. [20] present a detailed comparison between resolvent analysis results and
SPOD modes, extracted from LES data, for high-Reynolds-number turbulent jets at Mach numbers
0.4, 0.9 and 1.5. It is found that the leading SPOD mode is well reproduced by the optimal linear
flow response, at the dominant Strouhal number 0.6 for the Ma = 0.4 case.

The present paper revisits the same turbulent jet configuration, at Mach number 0.4 and
Reynolds number 460000, entirely based on the experimental measurements by Cavalieri et
al. [12] and Jaunet et al. [29]. The latter study involved velocity measurements in cross-planes of
the jet by means of two high-cadence, stereoscopic particle-image velocimetry systems that could
be displaced in the streamwise direction so as to provide the cross-spectral density (CSD) of the
velocity fluctuations, decomposed both in frequency and in azimuth. In this paper, SPOD modes
will be educed from these experimental CSD matrices, such that they can be compared with linear
predictions derived from a resolvent analysis of the experimental mean flow. The principal new
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FIG. 1. Velocity profiles of the turbulent nozzle boundary layer in the jet exit plane. (a) Mean axial velocity,
scaled with the centreline velocity U j. The experimental measurements (◦) are compared with the Blasius
profile ( ) and a fitted power law ( ). (b) Measured root-mean-square velocity fluctuations. Data from
Cavalieri et al. [12].

aspects of the present study are (i) the use of an experimental database for jet resolvent analy-
sis, (ii) the extraction of SPOD modes from experimental jet measurements, (iii) the design of a
resolvent-based linear model for such experimental SPOD modes, which are necessarily based on
partial-state information, and (iv) a detailed discussion of the linear instability dynamics triggered
by optimal and sub-optimal forcing in thin-shear-layer jets, which, by extension, underpin the
spectral covariance dynamics contained in the SPOD modes. Although the results of this study
are mostly consistent with those of Schmidt et al. [20], several quantitative as well as qualitative
differences arise, with relevance for the physical interpretation in terms of instability mechanisms.
These differences are attributed to the inclusion of a nozzle pipe in the present analysis. The
nozzle boundary layer is identified as the most receptive flow region in the following calculations,
underlining the importance of its numerical resolution, similar to recent observations in LES
calculations [30].

The flow configuration, corresponding to the jet experiments, is briefly defined in Sec. II. The
linear resolvent analysis, including the modal decomposition framework, the numerical implemen-
tation, and the presentation of results, is documented in Sec. III. This is followed, in Sec. IV, by
a discussion of the salient linear instability mechanisms that are active in optimal and sub-optimal
jet forcing. Section V presents a detailed comparison between SPOD modes from experimental
data and stochastic predictions derived from the resolvent-based linear model. Our new results are
then put into perspective with regard to previous modelling attempts. The paper closes, in Sec. VI,
with a summary of the main conclusions.

II. FLOW CONFIGURATION

The study is based on jet experiments conducted at the Bruit et Vent jet-noise facility of the
Pprime Institute in Poitiers. Technical details of the experimental apparatus, as well as measure-
ment validation, are thoroughly described in past publications [12, 29].
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FIG. 2. Axial velocity of the mean flow, as used throughout this study. The distribution has been modelled
such as to closely reproduce the experimental measurements [12]. The pipe wall is represented as a white
line, and only a portion of the numerical domain is shown. The rasterisation of the colour plot corresponds
to the standard numerical grid resolution (Sec. III D).

The experiments are performed on a Ma= 0.4 isothermal jet issuing from a convergent-straight
nozzle. The Reynolds number of the jet, based on the nozzle exit diameter D = 50 mm and the
maximum exit velocity U j is defined as Re =U jD/ν = 460000, where ν is the kinematic viscos-
ity. The Strouhal number corresponding to the dimensional frequency f is defined as St = f D/U j.
The transition to turbulence of the incoming boundary layer is forced using an azimuthally homo-
geneous carborandum strip, located at 2.8D upstream of the nozzle exit plane. A fully turbulent
boundary layer is obtained at the exit section of the nozzle, as reported in Fig. 1, where the mean
streamwise velocity and its root-mean-square fluctuation values in the interior pipe boundary layer
are shown, both normalised with U j.

Free-jet mean flow measurements from this setup are documented in Cavalieri et al. [12],
and excellent reproducibility has been demonstrated in the more recent experiments by Jaunet
et al. [29]. These experimental data are used to construct a parametric model of the mean flow, as
described in Rodriguez et al. [13], providing smooth variations of axial and radial velocity, den-
sity and temperature. A self-similar solution, as described in Sec. 5.2 of Pope [31], is employed
at x > 15D, measured from the nozzle exit, resulting in a maximum difference of 6% at x = 15D
between the self-similar velocity model and the PIV data. Upstream of the nozzle exit, a straight
pipe is added to the numerical flow domain. The mean flow inside this pipe is taken to be parallel;
the boundary layer velocity profile is approximated as being linear very near the wall, followed
by a fitted power-law variation over the radial interval indicated by a red line in Fig. 1a, until
the constant value U j is attained. A smooth transition between the parallel nozzle flow and the
spreading jet is achieved by use of a weighting function, with null derivatives on both ends, over
the distance of one diameter [32]. The resulting axial velocity field, shown in Fig. 2, is used for
computing temperature and density distributions by way of the Crocco–Busemann relation, and
the radial velocity component is recovered from the continuity equation. The momentum thick-
ness of the shear layer at the nozzle exit, x = 0, is δm/D = 0.0075, significantly thinner than in the
LES-based study by Schmidt et al. ([20], their figure 2b). In the free jet, the momentum thickness
grows linearly with x, at a rate of dδm/dx≈ 0.031.
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III. LINEAR RESOLVENT ANALYSIS OF FLUCTUATIONS AROUND A MEAN FLOW

A. Governing equations

We consider the compressible Navier–Stokes equations, in terms of conservative variables
(ρ,ρu,ρE), cast in axisymmetric cylindrical coordinates (x,r). In the notation of [33], these
equations are

∂ρ
∂ t

+∇(ρu) = 0, (1a)

∂ρu
∂ t

+∇(ρu⊗u) =−∇p+∇τ, (1b)

∂ρE
∂ t

+∇(ρuE) =−∇h+∇(τu) , (1c)

where ρ is density and u=(ux,ur,0) is the velocity vector, with axial and radial components ux and
ur, and with zero azimuthal velocity. In our axisymmetric setting, all quantities are independent
of the azimuthal coordinate θ . The total energy E is then defined as

E =
T

γ(γ−1)Ma2 +
1
2
(|ux|2 + |ur|2), (2)

with γ = 1.4 the ratio of specific heats. The tensor τ denotes the molecular stresses, and h is
the heat flux vector. The reference length of the problem is the pipe diameter D. The reference
velocity is chosen as the centreline velocity U j at the pipe exit x = 0, and the reference density is
set as the ambient value ρ∞. Sutherland’s law is used to calculate the viscosity, and the Prandtl
number is set to Pr = 0.72, the standard value for air.

B. Representation as a linear input-output system

The flow variables q = (ρ,ρux,ρur,ρE) are decomposed into their time-averaged mean and
time-dependent fluctuation components, q(x,r, t) = q̄(x,r)+ q′(x,r, t). The governing equations
(1) can then be rewritten in the form

∂q′

∂ t
−Aq′ = f , (3)

where A is the operator obtained by linearising (1) around the mean flow, and the vector f contains
all remaining nonlinearities in q′, i.e. the fluctuations of the generalised Reynolds stresses [34], as
well as any external forcing at the boundaries of a finite-domain flow problem.

A Fourier-transform

q′(x,r, t) =
∫ ∞

−∞
q̂(x,r,ω)eiωtdω, f (x,r, t) =

∫ ∞

−∞
f̂ (x,r,ω)eiωtdω, (4)

leads to the frequency-domain system

q̂ = (iωI−A)−1 f̂ = R(ω) f̂ , (5)

where R is the resolvent operator [8]. As f contains all terms nonlinear in q′, the forcing with its
Fourier-transform f̂ induces an inherent coupling between all frequencies. In order to make use of
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the system (5) for the purpose of modelling, a closure assumption is required that allows a decou-
pling of frequencies. Following previous literature [19, 21, 27, 35], we choose to simply regard
f as an anonymous forcing term, representing any incoming perturbations from the nozzle or the
ambient, as well as fluctuations in the nonlinear terms of the momentum and energy equations, but
without accounting for its inner structure that makes it dependent on q′. Accordingly, we neglect
the dependence of f̂ at one given frequency on q̂ at other frequencies.

One possibility to account for a limited interaction between frequencies lies in the inclusion
of turbulent dissipation through small scales in the linear operator A, in the form of turbulent
viscosity. Indeed, any portion of f̂ may be modelled as being linearly dependent on q̂, without in-
troducing explicit coupling between frequencies. Some empirical evidence suggests the pertinence
of such modelling [36, 37], and we have used it in the past for the resolvent analysis of turbulent
jets [17, 38], but the procedure requires additional modelling hypotheses and is not pursued here.
All computations in this section only account for molecular viscosity at Re = 460000.

C. Modal decomposition of the resolvent operator

The following development restates the resolvent analysis formalism as it has been applied
in numerous past studies, including references [14, 16–20]. It is presented here in a form that
establishes our nomenclature and clarifies the influence of the chosen energy norm.

For a given frequency ω , the resolvent operator provides the mapping between any forcing
structure f̂ (x,r,ω) and its linear flow response q̂(x,r,ω). The common choice for an energy mea-
sure in compressible settings is the norm defined by Chu [39],

‖q̂‖2 =
∫∫

Ω

(
ρ̄(|ux|2 + |ur|2)+

p̄
ρ̄
|ρ̂|2 + ρ̄2

γ2 (γ−1)Ma4 p̄
|T̂ |2

)
r dr dx, (6)

which is used in the following computations. Both the forcing and the flow response are measured
in this norm, and the spatial integration in both cases is carried out over the entire numerical
domain Ω , with the exception of absorbing layers near the outer boundaries (see Sec. III D). In
discrete form, the norm is expressed by a Hermitian positive-definite matrix M, such that ‖q̂‖2 =
q̂HMq̂, with a Cholesky factorisation M = NHN. Flow forcing and response are represented by
discrete complex-valued vectors f̂ and q̂ in the following

The gain between input and output energy is then defined as

σ2 =
‖q̂‖2

‖ f̂‖2
=

f̂ HRHMR f̂
f̂ HM f̂

=
v̂HN−1,HRHMRN−1v̂

v̂H v̂
, with v̂ = N f̂ , (7)

which has the form of a Rayleigh quotient, involving the Hermitian operator N−1,HRHMRN−1.
Consequently, the eigenvectors v̂i of this operator are orthogonal, its eigenvalues σ2

i are real pos-
itive, and the largest possible energy gain of the linear flow system is given by the largest eigen-
value. The forcing structure that gives rise to an energy gain σ2

i is recovered as f̂i = N−1v̂i. After
normalisation, v̂H

i v̂i = 1, the eigenvectors v̂i are the columns of the right singular matrix V of the
operator

NRN−1 =UΣV H , (8)

associated with the singular values σi as entries in the diagonal matrix Σ , and with the unique
unitary matrix U .
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∆xmin ∆rmin tmax σ1

case A 0.0200 0.0075 60 5117.2
case B 0.0200 0.0025 60 5256.3
case C0 0.0100 0.0025 60 5264.3
case C1 0.0100 0.0025 70 5294.4
case C2 0.0100 0.0025 75 5302.6
case C3 0.0100 0.0025 80 5306.6

TABLE I. Convergence of the optimal gain σ1 at St = 0.5, as a function of grid resolution and final simula-
tion time tmax. These test calculations were performed with a reduced Krylov space dimension Nkr = 4. A
value Nkr = 12 is used in all following computations for an increased accuracy of sub-optimal modes.

The forcing structures f̂i are the columns of a matrix F = N−1V , and the associated flow re-
sponse structures q̂i form the matrix Q̂ = RF . With (8), it is found that Q̂ = N−1UΣ , from where
it follows that Q̂HMQ̂ = Σ 2. A normalised response matrix Q = Q̂Σ−1 is introduced, such that the
final identities for our modal resolvent decomposition are recovered:

FHMF = QHMQ = I, (9a)

R = QΣFHM. (9b)

The singular values σi are arranged in descending order, such that the optimal energy gain is
given by σ2

max = σ2
1 , arising for the forcing structure f̂1. In the inner-product space defined with

the matrix M, each vector f̂ j represents the optimal forcing in the subspace that is orthogonal to
all leading vectors f̂i with i > j. As a convention, we will refer to a given triple (σi, f̂i, q̂i) as the
resolvent mode i, consisting of the ith gain, forcing mode and response mode. The triple (σ1, f̂1, q̂1)
of ‘optimal gain’, ‘optimal forcing’ and ‘optimal response’ is characterised by the maximum value
of σ , and resolvent modes with i > 1 are sometimes referred to as ‘sub-optimals’. Note that ‘gain’
in the following refers to σ , not to the energy gain, given by σ2.

D. Matrix-free computation of resolvent modes

Gain values and associated forcing modes are computed by solving the reformulated eigenvalue
problem

RHMR f̂i = σ2
i M f̂i, (10)

using the iterative Lanczos method that is provided by the SLEPc library [40]. A matrix-free time-
stepping method is used in each iteration step, as described in detail by [32]. Time-stepping needs
to be performed both for the solution of a direct system, a = Rb, and for the subsequent solution
of an adjoint system, a′ = RHb′. The time horizon tmax of these calculations must be chosen long
enough such that the final periodic flow regime is recovered with sufficient accuracy. A numerical
procedure for the adjoint system is constructed according to the method of Fosas de Pando et
al. [41], which ensures that the complete numerical encoding of the operator in (10) remains
strictly Hermitian; this is an important requirement for the efficiency of the Lanczos algorithm.

The linear system (3) is discretised with explicit finite-difference schemes [42], using an 11-
point stencil. Time integration is performed with a third-order Runge–Kutta algorithm, with time
step ∆ t = 2.85 ·10−3. The computational domain extends along the streamwise direction over the
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FIG. 3. Spacing of mesh points, (a) in the radial direction and (b) in the axial direction. The mesh is
orthogonal.

interval x ∈ [−12.5, 25], and from the symmetry axis r = 0 outwards to r = 20; the nozzle exit
is placed at x = 0. The mesh that is used in all calculations presented in the following sections
consists of (Nx,Nr) = (750,380) discretisation points. These points are distributed on a non-
uniform Cartesian grid, with maximum resolution along the pipe walls, in the shear layer and
around the nozzle lip. Figure 3 displays the axial and radial point distributions.

Symmetry boundary conditions are imposed on the jet axis by the use of ghost points: ρ , ρux
and ρE are prescribed to be even functions in r across the axis, while ρur is odd. On all other
boundaries, the LODI boundary conditions are applied [43], in combination with absorbing layers
[44] at r > 16, x <−8 and x > 21.

Convergence of the optimal gain is tested with respect to the grid spacing and to the final time
tmax of the simulations. Several results are reported in table I. For a fixed value tmax = 60, the
mesh of case C0 is deemed sufficiently refined; this is the standard mesh displayed in Fig. 3. The
final time is chosen by tracking the energy of time-harmonic fluctuations, in order to evaluate to
what extent transient dynamics have died out. Satisfactory convergence is reached at tmax = 80,
which corresponds approximately to twice the convection time of vortical structures between the
nozzle exit and the downstream end of the physical domain; this value is retained for all following
calculations.

For any given Strouhal number, the five leading resolvent modes are computed, using a Krylov
space of dimension Nkr = 12. The Lanczos iteration is halted when the estimated residual norms
of all five modes have fallen below the tolerance value ε = 10−4 (see [40]). A typical computation
for one Strouhal number requires about 12–16 wall-time hours on 192 cores of Intel Xeon E5-2690
v3 CPUs.

E. Resolvent mode results

Gain values of the five leading resolvent modes are shown in Fig. 4 as functions of the Strouhal
number. Above St = 0.3, the optimal gain curve is well separated from the sub-optimal ones. The
maximum overall gain occurs at St = 0.7, where σ1 is one order of magnitude larger than σ2.

The optimal forcing and response structures are presented in Figs. 5 and 6 for several Strouhal
numbers between 0.2 and 0.7; snapshots of the real axial momentum components are shown in
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FIG. 4. The five leading resolvent gain values (• σ1, � σ2, � σ3, N σ4, ◦ σ5) as functions of Strouhal
number.

all frames, with a rasterisation that corresponds to the numerical mesh. At Strouhal numbers 0.3
and above, the forcing is localised in a thin layer at the inner pipe wall, near the nozzle. The
right-column frames in Fig. 5 give a magnified view of the forcing in this flow region. Elongated
structures are tilted against the flow direction, in a fashion that is typical of the Orr mechanism.
Similar optimal forcing structures have been identified in boundary layers [22, 23] and in past
studies of incompressible as well as compressible jets [14, 15, 17]. The response structures at St ≥
0.3 exhibit the classical wavepacket shape associated with shear instability, with peak amplitudes
inside the potential core [13, 14, 20].

The main characteristics of both the optimal forcing and the optimal response modes are similar
at all Strouhal numbers above 0.2: optimal forcing acts upstream in the pipe and generates a
wavepacket with amplitude growth in the potential core region of the jet. As the Strouhal number
increases, the wavelength shortens, and the location of the peak amplitude moves closer to the
nozzle, consistent with the interpretation of local spatial instability [2]. At low Strouhal numbers,
as shown in figures 5a and 6a, different effects seem to arise: in addition to the described scenario,
tilted forcing structures protrude into the free shear layer close to the nozzle, and the response
wavepacket appears to be composed of two distinct regions. Along the jet axis, one local amplitude
maximum occurs at x = 5.5, and another one at x = 13, far downstream of the potential core.
The low-St optimal mode results of Schmidt et al. (Fig. 12 f in [20]) show a similar pattern. As
argued by those authors, the distinct mode characteristics at low Strouhal numbers are likely to be
associated with a crossing or merging of mode branches, due to a lessened efficiency of the shear
instability mechanism.

Sub-optimal forcing and response structures, modes 2-5, are displayed in Fig. 7 for St = 0.7.
The forcing in all cases is again characterised by structures that are tilted against the mean flow,
although these structures arise at a small radial distance away from the pipe wall, and they extend
far into the free jet, with significant amplitude inside the shear region. The associated response
wavepackets have their maximum amplitude far downstream of the potential core. The forcing
structures display radial variations that are suggestive of orthogonal functions, with an increasing
number of zero-amplitude nodes along r, and corresponding radial structures are imparted to the
response wavepackets. A similar hierarchy of optimal modes has been described in Ref. [17].

Preliminary results, pertaining to the same flow configuration of the jet experiments, have been
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FIG. 5. Optimal forcing modes at various Strouhal numbers, associated with the response modes in Fig. 6.
The real part of axial velocity forcing is represented. (a,c,e,g) Optimal forcing, plotted with aspect ratio 2.
(b,d, f ,h) Close-up of the pipe boundary layer, where the forcing is localised, at the same St values as in
the left column. The rasterisation corresponds to the numerical mesh; each field is normalised with respect
to its maximum amplitude.
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FIG. 6. Optimal response modes at various Strouhal numbers, associated with the forcing modes in Fig. 5.
The real part of axial velocity perturbations is represented, with aspect ratio 1. The pipe wall is shown as a
black line. Each field is normalised with respect to its maximum amplitude.
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FIG. 7. Sub-optimal forcing and response modes for St = 0.7. The real part of axial velocity perturbations
is represented. (a,c,e,g) Forcing modes; and (b,d,f,h) associated response modes. The pipe wall is shown as
a black line. Each field is normalised with respect to its maximum amplitude. The aspect ratio is 2, strong
magnification is required in order to visualise the fine-scale radial variations.

presented in a previous conference paper [18]. While all forcing modes in that paper are visually
identical to the present results, the associated sub-optimal response modes were quite different, all
bearing a strong resemblance to the optimal mode. Those earlier calculations were clearly affected
by spurious numerical noise, which in all cases triggered the optimal mode sufficiently so as to
overwhelm the true sub-optimal response. Non-smoothness in the base flow, as used in Ref. [18],
was identified to cause this spurious effect. It has been carefully verified that forcing and response
modes in the present results form orthogonal sets, with respect to our scalar product, within the
accuracy imposed by the residual tolerance of the Lanczos algorithm.
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FIG. 8. Growth rate−ki and real phase velocity cr of the local shear instability mode, and their downstream
variations in the jet mean flow. The phase velocity is scaled with the local mean centreline velocity.

IV. INTERPRETATION OF OPTIMAL GROWTH MECHANISMS

The role of modal shear (Kelvin–Helmholtz) and non-modal Orr mechanisms for optimal and
sub-optimal jet resolvent modes has often been invoked in the literature (see for instance [20, 45,
46]). The aim of this section is to substantiate this interpretation by use of local analysis (for shear)
and a parallel model flow (for Orr).

The optimal resolvent modes (Fig. 6) strongly resemble those described by Garnaud et al. [14]
for an incompressible turbulent jet, which have been interpreted as a constructive combination of
the Orr mechanism in the pipe boundary layer and the shear mechanism in the free jet. Close to
the nozzle, the optimal response modes display peak amplitudes inside the free shear layer, when
measured along the radial direction. As discussed in Ref. [14], and consistent with many other
studies on jet wavepackets (e.g. [13, 20]), the spatial distribution as well as the strong streamwise
amplitude growth indicates a preponderant role of shear instability in the optimal forcing response.
This hypothesis is easily validated by a comparison with local instability results in the near-nozzle
region. In a local framework, the shear instability mechanism gives rise to a single spatial k+ mode,
which is indeed the only unstable spatial mode that can be found in the jet [47]. The downstream
evolution of this k+ eigenvalue, for St = 0.7 in the present jet mean flow, is displayed in Fig. 8
in terms of its spatial growth rate −ki and its real phase velocity cr =−ω/k. The latter is further
scaled with the local centreline velocity Uc(x) of the jet profile.

The local shear instability mode, for St = 0.7, is seen to be unstable only over the interval
0≤ x≤ 2.17. Downstream of this position, its eigenfunction (not shown) develops strong oscilla-
tions around r = 0.5, characteristic of the viscous solution in the Stokes sector above the critical
point [48], and it remains numerically tractable with confidence over only a short distance further.
A Reynolds number of 20000 has been used in these local calculations, lower than in the reference
experiment and in the global resolvent analysis, in order to accommodate an accurate resolution
of eigenfunctions in the slightly stable regime. It can be demonstrated that results in the unstable
regime are unaffected by this large value of Re. Relevant details on local spectra of compress-
ible jets are discussed by Rodriguez et al. [13]; in particular, it is described how the shear layer
mode, once it is stable, quickly merges into a continuous branch of oscillating modes. The same
observations apply here.

Following the method of Rodriguez et al. [13], the optimal resolvent response wavepacket at
St = 0.7 (Fig. 9a) is projected at each x onto the complete basis of local spatial eigenfunctions, by
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FIG. 9. Local shear instability contribution to the optimal response mode at St = 0.7. (a) Optimal response
mode from global resolvent analysis; (b) its reconstruction from projection onto the k+ local shear instability
mode. Axial velocity fluctuations are shown over the interval in x where the local mode can be identified
numerically. Both fields are normalised with respect to their amplitude maxima, but the colour scale is
saturated, in order to make small-amplitude fluctuations visible. The zero contour is traced in black.

an inner product with the associated local adjoint modes. Projection coefficients are thus obtained
at each x position, and the superposition of all local modes indeed fully reproduces the entire
global response wavepacket. The isolated contribution of the local k+ shear mode is shown in
Fig. 9b over the streamwise region where this mode is identifiable without ambiguity. It is seen
that this mode alone accounts rather accurately for the optimal resolvent response in the unstable
interval 0≤ x≤ 2.17. Downstream of this region, the radial distribution of the local eigenfunction
differs notably from the global result and, contrary to the discussion in Ref. [14], no other single
local mode can be identified as being dominant anywhere for x > 2.17. The global structure in that
region projects significantly onto a large number of local modes from a continuous branch, with
strong non-orthogonal cancellation effects.

The second resolvent response structure (mode 2) at St = 0.7 (Fig. 7b) cannot be related to any
dominant local mode anywhere along x. As perturbation growth in the resolvent mode is observed
down to a streamwise station x = 14, it is already obvious that this behaviour is not attributable
to modal growth in a local sense, since local instability at this Strouhal number is confined to
x < 2.17. Instead, the spatial features of the response wavepacket suggest again an action of the
Orr mechanism, both inside the pipe and in the jet, which feeds on energy gain from the pure
convection of tilted vortical structures in a sheared base flow. Such tilted structures are generated
by distributed forcing in the free shear layer (Fig. 7a) upstream of the response maximum. This
mechanism has been described by Tissot et al. [45] in a different framework, where PSE and its
adjoint are used to determine forcing terms that optimally match experimental results for the same
jet as analysed here. A discussion in terms of local instability modes is not helpful in this case, but
the sub-optimal forcing mechanism can still be characterised in the setting of a parallel jet flow,
which will serve as a model problem in order to understand the trends obtained in the non-parallel
framework.

A parallel incompressible jet is considered, defined by a Gaussian velocity profile

U(r) = e−2r2
, (11)

as a simple analytical model for the flow downstream of the potential core. The inflection point
is located at r = 0.5, and the flow is locally stable at a Reynolds number Re = 20000. Axisym-
metric linear perturbations are computed in a numerical domain of 10 diameters in the axial and
radial directions, in response to forcing of both velocity components, which may act anywhere
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FIG. 10. Forcing mode structures in a parallel incompressible jet with Gaussian base flow profile. Kinetic
energy at x = 10 is maximised. Streamwise velocity forcing is shown in linear colour scale. Black lines:
contours that are convected into vertical lines at x = 10 after ∆ t = (2.5,5,7.5,10). a) Forcing mode 1; b)
forcing mode 2.

in the domain. The numerical method of [49] is adapted for the global computation of optimal
resolvent structures, such that the kinetic energy of the flow response at x = 10, integrated in r,
is maximised. Thus, forcing is allowed to act throughout the flow domain, but the optimisation
objective is measured only at the downstream end.

The first two forcing modes are shown in Fig. 10, for a Strouhal number St = 1/π . Tilted
structures are observed, quite similar to the compressible results displayed in Fig. 7(a,c), and the
tilting angle increases with upstream distance from the target position x = 10. Black curves trace
material lines in the flow that are transported, through convection with the local flow velocity,
into vertical lines at x = 10 after various time lapses. It is immediately seen that the forcing
structures follow closely the local curvature of these contours, especially at far upstream positions.
Along the black curves, the phase of the first forcing mode structure is approximately constant,
whereas the second mode displays a sign change in the phase at the inflection point r = 0.5.
This radial sign change provides for the orthogonality between different forcing modes, and their
associated flow responses, while the streamwise variations in modes 1 and 2 are nearly identical.
The third and fourth forcing modes of the parallel incompressible jet, not shown in Fig. 10, are
merely characterised by additional phase changes in the radial direction. All these features are
fully consistent with the sub-optimal forcing structures found for the non-parallel compressible
jet (Fig. 7). The parallel jet results clearly demonstrate that an Orr-type convection mechanism
is responsible for the forcing gain in this locally stable setting. From their resemblance, it is
inferred that the same mechanism accounts for the gain of sub-optimal structures in the non-
parallel compressible jet.

In summary, the following main interpretations of the findings in Sec. III E are proposed: (i) The
optimal forcing (mode 1) targets the shear instability of the jet, leading to exponential amplitude
growth along x in a finite region directly downstream of the nozzle. Forcing of this mechanism is
most efficient at the upstream end of the locally unstable region. Even more efficient than direct
forcing of shear-instability perturbations at the nozzle lip is the forcing of Orr structures in the
inner pipe boundary layer, which experience growth before they enter the free jet (consistent with
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FIG. 11. (a) Sketch of the experimental setup, viewed from the top. The green lines represent the laser
light sheets S1 and S2, placed at x1 and x2, respectively; these planes are shifted during the experiment in
the range x = [1,8] (see [29]). (b) Front view of the experiment during the PIV acquisition.

[14, 15, 17]). (ii) Sub-optimal forcing exploits the Orr mechanism in the free jet as a means of
perturbation energy growth, independent of modal shear instability. Successive sub-optimal modes
exhibit an increasing number of sign changes in the phase along r, which accounts for their mutual
orthogonality. (iii) In our present results (Sec. III E), the above two mechanisms appear to be
well separated in the optimal and sub-optimal resolvent modes at moderate Strouhal numbers. At
St = 0.2, the shape of the optimal mode (figures 5a and 6a) suggests a mixed excitation of shear
instability and free-jet Orr mechanism.

V. COHERENT STRUCTURES IN JET TURBULENCE: EXPERIMENT AND LINEAR
MODEL

The resolvent analysis of Sec. III so far only describes the linear flow response to harmonic
forcing input. In this section, those results will be leveraged for the modelling of coherent turbulent
structures, where both the forcing f and the response q′ are of a stochastic nature.

A. Extraction of SPOD modes from experimental data

The jet experiments of Jaunet et al. [29] provide an extensive database of synchronous PIV
measurements in cross-planes at several axial positions. Two-point coherence statistics along
fixed radial positions have been discussed in the first publication [29] with a focus on the stream-
wise coherence length; here, the same database is fully exploited for the computation of the two-
dimensional cross-spectral density of axisymmetric velocity fluctuations in the (x,r) plane. To our
knowledge, no experimental CSD measurements of comparable size and detail in a turbulent jet
exist in the literature.

The acquisition apparatus consists of two time-resolved stereo PIV systems that can be moved
independently. Both systems measure the velocity in planes orthogonal to the jet axis at either
the same axial location (co-planar configuration) or at different positions. A sketch of the setup
is shown in Fig. 11(a), where it is illustrated how the two PIV systems can be positioned with
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respect to the nozzle. The axial positions of the measurement planes are x1 ∈ [1,8] and x2 ∈ [x1,8]
in increments of ∆x = 0.5, where x1 refers to the axial position of the upstream system (S1) and
x2 to that of the downstream system (S2). The instantaneous velocity fields are interpolated onto
a polar grid of 32 points in the radial direction and 64 in azimuth, for r ≤ 0.8, using a bi-cubic
interpolation that guarantees a close match with the original data.

The axisymmetric component of axial velocity fluctuations is isolated by averaging each snap-
shot in the azimuthal direction. The cross-spectral density (CSD) matrix between all resulting
(Nx×Nr) = (15× 64) spatial positions is then constructed using Welch’s periodogram method,
with data blocks of 128 time samples, overlapped by 50% (see Ref. [29] for further details). This
empirically educed matrix converges statistically towards the true CSD, which is defined as the
covariance of the Fourier-transformed velocity signal ŷ(xi,ω),

Pŷŷ
∣∣
i j(ω) = E

[
ŷ(xi,ω)ŷ∗(x j,ω)

]
. (12)

The “expected value” operator E denotes the asymptotic limit of an ensemble average. In the
present calculations, for numerical reasons, each element of the CSD matrix is further scaled with
a factor √rir j, composed of the radial coordinates of any two points for which the correlation is
computed. This procedure ensures that the resulting modified CSD matrix is strictly Hermitian
[50].

Eigenvectors φ̃k of the modified matrix are computed. These are then again rescaled in each
point as φk(r,x) = φ̃k(r,x)r−0.5, and they are sorted in descending order of their associated eigen-
values. The structures φk(r,x) represent the SPOD modes, in the terminology of Picard & Delville
[10], and as used in recent literature [19, 20]. Unfortunately, the same name is also used by Sieber
et al. [11] for a different modal decomposition, which is not employed here.

The statistical convergence of SPOD modes is examined by dividing the datasets into two
blocks, indicated as i = (1,2), and performing the computation procedure on each subset. Each
block corresponds to half of the original dataset. We use a normalized scalar product α between
each mode φi,k obtained with half of the original dataset and the corresponding mode φk obtained
with the complete set,

αi,k =
〈φk,φi,k〉√
||φk||2 · ||φi,k||2

. (13)

The scalar quantity αi,k is the correlation coefficient between the kth mode of subset i and the
corresponding mode of the full dataset. We consider modes with a correlation coefficient close to
unity as being converged, showing thus that the same computation with half of the dataset leads to
a very similar result.

The correlation coefficients for St = 0.2, 0.4, 0.6 and 0.8 are presented in Fig. 12. It is clear
from these figures that the analysis is rather sensitive to the amount of data being used. The
discrepancies in the higher (less energetic) modes are partially explained by differences in the
order in which they emerge, depending on the data subset. However, the first two SPOD modes
seem to be sufficiently correlated and can be accepted as being converged at all Strouhal numbers
below St = 0.8. Only modes 1 and 2 will be discussed in the following, for 0.2≤ St ≤ 0.7.

B. Resolvent-based modelling of SPOD modes

The relation between resolvent modes, as presented in Sec. III, and SPOD modes, as obtained
from the experiments, is made explicit here on the basis of our earlier formulation [18]. The
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FIG. 12. Correlation coefficients α (Eq. 13), for a quantification of the statistical convergence of experimen-
tal SPOD modes. Two subsets of data are taken from the experimental acquisitions, and for each of these
the SPOD modes are computed and compared: (•) α1,k and (◦) α2,k. Satisfactory convergence is observed
at least for mode 1 (throughout) and for mode 2 (at St < 0.8).

following development is consistent with the recent work of Towne et al. [19] and Schmidt et
al. [20], while using the nomenclature introduced in the previous sections.

Let f (t) and q′(t) represent spatial discretisations of the stochastic forcing and response, as
discussed in Sec. III B. The CSD of their spectral components f̂ (ω) and q̂(ω) is given by

Pf̂ f̂ (ω) = E
[

f̂ (ω) f̂ H(ω)
]

and Pq̂q̂(ω) = E
[
q̂(ω)q̂H(ω)

]
. (14)

For the purpose of flow modelling, we consider the CSD of an experimentally observable vector
ŷ of flow quantities,

Pŷŷ(ω) = E
[
ŷ(ω)ŷH(ω)

]
, with ŷ =Cq̂. (15)

The relation between Pŷŷ and Pf̂ f̂ at a given frequency involves the resolvent operator; with (9b)
and the definitions in Sec. III C, this relation can be written as

Pŷŷ =CRE
[

f̂ f̂ H]RHCH =CQΣFHMPf̂ f̂ MFΣQHCH . (16)

If the forcing f̂ is expanded in the basis given by the columns of F , with a coefficient vector β
such that f̂ = Fβ , (16) becomes

Pŷŷ =CQΣPββ ΣQHCH . (17)

We now seek the relation between eigenvectors (SPOD modes) of Pŷŷ and the resolvent response
modes contained in the matrix Q. If full-state information is available, C = I and ŷ = q̂, one can
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write
NPŷŷNH = NQΣPββ ΣQHNH . (18)

Recall that the scalar product (6) is represented by the matrix M = NHN. As NQ is unitary,
(NQ)HNQ = I, it represents the eigenvector matrix of NPŷŷNH , under the condition that Pββ is a
diagonal matrix. This condition signifies that the resolvent forcing modes, for a given frequency,
are uncorrelated in the actual stochastic forcing of the system (‘spatial white-noise hypothesis’).
It finally follows that Q in this case is the eigenvector matrix of PŷŷM (the ‘weighted CSD’ [20]),
with the diagonal elements of Pββ Σ 2 as associated eigenvalues.

If ŷ represents only partial-state information, C 6= I, such a direct link between resolvent re-
sponse modes and SPOD modes cannot be made. This is the case for the present experimental
dataset. However, under the strong hypothesis Pββ = I, it is possible to construct a low-rank ap-
proximation

Pŷŷ ≈CQ̃Σ̃ 2Q̃HCH (19)

of the observable CSD, where Q̃ and Σ̃ only contain a limited number of resolvent response modes
and associated gains, as obtained from the linear analysis. The eigenvectors of (19), or equivalently
the left singular vectors of CQ̃Σ̃ , can then be identified and compared to those computed from the
experimental data. It may be expected that the leading SPOD mode structure is well represented
by such a linear model in situations where the first optimal gain σ1 is significantly larger than
σ2: as the ratio σ1/σ2 tends towards infinity, the leading SPOD mode tends towards the optimal
resolvent response mode Cq̂1. At finite gain ratios however, the inclusion of several resolvent
modes in CQ̃Σ̃ has the potential to improve the agreement. The comparisons provided in recent
analyses of backward-facing step flow [27] and jets [19, 20] show such favourable cases of strong
gain separation, as discussed in those articles.

C. Comparison between experimental and model results

It is now assessed to what extent the experimentally educed SPOD modes are accurately repro-
duced by the resolvent-based model. The success of this comparison depends on many factors,
namely, the assumption that our forcing modes are uncorrelated in Pŷŷ, the hypotheses involved
in the linear resolvent analysis in Sec. III, and the accuracy of both experimental and numerical
methods used.

Approximations of Pŷŷ are constructed according to the low-rank model (19). The first five
resolvent modes, discussed in Sec. III E, are used to build Q̃ and Σ̃ (the low-rank versions of Q
and Σ ) at various Strouhal numbers. The matrix C selects the streamwise velocity component in
the same grid points that are used in the experimental CSDs. SPOD modes are then computed as
the left singular modes of the matrix CQ̃Σ̃ .

The leading SPOD modes obtained from experimental data and from the resolvent-based model
are compared in Fig. 13, for Strouhal numbers St = 0.2, 0.4, 0.6 and 0.7. Contours of their ab-
solute value are shown, and each mode is normalised with respect to its global maximum value.
The agreement between experimental (left column) and model results (right column) is remark-
ably good at Strouhal numbers between 0.4 and 0.7. Within this range of St, maximum SPOD
amplitudes are located inside the potential core region of the jet. The maximum along r at each
streamwise station follows a line that tends towards the jet axis, evocative of the “critical layer”
as discussed by Tissot et al. [45]. At St = 0.2 however, the agreement between experiment and
model is rather poor. While the experimental mode structure in Fig. 13a resembles those found
at higher Strouhal numbers, but with its maximum further downstream and possibly outside the
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FIG. 13. Modulus of the first SPOD mode at St = 0.2, 0.4, 0.6 and 0.7, as obtained from the experimental
data (left column) and from the resolvent-based model (right column). The resolution of the colour plots
corresponds to the spatial grid where the CSD is defined, without interpolation.

measurement window, the resolvent-based model predicts high amplitudes in the outer portion of
the shear layer (Figs. 13b and 6a).

The second SPOD modes are shown in the same manner in Fig. 14. For these modes, the
comparison between experimental and model results fails at all Strouhal numbers. Mode structures
obtained from the resolvent-based model have high amplitudes inside the shear layer, similar to
the sub-optimal response structures shown in Fig. 7, whereas the experimentally educed structures
are still characterised by maximum amplitudes near the jet axis. Inside the jet, the latter display
an amplitude modulation along x with two distinct local maxima. Subsequent SPOD modes show
similarly poor agreement, and they are not reported here.

Several effects may contribute to the failure of the model to capture the second SPOD mode; a
rather obvious one seems to derive from the specific structure of the sub-optimal resolvent modes
that are included in the low-rank operator (19). The optimal resolvent mode cannot be significantly
involved in the second SPOD mode, which is orthogonal to the first one, and none of the four sub-
optimal structures in Fig. 7 can be expected to reproduce spatial variations of the kind observed in
the left column of Fig. 14.

Energy spectra, as given by the eigenvalues of the measured and modelled CSD matrices, are
compared in Fig. 15. Their variations with Strouhal number are quite different from one another.
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FIG. 14. Modulus of the second SPOD mode at St = 0.2, 0.4, 0.6 and 0.7, as obtained from the experimental
data (left column) and from the resolvent-based model (right column). The resolution of the colour plots
corresponds to the spatial grid where the CSD is defined, without interpolation.
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FIG. 15. The leading five CSD eigenvalue branches as functions of Strouhal number, (a) from the experi-
ment, (b) from the resolvent-based linear model.
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FIG. 16. Interpolated SPOD wavepackets at St = 0.4, (a) from the experiment, (b) from the resolvent-based
linear model. Amplitude and phase are interpolated between the available data points, and the resulting real
part is represented.

The dominant eigenvalue of the experimental CSD takes on its highest value at St = 0.1, and
another local maximum arises at St = 0.4. The first and second eigenvalue curves are separated
by a factor between 3 and 7 over the interval 0.4 ≤ St ≤ 0.8, where SPOD modes in model and
experiment are in good agreement. CSD eigenvalues derived from the model closely resemble
the gain values shown in Fig. 4, with a slight shift of the maximum value from St = 0.7 to 0.6.
An important source of discrepancy between the dominant branches in figures 15a and b is very
likely the assumption that all resolvent forcing modes over all Strouhal numbers are contained in
the Reynolds stress fluctuations with equal amplitude.

In order to visualise the wavepacket structure of the leading SPOD mode at St = 0.4, the dom-
inant St value according to the experimental spectrum (Fig. 15a), the amplitude and the phase of
this mode are interpolated onto a fine mesh. This is done both for the experimental and for the
model SPOD mode, and the resulting real parts are shown in Fig. 16. Clean wavepackets are recov-
ered, and their resemblance is even more appreciable than in the amplitude plots of Fig. 13. The
model wavepacket is nearly identical to the optimal response mode (see Figs. 6b,c for St = 0.3,
0.5). For a more quantitative comparison, real-part oscillations of the interpolated SPOD modes
are extracted along the centreline, and displayed in Fig. 17, together with their amplitude envelope.
Black and red lines represent the model and the experimental data, respectively. Markers indicate
the values obtained directly in the original measurement points. Experimental wavepackets are
traced with their actual absolute amplitude, whereas a best-fit coefficient has been constructed,
based on the interval 1 ≤ x ≤ 5, for a proper scaling of the model amplitude. Good agreement
is generally observed in the upstream region of exponential amplitude growth; at St = 0.4, the
agreement is excellent down to the amplitude maximum. At lower Strouhal numbers, the model
underpredicts the maximum, even by a large measure in the case of St = 0.2, whereas at higher
Strouhal numbers, the amplitude maximum is overpredicted. Considering that a phase match is
imposed in the very first position, x = 1, and differences therefore accumulate in the downstream
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FIG. 17. Comparison between experimental (red) and model (black) SPOD wavepackets at various Strouhal
numbers. Amplitude and phase variations on the centreline are interpolated between the available data
points, indicated by markers. Both the amplitude envelopes and the oscillating real parts are shown.

direction, the phase prediction can be said to be satisfactory for all Strouhal numbers above 0.2.
Several radial positions have been tested for the present comparison, and all have been found to
give very similar agreement. The most notable difference between model and experimental results,
at St ≥ 0.4, is an underpredicted downstream attenuation of fluctuation amplitudes. This trend is
clearly visible in Figs. 13, 16 and 17, and it increases with St.

D. Comparison with linear jet studies in the recent literature

The resolvent modes presented in Sec. III E and their comparison with SPOD modes in Sec. V C
are, by and large, consistent with the findings of similar recent studies [14, 16, 17, 19, 20]. One
striking difference with the results of Schmidt et al. [20] is noted in the structure of sub-optimal re-
sponse modes: at Strouhal numbers above 0.2, our computations yield a clean separation between
modal shear and non-modal Orr structures, whereas Schmidt et al. [20] observe a mixing of shear-
induced wavepackets with Orr-related structures in all their sub-optimals. The associated forcing
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FIG. 18. Power-spectral density (PSD) along the jet centreline as a function of x at different Strouhal
numbers. (◦) Hot-wire measurements [12]; ( ) PSE model [12]; ( ) optimal response mode (present
calculations).

structures, shown in Figs. 5 and 7, suggest that this difference can be attributed to the presence of a
nozzle in our numerical configuration. Forcing inside the pipe is found to be particularly efficient,
especially in the case of the optimal resolvent mode, which must therefore be expected to be very
sensitive to the truncation of the most receptive flow region. In turn, changes in the optimal mode
will affect the following sub-optimals. The localisation of optimal forcing in the present results
may furthermore be linked to the observed sensitivity of LES statistics with respect to flow details
in the nozzle boundary layer [30].

Numerous previous studies addressing the linear modelling of wavepackets in turbulent jets,
when only boundary forcing at the inflow was considered, observed discrepancies in the initial
amplitude growth at low Strouhal numbers, typically St ≤ 0.3 [4, 12, 51], which play an important
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role in the generation of jet noise. These differences were initially attributed either to the weakly
non-parallel assumption that underlies the parabolised stability equations (PSE), or to unmodelled
nonlinear effects. The limitation of PSE with regard to non-parallelism has since been ruled out
by computations based on the fully non-parallel, linearised Euler equations [5]. We complete this
study by revisiting the low-Strouhal discrepancy in the resolvent framework, where volume forcing
is included as a surrogate for nonlinear effects.

Figure 18 compares the PSE and measured power-spectral density (PSD) results from Cavalieri
et al. [12] with the kinetic energy of the optimal response modes presented in Sec. III E. All
curves are extracted on the jet axis. It can be seen how, at St = 0.2, the resolvent mode captures
the initial wavepacket growth measured in the experiment, and underpredicted by PSE, while at
higher Strouhal numbers the PSE solution and resolvent mode comprise similar initial growth.
The optimal forcing at St = 0.2 (Fig. 5a,b) involves significant contributions from inside the shear
layer of the free jet, which were excluded in the models of Refs. [4, 5, 12, 51]. This volume
forcing boosts the spatial growth of the response wavepacket near the nozzle. Although the high-
amplitude portion of the optimal response mode is not in agreement with the experimental PSD,
the initial growth is faithfully reproduced. This observation suggests that Orr-type forcing through
Reynolds stresses in the free shear layer indeed contributes to perturbation growth at low Strouhal
number near the nozzle.

Another much-discussed discrepancy between PSE and PSD results arises in the downstream
region where linear models predict a decay in perturbation amplitude, whereas the PSD displays
a marked additional growth, accompanied by a slope break in the growth rate. This peculiar
behaviour of the PSD is entirely absent in the present SPOD results, in agreement with the LES-
based analysis by Schmidt et al. [20]. This leads us to conclude that the spatio-temporal coherence,
from which SPOD modes are derived, provides a sharper and more pertinent criterion for the
eduction of coherent turbulent structures than the PSD, which only measures temporal coherence.
As discussed by Towne et al. [19], the PSD may contain the trace of many SPOD modes. Figure
18 strongly suggests that sub-optimal SPOD or resolvent mode wavepackets contribute in a very
significant way to the turbulent dynamics downstream of x = 4. The Orr-type character of our sub-
optimal resolvent modes is fully consistent with the discussion of the PSD behaviour by Tissot et
al. [45].

VI. CONCLUSIONS

Perturbation wavepackets in the mean flow of a turbulent jet have been computed in the form
of resolvent modes. Nonlinear terms in the governing equations, which arise in the form of gen-
eralised Reynolds stresses, are regarded as generic forcing terms [21, 27, 35]. The five leading
orthogonal forcing/response modes have been identified for several values of the Strouhal num-
ber between 0.2 and 1.5. The most amplified (“optimal”) mode, over the interval 0.3 ≤ St ≤ 1.5,
bears the traits of a shear instability in the free jet, with strong spatial growth in the potential core.
This mode arises principally from forcing in the nozzle boundary layer, which takes the shape
of tilted structures indicative of the Orr mechanism, as described in our earlier studies [14, 17].
The dominant role of shear instability in the free-jet portion of the optimal resolvent mode has
been demonstrated by projecting the response wavepacket onto a local k+ shear instability mode.
Subsequent (“sub-optimal”) modes, with significantly lower energy gain, appear to exploit the Orr
mechanism in the free jet. This interpretation is supported via an analogy with optimal forcing in
a fully developed parallel jet. At low Strouhal number, St = 0.2, both shear and Orr mechanisms
in the free jet seem to contribute to the optimal resolvent mode in a mixed fashion.
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Coherent structures have then been extracted from experimental measurements, in the form of
eigenvectors of the cross-spectral density, named ‘spectral POD’ (SPOD) modes [10, 19]. Follow-
ing recent works [18, 19], it has been demonstrated that such modes should, in theory, correspond
to the optimal response mode described above, under two strong conditions: (i) the corresponding
optimal forcing modes are statistically uncorrelated among each other in the nonlinear dynamics,
which are interpreted in the linear model as forcing terms; (ii) the SPOD modes are extracted from
full-state information. As full-state information is not available from the experimental dataset, the
five leading response modes were instead used to construct a low-rank model of the cross-spectral
density, under the even stronger assumption that the corresponding optimal forcing structures are
uncorrelated and of equal amplitude in the nonlinear dynamics. This procedure constitutes our
resolvent-based linear model for the statistical dynamics of coherent turbulence structures, as char-
acterised by two-point covariance.

Very good agreement has been found between the leading SPOD modes as obtained from
the experiment and from the resolvent-based model, in a range of Strouhal numbers around 0.4.
The leading SPOD mode of the linear model is in fact nearly identical to the optimal response
wavepacket, such that the intermediate step of building a model CSD from several response struc-
tures turned out to be unimportant for the comparison with the experiment. At St = 0.4, the model
reproduces accurately both the amplitude variations over three decades, down to at least 7 diam-
eters behind the nozzle, and the phase variations in the experimentally educed SPOD mode. The
maximum wavepacket amplitude is underpredicted at St < 0.4, and overpredicted at St > 0.4. At
all Strouhal numbers between 0.2 and 0.7, the initial streamwise perturbation growth close to the
nozzle is very well retrieved.

Subsequent (non-leading) SPOD modes of the experimental data and the linear model do not
show satisfactory agreement. The discussion of their discrepancies may be approached from two
ends: on the one hand, the linear model probably cannot replicate the experimental results because
of the restricted number of basis vectors, and because the above-mentioned modelling hypotheses
are too crude in order to reproduce the dynamics beyond leading order. On the other hand, the
experimental measurements may be too sparse, particularly in terms of spatial resolution, in order
to detect the rather fine-scale structures that the linear model predicts.

In summary, the results presented in this paper demonstrate that linear resolvent analysis, per-
formed around the spatially developing, time-averaged mean flow, represents a valid tool for the
modelling of coherent wavepacket structures in a stochastically driven turbulent jet. Only the mean
flow is required for the construction of this linear model. Wavepackets arising from shear instabil-
ity, which experience the strongest energy gain, could be matched between model and experiment
at Strouhal numbers between 0.2 and 0.7. While these general conclusions corroborate those of
the parallel study by Schmidt et al. [20], performed on the basis of LES data for the same flow
configuration, differences are observed in the resolvent mode structures. These relate to the sepa-
ration of shear and Orr mechanisms in the optimal and sub-optimal modes, and they are attributed
to the inclusion of a nozzle in the present analysis.

From a final comparison with earlier PSD measurements [12], it is inferred that sub-optimal
SPOD modes seem to play a determining role near and beyond the end of the potential core re-
gion. While the link between these modes and free-jet Orr-type growth mechanisms is one more
time predicted by the present analysis, poor agreement is found between sub-optimal structures
in model and experiment. Further progress of wavepacket modelling in high Reynolds number
turbulent jets requires establishing the dynamics that dominate in the flow region downstream of
the potential core, and how best to model them.
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[16] J. Jeun, J. W. Nichols, and M. R. Jovanović, “Input-output analysis of high-speed axisymmetric
isothermal jet noise,” Phys. Fluids 28, 047101 (2016)

[17] O. Semeraro, L. Lesshafft, V. Jaunet, and P. Jordan, “Modeling of coherent structures in a turbulent
jet as global linear instability wavepackets: Theory and experiment,” Int. J. Heat Fluid Fl. 62, 24–32
(2016)

[18] O. Semeraro, V. Jaunet, P. Jordan, A. V. G. Cavalieri, and L. Lesshafft, “Stochastic and harmonic
optimal forcing in subsonic jets,” AIAA Paper 2016-2935 (2016)



27

[19] A. Towne, O. T. Schmidt, and T. Colonius, “Spectral proper orthogonal decomposition and its rela-
tionship to dynamic mode decomposition and resolvent analysis,” J. Fluid Mech. 847, 821–867 (2018)

[20] O. T. Schmidt, A. Towne, G. Rigas, T. Colonius, and G. A. Brès, “Spectral analysis of jet turbulence,”
J. Fluid Mech. 855, 953–982 (2018)

[21] B. F. Farrell and P. J. Ioannou, “Generalized stability theory. Part I: Autonomous operators,” J. Atmo-
spheric Sci. 53, 2025–2040 (1996)

[22] F. Alizard, S. Cherubini, and J.-C. Robinet, “Sensitivity and optimal forcing response in separated
boundary layer flows,” Phys. Fluids 21, 064108 (2009)
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