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The linear amplification of axisymmetric external forcing in incompressible jet flows is
investigated within a fully non-parallel framework. Experimental and numerical studies
have shown that isothermal jets preferably amplify external perturbations for Strouhal
numbers in the range 0.25 ≤ StD ≤ 0.5, depending on the operating conditions. In the
present study, the optimal forcing of an incompressible jet is computed as a function
of the excitation frequency. This analysis characterizes the preferred amplification as a
pseudo-resonance with a dominant Strouhal number of around 0.45. The flow response
at this frequency takes the form of a vortical wavepacket that peaks inside the potential
core. Its global structure is characterized by the cooperation of local shear-layer and
jet-column modes.

1. Introduction

Large-scale coherent structures develop in the shear-layers of isothermal jet flows, for
both laminar and turbulent regimes. These structures are not self-sustained, but are
the consequence of strong amplification of incoming disturbances. Crow & Champagne
(1971) performed experiments where the flow was forced with a controlled frequency;
they showed that optimal excitation is achieved for a Strouhal number based on the
jet diameter of about 0.3. The corresponding flow perturbations, referred to as the jet
preferred mode, grow in amplitude starting at the nozzle until they undergo non-linear
saturation.

A local analysis of jets (Michalke 1984) identifies shear-layer perturbations immedi-
ately downstream of the nozzle as the fastest growing instability modes, which would
indicate that the preferred frequency scales with the initial shear-layer thickness. This
also suggests that the mechanisms underlying the selection of the preferred frequency
depend on the downstream flow development. Under the assumption of a slowly diverg-
ing base flow, Crighton & Gaster (1976) used a WKBJ approximation to describe the
spatial development of the instability wave. Their results are in reasonable agreement
with the experimental results of Crow & Champagne (1971) for the initial growth of the
structures. This approach has subsequently been generalized through the use of the parab-
olized stability equations (Ray et al. 2009; Gudmundsson & Colonius 2011; Rodriguez
et al. 2011). While this approach also relies on the assumption of a slow variation of the
base flow in the streamwise direction, these results were found to yield good agreement
with experiments of natural turbulent jets.

The optimal disturbance of flows subjected to time-harmonic linear perturbations has
been described by Trefethen et al. (1993). This method was first applied to general
non-parallel configurations using a projection of the flow dynamics onto a reduced space
spanned by a set of eigenmodes (Alizard et al. 2009; Nichols & Lele 2010). In other studies
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(Monokrousos et al. 2010; Marquet & Sipp 2010; Nichols & Lele 2011b; Sipp & Marquet
2012) the resolvent norm has been computed directly from the linearized Navier–Stokes
operator, such that the entire non-normal flow behavior captured by the discretization
is taken into account in the results. This approach is followed here to provide a better
understanding of the preferred frequency selection and the associated spatial structures;
in particular, the non-parallel nature of the flow, as well as the effects of a solid circular
jet-pipe, are taken into account. The present analysis is mainly restricted to axisymmetric
forcing and perturbations. Results for helical forcing are only briefly discussed.
After a description of the flow under consideration in § 2, two different models of the

external forcing are described in § 4, together with the numerical method used. The
results, presented in § 5, are then discussed and compared to classical local stability
analysis.

2. Flow configuration

2.1. Geometry

A cylindrical jet of an incompressible Newtonian fluid of viscosity ν∗, with radius R∗

and exit centerline velocity U∗
0 is considered. The latter two quantities are used to make

lengths and velocities non-dimensional. Frequencies f∗ can be non-dimensionalized to
yield either a circular frequency ω or a Strouhal number St based on the jet diameter.
These parameters are related via St = ω/π. Throughout the study, the Reynolds number
is taken to be

Re =
U∗
0R

∗

ν∗
= 103.

The flow geometry, described in terms of the cylindrical coordinates r, θ and x, is
represented in figure 1. The boundary of the computational domain Ω is decomposed
into Γi, Γw,Γo and Γa respectively corresponding to the inlet, a solid wall, the outlet and
the jet axis. No-slip boundary conditions are imposed on Γw, and stress-free boundary
conditions are used on Γo (Dick 2009). Compatibility conditions, ensuring the smoothness
of the computed fields are imposed on the axis r = 0 (Matsushima & Marcus 1995). At
the inflow, homogeneous or inhomogeneous Dirichlet boundary conditions are imposed
on the velocity as requested by the problem under consideration.
Two unstructured meshes with identical dimensions but different resolution are used

for the finite element computations. The density of vertices in the domain is controlled by
the distance between discretization points on the boundary of the computational domain
as well as on interior boundaries (dashed lines in figure 1). This distance is denoted by h4
for boundaries in the far field (r > r+3 ). It is smaller than h3 for r ≤ r+3 , and respectively
smaller than h2 and h1 in the inner regions defined by x ≤ x+2 and 1−δ2/2 ≤ r ≤ 1+δ2/2
and by x−1 ≤ x ≤ x+1 and 1 − δ1/2 ≤ r ≤ 1 + δ1/2. These subdomains are indicated by
gray shaded areas in figure 1. The values of the hi for both meshes are given in figure 1.

2.2. Base state

Linear stability analysis formally applies to base states that are steady solutions of the
governing equations. However, several studies have found that linearization around a
time-averaged mean flow yields better predictions of the nonlinear flow behaviour, in par-
ticular with regard to the frequency selection of intrinsic oscillations (Pier 2002; Barkley
2006). The present study employs the mean-flow model proposed by Monkewitz & Sohn
(1988) for a turbulent free jet, displayed in figure 2. This model consists of a potential
core, starting from a momentum thickness θ = 0.043, and extending over eight radii
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Figure 1. Schematic representation of the numerical domain. The pipe length is set to xp = 5,
and it has been verified that setting rmax = 10 does not influence the results. Gray shaded areas
correspond to subregions in which different grid resolutions are selected. Values of x−

1 = −2,
x+

1 = 1, δ1 = 0.15, x+

2 = 10, δ2 = 0.5 and r+3 = 2 are used.

Figure 2. Axial velocity field for the model turbulent mean flow of Monkewitz & Sohn (1988).

downstream of the end of the jet pipe, followed by a self-similar region where the veloc-
ity profiles have an approximately Gaussian shape. A parallel pipe flow region has been
added upstream, and a smooth transition is made for 0 ≤ x ≤ 1, as described in Garnaud
et al. (2011).

In the following, infinitesimal perturbations around the steady mean flow are consid-
ered, such that the flow field can be written as (u, p) = (U + ǫu′, P + ǫp′), where (U , P )
denotes the base state displayed in figure 2.

3. Modal analyis

Monkewitz (1989) and Huerre & Monkewitz (1990) conjectured that the preferred
mode observed in experiments corresponds to the resonance of the least stable eigenmode
of the jet with incoming disturbances. This issue has been investigated by Cooper &
Crighton (2000) by means of a WKBJ approximation. Upon making the assumptions
that (i) the global mode has the shape of a local shear-layer mode at each location, and
that (ii) the base flow development is slow, the authors found a weakly stable global
mode at a Strouhal number of 0.44 which agrees well with experimental observations.
In order to avoid such strong assumptions, eigenmodes can now be computed using the
axisymmetric Navier–Stokes equations discretized on a two-dimensional domain. Such
a modal analysis has for example been performed by Nichols & Lele (2011a) in the
context of supersonic jets. This approach is followed in this section. Figure 3 displays the
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4 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

Figure 3. Eigenvalue spectra of the linearized Navier–Stokes equations (Lq = iωBq)
computed for a domain of length xmax = 40 (black dots) and xmax = 60 (gray crosses).

spectrum obtained for the global eigenvalue problem

∇ · u′ = 0,

−iωu′ + (U ·∇)u′ + (u′ ·∇)U = −∇p′ +
1

Re
∇

2u′ + ψ(x)f ′,
(3.1)

with homogeneous Dirichlet boundary conditions on Γi ∪ Γw. All eigenmodes are stable,
and three families of modes can be identified. First, low-frequency free-stream modes
(eigenvalues close to the origin) correspond to standing vortical structures. These decay
very slowly due to viscous effects. Second, a branch of shear-layer / jet-column modes
is observed (upper branch in figure 3). Along this branch the decay rate −ωi increases
with frequency ωr, and the spatial structure of the eigenmodes is characterized by an
exponential growth throughout the computational domain. This growth can be under-
stood as a consequence of the stable advection of nearly neutral shear-layer structures.
Finally, the lower branch of eigenmodes in figure 3 corresponds in fact to pseudomodes
that lie on the 10−10 contour of the pseudospectrum. Note that the actual spectrum is
quite dependent on the size of the numerical domain, but that qualitative features are
not. For more details, see Garnaud (2012).
The spectrum of the linearized Navier–Stokes equations therefore exhibits no isolated
or least stable eigenmode that could explain the preferred mode through a resonance
mechanism. In the next section, a pseudo-resonance analysis is carried out to investigate
the origin of the preferred mode.

4. Response to harmonic forcing

4.1. External forcing as a body force

Following Monokrousos et al. (2010), Marquet & Sipp (2010) and Sipp & Marquet (2012),
the external forcing can be modeled as a body force f(x, t) acting on the momentum
equation,

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇

2u+ ψ(x)f ,

while ∇ · u = 0 is maintained throughout the flow. The weight function ψ is used to
restrict the flow region where forcing is applied, and the forcing amplitude is assumed to
be small: f = ǫf ′. To leading order, the dynamics of perturbations are governed by the
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The preferred mode of incompressible jets: linear frequency response 5

linear system

∇ · u′ = 0,

∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U = −∇p′ +

1

Re
∇

2u′ + ψ(x)f ′,

u′ = 0, Γi ∪ Γw

1

Re

∂u′

∂n
− p′n = 0. Γt ∪ Γo

(4.1)

In a linear framework, all signals are decomposed in time into independent Fourier com-
ponents. The forcing is therefore considered to be time-harmonic, f ′ = f̃ exp(−iωt),
prompting an asymptotic flow response (u′, p′) = (ũ, p̃) exp(−iωt) at the same frequency.
The amplification of the externally applied forcing at a given frequency ω is measured in
terms of the gain

Gbf
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Ω

|f̃ |2r dr dx

)
. (4.2)

The optimal forcing f̃opt(ω) realizes this maximum. For the results presented in §5.1, the
forcing is assumed to be localized inside the pipe only, i.e. the weight function is defined
as ψ(x) = 1 for x < 0 and ψ(x) = 0 for x ≥ 0.

4.2. External forcing as an inflow condition

Rather than forcing the jet through a distributed body force in the pipe interior as in
the previous section, one may model incoming perturbations in the form of an unsteady
upstream boundary condition of the linearized Navier–Stokes equations:

∇ · u′ = 0,

∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U = −∇p′ +

1

Re
∇

2u′,

u′ = 0, Γw

1

Re

∂u′

∂n
− p′n = 0, Γt ∪ Γo

u′ = f ′. Γi

(4.3)

Such a model corresponds more closely to the assumptions of local spatial stability,
WKBJ and PSE approximations. In this case, the gain between a harmonic inflow forcing
and the corresponding response is measured as

Gbc
opt(ω) = max

f̃

(∫

Ω

|ũ|2r dr dx

)/(∫

Γi

|f̃ |2r dr

)
. (4.4)

4.3. Numerical solution of the optimization problem

The linear systems (4.1) and (4.3) are discretized by P2-P1 finite element using the
software FreeFEM++ (Hecht 2011). Let q be the discrete state vector containing all
degrees of freedom related to velocity and pressure fields. Both (4.1) and (4.3) can then
be written in their semi-discretized form as

Bq̇ = Lq +Bff , (4.5)

where f is the discrete forcing vector and L, B and Bf are sparse matrices resulting
from the finite elements discretization of the linearized Navier–Stokes equations. Let
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6 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

f = f̃ exp(−iωt) and q = q̃ exp(−iωt) be time-harmonic such that

−(L+ iωB)q̃ = Bf f̃ . (4.6)

Perturbation amplitudes are measured in a pseudonorm ‖q‖2 = q†Qq that represents
the discretization of the perturbation kinetic energy:

‖(u′, p′)‖2 =

∫

Ω

|u′|
2
r dr dx. (4.7)

The norm of the forcing vector f , which appears in the denominator of (4.2) and (4.4), is
expressed accordingly in discrete form as ‖f‖2f = f †Qff . Note that f does not contain
pressure components, and that Qf therefore is symmetric positive-definite, in contrast to
Q, which is positive semi-definite. The discrete optimal forcing problem can be written
as

G2
opt(ω) = max

‖q̃‖2

‖f̃‖2f
. (4.8)

Monokrousos et al. (2010) formalized a similar optimal forcing problem by use of
a constrained optimization approach involving Lagrange multipliers. For linear time-
harmonic problems, a more concise formalism is possible. The formulation used here,
similar to that of Sipp & Marquet (2012), is briefly outlined below. Substituting (4.6)
into (4.8) gives

Gopt(ω)
2 = max

f̃

‖(L+ iωB)−1Bf f̃‖
2

‖f̃‖2f
,

= max
f̃

f̃ †B†
f (L+ iωB)−1†Q†(L+ iωB)−1Bf f̃

f̃ †Qf f̃
.

Let M†
fMf be the Cholesky decomposition of Qf , and let g̃ =Mf f̃ , i.e. f̃ =M−1

f g̃. The
optimal gain can then be rewritten as

Gopt(ω)
2 = max

g̃

g̃M−1

f

†
B†

f (L+ iωB)−1†Q†(L+ iωB)−1BfM
−1

f g̃

g̃†g̃
.

The right-hand side of the above expression is a Rayleigh quotient, and Gopt(ω) is there-
fore the leading eigenvalue of the associated Hermitian eigenvalue problem

M−1

f

†
B†

f (L+ iωB)−1†Q†(L+ iωB)−1BfM
−1

f g̃ = λg̃,

which can be re-written in terms of the forcing f̃ as

Q−1

f B†
f (L+ iωB)−1†Q†(L+ iωB)−1Bf f̃ = λf̃ . (4.9)

The leading eigenvalue of (4.9) and its associated eigenvector, which respectively cor-
respond to the optimal gain and optimal forcing, are computed by using the Lanczos
solver implemented in SLEPc (Hernandez et al. 2005). The operator (L + iωB)−1 and
its adjoint are applied by using the sparse linear algebra package MUMPS through its
PETSc interface (Balay et al. 2008). Finally, the operator Q−1

f is applied by using a
Cholesky decomposition, if memory requirements permit, or otherwise by using an ILU-
preconditioned conjugate gradient method.
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The preferred mode of incompressible jets: linear frequency response 7

Figure 4. Optimal gain as a function of the Strouhal number for body (a) and boundary (b)
forcing. The gains are computed for various domain lengths xmax. + symbols displayed in (b)
correspond to gains computed for a finer mesh (mesh #2 in figure 1), showing convergence with
respect to grid resolution. For boundary forcing on a domain of length xmax = 40, not only is
the most amplified mode displayed but the three leading eigenvalues of (4.9) as well.

5. Results

5.1. Optimal body forcing

Optimal harmonic forcing by means of a distributed body force inside the jet pipe,
as outlined in § 4.1, is computed first. The gain (4.2) is displayed in figure 4(a) as
a function of the Strouhal number. Different line styles represent results obtained for
various lengths of the computational domain, in order to assess the influence of domain
truncation. Figure 5 displays the spatial distributions of axial velocity of forcing and flow
response at selected Strouhal numbers, for a domain length xmax = 40. It is found from
figure 4(a) that domain truncation only affects the gains at very low Strouhal numbers.
The flow response structure in this regime extends far downstream, as can be seen in
figure 5(a), and the truncation at the outflow therefore leads to a lower measure of the
flow response norm. Neither the forcing distribution nor the captured part of the flow
response appear to be significantly influenced by the downstream truncation. Similarly,
it has been verified that a radial truncation at r = 10 has a negligible impact on the
results.

The largest gain is observed at St = 0.46. The perturbations in the free jet exhibit
a strong spatial growth in the shear-layer just downstream of the nozzle exit; their am-
plitude peaks near the end of the potential core at r = 8 (figure 5(b)). In the adjacent
decaying part of the wavepacket, the radial amplitude distribution changes markedly,
with its maximum now at the centreline. The wavepacket structure at higher frequencies
displays similar characteristics, but the region of spatial growth is confined to an ever
smaller distance from the nozzle.

The optimal distribution of the body force inside the pipe also exhibits consistent
characteristics at all Strouhal numbers presented in figure 5. The amplitude is largest
within the boundary layer at the pipe wall, and it is increasingly concentrated near the
wall at higher Strouhal numbers. At the same time, the downstream spatial growth of the
response increases with the Strouhal number, and its wavelength shortens. In all cases,
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8 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

Figure 5. Spatial structures associated with the optimal body forcing at different Strouhal
numbers, indicated in the figures. In the left column, the real parts of the axial component of
the forcing is displayed. On the right, the figures show the axial component of the response
velocity (real part). Computations were performed for xmax = 40.

the forcing structures are tilted upstream away from the wall, suggesting that the Orr
mechanism contributes to the perturbation gain as in the case of boundary layer flow
(Sipp & Marquet 2012).

Use of the L2 norm as a measure of the amplification gain inevitably implies that
spatially extended structures are given more weight than spatially localized structures,
even though the latter may represent modes with high spatial amplification. This effect
is undoubtedly responsible for the slight increase of Gbf

opt at very low Strouhal numbers.
The infinity norm would provide a sensible and intuitive measure for the amplification
of perturbations; unfortunately, this norm does not lend itself to the formulation of the
optimization problem. It can however be determined a posteriori for the results obtained
with the present approach. Values are given in figure 5 for the four cases represented. It
is indeed found that the infinity norm follows the same trends as the gain defined by the
L2 norm, except for the increase at very low Strouhal numbers.

Figure 6(a) displays the maximum amplification curves obtained when the length of
pipe included in the computational domain is increased from 5 to 10. It shows that this
parameter affects the values of the gain but that the shape of the curve remains the same.
In particular the optimal Strouhal number does not change, which confirms the relevance
of the choice of geometric parameters used in this study. A more critical parameter in this
analysis is the Reynolds number, as a model turbulent mean flow is used as a base state
for the stability analysis so the choice is rather arbitrary: figure 6(b) indicates that the
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The preferred mode of incompressible jets: linear frequency response 9

Figure 6. Optimal gains obtained for boundary forcing when (a) the length of pipe under
included in the computational domain increases from 5 to 10, and (b) the Reynolds number
increases from 103 to 5 · 103.

Figure 7. Spatial structures associated with the optimal boundary forcing at different Strouhal
number, indicated in the figures. In the left column, the modulus of the inflow axial velocity
component is displayed. On the right, the axial component of the response velocity is displayed
(real part). Computations were performed for xmax = 40.

optimal excitation frequency remains the same when the Reynolds number is increased
from 103 to 5 · 103.

ha
l-0

07
56

81
1,

 v
er

si
on

 1
 - 

23
 N

ov
 2

01
2



10 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

5.2. Optimal boundary forcing

The perturbation gain obtained from the problem formulation based on forcing at the in-
flow boundary, as given in § 4.2, is presented in figure 4(b). The trends are very similar to
those observed in the case of a distributed body force. The strongest amplification occurs
at St = 0.43. Domain truncation has no influence, except at very low Strouhal numbers,
and the results are converged with respect to mesh resolution. The radial distribution of
the optimal forcing input is displayed in figure 7, alongside the flow response at the same
four values of St as in the preceding section. The flow response wavepackets are indeed
nearly identical to those of figure 5, except for the highest Strouhal number shown. The
forcing distributions display some unexpected features. At low St, the amplitude maxi-
mum is located on the centreline, whereas in the intermediate frequency range the highest
forcing amplitudes occur in the pipe boundary layer. The no-slip condition requires the
forcing to be zero at r = 1, but the amplitude is expected to jump to a finite value over
a distance of the order of the thickness of the Stokes boundary layer, which scales as
(ωRe)−1/2 (Batchelor 1967). Both forcing and flow response are of a different character
at the highest Strouhal number shown in figure 7. Perturbations are induced around the
centreline; they experience weak growth inside the pipe and immediately decay as they
enter the free jet. A closer inspection of the gain curves reveals that the high-St regime is
dominated by a formerly sub-optimal branch of singular values. Two additional branches
are displayed in figure 4(b). Although barely visible, one of these branches becomes dom-
inant around St ≈ 1. The perturbation distribution shown in figure 7(d) belongs to this
distinct branch.

5.3. Comparison with local instability results

The structure of the response wavepackets in figures 5 and 7 is readily understood from
well-known local instability characteristics of jet flows (Jendoubi & Strykowski 1994;
Lesshafft 2007). Strong spatial growth takes place in the potential core region, where the
shear-layer is thin compared to the instability wavelength. The perturbation amplitude
of this local shear-layer mode is concentrated around r = 1. Downstream of the potential
core, the shear-layer mode stabilizes, and the jet-column mode takes over as the least
stable, spatial local eigenmode. The amplitude of the jet-column mode in the self-similar
base-flow region peaks on the jet axis. The gradual streamwise transition from a shear-
layer mode to a jet-column mode is visualized in figure 8 for the wavepacket shown in
figure 5(b). The thick line represents the local growth rate of the wavepacket, computed
as 1

2
∂x(logE) with E(x) as the perturbation kinetic energy at each streamwise station x

integrated in the radial direction. The thin solid and dashed lines trace the spatial growth
rates of the local shear-layer and jet-column modes, respectively, as functions of x. The
growth rate of the global wavepacket quickly adapts to that of the shear-layer mode near
x = 0, and it follows its decrease throughout the unstable interval. Downstream of x ≈ 5,
the global wavepacket gradually adjusts to the growth rate of the jet-column mode.

Contrary to what one might initially expect, the forcing structures displayed in fig-
ures 5 and 7 bear little resemblance to the local instability modes of the parallel flow
inside the pipe. In fact, the optimization algorithm aims at finding the inflow condition
that optimally excites shear-layer structures such that the wave packet in the free jet
is generated with a maximum amplitude. To this end, the inflow condition consists of a
superposition of local instability modes in order to exploit spatial transient amplification
mechanisms (Andersson et al. 1999).
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The preferred mode of incompressible jets: linear frequency response 11

Figure 8. Spatial growth rate of the wavepacket envelope (thick line) corresponding to fig-
ure 5(b), compared to spatial growth rates of the local spatial shear-layer mode (thin line) and
the jet-column mode (dashed line) at St = 0.43.

Figure 9. Optimal amplification of body forcing for various azimuthal wave-numbers m.

6. Conclusions

The linear dynamics of forced structures in a jet has been studied within a fully non-
parallel framework, so that the effects of the base-flow spreading and of the presence of
a solid jet pipe can be taken into account. Unlike approaches using the WKBJ or PSE
approximations where the frequency and inflow disturbance profile are imposed to solve
for the flow evolution downstream, the present method only seeks the optimal spatial
distribution of time-harmonic forcing at a given frequency.
It has been demonstrated that there is no least damped global mode that can resonate

in the presence of frequency forcing. The preferred frequency obtained in the present
analysis is therefore due to a pseudo-resonance rather than to a resonance as conjec-
tured by Monkewitz (1989) and Huerre & Monkewitz (1990). The analysis of Cooper &
Crighton (2000) relies on a tangent approximation of the local dispersion relation so as
to obtain a “global mode” with a Gaussian envelope. Such an assumption is unlikely to
hold in a full WKB approach or in the global analysis followed here. For this reason, one
should not expect to recover the “global modes” of Cooper & Crighton in the present
analysis.

Whether external forcing is modeled as an inflow condition or a body force, the am-
plification of external forcing has been found to be largest for a Strouhal number around
0.45. This preferred frequency is in good agreement with experimental observation at low
forcing intensity (Moore 1977; Crow & Champagne 1971). Note however that, as shown
in the latter reference, the preferred frequency depends on the amplitude of excitation
through non-linear effects. Around this optimal frequency, the excitation generates a
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12 X. Garnaud, L. Lesshafft, P.J. Schmid and P. Huerre

wavepacket that develops in the free-jet shear-layer. It is amplified through the potential
core, where shear is important, and decays further downstream while it gets localized on
the centreline. This behaviour is consistent with local stability results that show that,
while shear-layer modes are spatially unstable in the potential core, the jet column mode
becomes the least damped spatial eigenmode further downstream.

The shape of the optimal body forcing indicates that the Orr mechanism is at play
to generate perturbations that grow in the jet pipe boundary layer and then optimally
excite the free-jet wavepacket. The results are not very sensitive to the actual shape
of the forcing term as similar results are obtained for body and boundary forcing. In
both cases, a good agreement is found between the most amplified wavepacket and the
experimentally observed preferred mode.

The framework of optimal forcing is therefore a suitable tool for the analysis of the
non-modal instabilities developing in convection dominated amplifier flows.

Local spatial stability analysis indicates that helical perturbations, unlike axisymmetric
ones, are spatially amplified downstream of the potential core, as shown e.g. by Batchelor
& Gill (1962) and Michalke (1984). This is especially true in the low frequency range.
Computations have been performed using the current framework for higher azimuthal
wave numbers m. For m 6= 0, Gopt(St) is a monotonically decreasing function of St, and
the levels obtained at low frequencies are indeed larger for m = 1, 2 than for m = 0 (see
figure 9). However this is not only due to a faster growth of the wave packet downstream
of the nozzle, but also and most importantly to a spatial amplification over a longer
streamwise distance, resulting in larger L2 norms for the flow response. The growth of
the wavepacket through the potential core is however similar for all values of m.

Experiments typically do not show a dominance of m = 1 helical modes in the self-
similar region. Several reasons may explain this discrepancy between the results in figure 9
and observations, in particular the effects of turbulence and nonlinear saturation, which
are not captured in the present analysis. In this light, the L∞ norm might provide a
more relevant and intuitive measure of the perturbation amplification. The use of such
a formulation will be explored in future studies.
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